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We introduce the Korringa-Kohn-Rostocker nonlocal coherent-potential approxin{&tiiR-NLCPA) for
describing the electronic structure of disordered systems. The KKR-NLCPA systematically provides a hierar-
chy of improvements upon the widely used KKR-CPA approach and includes nonlocal correlations in the
disorder configurations by means of a self-consistently embedded cluster. The KKR-NLCPA method satisfies
all of the requirements for a successful cluster generalization of the KKR-CPA; it remains fully causal,
becomes exact in the limit of large cluster sizes, reduces to the KKR-CPA for a single-site cluster, is straight-
forward to implement numerically, and enables the effects of short-range order upon the electronic structure to
be investigated. In particular, it is suitable for combination with electronic density-functional theory to give an
ab initio description of disordered systems. Future applications to charge correlation and lattice displacement
effects in alloys, and spin fluctuations in magnets amongst others, are very promising. We illustrate the method
by application to a simple one-dimensional model.
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[. INTRODUCTION Jarrell and Krishnamurtfiyalready studied the problem of
electronic structure in random alloys from this point of view.
Over the past 30 years or so, the coherent-potentidin this paper we tackle the same problem using an identical
approximatioth (CPA) has proved to be a generally reliable conceptual framework but a very different description of the
method for dealing with disordered systefritHowever, be-  electrons afforded by multiple-scattering thetty® To make
ing in essence a single-site mean-field théatye CPA fails  the above remarks more specific, we would like to highlight
to take into account the effect of nonlocal potential correlatwo of the principal differences between our treatment of the
tions due to the disorder in the environment of each site, angroblem and that of Ref. 9. First, we do not make use of a
hence leaves much important physics out of considerationtight-binding model Hamiltonian but numerically solve a
Consequently, considerable effort has been spent in trying tgchralinger equation in each unit cell and match the “out-
find a way of improving it systematically by a multisite or going wave” solution to the incoming waves from all the
cluster generalization. Surprisingly, this has turned out to &ther unit cells. This is known as the multiple-scattering
very difficult problem? and a viable solution has been pro- approach*!°to the problem of electronic structure in solids
posed only recently. The new method has emerged from thg, is the foundation of the Korringa-Kohn-RostokéKR)
dynamical cluster approximati6r® (DCA) which was di- g theory method. Consequently, the principal virtue of

rected originally at describing dynamical spin and charge ur formalism, as opposed to those based on tight-binding

fluctuations in simple Hubbard modgls.of.strongly Correlated(r)nodel Hamiltonians is that it prepares the ground for first-
electron systems. Recently, its static limit has been adapted.

by Jarrell and Krishnamurthy for a simple tight-binding prlnCI_pISelg calculatlons_ baseo! on density-functional
model of electrons moving in a disordered poterttidhe theories:® The second difference is a formal consequence of

same problem was investigated by Moradétral° In this the first. In multiple-scattering theories the object of interest

paper we develop the ideas behind this approximation furi-S not the self-energy, and the diagrammatic language of per-

ther, and demonstrate how they can be combined with reat_urbation theory is not used. We will show that the quantities

istic, ab initio descriptions of systems of interacting electrons hat play the role of the self-energy in n]ultlple-scattermg
in disordered systems. theory are the effective scattering amplitudesnd effective
Since the language of our multiple-scattering theory is structure constan@(R”), which are also the natural con-
different from that of the context in which the DCA is usu- cepts in effective-medium theorié§ln short, these formal
ally deployed, we therefore elaborate on this relationshipreasons fully account for the fact that we do not base our
First, we note that the DCA was formulated to describearguments on “restoring momentum conservation” and in-
short-range correlations within the framework of the dynami-troducing approximate Laue functions to renormalize dia-
cal mean field theofyy (DMFT) of spin and charge fluctua- grams, but we construct our theory in terms of real- and
tions in many-electron systems. Second, we recall that theeciprocal-space clusters. Nevertheless, we believe that our
DMFT can be regarded as the dynamical generalization ofinal algorithm described in Sec. Il E is equivalent to those
the CPA for the Hubbard “alloy analogy” problef?:**Thus,  investigated by Jarrell and Krishnamurth@ur aim in refor-
in the light of these remarks, it is natural to investigate themulating the problem is to facilitate the deployment of the
static version of the DCA as a generalization of the CPAmethod as a first-principles calculation, in other words to
which includes a description of short-range order. Indeeddevelop a nonlocalNL) KKR-CPA 8
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In brief, our KKR-NLCPA method introduces effective disorder configuration, nor is an equation that determines the
structure constants, and this enables us to define an effectieveraged path operatef’ readily available in the form of
medium that includes nonlocal potential correlations over alEq. (1). Under these circumstances, a way forward is to fol-
length scales. Using a “coarse-graining” procedure inspiredow the strategy of “effective medium theoried™? In the
by the DCA, we can then derive a self-consistent “clusterpresent context, a useful effective medium is that provided
generalization” of the KKR-CPA? which determines an ap- by an ordered array of effective scatterers described by the
proximation to this effective medium by including nonlocal sagmet matrix t. In the KKR-CPA®*°the scattering ampli-
correlations up to the range of the cluster size. The KKRyyde describing these effective scatterers is determined using
NLCPA satisfies all of the requirements for a successful clusthe self-consistency condition that excess scattering off a
ter generalization of the KKR-CPA as listed by GohiB1  single-site impurity embedded in such a medium should be
particular, the KKR-NLCPA becomes exact in the limit of zerg on the average. As mentioned in the Introduction, while
|arge cluster sizes where it includes nonlocal Correlationslery successful in many applicationS, being a Sing'e_site ap-
over all length scales, and recovers the KKR-CPA for aproximation the CPA fails to take into account the effect of

