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t-J ring with an Anderson impurity: A model for a quantum dot
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A quantum wire of finite length. with correlated electrons coupled to a quantum dot is studied. The wire is
parametrized in terms of the supersymmetrid model and the dot is represented by an Anderson-like
impurity. The model is integrable and we discuss the properties of the finite chain by solving theABs#ie
equations. For a finite ring the energy spectrum is discrete and has to be obtained numerically. As a function of
the coupling of the dot to the wire we discuss the ground state and low-energy excitations, the Aharonov-Bohm
oscillations and the discontinuities of the magnetization of the system.
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[. INTRODUCTION persistent currents, in addition to thermodynamic properties.
Due to the finite size of the ring the energy eigenvalues de-
Quantum dots offer the possibility to study the Kondo pend on two parameters which can be varied independently,
effect at the level of arartificial magnetic impurity, in ~ namely, the length of the ring and the Kondo coupling. The
which the energy levels, the Coulomb interactions, and thenergy eingenvalues are always discrete leading to a saw-
contacts to metallic wireghybridization can be tuned by toothlike pattern of the Aharonov-Bohm oscillations. In the
external parametefsin the Kondo problerh? the spin of a  Appendix we discuss the possibility to generate a sinusoidal
magnetic impurity is screened by the spins of itinerant elecpattern in addition to the sawtooth.
trons at low temperatures leading to a Fermi-liquid fixed The remainder of the paper is organized as follows. In
point, while for energies much larger than the Kondo tem-Sec. Il we present the model. The Bethasatzequations
perature the impurity spin remains unscreened. diagonalizing the model are introduced in Sec. lll. In Sec. IV
Anderson’s model, on the other hand, describes the locale study the ground state and the low-energy excitations. In
moment formation and the subsequent screening of th&ecs. V and VI we briefly discuss Aharonov-Bohm oscilla-
spin*® Due to the hybridization of the localized and conduc-tions and theT=0 magnetization as a function of field, re-
tion electrons, the valence of the impurity is usually nonin-spectively. Conclusions follow in Sec. VII.
teger, ranging from close to zerfmonmagnetic impurity
through the crossover region known as the mixed-valence
regime, to the magnetic or Kondo ca$eteger valence Il. MODEL
A finite size ring has a discrete energy excitation spec-

trum. The gaps separating the low-lying excitations from thqated electrons coupled to a quantum dot, represented by an

ground state determine the exponential activations of thg,,yegon-jike impurity. The correlated electrons are de-
low-temperature thermodynamic properties. As a conse

i . scribed in terms of the one-dimensional supersymmetdic
guence of the discrete spectrum the magnetization as a funﬁiodel in a ring configuration of finite length The Hamil-

tion of field has jumps at critical fields that depend on the, _ . P,

energy gaps. The thermodynamics of Kondo and Anderso;[1cmlan for such a quantum wire is thesee Ref. 11

impurities in a finite size host of noninteracting electrons has

been studied via the Bethnsatzin Refs. 6 and 7. + +
In this paper we considerfanite ring with correlated elec- H= Z Hijiv1= _tiz P(Cit14Cio T CigCiv14) P

trons parametrized by the supersymmetricmodel. In con- 7

trast to previous studiés’ the present situation refers to a L

lattice model of interacting electrons and an Anderson-like +J_E, (S-S+1—2NiNi+a), ey

impurity can be placed on a link of the chain without de- oo

stroying the integrabilit§:® The impurity interacts with both

lattice sites joined by the link and can more realistically rep-Wherec/, (c;,) create(annihilatg an electron of spinr at

resent a quantum dot than a Kondo impurity with a contacthe sitei, P is a projector that prevents the double occupancy

exchange. The quantum dot corresponds to a hybrid betweeif every site, an&==,,,.c/ s, ¢;, andn==,cf c;, are

a dot embedded into the ring and a side-branch {6 Two  the spin and particle number operators at the &it&he

partial waves(forward and backward moving electrorere ~ model is integrable fot=2J for all band fillings®*In

involved in the interaction of the impurity with the host, order to close the ring we consider the dite 1 identical to

although the integrability imposes some restrictions on thighe first site, i.e., the ring consists bfsites.

