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t-J ring with an Anderson impurity: A model for a quantum dot
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A quantum wire of finite lengthL with correlated electrons coupled to a quantum dot is studied. The wire is
parametrized in terms of the supersymmetrict-J model and the dot is represented by an Anderson-like
impurity. The model is integrable and we discuss the properties of the finite chain by solving the BetheAnsatz
equations. For a finite ring the energy spectrum is discrete and has to be obtained numerically. As a function of
the coupling of the dot to the wire we discuss the ground state and low-energy excitations, the Aharonov-Bohm
oscillations and the discontinuities of the magnetization of the system.
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I. INTRODUCTION

Quantum dots offer the possibility to study the Kon
effect at the level of anartificial magnetic impurity,1 in
which the energy levels, the Coulomb interactions, and
contacts to metallic wires~hybridization! can be tuned by
external parameters.2 In the Kondo problem3,4 the spin of a
magnetic impurity is screened by the spins of itinerant el
trons at low temperatures leading to a Fermi-liquid fix
point, while for energies much larger than the Kondo te
perature the impurity spin remains unscreened.

Anderson’s model, on the other hand, describes the lo
moment formation and the subsequent screening of
spin.4,5 Due to the hybridization of the localized and condu
tion electrons, the valence of the impurity is usually non
teger, ranging from close to zero~nonmagnetic impurity!,
through the crossover region known as the mixed-vale
regime, to the magnetic or Kondo case~integer valence!.

A finite size ring has a discrete energy excitation sp
trum. The gaps separating the low-lying excitations from
ground state determine the exponential activations of
low-temperature thermodynamic properties. As a con
quence of the discrete spectrum the magnetization as a f
tion of field has jumps at critical fields that depend on t
energy gaps. The thermodynamics of Kondo and Ander
impurities in a finite size host of noninteracting electrons h
been studied via the BetheAnsatzin Refs. 6 and 7.

In this paper we consider afinite ring with correlated elec-
trons parametrized by the supersymmetrict-J model. In con-
trast to previous studies,6,7 the present situation refers to
lattice model of interacting electrons and an Anderson-l
impurity can be placed on a link of the chain without d
stroying the integrability.8,9 The impurity interacts with both
lattice sites joined by the link and can more realistically re
resent a quantum dot than a Kondo impurity with a cont
exchange. The quantum dot corresponds to a hybrid betw
a dot embedded into the ring and a side-branch to it.10 Two
partial waves~forward and backward moving electrons! are
involved in the interaction of the impurity with the hos
although the integrability imposes some restrictions on
interaction. The two partial waves allow one to investiga
interference effects through the dot, such as Aharonov-Bo
0163-1829/2003/67~11!/115113~6!/$20.00 67 1151
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persistent currents, in addition to thermodynamic propert
Due to the finite size of the ring the energy eigenvalues
pend on two parameters which can be varied independe
namely, the length of the ring and the Kondo coupling. T
energy eingenvalues are always discrete leading to a s
toothlike pattern of the Aharonov-Bohm oscillations. In th
Appendix we discuss the possibility to generate a sinuso
pattern in addition to the sawtooth.

The remainder of the paper is organized as follows.
Sec. II we present the model. The BetheAnsatzequations
diagonalizing the model are introduced in Sec. III. In Sec.
we study the ground state and the low-energy excitations
Secs. V and VI we briefly discuss Aharonov-Bohm oscil
tions and theT50 magnetization as a function of field, re
spectively. Conclusions follow in Sec. VII.

II. MODEL

In this paper we study a quantum ring of strongly cor
lated electrons coupled to a quantum dot, represented b
Anderson-like impurity. The correlated electrons are d
scribed in terms of the one-dimensional supersymmetrict-J
model in a ring configuration of finite lengthL. The Hamil-
tonian for such a quantum wire is then~see Ref. 11!

H5(
i

Hi ,i 1152t(
is

P~ci 11s
† cis1cis

† ci 11s!P

1J (
iss8

~Si•Si 112 1
4 nini 11!, ~1!

wherecis
† (cis) create~annihilate! an electron of spins at

the sitei, P is a projector that prevents the double occupan
of every site, andSi5(ss8cis

† sss8cis8 andni5(scis
† cis are

the spin and particle number operators at the sitei. The
model is integrable fort52J for all band fillings.12–14 In
order to close the ring we consider the siteL11 identical to
the first site, i.e., the ring consists ofL sites.