single-site cluster. The method is fully causal, allows thenoniocal potential correlations due to the disorder in the en-
effects of short-range order to be modeled, and can be implgironment of each site.

mented numerically for realistic systems.

The outline of this paper is as follows. In the following
section we describe the formalism for the KKR-NLCPA. We
explain our KKR-NLCPA algorithm and show how to in-  The first step in going beyond the KKR-CPA is to define
clude short-range order. We describe in more detail how tavhat we will call the NLCPA effective medium by the fol-
carry out the coarse graining with reference to simple cubiclowing equation:
body-centered-cubic, and face-centered-cubic lattices. Fi-
nally, we explain how to use the KKR-NLCPA formalism to o o
calculate observable quantities, such as the configurationally Pi=tg;+> 1 G(RN7Y, 2
averaged density of states, for DFT calculations. In order to k7
illustrate the improvements over the conventional KKR-\here a circumflex symbol denotes an NLCPA effective-
CPA, in Sec. Ill we present resultsonfigurationally aver- medium quantity. Here we have defined NLCPA effective

aged density of statgfor the application of the formalism to local t matricest and a neweffective propagatoby
a one-dimensional model. However, we emphasize that the -

formalism presented is fully tractable for realistic three-

B. Inclusion of nonlocal potential correlations

dimensional systems. G(R)=G(Rl)+all. (3)
This is composed of the usual free-space KKR structure con-
[l. FORMALISM stantsG(R") that account for the lattice structure plus a
A The KKR-CPA translationally invariant effective disorder term o/
(=a)}, ;). The matrixa'l takes into account, in an aver-

For the sake of clarity, we begin by briefly summarizing
the idea of the conventional KKR-CPA® method. The path ) )
o ; i, ; : gonf|gurat|ons.

perator equation describing the scattering of an electron in

: . . Clearly, a cluster generalization of the KKR-CPA would
ggrs]ﬁi?r:sé{giy ?Sf Si(\)/g(r)]vg;lapplng potentials, centered on Sltﬁwolve determining the above NLCPA effective medium by
1J

requiring excess scattering off an impurityuster of real
potentials embedded in the effective medium to be zero on
the average; and indeed this is the strategy adopted in the
Ti=tlg;+ > tG(R¥)¥, (1) following section. However, the fact thatl is a translation-
ki ally invariant effective-medium quantity means that it is di-
agonal ink, the reciprocal space. In the present problem it is
where the underscore denotes a matrix in angular momentufmportant to treat the theory in both real lattice and recipro-
space with the usual angular momentum inditgs; and  ca] |attice space consistently, and crucially we shall deal with

aged manner, the nonlocal correlations due to the disorder

RU=R;—R; is the position vector connecting site&ndj.  this by a coarse-graining procedure.

