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Korringa-Kohn-Rostoker nonlocal coherent-potential approximation
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We introduce the Korringa-Kohn-Rostocker nonlocal coherent-potential approximation~KKR-NLCPA! for
describing the electronic structure of disordered systems. The KKR-NLCPA systematically provides a hierar-
chy of improvements upon the widely used KKR-CPA approach and includes nonlocal correlations in the
disorder configurations by means of a self-consistently embedded cluster. The KKR-NLCPA method satisfies
all of the requirements for a successful cluster generalization of the KKR-CPA; it remains fully causal,
becomes exact in the limit of large cluster sizes, reduces to the KKR-CPA for a single-site cluster, is straight-
forward to implement numerically, and enables the effects of short-range order upon the electronic structure to
be investigated. In particular, it is suitable for combination with electronic density-functional theory to give an
ab initio description of disordered systems. Future applications to charge correlation and lattice displacement
effects in alloys, and spin fluctuations in magnets amongst others, are very promising. We illustrate the method
by application to a simple one-dimensional model.
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I. INTRODUCTION

Over the past 30 years or so, the coherent-poten
approximation1 ~CPA! has proved to be a generally reliab
method for dealing with disordered systems.2,3 However, be-
ing in essence a single-site mean-field theory,4 the CPA fails
to take into account the effect of nonlocal potential corre
tions due to the disorder in the environment of each site,
hence leaves much important physics out of considerat
Consequently, considerable effort has been spent in tryin
find a way of improving it systematically by a multisite o
cluster generalization. Surprisingly, this has turned out t
very difficult problem,5 and a viable solution has been pr
posed only recently. The new method has emerged from
dynamical cluster approximation6–8 ~DCA! which was di-
rected originally at describing dynamical spin and cha
fluctuations in simple Hubbard models of strongly correla
electron systems. Recently, its static limit has been ada
by Jarrell and Krishnamurthy for a simple tight-bindin
model of electrons moving in a disordered potential.9 The
same problem was investigated by Moradianet al.10 In this
paper we develop the ideas behind this approximation
ther, and demonstrate how they can be combined with r
istic, ab initio descriptions of systems of interacting electro
in disordered systems.

Since the language of our multiple-scattering theory is
different from that of the context in which the DCA is us
ally deployed, we therefore elaborate on this relationsh
First, we note that the DCA was formulated to descr
short-range correlations within the framework of the dynam
cal mean field theory11 ~DMFT! of spin and charge fluctua
tions in many-electron systems. Second, we recall that
DMFT can be regarded as the dynamical generalization
the CPA for the Hubbard ‘‘alloy analogy’’ problem.12,13Thus,
in the light of these remarks, it is natural to investigate
static version of the DCA as a generalization of the CP
which includes a description of short-range order. Inde
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Jarrell and Krishnamurthy9 already studied the problem o
electronic structure in random alloys from this point of vie
In this paper we tackle the same problem using an ident
conceptual framework but a very different description of t
electrons afforded by multiple-scattering theory.14,15To make
the above remarks more specific, we would like to highlig
two of the principal differences between our treatment of
problem and that of Ref. 9. First, we do not make use o
tight-binding model Hamiltonian but numerically solve
Schrödinger equation in each unit cell and match the ‘‘ou
going wave’’ solution to the incoming waves from all th
other unit cells. This is known as the multiple-scatteri
approach14,15 to the problem of electronic structure in solid
and is the foundation of the Korringa-Kohn-Rostoker~KKR!
band theory method. Consequently, the principal virtue
our formalism, as opposed to those based on tight-bind
model Hamiltonians is that it prepares the ground for fir
principles calculations based on density-function
theories.16 The second difference is a formal consequence
the first. In multiple-scattering theories the object of inter
is not the self-energy, and the diagrammatic language of
turbation theory is not used. We will show that the quantit
that play the role of the self-energy in multiple-scatteri
theory are the effective scattering amplitudest̂ and effective
structure constantsĜ(Ri j ), which are also the natural con
cepts in effective-medium theories.17 In short, these formal
reasons fully account for the fact that we do not base
arguments on ‘‘restoring momentum conservation’’ and
troducing approximate Laue functions to renormalize d
grams, but we construct our theory in terms of real- a
reciprocal-space clusters. Nevertheless, we believe that
final algorithm described in Sec. II E is equivalent to tho
investigated by Jarrell and Krishnamurthy.9 Our aim in refor-
mulating the problem is to facilitate the deployment of t
method as a first-principles calculation, in other words
develop a nonlocal~NL! KKR-CPA.18
©2003 The American Physical Society09-1
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In brief, our KKR-NLCPA method introduces effectiv
structure constants, and this enables us to define an effe
medium that includes nonlocal potential correlations over
length scales. Using a ‘‘coarse-graining’’ procedure inspi
by the DCA, we can then derive a self-consistent ‘‘clus
generalization’’ of the KKR-CPA,18 which determines an ap
proximation to this effective medium by including nonloc
correlations up to the range of the cluster size. The KK
NLCPA satisfies all of the requirements for a successful c
ter generalization of the KKR-CPA as listed by Gonis.5 In
particular, the KKR-NLCPA becomes exact in the limit
large cluster sizes where it includes nonlocal correlati
over all length scales, and recovers the KKR-CPA for
single-site cluster. The method is fully causal, allows
effects of short-range order to be modeled, and can be im
mented numerically for realistic systems.