interaction. The two partial waves allow one to investigate The impurity is introduced without destroying the integra-

interference effects through the dot, such as Aharonov-Bohrhility of the model®® The impurity is placed on a link, e.g.,

In this paper we study a quantum ring of strongly corre-
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the one joining the sites 1 arld and interacts with both of mean level spacing in the grain and the parity of the number
these sites. The general form of the impurity Hamiltonianof electrons'® An Anderson impurity like model in a finite
ist5:16 size system was also studied perturbatively bytiRer and
Stafford® in the context of tunneling into a quantum dot.
Himp=(1+ €*) " (H{ imp* Himp1+ €H1y The coupling of a quantum dot to a quantum wire can
: either be metallic or capacitive. In the former the electrons
Fie[Himp, +Hyjmp,Hat D), @ have to move through tr?e guantum dot, i.e., the quantum dot
where the square bracket denotes a commutatoreaisda is embedded into the CondUCtor, and a Coulomb blockade
parameter_ Note that here a spin 1/2 |mpur|ty is assumed arfa'ay arise |f the Fermi level in the conductor is off resonance
Himpi has the same form a4, . 4, i.e., it is a graded per- with the discrete energy levels in the dot. The quantum dot
mutator consisting of fermionic and bosonic components¢an also form a side-branch to a small metallic ring, i.e., the
The integrability of this impurity model as a function ef ~ coupling is capacitive and the electrons do not have to pass
has been discussed in several papér$:*The impurity can  through the dot in order to continue along the wire. Our
as well be generalized to arbitrary sgnbut here we limit  impurity corresponds to a hybrid of these two situations with
ouselves to discuss tHe=1/2 case. Note that the impurity fine-tuned parameters such that the model remains inte-
interacts with two sites with both partial wavegght and left ~ grable.
moving particles
The hybridization impurity partially localizes an itinerant Ill. BETHE ANSATZ EQUATIONS

electron. The valence of the quantum dot then depends on . ) .
the parametek, the number of electrons in the systei The model is diagonalized by two nested Beftresazein

and the length of the ring. For S=1/2 ande=0, H, . just terms (_)f two sets of rapidities. Within the quantum inverse
corresponds to adding one more site to the r(betpween s_cattgrmg meth?glahere are two.approaches that can b.e used:
sitesL and 1. For generak the three-site terms of the im- (i) Lai's method,™™ where the first set Of. Bethe.equanons .
purity Hamiltonian violate theT and P symmetries sepa- refers to the charges anq the second diagonalizes ;he spin
rately, while their productPT is of course invariant. The degrees of freedom andi) the Sutherland approathin .
three-site terms can be avoided by placing the quantum ddgrms of a gr_aded al_gebr_a. Both approa_ches are technically
at the open end of the host chdr'’ This considerably similar and differ mainly in the assumption of the vacuum

simplifies the impurity Hamiltonian, since one of the neigh- (reference state. I.n methp(ﬂi)_ t_he vacuum state corres_ponds
boring host sites is absent to the empty lattice, while irii) the reference state is the

Finite size effects of correlated electron hosts containinqsratre] w_|th”an electtron with utpk')sﬁ"ln a(; etvery site. (I;/Iettlﬁf)d ith
impurities have been studied befdfeyut always for a very S physically very transparent but leads to a ground state wi

large system, where the mesoscopic contributions are of th pmplex rap|c_l|t|e_s,_wh|ch ha"e. a very simple _form N the
order of L~1. The mesoscopic contributions describe thet ermodyngmm l"T."t’. but are d|ff.|.cult to determine numeri-
long wavelength excitations about the Fermi points whichCaIIy for finite L. Within approactii), on the other hand, the

constitute the conformal towers. These finite size correcti0n9round state consists of real rapidities which are relatively

to the energy yield the pattern of Aharonov-Bohm-Casheleaa//_ttr?_ d?{:]errrélntehWIFh ztandard mf{mt,rear:fﬁl péO(t:ﬁdures.
oscillations and the asymptotic of correlation functions for . ithin the sutheérland representa e bethe equa-

long times and/or long distances. In this paper we consider %Ons_lgor periodic boundary conditions take the following

guantum correlated electron ring that is sufficiently short'0M-

such that the individual energy eigenvalues are discrete and ) M M .