For spherically symmetric scatterers, the individuahatri-

ces are diagonal; i.ef; =t} 8im/m . but the structure C. Cluster generalization of the KKR-CPA
constantsG|m',,m,(R"‘) are not. We shall be interested in ] ] . o

situations where the lattice sites labeled ibgnd j form a The first step is to consider a cluster of sites in the NLCPA

regular array, an infinite lattice, but the single-siteatrices ~ effective medium. Denoting the sites within the cluster by
vary from site to site in a random fashion. If we consider thecapital letters, it can be showsee Appendix Athat Eq.(2)
solution of Eq.(1) for all possible disorder configurations ¢an be rewritten as a cluster equation,
and then take its average, we arrive at an averaged path
operator7” that is translationally invariant. In practice, it is ;_uzfquE HIKRKLALY (4)

— . . . cl cl '
not computationally feasible to average over every possible - KL — —
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with the effectivecluster t matrixdefined as as translationally invariant. To preserve this periodicity, dur-
ing each self-consistency cycle we must have
ta=to,+ 2 BRI (5) oy o |
M=o—| dk[t ' —a(k)-G(k)] e Ri~RI (9)
- QBZ QBZ - —= -

Equation(4) is simply a rearrangement of E(), so that the
site matrix elements of all matrices involve the cluster sitesThis can be seen by applying the usual lattice Fourier trans-

only. The clustet matrix 5 describes the scattering within a form to Eq.(2) and then considering the cluster sites.
~13 C . . Clearly, to carry out the above integration numerically, we
cluster and7'~ takes account of all scatterings outside the

cluster via the effectivesluster renormalized interactd?®  Must have a specific representation of the funcigk).
A9 Nevertheless Sincé(R.J):G(R.J)Jra.J it is clear Following the central idea of the DCA, we proceed by coarse

that the clustet matrix also includes noniocal correlations 9raining a(k) over the Brillouin zone. Unlike many otper
between the cluster sites. attempts, this approach has been shown to be fully caflsal.

It should be stressed that” describes those paths from
the cluster sitd to the cluster sitel, which only involve
intermediate sites outside the cluster. It is independent of the Due to the finite sizé\. of the cluster in real space, the
contents of the cluster and can be viewed as describing thdifferences in distance between the cluster sites correspond
effective medium from which the cluster has been removedio a set of N, cluster momentgK,} in reciprocal space
i.e., replaced by @avity. We may now define an “impurity according to the relation
cluster” embedded in the effective medium simply by filling

D. Implementation—coarse graining of the Brillouin zone

up this cavity with a particular configuration of site poten- 1
tials. Clearly, the path operator for sités] belonging to _ 2 eiKn(Ru—RJ)zgu_ (10)
such an impurity cluster is given by Ne i

These{K,} are at the centers of a setNf reciprocal-space
patches that coarse grain the first Brillouin zone of the lat-

T:ﬂqp=t'c3|,imp+z t'c}f,impﬁK"Thﬂp, (6) tice. Earlier it was noted that the effective clustematrix
- - K,L — - = . . ~ .
also includes nonlocal correlation term$’ acting between
with the impurity clustet matrix defined by the cluster sites. We use the above relation to coarse grain

é(k) as follows:

1J _ KJ
Ecl,imp—ll5u+gl t'G(R" )t imp- (7) Au:NiZ a(K,)eKnRI~Ry), (12)
c K, —

)

For a cluster containinly; sites, each scattering according to
t” or tB, there are Yc possible impurity cluster configura- - o
tions. a(Ky)=2, ale MnRi~Ry), (12

We are now in a position to generalize the usual CPA 7
self-consistency condition to determine our approximation tcSince the NLCPA maps the effective lattice problem to that
the exact configurationally averaged medium described byf a self-consistently embedded impurity cluster problem,
7, namely, the NLCPA effective medium described #Y. the fundamental assumption we make is that provided we are
This follows by considering for each configuration the impu-aiming to reproduce these correlations of finite range in the
rity cluster path operator for paths starting and ending on thé&ffective lattice, we may take the above coarse-grained val-
impurity cluster sites and demanding that the average ovanesé(Kn) to be a good approximation '@(k) for the ef-
all configurations be equal to the path operator for theective lattice. In shorta(k)=a(K,) if k is in the nth

NLCPA effective medium itself, i.e., reciprocal-space patch. This is discussed more formally in
Appendix B.