The outline of this paper is as follows. In the followin
section we describe the formalism for the KKR-NLCPA. W
explain our KKR-NLCPA algorithm and show how to in
clude short-range order. We describe in more detail how
carry out the coarse graining with reference to simple cu
body-centered-cubic, and face-centered-cubic lattices.
nally, we explain how to use the KKR-NLCPA formalism t
calculate observable quantities, such as the configuration
averaged density of states, for DFT calculations. In orde
illustrate the improvements over the conventional KK
CPA, in Sec. III we present results~configurationally aver-
aged density of states! for the application of the formalism to
a one-dimensional model. However, we emphasize that
formalism presented is fully tractable for realistic thre
dimensional systems.

II. FORMALISM

A. The KKR-CPA

For the sake of clarity, we begin by briefly summarizin
the idea of the conventional KKR-CPA18,19method. The path
operator equation describing the scattering of an electron
general array of nonoverlapping potentials, centered on
positions$Ri%, is given by

t i j 5t id i j 1(
kÞ i

t iG~Rik!tk j, ~1!

where the underscore denotes a matrix in angular momen
space with the usual angular momentum indicesl ,m; and
Ri j 5Ri2Rj is the position vector connecting sitesi and j.
For spherically symmetric scatterers, the individualt matri-
ces are diagonal; i.e.,t i5t lm

i d i j d lm,l 8m8 , but the structure
constantsGlm,l 8m8(R

ik) are not. We shall be interested
situations where the lattice sites labeled byi and j form a
regular array, an infinite lattice, but the single-sitet matrices
vary from site to site in a random fashion. If we consider t
solution of Eq.~1! for all possible disorder configuration
and then take its average, we arrive at an averaged
operatort̄ i j that is translationally invariant. In practice, it
not computationally feasible to average over every poss
11510
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disorder configuration, nor is an equation that determines
averaged path operatort̄ i j readily available in the form of
Eq. ~1!. Under these circumstances, a way forward is to f
low the strategy of ‘‘effective medium theories.’’17,20 In the
present context, a useful effective medium is that provid
by an ordered array of effective scatterers described by
samet matrix t̂. In the KKR-CPA,18,19 the scattering ampli-
tude describing these effective scatterers is determined u
the self-consistency condition that excess scattering o
single-site impurity embedded in such a medium should
zero on the average. As mentioned in the Introduction, wh
very successful in many applications, being a single-site
proximation the CPA fails to take into account the effect
nonlocal potential correlations due to the disorder in the
vironment of each site.

B. Inclusion of nonlocal potential correlations

The first step in going beyond the KKR-CPA is to defin
what we will call the NLCPA effective medium by the fol
lowing equation:

t̂ i j 5 t̂ d i j 1(
kÞ i

t̂ Ĝ~Rik!t̂k j, ~2!

where a circumflex symbol denotes an NLCPA effectiv
medium quantity. Here we have defined NLCPA effecti
local t matricest̂ and a neweffective propagatorby

Ĝ~Ri j !5G~Ri j !1â i j . ~3!