The impurity is introduced without destroying the integr
bility of the model.8,9 The impurity is placed on a link, e.g.
©2003 The American Physical Society13-1
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the one joining the sites 1 andL, and interacts with both o
these sites. The general form of the impurity Hamiltoni
is15,16

H imp5~11e2!21~HL, imp1H imp,11e2H1,L

1 i e@H imp,L1H1,imp,H1,L# !, ~2!

where the square bracket denotes a commutator ande is a
parameter. Note that here a spin 1/2 impurity is assumed
H imp,i has the same form asHi ,i 11, i.e., it is a graded per
mutator consisting of fermionic and bosonic componen
The integrability of this impurity model as a function ofe
has been discussed in several papers.8,9,15,16The impurity can
as well be generalized to arbitrary spinS, but here we limit
ouselves to discuss theS51/2 case. Note that the impurit
interacts with two sites with both partial waves~right and left
moving particles!.

The hybridization impurity partially localizes an itinera
electron. The valence of the quantum dot then depends
the parametere, the number of electrons in the systemNe
and the length of the ringL. For S51/2 ande50, H imp just
corresponds to adding one more site to the host~between
sitesL and 1!. For generale the three-site terms of the im
purity Hamiltonian violate theT and P symmetries sepa
rately, while their productPT is of course invariant. The
three-site terms can be avoided by placing the quantum
at the open end of the host chain.15–17 This considerably
simplifies the impurity Hamiltonian, since one of the neig
boring host sites is absent.

Finite size effects of correlated electron hosts contain
impurities have been studied before,16 but always for a very
large system, where the mesoscopic contributions are of
order of L21. The mesoscopic contributions describe t
long wavelength excitations about the Fermi points wh
constitute the conformal towers. These finite size correcti
to the energy yield the pattern of Aharonov-Bohm-Cas
oscillations and the asymptotic of correlation functions
long times and/or long distances. In this paper we consid
quantum correlated electron ring that is sufficiently sh
such that the individual energy eigenvalues are discrete
cannot be represented by a pseudocontinuous variable.
energy levels have then to be determined numerically.

Previous investigations of small size systems of ot
models within the framework of Bethe’sAnsatzare the fol-
lowing: ~1! A thorough study of short Heisenberg chains
comparing exact diagonalizations with the BetheAnsatzwas
performed by Karbach and Mu¨ller,18 ~2! all the energy levels
and the thermodynamics for an exchange Kondo impu
placed at the center of a small metallic sphere with three
five electrons ins states were obtained in Ref. 6, and~3! the
charge and spin gaps for an Anderson impurity in a sm
metallic sphere were also studied.7 In contrast to these pre
vious studies we now consider a correlated electron host
an impurity interacting with two~rather than one! partial
waves. Impurities in small boxes have also been investiga
with approximate methods, e.g., within the noncrossing d
gram approximation the Kondo resonance of an Ander
impurity in an ultrasmall metallic grain was found to b
strongly dependent on the relative magnitude ofTK and the
11511
nd

.

on

ot

-

g

he

h
s
r

r
a
t
nd
he

r

y
d

ll

nd

ed
-
n

mean level spacing in the grain and the parity of the num
of electrons.19 An Anderson impurity like model in a finite
size system was also studied perturbatively by Bu¨ttiker and
Stafford10 in the context of tunneling into a quantum dot.

The coupling of a quantum dot to a quantum wire c
either be metallic or capacitive. In the former the electro
have to move through the quantum dot, i.e., the quantum
is embedded into the conductor, and a Coulomb block
may arise if the Fermi level in the conductor is off resonan
with the discrete energy levels in the dot. The quantum
can also form a side-branch to a small metallic ring, i.e.,
coupling is capacitive and the electrons do not have to p
through the dot in order to continue along the wire. O
impurity corresponds to a hybrid of these two situations w
fine-tuned parameters such that the model remains i
grable.

III. BETHE ANSATZ EQUATIONS

The model is diagonalized by two nested BetheAnsätzein
terms of two sets of rapidities. Within the quantum inver
scattering method there are two approaches that can be u
~i! Lai’s method,12,14 where the first set of Bethe equation
refers to the charges and the second diagonalizes the
degrees of freedom and~ii ! the Sutherland approach13 in
terms of a graded algebra. Both approaches are technic
similar and differ mainly in the assumption of the vacuu
~reference! state. In method~i! the vacuum state correspond
to the empty lattice, while in~ii ! the reference state is th
state with an electron with up-spin at every site. Method~i!
is physically very transparent but leads to a ground state w
complex rapidities, which have a very simple form in th
thermodynamic limit, but are difficult to determine nume
cally for finite L. Within approach~ii !, on the other hand, the
ground state consists of real rapidities which are relativ
easy to determine with standard numerical procedures.