13 ~13 The next step is to define the “coarse-grain averaged”

(Timp)=7". ®) reciprocal-space matrix elements for the effective-medium

The important point to note is that unlike many other self—path operator by

consistent cluster theories such as the molecular coherent-
potential approximatictt??> (MCPA) and extensions, here

77 andt correspond to an effective medium that is invariant
under translation from site to site and hence does not yield ) ) )
spurious gaps in the band structure, which could affect th&vhere each integral is over the reciprocal-space paghof
calculation of transport properties, €tcThis is a conse- volumeN./Qg surrounding the poink,. This is straight-

guence of our definition of the nonlocal correlation te@s forward since eac@(Kn) is constant within its coarse-

~ N g o~ -
I(Kn):Q_MfSlK dk[t = a(K)=G(k)] ™Y (13
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graining patch. Defining transformations relating_the real- (7) Calculate the new clustarmatrix {'CJI by solving Eq.
space and coarse-grained reciprocal-space matrix eIemer&B using?” above andA¥ from step 5 _i e

by
1 Lclz(l—_l—'—é)_l'
=5 2 T(Ke TR, (14 .
- Nekq - (8) Compare the new clustarmatrix elementsy] with
those in step 1. If they are not equal to within the desired
AT(Kn)Z 2 S1a—iKn(RI—Ry) (15) accuracy, repeat as necessary §t(—:~p§2USing _the new clus- .
- N tert matrix until convergence within the desired accuracy is
achieved.

means that the real-space effective-medium path operator for

. L . i Note that the integrations over the reciprocal space
sitesl,J within the cluster is now given by

patches in step 4 only involve the inversion of a matrix in
angular momentum space, and therefore the computational

( dk[t 1 a(K,) time is not significantly increased over the conventional

n \ I, T T KKR-CPA regardless of cluster size. This is in contrast to
many other attempts such as the MCPA, where the integra-

_G(k)]leiKn(R|RJ)>’ (16)  tion over the Brillouin zone requires the inversion of a su-
- permatrix in cluster site and angular momentum space for

, , each value ok. We also draw attention to the recent work of

which we use to replace E¢9), and we can now iterate 10 ngier and Jarref? where the DCA algorithm has been

self-consistency until Eqe8) and(16) are satisfied. shown to converge more quickly than the MCPA algorithm,
Finally, note that the NLCPA reduces to the CPA T \yith corrections of order 12 (whereL is the linear size of

=1. In this limit, the nonlocal correlation termg” vanish  the clustey.
and the NLCPA effectivé matrix becomes equal to the usual

CPA effectivet matrix. The NLCPA becomes exact &k,

—oo, whereK,—k and nonlocal correlations over all length ) ) )
scales are treated. For clarity, the full KKR-NLCPA algo-  Since the NLCPA maps the impurity cluster problem to

J
V=
- Oz X

F. The cluster momenta{K}

rithm is now summarized below. the effective lattice problem in reciprocal space, it is impor-
tant to realize that the real-space cluster must have periodic
E. KKR-NLCPA algorithm boundary conditions, i.e., must preserve the translational

symmetry of the lattice. Moreover, as explained in Ref. 9, in
All real-space matrices in the algorithm are supermatricegrder to obtain suitable reciprocal-space patches centered at
(denoted by double UnderSCO)'e-B cluster site and angular the cluster momentéKn}, we must select the rea|_space
momentum space. For a particular eneigywe have the cluster sites by surrounding them with a “tile” of siZe”
following. ) (whereD is the dimensiopwhich preserves the full point-
(1) Make a guess for the effective clustematrix g'cf for  group symmetry of the lattice, and only clusters that satisfy
the first iteration. Do this by placing an averagmatrix,t  this requirement are allowed.
=P(A)t*+ P(B)t® [whereP(A) is the probability of a site The method for finding the corresponding cluster mo-
being occupied by aA atom), on each cluster site; and for menta{K,} satisfying Eq.(10) for a simple two-dimensional
the site-to-site propagation terms in the cluster, use the freessquare lattice has been described in Ref. 9. Here we gener-
space structure constants, i.e., a8t=0. alize this method to the case of three-dimensional simple
— cubic (so), body-centered-cubidbcc), and face-centered-
cubic (fcc) lattices commonly found in real disordered al-
f=t-1-11-G loys. For_ the trivial case olf\Ic=l_, the real-space tile_s with
= = ' the required symmetry would simply be Wigner-Seitz cells
wherei ! is the diagonal part of,*. For the first iteration, surrounding each lattice point. For larger cluster sizes, we
~13 B may take the tiles to be simple cubes of voluhiefor each
o~ will of course be zero. . . . .
= _ ~13 ) of these lattices. The smallest possible cluster sizes are given
_(3) Convert the matrix elements” to coarse-grained re- p, consideringL=a (wherea is the lattice constantand
ciprocal space using E¢12). . this yieldsN,=1 for sc(trivial), N.=2 for bcc, andN,=4
(4) Calculate the coarse-grained matrix elemer(tK,)  for fcc lattices. The next set of allowed cluster sizes is given
using Eq.(13) and convert them to real space using Big). by considering. =2a; and this yieldsN.=8, N.= 16, and