cannot be represented by a pseudocontinuous variable. The pj—€e—il2 k(L { Pj—pi—! 4 Pj— N, Til2

energy levels have then to be determined numerically. pj—e+il2 1 Pj—Pitia=1 Pj—N,—i/2’
Previous investigations of small size systems of other _

models within the framework of Bethe&nsatzare the fol- j=1,... My,

lowing: (1) A thorough study of short Heisenberg chains by

comparing exact diagonalizations with the Be#firesatzwas M1 No—pj—il2

performed by Karbach and Mar,*® (2) all the energy levels ]_1_[1 No—pip Lo 1,... My, (3)

=1 Ny DPj

and the thermodynamics for an exchange Kondo impurity
placed at the center of a small metallic sphere with three angyere M;=N,+Nj is the number of down-spin electrons
five electrons irs states were obtained in Ref. 6, a(8] the lus holes andMl,= N, is the number of holes. Note that
charge and spin gaps for an Anderson impurity in a smal\y | N 4N, =L+ 1, where the additional site refers to the
metallic sphere were also studiédh contrast to these pre- Tpuritly. The rapiditiesp; are related to the wave numbers
vious stut_jles_ we now conslder a correlated electron hpst a ! of down spin electrons and holes py= L tan(;/2), and

an impurity interacting with twolrather than onepartial e ) rapidities represent the holes. The energy and the
waves. Impurities in small boxes have also been investigate omgntum of the system are given by

with approximate methods, e.g., within the noncrossing dia-

gram approximation the Kondo resonance of an Anderson M, M,
impurity in an ultrasmall metallic grain was found to be E=2(M2—M1)—22 cog ki) PZE K. (4
strongly dependent on the relative magnituderpfand the =1 I =
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and thez projection of the magnetic moment of the system is -27.5 — T T
S*=3[1+L—2M;+M,]. Only the first factor on the left- . /_,.,d ---------------
hand side of the first set of Eg®) is caused by the impurity, | e €T
while the energy, Eq(4), depends only implicitly on the 200 /5"

parametere of the impurity.

For N,=0 Egs.(3) and (4) correspond to an antiferro-
magnetic Heisenberg spin 1/2 chain with &=1/2 .
impurity.2° In this limit (N,=0) Eq. (3) is identical to the 305
ones describing the magnetic degrees of freedom ofsthe '
—d (Kondo magneticS=1/2 impurity in a free electron
host[with € being inverse proportional to thed exchange
coupling between the host and wiitx,,q,= P + const(Refs. -32.0 0
3-9].

Taking the logarithm of Eq(3) we obtain

5

FIG. 1. Energy as a function of the impurity parametefor

oL arctarq2pj) +2 arctalﬁZ(pj —e)]= 27TJJ' Iovy-lyjng eigenstates for =16 andN,=7. The impurity has a pet .
chirality. The sets of quantum numbers for each state are given in
My M2 the text.(a) The ground statésolid line) corresponds tdN;=N,
+ 2|2 arctargp; —p;) —2 2 arctafi2(p;—\,)1, =5 (M;=12 andM,=7). The lowest energy hole or charge exci-
=1 a=1

tations[(b) (long-dashefland(c) (dotted] obtained by introducing
a “hole” into the set of hole quantum number&) (dash-dotted
and (e) (dashedl shows the lowest energy spin-flip excitations
22 arctan2(h ,—pj) =27l ,, (5 (M,;=11, M,=7). The energy differences between the states
=1 (b),(c) and (d),(e) are the consequence of the chirality of the

where the); andl, are quantum numbers that arise from theimpurity.