This is composed of the usual free-space KKR structure c
stantsG(Ri j ) that account for the lattice structure plus
translationally invariant effective disorder term â i j

([â lm,l 8m8
i j ). The matrixâ i j takes into account, in an ave

aged manner, the nonlocal correlations due to the diso
configurations.

Clearly, a cluster generalization of the KKR-CPA wou
involve determining the above NLCPA effective medium
requiring excess scattering off an impuritycluster of real
potentials embedded in the effective medium to be zero
the average; and indeed this is the strategy adopted in
following section. However, the fact thatâ i j is a translation-
ally invariant effective-medium quantity means that it is d
agonal ink, the reciprocal space. In the present problem i
important to treat the theory in both real lattice and recip
cal lattice space consistently, and crucially we shall deal w
this by a coarse-graining procedure.

C. Cluster generalization of the KKR-CPA

The first step is to consider a cluster of sites in the NLC
effective medium. Denoting the sites within the cluster
capital letters, it can be shown~see Appendix A! that Eq.~2!
can be rewritten as a cluster equation,

t̂ IJ5 t̂ cl
IJ1(

K,L
t̂cl
IKD̂KLt̂LJ, ~4!
9-2
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with the effectivecluster t matrixdefined as

t̂ cl
IJ5 t̂d IJ1 (

KÞI
t̂ Ĝ~RIK ! t̂ cl

KJ . ~5!

Equation~4! is simply a rearrangement of Eq.~2!, so that the
site matrix elements of all matrices involve the cluster si
only. The clustert matrix t̂ cl

IJ describes the scattering within

cluster andt̂ IJ takes account of all scatterings outside t
cluster via the effectivecluster renormalized interactor5,20

D̂ IJ. Nevertheless, sinceĜ(RIJ)5G(RIJ)1â IJ, it is clear
that the clustert matrix also includes nonlocal correlation
between the cluster sites.

It should be stressed thatD̂ IJ describes those paths from
the cluster siteI to the cluster siteJ, which only involve
intermediate sites outside the cluster. It is independent of
contents of the cluster and can be viewed as describing
effective medium from which the cluster has been remov
i.e., replaced by acavity. We may now define an ‘‘impurity
cluster’’ embedded in the effective medium simply by fillin
up this cavity with a particular configuration of site pote
tials. Clearly, the path operator for sitesI ,J belonging to
such an impurity cluster is given by

t imp
IJ 5tcl,imp

IJ 1(
K,L

tcl,imp
IK D̂KLt imp

LJ , ~6!

with the impurity clustert matrix defined by

tcl,imp
IJ 5t Id IJ1 (

KÞI
t IG~RIK !tcl,imp

KJ . ~7!

For a cluster containingNc sites, each scattering according
tA or tB, there are 2Nc possible impurity cluster configura
tions.

We are now in a position to generalize the usual C
self-consistency condition to determine our approximation
the exact configurationally averaged medium described
t̄ IJ, namely, the NLCPA effective medium described byt̂ IJ.
This follows by considering for each configuration the imp
rity cluster path operator for paths starting and ending on
impurity cluster sites and demanding that the average o
all configurations be equal to the path operator for
NLCPA effective medium itself, i.e.,

^t imp
IJ &5 t̂ IJ. ~8!

The important point to note is that unlike many other se
consistent cluster theories such as the molecular cohe
potential approximation21,22 ~MCPA! and extensions, her
t̂ IJ and t̂ correspond to an effective medium that is invaria
under translation from site to site and hence does not y
spurious gaps in the band structure, which could affect
calculation of transport properties, etc.5 This is a conse-
quence of our definition of the nonlocal correlation termsâ i j
11510
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as translationally invariant. To preserve this periodicity, d
ing each self-consistency cycle we must have

t̂ IJ5
1

VBZ
E

VBZ

dk@ t̂212â~k!2G~k!#21eik(RI2RJ). ~9!