(2) Calculatea” using Eq.(5), i.e.,

(5) Calculate@IJ by solving Eq.(4), i.e., N.=32 for sc, bcc, and fcc lattices, respectively.
1 The next step is to consider the “principal tiling vectors”
A=ty —1 . {a;,a,,a5}, wherela;+ma,+na; for integersl,m,n map

out the centers of the real-space tiles. Applying the usual
(6) Calculater{y,, for each impurity cluster configuration reciprocal-space transformations of the fors=2(a,
using Eq.(6) and average over all2 configurations to ob- X ag)/[a;-(a;Xag)], etc. gives us principal “coarse-
tain a new effective path operator at the cluster sA_i{és grained” reciprocal-space vectof®,,b,,bs}. We takeN,
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TABLE |. Examples of sets oR, andK,, values for lattices of the sc, bcc, and fcc type.

Lattice N, Cube edgd R, values(units of lattice constara) K, values(units of 7/a)
sc 1 a (0,0,0) (0,0,0)
8 2a {RF}={(0,0,0), (0,0,1), {K3%={(0,0,0), (0,0,1),
(0,1,0), (0,1,1), (1,0,0), (0,1,0), (0,1,1), (1,0,0),
(1,0,1), (1,1,0), (1,,,1) (1,0,1), (1,1,0), (1,,1)
bcc 2 a (0,0,0), (5157E (0,0,0), (2,0,0)
16 2a {RY% R+ (3.5.5)) {Ka% {Ka™ (2.0,0)
fcc 4 a (0,0,0), (%‘0'%)’ (%'%,0)' (0'%,%) (0,0,0), (2,0,0), (0,2,0), (0,0,2)
32 2a (RS9, {R*°+ (2,051, {K3% {K3*+(2,0,0)}
{RS°+(3,3.0)}, {RS°+(0,3,3)} {K3*+(0,2,0), {K;*+(0,0,2)}

nonequivalent vectordi.e., which do not differ by a _

reciprocal-lattice vectorof the formlb;+ mb,+nb; for in- G(E,r; vrj,)ZE, ZI(E,ry) TLL'Z]L'(E'r )

tegersl,m,n to be our set of cluster momen{& .}, and Lt

these will satisfy Eq(10). The reciprocal-space patches sur- i i

rounding these cluster momenta will be simple cubes of _2 Z (E,r)IL(Er

equal volume (2/L)3, which together will fill out a volume

of the size of the first Brillouin zone; i.e., g2a)* for sc, whereL(=I,m) is an angular momentum index andr/)

2(2mw/a)® for bee, and 4(2r/a)® for fec lattices, respec- lies within the unit cell centered at sit¢j). Z! (E,r;) and

tively. Integrating over these patches is equivalent to inte3! (E,r;) are the regular and irregular SO|UIIO%'IQ’SI,’ESDEC—

grating over the first Brillouin zone of the lattice sinkg, tively, of the single-site problem at sife In the following

values and parts of patches lying outside of the first Brillouinsection we show calculations for the configurationally aver-

zone can be translated through reciprocal lattice vedtafrs aged density of states for a one-dimensional model, and so

the sc, bcec, or fcc lattice as approprigte lie within the first  here we demonstrate explicitly how to take the configura-

Brillouin zone. In Table | we give some examples of sets oftional average of the site-diagonal Green'’s function. It should

R, and corresponding, values obtained using the above be stressed that unlike in calculations based on tight-binding

method. models, in the present multiple-scattering theory we solve for
and describe the site-to-site fluctuations of the “orbitals”
Z, (E,r}). In short, we can calculate the densitpoint by r

G. Short-range order point. It is this feature of the present theory which requires

The principal advantage of the KKR-NLCPA over the 1'% UCRT BB TRABCD FESSINEE  mborhood
conventional KKR-CPA is that it can be implemented for P 9
alloys in which short-range ordering or clustering is presentOf a cluster sitd. Denoting a configuration of the remaining
cluster sites byy, as a generalization of Ref. 23 we first
To deal with this situation, one must include an appropriate

average over the subset of possible lattice structures that
weighting for each of the " impurity cluster configurations leave the potential in sitefixed:

in step 6 of the algorithm. Note that such short-range order
will not destroy the translational invariance because it will be
restored by the configurational averaging. However, when
using some method to weight the configurations, it is impor-
tant to bear in mind the periodic boundary conditions im- —2 Z (E)r) E P(7||)<7'LL'>I Y
posed on the cluster as explained in the preceding section. To L

illustrate the above feature of the theory, we will describe
short-range order with a one-dimensional example later in
this paper.