multivaluedness of the logarithm. Thig are integer(half- Spin-flip states have a considerably larger energy. The
integey if M,—M, is even(odd), and thel, are integer gspin-fiip excitations of lowest energy are displayed in Fig. 1
(half-integey if M, is even(odd. From Egs.(5) we have  as curves(d) (dash-dottefl and (e) (dashedl If a spin is
that the total number of possiblg values isL—M;+M,  flipped N, is decreased by one unit to 4, such that ridw
+3 and the total number of possiblg values isM;+1. =11 andM,=7. Consequently now thg; are the set of
The low energy states are determined by two sets of quantuintegers—5, . . . ,5 and thd , are given by the set of half-
numbersM values for thel; andM, values for thd . All integers—3,—2, ... % for curve (d) and the same set df,
quantum numbers within a set have to be different for thewith reversed sign for curvée). Note that flipping a spin
eigenfunctions to be linearly independent. does not only change the magnetization but also raises the
energy considerably. In addition to these two types of exci-
tations there are also spin-non-flisingled excitations,
IV. GROUND STATE AND LOW-ENERGY EXCITATIONS which do not change the magnetization, consisting of a pair
rQf complex Conjugateoj rapidities. Their energy is diffic_ult
to calculate and is of the order of the spin-flip excitations.
The energy difference between curybsand(c) and curves
r(d) and(e) in Fig. 1 is a consequence of the chirality of the
impurity. Since the impurity breaks tiieand P symmetries,
the energies of otherwise equivalent states are different.
The most important conclusion of this section is that for
the finite t-J ring the energy levels are discrete and that
charge excitations have a much smaller gap than the spin-flip
energies. For low temperature properties this means that both
Ehe specific heat and the magnetic susceptibility are exponen-
host®7 tially activated, but the activation gap for the specific heat is

Low-energy excited states are obtained by introducind“UCh_Srnaller than the spin-gap of the suscept_ibility. The
“holes” into the distributions of quantum numbers. Excita- S€'gies depend on two parameters, nantely, (which de-

tions among the hole states are shown in Fig. 1 cufts termines the average spacing between the levels in the host

(long-dashefiand (c) (dotted. They correspond to the same e.mde,ftfrze coupling between the dot and the host. The varia-
set ofJ; as the ground state, bl=—3, .. .,2,4 (*hole’at _ tion of the ground state and excitation energies is maximum

3) and thesel, with reversed signg*hole” at —3). The when the two parameters give rise to comparable effects.

energies of these two states are, of course, identicad=f@r
and lie about Z/L above the ground state. The energy dif-
ference between the two excited states is the consequence of The external magnetic and electric fluxes threading the
the chirality due to the impurity. ring yield a change in the momentutdP=N; %, +N 3,

My

We now obtain the ground state energy for a small syste
corresponding td.=16, N,=7, andN;=N,=5. In this
caseM ;=12 andM,=7, such that the); are half-integers
and thel , are integers. For the ground state we have the
J=-%.-3,....%, andl,=—3,—-2,...,3. Theground
state energy is a symmetric function efand is shown in
Fig. 1 as the solid curvéa). The ground state energy in-
creases monotonically witls]. For a large system, i.e., in the
thermodynamic limit, we can extract the impurity contribu-
tion to the energ§;® but that is not possible for a nanoscale
system where the impurity has a strong feedback on th

V. PERSISTENT CURRENTS
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0.15 . . . . . The general case is well-understood within Lai's
representatiot?!* for the Bethe'sAnsatzin the very largeL
0.10 \ . limit. The ground state consists of two sets of states, namely

spin-paired electrons and unpaired electrons. The former
yield oscillations in the persistent charge current of fre-
quency® /2, while the unpaired states carry only a simple
charge and give rise to a period ®f,. The persistent charge
current is then in general a superposition of oscillations with
~0.05 ) ) . . . two periods. Only unpaired electron states carry a spin and
-5 -10 05 00 05 10 15 yield Aharonov-Casher oscillations with a periodref. The
20/¢, starting point in Lai’s representation is the physical vacuum
(no electrons and electrons are added by the Bethe wave
functions. Unfortunately, the solutions of the BAE in this
AB=E(e,2D/®o) ~E(€,0), (for L=16, Ny=7, andN; =N, =5) representation are complex numbers for the rapidities, which
as a function of the flux ®/d, threading the ring. The values of e - .
. . .. . are difficult to obtain accurately for a system with small
E(€,0) can be read off from Fig.(4). The period of oscillation is Thi thod is theref t tical f mall
one-half the unit magnetic flux because the electrons travel in pairs. IS method 1S theretore not very practical for s
The Bethe vacuum state within the elegant Sutherland