Within the Sutherland representation13 the Bethe equa-
tions for periodic boundary conditions take the followin
form:16

S pj2e2 i /2

pj2e1 i /2Deik jL52)
l 51

M1 pj2pl2 i

pj2pl1 i )a51

M2 pj2la1 i /2

pj2la2 i /2
,

j 51, . . . ,M1 ,

)
j 51

M1 la2pj2 i /2

la2pj1 i /2
51, a51, . . . ,M2 , ~3!

where M15N↓1Nh is the number of down-spin electron
plus holes andM25Nh is the number of holes. Note tha
N↑1N↓1Nh5L11, where the additional site refers to th
impurity. The rapiditiespj are related to the wave numbe
kj of down spin electrons and holes bypj5

1
2 tan(kj /2), and

the la rapidities represent the holes. The energy and
momentum of the system are given by

E52~M22M1!22(
j 51

M1

cos~kj !, P5(
j 51

M1

kj , ~4!
3-2
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t-J RING WITH AN ANDERSON IMPURITY: A . . . PHYSICAL REVIEW B67, 115113 ~2003!
and thez projection of the magnetic moment of the system
Sz5 1

2 @11L22M11M2#. Only the first factor on the left-
hand side of the first set of Eqs.~3! is caused by the impurity
while the energy, Eq.~4!, depends only implicitly on the
parametere of the impurity.

For Nh50 Eqs. ~3! and ~4! correspond to an antiferro
magnetic Heisenberg spin 1/2 chain with anS51/2
impurity.20 In this limit (Nh50) Eq. ~3! is identical to the
ones describing the magnetic degrees of freedom of ths
2d ~Kondo! magneticS51/2 impurity in a free electron
host @with e being inverse proportional to thes-d exchange
coupling between the host and withEKondo5P1const~Refs.
3–5!#.

Taking the logarithm of Eq.~3! we obtain

2L arctan~2pj !12 arctan@2~pj2e!#52pJj

12(
l 51

M1

arctan~pj2pl !22 (
a51

M2

arctan@2~pj2la!#,

2(
j 51

M1

arctan@2~la2pj !#52pI a , ~5!

where theJj andI a are quantum numbers that arise from t
multivaluedness of the logarithm. TheJj are integer~half-
integer! if M12M2 is even ~odd!, and theI a are integer
~half-integer! if M1 is even~odd!. From Eqs.~5! we have
that the total number of possibleJj values isL2M11M2
13 and the total number of possibleI a values isM111.
The low energy states are determined by two sets of quan
numbers,M1 values for theJj andM2 values for theI a . All
quantum numbers within a set have to be different for
eigenfunctions to be linearly independent.

IV. GROUND STATE AND LOW-ENERGY EXCITATIONS

We now obtain the ground state energy for a small sys
corresponding toL516, Nh57, and N↑5N↓55. In this
caseM1512 andM257, such that theJj are half-integers
and theI a are integers. For the ground state we have th
Jj52 11

2 ,2 9
2 , . . . ,11

2 , and I a523,22, . . . ,3. Theground
state energy is a symmetric function ofe and is shown in
Fig. 1 as the solid curve~a!. The ground state energy in
creases monotonically withueu. For a large system, i.e., in th
thermodynamic limit, we can extract the impurity contrib
tion to the energy,8,9 but that is not possible for a nanosca
system where the impurity has a strong feedback on
host.6,7

Low-energy excited states are obtained by introduc
‘‘holes’’ into the distributions of quantum numbers. Excit
tions among the hole states are shown in Fig. 1 curves~b!
~long-dashed! and~c! ~dotted!. They correspond to the sam
set ofJj as the ground state, butI a523, . . .,2,4 ~‘‘hole’’ at
3! and theseI a with reversed signs~‘‘hole’’ at 23). The
energies of these two states are, of course, identical fore50
and lie about 2p/L above the ground state. The energy d
ference between the two excited states is the consequen
the chirality due to the impurity.
11511
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Spin-flip states have a considerably larger energy. T
spin-flip excitations of lowest energy are displayed in Fig
as curves~d! ~dash-dotted! and ~e! ~dashed!. If a spin is
flipped N↓ is decreased by one unit to 4, such that nowM1
511 andM257. Consequently now theJj are the set of
integers25, . . . ,5 and theI a are given by the set of half
integers25