)0}, (17

<G(E!r!r,)>l

X2, (Er) =3 ZUErI(ET). (18)

Here(a-'L'L,),,y is the path operator for paths starting and
ending at sitd conditionally averaged so that the potential
on sitel is known (to either be of typeA or B), and the

In order to calculate observables such as the configurazonfiguration of the remaining sites in the cluster is known to
tionally averaged densities and density of states, we need tme y. P(y|l) is the probability that the configurationof the
know the configurationally averaged Green'’s function calcu+emaining cluster sites occurs, given the type of potential at
lated within the NLCPA. The expression for the Green'ssitel. The final step is to average over the possible occupants
function before averaging is given by of sitel itself:

H. Calculating observables

115109-5
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(G(E,r,r')=2

LL’

P(A)Zﬁ(Em.)(E P(y|A)
Y
X (7! )A'y>2f,(E,r{)+P(B)ZE(E,n)

LL’

X

S POIBIAL s, zE,<E,r.'>}

—2 [P(A)ZXE,r)IN(E,r])

+P(B)ZE(E,r)JB(E,r))]. (19)

Here P(A) and P(B) are the probablities that siteis anA
atom and & atom, respectivelyi.e., the concentrations &f
andB atoms in the material This can be rewritten as

(G(E,r,r"))

=LEL, Ey P(AMZNE (7 )y Ze(Er))

+2 P(B,YZR(E,r){(n' Ve, ZL (ET])
Y

—2 [P(A)Z{NE,r)INE,r])

+P(B)ZB(E,r))JB(E,r])], (20)
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da

00 00 0

FIG. 1. A one-dimensional tile for a one-dimensional effective
four-site (N.=4) cluster is shown irfa). Its lengthL is 4a, where
a is the lattice constant. The corresponding set of cluster momenta
(denoted by dotsand reciprocal-space patches of lengta/PR in
relation to the first Brillouin zone are shown (h).

A very useful caricature of this realistic situation can be con-
structed in one dimension. Evidently, in this case the unit cell
is a line segment and the potential wells are described by a
functionV(x) of one spatial variable only. Interestingly, one
may regard the sign of as an angle and develop an analog
of the three-dimensional angular momentum expansion of
the usual KKR theory. Since it was first formulated by
Butler?® it has been made good use of by a number of au-
thors, for example, see Refs. 25-27. While it is computation-
ally simple, as one might expect, it is formally identical to
KKR in three dimensions. For example, there are two “an-
gular momentum” values =0,1 (and hence all NLCPA su-

where @,y) and B,y) denote cluster configurations with permatrices in the algorithm have dimensidd.2, and there
an A atom andB atom on sitel, respectively. The above is an explicit expression for the structure constants. For a
expression is still exact at this stage, however it can be simdetailed description, see Refs. 24 and 25.

plified using the NLCPA. In this approximatio(v:_'l_,),,y is

For a cluster of sizé&l;, the one-dimensional reciprocal-

constructed using an “impurity” cluster of configuration SPace patches are simply defined by the points

(I,y) embedded in the NLCPA effective medium. By using
Eq. (4) to eliminate the cluster renormalized interactor from

Eq. (6), this is given by

(o=l et L, D)

where the impurity cluster matrix t imp has configuration
(I,y), and the notation implies taking thelth site and

(2n—N¢) 7
" Na
wherea is the lattice constant ang=1, ... N.. As an ex-
ample, the real-space *“one-dimensional tiles” and

reciprocal-space patches for a four-sité,&£4) cluster are
shown in Fig. 1.

L,L'th angular momentum element of the supermatrix on the We have carried out extensive numerical calculations of

right-hand side.

the configurationally averaged density of states for a one-

It does not matter which cluster site is chosen to belsite dimensional alloy over a wide range of parameters. In all

in all the above formulas a&(E,r,r’), the resulting ap-
proximation to(G(E,r,r")), is a translationally invariant
guantity. The density of states per site is given by

p(E)=—ImJ G(E,r,r)dr, (22)
T Q,
where the integral is ove),, the volume of sitd.

Ill. RESULTS FOR ONE-DIMENSIONAL MODEL

cases we have found that the KKR-NLCPA systematically
improves the density of states with increasing cluster size
compared to the conventional KKR-CPA.