The curves correspond to different valuesenfa) e=0 (solid), (b) . . . ?
€=0.75 (dashetl (¢) e=1.5 (dash-dottel (d) e=2.25 (long- representation is the ferromagnetic state with one electron

dasheq] and (¢) e=3 (dotted. The discontinuities are the conse- PEr site. Thg I_Sethe states introduce spin-flips gnd holes and
quence of the chirality of the impurity. the system is integrable because of the underlying supersym-
metric BFF algebra. Within this representation the ground

where 9,=®/®,+ oF/F, are the Aharonov-Bohm-Casher state and low energy excitations have only real rapidities,
phase shifts. Her@ is the magnetic fluxd,=hc/e is unit which is a very desirable feature for systems of small size.
magnetic flux,F=4=7 is the electric flux generated by a Here the vacuum state already carries charge and spin, and
string passing through the center of the ring with linearthe analysis of the persistent currents is more difficult. Addi-
charge density, Fo=hc/ug is the unit electric flux, angwg tional complications arise from the BFF supersymmetry. The
is the Bohr magneton. The fluxes give rise to charge and spiqescription of the continuum of electron-hole excitations is a
persistent currents of Aharonov-Bohm-Casher #ypein a  hontrivial issue in this representation already for thé
closed ring configuration. model in the thermodynamic limit without impurify.

The situation is simplest foN; =N, =N, for which AP For a system with discrete energy levels, the level cross-
= (9 + 9 )N,=9,N,, whereN, and 9, are the number of INgS as a consequence of the magnetic flux, always yield a
paired electrons and their Aharonov-Bohm phase shift, resaw-tooth-like persistent current. It is, however, possible to
spectively. The energy is now necessarily periodic inobtain sinusoidal QSC|IIat|ons as .demonstrated. by the simple
2®/®,. SinceN,=M;—M,, for periodic boundary condi- Model presented in the Appendix. The following paragraph
tions the Aharonov-Bohm phases are introduced into thériefly describes how these oscillations arise. _
BAE by shifts in the quantum numbers, ieJ—J; The impurity and the sites 1 aridform a triangle with -
+{{9,}} and |,—1,—{{9,}}, where{{a}} denotes the interactions alpng the _three sides. Due to the conc_iltlons im-
fractional part ofa to the nearest half-integer. The expressionPosed by the integrability, the phase shifts from site 1.to
of the energy remains unchanged, E4). In a finite ring through the impurity or along the link are necessa_rlly the
these shifts change the values of the rapidities and hence al§gmMe. In the Appendix we present the exact solution of a
the energy in a periodic manner. The periodicity interferessimple model for charged spinless fermions, which in the
with the chirality due to the impurity, so that the oscillation Presence of a magnetic field threading the ring, yields two
pattern will in general be asymmetric. periods of oscnlatlo_n for th_e charge persistent current. Whlle_

In Fig. 2 we show the Aharonov-Bohm oscillatiofss ~ the gas of charges in the ring gives rise to the usual parabolic
given by AE=E(e,2d/d,)—E(e,0)] for five values ofe  Paftern for thg energy, t_he trlangle at the impurity causes
and the same set of quantum numbers as for the ground Staqg]usmdal oscnlanons. with a different frequency. For this
in Fig. 1(a). The energy value without flux can be found from Simple model the persistent charge current is then a superpo-
Fig. 1(a). For e=0 the impurity has no chirality and is just sition of a sawtooth with a sinusoidal oscillation.
one more site in the chain. The Aharonov-Bohm oscillations
of the energy are then parabolic and symmetric. &60 the
oscillations are still parabolic but with a displacement due to
the chirality of the impurity. Consequently, the energy has a The magnetizatiors, of the system is a function of the
mesoscopic discontinuity whend2d, is a half-integer, number of electrons with up and down spin of the state.
which of course has no physical consequences. The period &fepending on the number of electrons the magnetization is
the Aharonov-Bohm oscillations is always twice the uniteither a half-integer or an integer. For the particular situation
magnetic flux, as expected for paired charges traveling toeonsidered here, is integer and varies from 0 to 5 in inte-
gether. The persistent current is obtained by differentiatingier steps as a function of increasing magnetic field. For
the energy with respect to the flux, which for a parabolicgiven S, the state of minimal energy corresponds to real
energy pattern always yields a saw-tooth shaped current. rapidities and the quantum numbers form a compact set with-