2,2
3
2, . . . ,72 for curve ~d! and the same set ofI a

with reversed sign for curve~e!. Note that flipping a spin
does not only change the magnetization but also raises
energy considerably. In addition to these two types of ex
tations there are also spin-non-flip~singlet! excitations,
which do not change the magnetization, consisting of a p
of complex conjugatedpj rapidities. Their energy is difficult
to calculate and is of the order of the spin-flip excitation
The energy difference between curves~b! and~c! and curves
~d! and ~e! in Fig. 1 is a consequence of the chirality of th
impurity. Since the impurity breaks theT andP symmetries,
the energies of otherwise equivalent states are different.

The most important conclusion of this section is that
the finite t-J ring the energy levels are discrete and th
charge excitations have a much smaller gap than the spin
energies. For low temperature properties this means that
the specific heat and the magnetic susceptibility are expon
tially activated, but the activation gap for the specific hea
much smaller than the spin-gap of the susceptibility. T
energies depend on two parameters, namely,L21 ~which de-
termines the average spacing between the levels in the h!
ande, the coupling between the dot and the host. The va
tion of the ground state and excitation energies is maxim
when the two parameters give rise to comparable effects

V. PERSISTENT CURRENTS

The external magnetic and electric fluxes threading
ring yield a change in the momentumDP5N↑q↑1N↓q↓ ,

FIG. 1. Energy as a function of the impurity parametere for
low-lying eigenstates forL516 andNh57. The impurity has a net
chirality. The sets of quantum numbers for each state are give
the text. ~a! The ground state~solid line! corresponds toN↑5N↓
55 (M1512 andM257). The lowest energy hole or charge exc
tations@~b! ~long-dashed! and~c! ~dotted!# obtained by introducing
a ‘‘hole’’ into the set of hole quantum numbers.~d! ~dash-dotted!
and ~e! ~dashed! shows the lowest energy spin-flip excitation
(M1511, M257). The energy differences between the sta
~b!,~c! and ~d!,~e! are the consequence of the chirality of th
impurity.
3-3
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whereqs5F/F01sF/F0 are the Aharonov-Bohm-Cashe
phase shifts. HereF is the magnetic flux,F05hc/e is unit
magnetic flux,F54pt is the electric flux generated by
string passing through the center of the ring with line
charge densityt, F05hc/mB is the unit electric flux, andmB
is the Bohr magneton. The fluxes give rise to charge and
persistent currents of Aharonov-Bohm-Casher type21,22 in a
closed ring configuration.

The situation is simplest forN↑5N↓5Np for which DP
5(q↑1q↓)Np5qpNp , whereNp andqp are the number of
paired electrons and their Aharonov-Bohm phase shift,
spectively. The energy is now necessarily periodic
2F/F0. SinceNp5M12M2, for periodic boundary condi-
tions the Aharonov-Bohm phases are introduced into
BAE by shifts in the quantum numbers, i.e.,Jj→Jj
1$$qp%% and I a→I a2$$qp%%, where $$a%% denotes the
fractional part ofa to the nearest half-integer. The expressi
of the energy remains unchanged, Eq.~4!. In a finite ring
these shifts change the values of the rapidities and hence
the energy in a periodic manner. The periodicity interfe
with the chirality due to the impurity, so that the oscillatio
pattern will in general be asymmetric.

In Fig. 2 we show the Aharonov-Bohm oscillations@as
given by DE5E(e,2F/F0)2E(e,0)] for five values ofe
and the same set of quantum numbers as for the ground
in Fig. 1~a!. The energy value without flux can be found fro
Fig. 1~a!. For e50 the impurity has no chirality and is jus
one more site in the chain. The Aharonov-Bohm oscillatio
of the energy are then parabolic and symmetric. ForeÞ0 the
oscillations are still parabolic but with a displacement due
the chirality of the impurity. Consequently, the energy ha
mesoscopic discontinuity when 2F/F0 is a half-integer,
which of course has no physical consequences. The perio
the Aharonov-Bohm oscillations is always twice the u
magnetic flux, as expected for paired charges traveling
gether. The persistent current is obtained by differentiat
the energy with respect to the flux, which for a parabo
energy pattern always yields a saw-tooth shaped curren