As a simple illustration we set the lattice constant to be
a=6.00 a.u. and potential-well radius to bg+=2.25 a.u.
for each of the constituent potentials #8iandB sites, which
are square potential wells of depthsl.2 Ry and—0.6 Ry,
respectively. The concentration Afsites is taken to be 80%.
The density of states for the electrons in lattices of purely
sites and purel\B sites together with the CPA result for the
AgoBog alloy is shown in Fig. 2. In Fig. 3 we show for com-

The multiple-scattering theory in three dimensions envi-parison the results for a four-site supercell calculation. This

sions three-dimensional potential wells of finite range suris obtained by considering an infinite periodic supercell con-
rounding the atomic nuclei, the famous muffin-tin potential.taining four sites of a particular configuration and then aver-
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FIG. 2. Density of states for a one-dimensional model. Results FIG. 4. A four-site N;=4) KKR-NLCPA calculation for the
shown are for a puré\ lattice, a pureB lattice, and a KKR-CPA  AgiB,, alloy. Notice the improved structure and the partial filling in
calculation for anAgyB,g alloy. of the band gaps compared with the KKR-CPA calculation in Fig. 2.

aging over all 2 possible configurations. The supercell, cal- by anA or B atom is correlated to that of neighboring sites.
culation is not the exact result due to the finite size of theag 4 simple example, we increase the probablity of an atom
supercell but it gives an indication of the type of structure tooccupying a site by a’ factgs if it follows a like atom, and
expect if we are to improve upon the CPA. A KKR-NLCPA (ecrease its probability by the same factor if it follows an
calculation with a cluster size of N¢=4) is shown in Fig.  pjike atom in the one-dimensional cluster. Thus positive
4. 1tis ewdent that much of the structure missing from the, 51ues of 8 correspond to short-range clustering and nega-
CPA calculation, which can be associated with energy bandgye yalues ofg correspond to short-range ordering. As an
of particular configurations of the supercell, is reproducedexamme, for a four-site impurity cluster of configuration
here. States also appear in the band gaps at either side of they BA we haveP(ABBA) =[P(A)+ B][P(B)— B][P(B)
impurity band centered at 0.2 Ry, which are absent in the, B][P(A)— B8] where we have made use of the periodic
CPA calculation. This is because the states near the barEjoundary conditions imposed on the cluster. In Fig. 6 we
edges are the contributions of large clusters of like atoMSghow a four-site K.=4) KKR-NLCPA calculation for the

. . . Cc
and these cannot be dealt with by a single-site theory such gty of states using the same parameters as before, along
the CPA. To investigate 'thIS further, an_elght-smq(: 8)  with short-range order parameter valygs — 0.1, 8=0.0,
caICL_JIanon is shown in Fig. 5. Clearly, with increasing clus- andB=+0.1. Peaks which increase or decrease can be iden-
ter size, more and more states enter the band gaps. tified with specific cluster configurations, and the increases

. Next we |Iluhstratf? the a?'“:]y of the KKRANLCPA to t%ke r decreases in the amplitude of the peaks are consistent with
into account the effects of short-range order. As mentionegh. increased or decreased cluster probabilities.

earlier, the KKR-NLCPA can be implemented for arbitrary
ensembles including those in which the occupancy of a site

-
(=]

IV. CONCLUSIONS

We have presented the formalism for the KKR-NLCPA
method which systematically improves upon the conven-
- 1 tional KKR-CPA for describing disordered systems on the
basis of a first-principles description of the crystal potential.
We have demonstrated its use on a one-dimensional model
and illustrated in detail the necessary coarse-graining proce-
dure for real three-dimensional lattices. We have also shown
how to calculate observable quantities with a view to com-
bining the KKR-NLCPA with density-functional theory. In
the explicit calculations, the emphasis was on the improved
structure in the density of states with increasing cluster size
e YT . 2 o v o8 du_e' to nonlocal correlations, and on a simple example of the

Eneray(Ry) a_b_|l|ty of the KKR-NLPCA to model the effects of compo-
sitional short-range order.