This can be seen by applying the usual lattice Fourier tra
form to Eq. ~2! and then considering the cluster sitesI ,J.
Clearly, to carry out the above integration numerically, w
must have a specific representation of the functionâ(k).
Following the central idea of the DCA, we proceed by coa
graining â(k) over the Brillouin zone. Unlike many othe
attempts,5 this approach has been shown to be fully caus7

D. Implementation—coarse graining of the Brillouin zone

Due to the finite sizeNc of the cluster in real space, th
differences in distance between the cluster sites corresp
to a set ofNc cluster momenta$Kn% in reciprocal space
according to the relation

1

Nc
(
Kn

eiKn(RI2RJ)5d IJ . ~10!

These$Kn% are at the centers of a set ofNc reciprocal-space
patches that coarse grain the first Brillouin zone of the
tice. Earlier it was noted that the effective clustert matrix
also includes nonlocal correlation termsâ IJ acting between
the cluster sites. We use the above relation to coarse g
â(k) as follows:

â IJ5
1

Nc
(
Kn

â~Kn!eiKn(RI2RJ), ~11!

â~Kn!5(
JÞI

â IJe2 iKn(RI2RJ). ~12!

Since the NLCPA maps the effective lattice problem to th
of a self-consistently embedded impurity cluster proble
the fundamental assumption we make is that provided we
aiming to reproduce these correlations of finite range in
effective lattice, we may take the above coarse-grained
ues â(Kn) to be a good approximation toâ(k) for the ef-
fective lattice. In short,â(k)5â(Kn) if k is in the nth
reciprocal-space patch. This is discussed more formally
Appendix B.

The next step is to define the ‘‘coarse-grain average
reciprocal-space matrix elements for the effective-medi
path operator by

t̂~Kn!5
Nc

VBZ
E

VKn

dk@ t̂212â~Kn!2G~k!#21, ~13!

where each integral is over the reciprocal-space patchVKn
of

volumeNc /VBZ surrounding the pointKn . This is straight-
forward since eachâ(Kn) is constant within its coarse
9-3
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graining patch. Defining transformations relating the re
space and coarse-grained reciprocal-space matrix elem
by

t̂ IJ5
1

Nc
(
Kn

t̂~Kn!eiKn(RI2RJ), ~14!

t̂~Kn!5(
J

t̂ IJe2 iKn(RI2RJ) ~15!

means that the real-space effective-medium path operato
sitesI ,J within the cluster is now given by

t̂ IJ5
1

VBZ
(
Kn

S E
VKn

dk@ t̂212â~Kn!

2G~k!#21eiKn(RI2RJ)D , ~16!

which we use to replace Eq.~9!, and we can now iterate to
self-consistency until Eqs.~8! and ~16! are satisfied.

Finally, note that the NLCPA reduces to the CPA forNc

51. In this limit, the nonlocal correlation termsâ IJ vanish
and the NLCPA effectivet matrix becomes equal to the usu
CPA effective t matrix. The NLCPA becomes exact asNc
→`, whereKn→k and nonlocal correlations over all leng
scales are treated. For clarity, the full KKR-NLCPA alg
rithm is now summarized below.

E. KKR-NLCPA algorithm

All real-space matrices in the algorithm are supermatri
~denoted by double underscores! in cluster site and angula
momentum space. For a particular energyE, we have the
following.

~1! Make a guess for the effective clustert matrix t̂ cl
IJ for

the first iteration. Do this by placing an averaget matrix, t̄
5P(A)tA1P(B)tB @whereP(A) is the probability of a site
being occupied by anA atom!, on each cluster site; and fo
the site-to-site propagation terms in the cluster, use the f
space structure constants, i.e., setâ IJ50.

~2! Calculateâ IJ using Eq.~5!, i.e.,

a=̂ 5 t=̂212 t=̂cl
212G= ,

wheret=̂21 is the diagonal part oft=̂cl
21 . For the first iteration,

â IJ will of course be zero.
~3! Convert the matrix elementsâ IJ to coarse-grained re

ciprocal space using Eq.~12!.
~4! Calculate the coarse-grained matrix elementst̂(Kn)

using Eq.~13! and convert them to real space using Eq.~14!.
~5! CalculateD̂ IJ by solving Eq.~4!, i.e.,

D= 5 t=cl
212t=21.