FIG. 2. Aharonov-Bohm oscillations in the ground state ener
DE5E(e,2F/F0)2E(e,0), ~for L516, Nh57, andN↑5N↓55)
as a function of the flux 2F/F0 threading the ring. The values o
E(e,0) can be read off from Fig. 1~a!. The period of oscillation is
one-half the unit magnetic flux because the electrons travel in p
The curves correspond to different values ofe: ~a! e50 ~solid!, ~b!
e50.75 ~dashed!, ~c! e51.5 ~dash-dotted!, ~d! e52.25 ~long-
dashed!, and ~e! e53 ~dotted!. The discontinuities are the conse
quence of the chirality of the impurity.
11511
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The general case is well-understood within La
representation12,14 for the Bethe’sAnsatzin the very largeL
limit. The ground state consists of two sets of states, nam
spin-paired electrons and unpaired electrons. The for
yield oscillations in the persistent charge current of f
quencyF0/2, while the unpaired states carry only a simp
charge and give rise to a period ofF0. The persistent charge
current is then in general a superposition of oscillations w
two periods. Only unpaired electron states carry a spin
yield Aharonov-Casher oscillations with a period ofF0. The
starting point in Lai’s representation is the physical vacu
~no electrons! and electrons are added by the Bethe wa
functions. Unfortunately, the solutions of the BAE in th
representation are complex numbers for the rapidities, wh
are difficult to obtain accurately for a system with smallL.
This method is therefore not very practical for smallL.

The Bethe vacuum state within the elegant Sutherla
representation is the ferromagnetic state with one elec
per site. The Bethe states introduce spin-flips and holes
the system is integrable because of the underlying supers
metric BFF algebra. Within this representation the grou
state and low energy excitations have only real rapiditi
which is a very desirable feature for systems of small si
Here the vacuum state already carries charge and spin,
the analysis of the persistent currents is more difficult. Ad
tional complications arise from the BFF supersymmetry. T
description of the continuum of electron-hole excitations i
nontrivial issue in this representation already for thet-J
model in the thermodynamic limit without impurity.23

For a system with discrete energy levels, the level cro
ings as a consequence of the magnetic flux, always yie
saw-tooth-like persistent current. It is, however, possible
obtain sinusoidal oscillations as demonstrated by the sim
model presented in the Appendix. The following paragra
briefly describes how these oscillations arise.

The impurity and the sites 1 andL form a triangle with
interactions along the three sides. Due to the conditions
posed by the integrability, the phase shifts from site 1 toL
through the impurity or along the link are necessarily t
same. In the Appendix we present the exact solution o
simple model for charged spinless fermions, which in t
presence of a magnetic field threading the ring, yields t
periods of oscillation for the charge persistent current. Wh
the gas of charges in the ring gives rise to the usual parab
pattern for the energy, the triangle at the impurity cau
sinusoidal oscillations with a different frequency. For th
simple model the persistent charge current is then a supe
sition of a sawtooth with a sinusoidal oscillation.

VI. MAGNETIZATION

The magnetizationSz of the system is a function of the
number of electrons with up and down spin of the sta
Depending on the number of electrons the magnetizatio
either a half-integer or an integer. For the particular situat
considered here,Sz is integer and varies from 0 to 5 in inte
ger steps as a function of increasing magnetic field.
given Sz the state of minimal energy corresponds to re
rapidities and the quantum numbers form a compact set w

,

s.
3-4
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out leaving holes. For the case considered in Fig. 1 we h
M25Nh57 and M15 1

2 (L111M2)2Sz5122Sz . The
free energy atT50 is E2HSz and the state with lowest fre
energy is the ground state at the given field. Hence, the m
netization as a function of field has steps and plateaus~of
integer units! when there is a crossover of ground states,
shown in Fig. 3 for four values ofe. For the present ex
ample, states with odd values ofSz are energetically less
favorable than those with evenSz . Consequently, the firs
step in the magnetization is a jump of two units, so thatSz
51 is skipped, and only fore50 there is a small range o
fields for whichSz53 is stable.Sz55 is the saturation mag
netization for which all spins are aligned. The critical fiel
~fields at whichSz is discontinuous! all decrease with in-
creasingueu.