Z0.05

0.00

FIG. 2. Aharonov-Bohm oscillations in the ground state energy;

VI. MAGNETIZATION
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6 — 17— correlated electron host is described by the supersymmetric
= 51| t-J model. The Hamiltonian of the host and the impurity
,g is integrable and is diagonalized in terms of nested Bethe
g 41 Ansdze We used the Sutherland representation for which the
T 37 ground state and low energy excitations correspond to real
5 5 | charge and spin rapidities. We studied the ground state en-
ot ergy, charge and spin-flip excitations as a function of the
= 1r ald q impurity rapidity. The energies are a function of two param-

0 . . . . eters, namely, the length of the rihgwhich is related to the

1.5 20 25 3.0 3.5 4.0 energy spacing in the ring and the ring-dot couplingThe
H gap in the charge excitations is smaller than that of the spin-

o . . flip excitations. The former is the leading activation energy
FIG. 3. Zero-temperature magnetization as a function of fleldfor the specific heat. while the latter determines the low-
for L=16 andN,=7. The four values of correspond toa) e P '

=0 (solid), (b) e=0.75(dashed, (c) e=1.5 (dash-dottel and(d) temper_ature _depegdﬁnce of the fmagn”e“(.: susgeptlblllty.
e=3 (long-dashel For this example the magnetization value 1 is We investigated the pattern of oscillations due to a mag-

not stable ands,=3 is stable only for a very small range of fields Netic flux threading the ring for the situation whehg

for small e as a consequence of the change in parity of the rapidities= N| - The energy shows Aharonov-Bohm oscillations that
with S, in the t-J model. are piecewise parabolic with a periodicity ®f,/2, and cor-

respond to a sawtoothlike persistent charge current. The pat-
out leaving holes. For the case considered in Fig. 1 we havig™ depends on the c_hlrallty of t_he magnetic impurity, which
introduces asymmetries and discontinuities in the energy.

M,=N,=7 and M;=3(L+1+M,)—S,=12-S,. The : ;
free energy al =0 isE—HS, and the state with lowest free The penod 0@0/.2 arses fm"? the fact that electrons Fravel
1S paired spin singlets. The integrable model only yields a

energy is the ground state at the given field. Hence, the ma awtooth pattern for the persistent current.

netization as a function of field has steps and platdaiis In the Appendix we present a simole exactly solvable
integer unity when there is a crossover of ground states, as PP P P y

shown in Fig. 3 for four values ok. For the present ex- g?r?]%nfgroﬁh;rr?r?oaﬁﬁ g':: icr):cﬂlr?[tlor_:_shé)f ;32;?1631, ZZQ:BS_S
ample, states with odd values & are energetically less 9 purtty. P

favorable than those with eve®,. Consequently, the first tions Is a superposition Of. two types of oscillations: V.Vh'!e
. T . . the ring yields a sawtoothlike persistent current of periodic-
step in the magnetization is a jump of two units, so tBat

R . - . ity ®,, the loop formed by the impurity and the two neigh-
fTeIl dlssfc?:(lv?/ﬁﬁ:%siiz ?ngt;gfe_soz—th;:z tlr?easggﬂtign%ea O_f boring lattice sites gives rise to sinusoidal oscillations with a

o - . e " g periodicity that depends on the flux threading the triangle.
netization for which all spins are aligned. The critical fields

: . R . A Also in this case the impurity can be considered a hybrid
(fields at which$S, is discontinuous all decrease with in- quantum dot, i.e., simultaneously embedded into and a side-

creasing|e|. .

. . anch to the ring.
lThe erf1ergy pllﬁefrencetsr] beftwizetﬂ sttetlaes W':h e\f/en an? OOPJ The zero-temperature magnetization displays steps as a
va “‘ES 0 JSZ a“zel romlt € tacb ta € S{e s 0 q”;'?lulf;‘function of field. The critical fields at which the magnetiza-
numbers{J;} and{l,} alternate between integers and ha " tion jumps depend on the impurity parameterThe sets of

integers Wi.th incrgas[n@z, qnd hence the energy values quantum numbers describing the ground state for a g&en
alternate witt, . With increasing system size and number Ofalternate between integer and half-integer depending on the
eIectrons the energy differences betvv_een even andydd rity of S,. Thus, depending on the size of the system, the
values is expected to decrease. In this case the number 5 ound state energy does not necessarily increase monotoni-