~6! Calculatet imp
IJ for each impurity cluster configuratio

using Eq.~6! and average over all 2Nc configurations to ob-
tain a new effective path operator at the cluster sitest̂ IJ.
11510
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~7! Calculate the new clustert matrix t̂ cl
IJ by solving Eq.

~4! using t̂ IJ above andD̂ IJ from step 5, i.e.,

t=cl5~t=211D= !21.

~8! Compare the new clustert-matrix elementst̂ cl
IJ with

those in step 1. If they are not equal to within the desir
accuracy, repeat as necessary steps 2→8 using the new clus-
ter t matrix until convergence within the desired accuracy
achieved.

Note that the integrations over the reciprocal spa
patches in step 4 only involve the inversion of a matrix
angular momentum space, and therefore the computati
time is not significantly increased over the convention
KKR-CPA regardless of cluster size. This is in contrast
many other attempts such as the MCPA, where the inte
tion over the Brillouin zone requires the inversion of a s
permatrix in cluster site and angular momentum space
each value ofk. We also draw attention to the recent work
Maier and Jarrell22 where the DCA algorithm has bee
shown to converge more quickly than the MCPA algorith
with corrections of order 1/L2 ~whereL is the linear size of
the cluster!.

F. The cluster momentaˆKn‰

Since the NLCPA maps the impurity cluster problem
the effective lattice problem in reciprocal space, it is imp
tant to realize that the real-space cluster must have peri
boundary conditions, i.e., must preserve the translatio
symmetry of the lattice. Moreover, as explained in Ref. 9,
order to obtain suitable reciprocal-space patches centere
the cluster momenta$Kn%, we must select the real-spac
cluster sites by surrounding them with a ‘‘tile’’ of sizeLD

~whereD is the dimension! which preserves the full point
group symmetry of the lattice, and only clusters that sati
this requirement are allowed.

The method for finding the corresponding cluster m
menta$Kn% satisfying Eq.~10! for a simple two-dimensiona
square lattice has been described in Ref. 9. Here we ge
alize this method to the case of three-dimensional sim
cubic ~sc!, body-centered-cubic~bcc!, and face-centered
cubic ~fcc! lattices commonly found in real disordered a
loys. For the trivial case ofNc51, the real-space tiles with
the required symmetry would simply be Wigner-Seitz ce
surrounding each lattice point. For larger cluster sizes,
may take the tiles to be simple cubes of volumeL3 for each
of these lattices. The smallest possible cluster sizes are g
by consideringL5a ~where a is the lattice constant!, and
this yieldsNc51 for sc ~trivial!, Nc52 for bcc, andNc54
for fcc lattices. The next set of allowed cluster sizes is giv
by consideringL52a; and this yieldsNc58, Nc516, and
Nc532 for sc, bcc, and fcc lattices, respectively.

The next step is to consider the ‘‘principal tiling vectors
$a1 ,a2 ,a3%, where la11ma21na3 for integersl ,m,n map
out the centers of the real-space tiles. Applying the us
reciprocal-space transformations of the formb152p(a2
3a3)/@a1•(a23a3)#, etc. gives us principal ‘‘coarse
grained’’ reciprocal-space vectors$b1 ,b2 ,b3%. We takeNc
9-4
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TABLE I. Examples of sets ofRI andKn values for lattices of the sc, bcc, and fcc type.

Lattice Nc Cube edgeL RI values~units of lattice constanta) Kn values~units of p/a)

sc 1 a (0,0,0) (0,0,0)
8 2a $RI

sc%5$(0,0,0), (0,0,1), $Kn
sc%5$(0,0,0), (0,0,1),

(0,1,0), (0,1,1), (1,0,0), (0,1,0), (0,1,1), (1,0,0),
(1,0,1), (1,1,0), (1,1,1)% (1,0,1), (1,1,0), (1,1,1)%

bcc 2 a (0,0,0), (12 , 1
2 , 1

2 ) (0,0,0), (2,0,0)

16 2a $RI
sc%, $RI

sc1( 1
2 , 1

2 , 1
2 )% $Kn

sc%, $Kn
sc1(2,0,0)%

fcc 4 a (0,0,0), (12 ,0,12 ), ( 1
2 , 1

2 ,0), (0,12 , 1
2 ) (0,0,0), (2,0,0), (0,2,0), (0,0,2)