The energy differences between states with even and
values ofSz arise from the fact that the sets of quantu
numbers$Jj% and $I a% alternate between integers and ha
integers with increasingSz , and hence the energy value
alternate withSz . With increasing system size and number
electrons the energy differences between even and odSz
values is expected to decrease. In this case the numb
jumps increases and all theSz values are allowed. In the
thermodynamic limit the magnetization divided by the nu
ber of electrons~or the saturation magnetization! becomes a
continuous function of the magnetic field. Note that for t
finite system the impurity contribution to the magnetizati
is strongly coupled to that of the ring and there is no sim
way to separate them~in contrast to the largeL limit, where
it is the contribution of orderL21). On the other hand, it is
possible to define an impurity energy asEimp5E(e)
2E(0). For e50 the impurity is just one more link in the
ring. Eimp then represents the energy difference of replac
one site by the impurity.

VII. CONCLUSIONS

In summary, we have studied some properties of a m
netic hybridization impurity in a finite ring. The strongl

FIG. 3. Zero-temperature magnetization as a function of fi
for L516 andNh57. The four values ofe correspond to~a! e
50 ~solid!, ~b! e50.75 ~dashed!, ~c! e51.5 ~dash-dotted!, and~d!
e53 ~long-dashed!. For this example the magnetization value 1
not stable andSz53 is stable only for a very small range of field
for smalle as a consequence of the change in parity of the rapid
with Sz in the t-J model.
11511
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correlated electron host is described by the supersymm
t-J model. The Hamiltonian of the host and the impuri
is integrable and is diagonalized in terms of nested Be
Ansätze. We used the Sutherland representation for which
ground state and low energy excitations correspond to
charge and spin rapidities. We studied the ground state
ergy, charge and spin-flip excitations as a function of
impurity rapidity. The energies are a function of two para
eters, namely, the length of the ringL which is related to the
energy spacing in the ring and the ring-dot couplinge. The
gap in the charge excitations is smaller than that of the s
flip excitations. The former is the leading activation ener
for the specific heat, while the latter determines the lo
temperature dependence of the magnetic susceptibility.

We investigated the pattern of oscillations due to a m
netic flux threading the ring for the situation whereN↑
5N↓ . The energy shows Aharonov-Bohm oscillations th
are piecewise parabolic with a periodicity ofF0/2, and cor-
respond to a sawtoothlike persistent charge current. The
tern depends on the chirality of the magnetic impurity, whi
introduces asymmetries and discontinuities in the ene
The period ofF0/2 arises from the fact that electrons trav
as paired spin singlets. The integrable model only yield
sawtooth pattern for the persistent current.

In the Appendix we present a simple exactly solvab
model for Aharonov-Bohm oscillations of charged spinle
fermions on a ring with an impurity. The pattern of oscill
tions is a superposition of two types of oscillations: Wh
the ring yields a sawtoothlike persistent current of period
ity F0, the loop formed by the impurity and the two neig
boring lattice sites gives rise to sinusoidal oscillations with
periodicity that depends on the flux threading the triang
Also in this case the impurity can be considered a hyb
quantum dot, i.e., simultaneously embedded into and a s
branch to the ring.

The zero-temperature magnetization displays steps a
function of field. The critical fields at which the magnetiz
tion jumps depend on the impurity parametere. The sets of
quantum numbers describing the ground state for a givenSz
alternate between integer and half-integer depending on
parity of Sz . Thus, depending on the size of the system,
ground state energy does not necessarily increase mono
cally with Sz . Consequently, there are situations whereSz
jumps in two units, or the range of fields for some steps
rather small. This effect is not present in a host witho
correlations.6 In the thermodynamic limit the steps in th
magnetization, normalized to the saturation value, beco
very small and asymptotically the magnetization is a co
tinuous and monotonically increasing function of the ext
nal field. While for a small system, such as the one cons
ered here, it is not possible to separate the magnetiza
effects of the ring and the impurity, this is not a difficulty fo
large systems where the feedback of the impurity onto
host can be neglected.