Jt?]mps :jncreas_,esl,_ a_r;dthall s, V?IU?_S age_ %”Ogvgd‘tr:n the cally with S,. Consequently, there are situations wh&e
ermodynamic imit theé magnetization divided by he num'jumps in two units, or the range of fields for some steps is

ber of electrongor the saturation magnetizatipbecomes a rather small. This effect is not present in a host without
continuous function of the magnetic field. Note that for thecorrelationsﬁ In the thermodynamic limit the steps in the
_f|n|te system the impurity contrlbu_tlon to the ma_‘gneuz_at'onmagnetization, normalized to the saturation value, become
is strongly coupled to that of the ring and the_re_ls no SImIOIe\/ery small and asymptotically the magnetization is a con-
way to separgte fcheltnn contraislt to the large limit, whe.re. tinuous and monotonically increasing function of the exter-
Itis t.T)? contrlgu?on of ordet. ). On the othg haing, LIS hal field. While for a small system, such as the one consid-
possible to _e mﬁ an '”.‘p”!”tY energy iml")_k '(E)h ered here, it is not possible to separate the magnetization
fE(O)' For e=0 the impurity is just one more fink'in 1 € effects of the ring and the impurity, this is not a difficulty for
ring. Eimp then represents the energy difference of replacing, e systems where the feedback of the impurity onto the
one site by the impurity. host can be neglected.
Due to the quantization of the energy levels the system at
VIIl. CONCLUSIONS low T is (ather s_table to electrlq and mag.netlc fields. Small
changes in the bias voltagehemical potentialdo not affect
In summary, we have studied some properties of a magthe quantum dot, because the spin and charge sectors are
netic hybridization impurity in a finite ring. The strongly decoupled. Due to the steps the magnetization is stable to
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fluctuations in the magnetic field. The magnetization can bgyheret, =tre® +t, ande(k)= — 2t cosK).
changed with a magnetic tip, such that the system could be The exact expression for the single particle Green’s func-

used as a magnetic storage device. tion is
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APPENDIX Impurity,
In this Appendix we present a solvable simple model of 1 12 1 1
charged spinless fermions traveling on a ring with an impu- T = Kl = _Pp | kK
we()=—|z—e—= > . (A5)
rity, which displays sawtoothlike and sinusoidal persistent JL Lp=iz—e(p)] L

currents. The impurity interacts with the two neighboring
sites, in this case 1 anld The Hamiltonian under consider- The magnetic flux threading the ring gives rise to phase

ation is shifts in the wave vectors, i.e.,

L

H=—t>, (¢l ,ci+cici, ) +ech c _
TR UM i+1 imp&imp e(k)— —2t cogk+27{{0}}),
t 1 + T . .
_tR(Clcimp+ Cimpci)_tL(CLCimp+ CimpCL)! (Al) tR_>tRe—I27TfR1?, tL_>tLel27Tf|_1‘}, (A6)

whereL+1=1, citnp (Cimp) creates(annihilateg a fermion P,
on the impurity site, and, andtg are hopping matrix ele- tyty =tg+t{+2tgt cogk+2mI(1—fr—f )],
ments from and to the impurity. Rewriting the Hamiltonian
in reciprocal(k) space, i.e., using where againd=®/®,. Here fgd and f ¥ are the phase

shifts along the links connecting the impurity, which in gen-

L .
eral can be different from each other. Hence, unfgssf,

— -1 il
c=L kzl exp(—ikj)cy, (A2) =1 there are two types of oscillations in the systémthe
) usual Aharonov-Bohm oscillations of parabolic shape and
we obtain periodicity @ arising from the ring andii) the sinusoidal
L L oscillations due to the impurity of periodicitpy/(1—fg
H= Kiclco+ech ¢ — 12 Toclc, 1 H.c), —f.). If fg+f_ =1 the two paths of the triangle connecting
kzl €(K)C it €CimpCimp kzl (1CiCimp ) the impurity to the link have the same phase shifts, so that no

(A3) new oscillation arises.
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