FIG. 3. Afour-site N.=4) supercell calculation for th&gB,g In order for disordered systems to receive a “first-
alloy obtained by averaging over alf Dossible configurations of principles” description, electronic  density-functional
an infinite periodic supercell containing four sites. theory'® (DFT) needs to be combined with treatments of dis-
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fects in general. For disordered alloys, the implementation
L | requires the solution of the Kohn-Sham equations for elec-
trons moving in the disordered arrays of the effective poten-
tials associated witih and B sites which are insensitive to
their environments. In the context of finite temperature mag-
netism, it means that the thermally induced spin fluctuations
L i must be characterized as “local moments” associated with
single sites and not larger clusters. In this paper we show
how these serious omissions may be rectified by presenting a
scheme within the KKR framework, which goes systemati-
cally beyond the CPA.

DOS
N W R OO N ©

-
T
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FIG. 5. An eight-site Kl.=8) KKR-NLCPA calculation for the cussions. This work has been supported in part by the
AgoB,o alloy. Notice the increasing density of states inside the CPAEPSRC(U.K.).
band gaps.

. . . APPENDIX A:

order. The self-consistent-field Korringa-Kohn-Rostocker
coherent-potential approximatiofBCF-KKR-CPA?82° gp- Consider a finite-sized clust& of sites in the effective
proach is a “first-pass” way at doing this, and has been apmedium. Equation(2) for sitesi,j belonging to the cluster
plied to a wide range of disordered alloifs’! It has also  can be written in the form
been adapted for the problem of itinerant magnets at finite
temperatures whose “disordered local-moment” spin fluc- i — t BRI iy ~Kj
tuations are handled using the CPA® In principle, a DFT =ty +k§c GRHI+ Ec LG(RYZY, (A
calculation of a disordered system should mean that separateh ) - .
SCF calculations are carried out to minimize the total energy’Nere the sum over all sitéshas been split into those in-
for each disorder configuration individually, and then an ay-v0Ving sitesk within theecluster and sitek outside of the
erage taken over all disorder configurations. This is, oflUSter. It can be showri® that
course, intractable, and the strategy behind SCF-KKR-CPA
calculations has been to minimize a functional for the aver- 2 G(RM7I=2 A7, (A2)
aged energy in terms of partially averaged chaggel spin leC ™
densities, i.e., the average of charge densities arising from all
configurations that have either @hor a B atom on one site.
From this approach, however, it is not straightforward to
include local environment effects such as electrostatic,
“charge-correlation®**3>Madelung, and local lattice dis- A= G(RM)T G(RM)
placement effects in alloys or indeed short-range order ef- - kec™ T

with the effective cluster renormalized mteractb't* given
by the locator expansion

" 00— + 2 GRYTGROIGRI)+---. (A3)
ol R | kéC,léC
I 0.1 s
gl i i Inserting Eq.(A2) into Eqg. (A1) and using the notation that
- cluster sites are denoted by capital letters gives
6 B ~ ~ ~n o~ —~ ~
g | =15+ >, t(G(R™)+AK)7K, (A4)
a - - K ~—— - -
“r which can be rearranged as
3F
I M=t 3 BB (A5)
L T =k
0 s o4 oz o oz o4  os 0.8 to include the effective clustdérmatrix given by Eq(5).

Energy (Ry)

) APPENDIX B:
FIG. 6. Effects of short-range orderingg€ —0.1) and cluster-

ing (8= +0.1) on the four-sitel;=4) KKR-NLCPA calculation First we note that the correlations between the cluster
for the AggB,g alloy. sites that we are aiming to reproduce in the effective lattice
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are of a finite range, sasL/2, whereL is the linear size of
the tile surrounding the cluster sitésee Sec. Il F The next

PHYSICAL REVIEW B 67, 115109 (2003

The fundamental assumption we make is to take these
coarse-grained vaIue}a(Kn) to be a good approximation to

Step is to divide or “Coarse-gl’ain" the first Brillouin zone of é(k) for the effective |att|cé1Th|S is because according to

the lattice ofN sites intoN,=LP patches of size (2/L)P

Nyquist's sampling theorethin order to reproduce correla-

(whereD is the dimensioncentered at the cluster momenta tjons of a finite rangel(/2) in real space, we only need to

{K,}. We now consider each coarse-grained vef_il(lbin) to

be the average @(k) over theN/N. lattice momentak
within the patch surrounding the poiKt, :

Ne « ~ -
—=> aK,+k).
N < &

a(Ky)= (B1)

sample the first Brillouin zone of the lattice at intervals of
27/L, i.e., at the cluster momen{& ,}. The real-space cor-
relation termsz'l (1— ;) are cut off if the distance between

i andj is outside the range of the cluster size. Wg— oo,
correlations over all length scales are treated since the maxi-
mum correlation length is proportional to the cluster $ize
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