Due to the quantization of the energy levels the system
low T is rather stable to electric and magnetic fields. Sm
changes in the bias voltage~chemical potential! do not affect
the quantum dot, because the spin and charge sectors
decoupled. Due to the steps the magnetization is stabl

d

s

3-5



b
b

nc
ar

o
pu
en
ng
r-

n

nc-

e

se

n-

nd

g
t no

P. SCHLOTTMANN AND A. A. ZVYAGIN PHYSICAL REVIEW B 67, 115113 ~2003!
fluctuations in the magnetic field. The magnetization can
changed with a magnetic tip, such that the system could
used as a magnetic storage device.
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APPENDIX

In this Appendix we present a solvable simple model
charged spinless fermions traveling on a ring with an im
rity, which displays sawtoothlike and sinusoidal persist
currents. The impurity interacts with the two neighbori
sites, in this case 1 andL. The Hamiltonian under conside
ation is

H52t(
i 51

L

~ci 11
† ci1ci

†ci 11!1ecimp
† cimp

2tR~c1
†cimp1cimp

† ci !2tL~cL
†cimp1cimp

† cL!, ~A1!

whereL11[1, cimp
† (cimp) creates~annihilates! a fermion

on the impurity site, andtL and tR are hopping matrix ele-
ments from and to the impurity. Rewriting the Hamiltonia
in reciprocal~k! space, i.e., using

cj5L21/2(
k51

L

exp~2 ik j !ck , ~A2!

we obtain

H5 (
k51

L

e~k!ck
†ck1ecimp

† cimp2L21/2(
k51

L

~ t̃ kck
†cimp1H.c.!,

~A3!
a

h-

P.

un

r

11511
e
e

e
t-

f
-
t

where t̃ k5tReik1tL ande(k)522t cos(k).
The exact expression for the single particle Green’s fu

tion is

Gk,k8~z!5
dk,k8

z2e~k!
1

1

z2e~k!
Tk,k8~z!

1

z2e~k8!
, ~A4!

whereTk,k8(z) is the t matrix due to the scattering off th
impurity,

Tk,k8~z!5
t̃ k

AL
Fz2e2

1

L (
p51

L t̃ p t̃ p*

z2e~p!G
21

t̃ k8

AL
. ~A5!

The magnetic flux threading the ring gives rise to pha
shifts in the wave vectors, i.e.,

e~k!→22t cos~k12p$$q%%!,

tR→tRe2 i2p f Rq, tL→tLei2p f Lq, ~A6!

t̃ k t̃ k* 5tR
21tL

212tRtLcos@k12pq~12 f R2 f L!#,

where againq5F/F0. Here f Rq and f Lq are the phase
shifts along the links connecting the impurity, which in ge
eral can be different from each other. Hence, unlessf R1 f L
51 there are two types of oscillations in the system:~i! the
usual Aharonov-Bohm oscillations of parabolic shape a
periodicity F0 arising from the ring and~ii ! the sinusoidal
oscillations due to the impurity of periodicityF0 /(12 f R
2 f L). If f R1 f L51 the two paths of the triangle connectin
the impurity to the link have the same phase shifts, so tha
new oscillation arises.
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10M. Büttiker and C.A. Stafford, Phys. Rev. Lett.76, 495 ~1996!.
n,

.

11F. C. Zhang and T. M. Rice, Phys. Rev. B37, 3759~1988!.
12C. K. Lai, J. Math. Phys.15, 167 ~1974!.
13B. Sutherland, Phys. Rev. B12, 3795~1975!.
14P. Schlottmann, Phys. Rev. B36, 5177~1987!.
15A. A. Zvyagin, Phys. Rev. Lett.79, 4641~1997!.
16A. A. Zvyagin, Phys. Rev. B60, 15 266~1999!.
17A. A. Zvyagin and H. Johannesson, Phys. Rev. Lett.81, 2751

~1998!.
18M. Karbach and G. Mu¨ller, Comput. Phys.11, 36 ~1997!; M.

Karbach, K. Hu, and G. Mu¨ller, ibid. 12, 565 ~1998!.
19W.B. Thimm, J. Kroha, and J. von Delft, Phys. Rev. Lett.82,

2143 ~1999!.
20H. Frahm and A. A. Zvyagin, J. Phys.: Condens. Matter9, 9939

~1997!.
21A. A. Zvyagin and T. V. Bandos, Fiz. Nizk. Temp.20, 280~1994!

@Low Temp. Phys.20, 222~1994!#; A. A. Zvyagin, ibid. 21, 446
~1995! @ibid. 21, 349 ~1995!#.

22For a review, see, e.g., A. A. Zvyagin and I. V. Krive, Fiz. Niz
Temp.21, 687 ~1995! @Low Temp. Phys.21, 533 ~1995!#.

23P.A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B44, 130
~1991!.
3-6