32 2a $RI
sc%, $RI

sc1( 1
2 ,0,12 )%, $Kn

sc%, $Kn
sc1(2,0,0)%

$RI
sc1( 1

2 , 1
2 ,0)%, $RI

sc1(0,1
2 , 1

2 )% $Kn
sc1(0,2,0)%, $Kn

sc1(0,0,2)%
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nonequivalent vectors~i.e., which do not differ by a
reciprocal-lattice vector! of the form lb11mb21nb3 for in-
tegers l ,m,n to be our set of cluster momenta$Kn%, and
these will satisfy Eq.~10!. The reciprocal-space patches su
rounding these cluster momenta will be simple cubes
equal volume (2p/L)3, which together will fill out a volume
of the size of the first Brillouin zone; i.e., (2p/a)3 for sc,
2(2p/a)3 for bcc, and 4(2p/a)3 for fcc lattices, respec-
tively. Integrating over these patches is equivalent to in
grating over the first Brillouin zone of the lattice sinceKn

values and parts of patches lying outside of the first Brillo
zone can be translated through reciprocal lattice vectors~of
the sc, bcc, or fcc lattice as appropriate! to lie within the first
Brillouin zone. In Table I we give some examples of sets
RI and correspondingKn values obtained using the abov
method.

G. Short-range order

The principal advantage of the KKR-NLCPA over th
conventional KKR-CPA is that it can be implemented f
alloys in which short-range ordering or clustering is prese
To deal with this situation, one must include an appropri
weighting for each of the 2Nc impurity cluster configurations
in step 6 of the algorithm. Note that such short-range or
will not destroy the translational invariance because it will
restored by the configurational averaging. However, wh
using some method to weight the configurations, it is imp
tant to bear in mind the periodic boundary conditions i
posed on the cluster as explained in the preceding section
illustrate the above feature of the theory, we will descr
short-range order with a one-dimensional example late
this paper.

H. Calculating observables

In order to calculate observables such as the config
tionally averaged densities and density of states, we nee
know the configurationally averaged Green’s function cal
lated within the NLCPA. The expression for the Green
function before averaging is given by
11510
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G~E,r i ,r j8!5(
LL8

ZL
i ~E,r i !tLL8

i j ZL8
j

~E,r j8!

2(
L

ZL
i ~E,r i !JL

i ~E,r i8!d i j , ~17!

whereL(5 l ,m) is an angular momentum index andr i(r j8)
lies within the unit cell centered at sitei ( j ). ZL

i (E,r i) and
JL

i (E,r i) are the regular and irregular solutions,23 respec-
tively, of the single-site problem at sitei. In the following
section we show calculations for the configurationally av
aged density of states for a one-dimensional model, and
here we demonstrate explicitly how to take the configu
tional average of the site-diagonal Green’s function. It sho
be stressed that unlike in calculations based on tight-bind
models, in the present multiple-scattering theory we solve
and describe the site-to-site fluctuations of the ‘‘orbital
ZL

i (E,r i). In short, we can calculate the densityr point by r
point. It is this feature of the present theory which requir
the following careful averaging procedure.

The first step is to considerr andr 8 in the neighborhood
of a cluster siteI. Denoting a configuration of the remainin
cluster sites byg, as a generalization of Ref. 23 we fir
average over the subset of possible lattice structures
leave the potential in siteI fixed:

^G~E,r ,r 8!& I

5(
LL8

ZL
I ~E,r I !S (

g
P~guI !^tLL8

II & I ,gD
3ZL8

I
~E,r I8!2(

L
ZL

I ~E,r I !JL
I ~E,r I8!. ~18!

Here ^tLL8
II & I ,g is the path operator for paths starting a

ending at siteI conditionally averaged so that the potent
on site I is known ~to either be of typeA or B), and the
configuration of the remaining sites in the cluster is known
beg. P(guI ) is the probability that the configurationg of the
remaining cluster sites occurs, given the type of potentia
site I. The final step is to average over the possible occupa
of site I itself:
9-5
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^G~E,r ,r 8!&5(
LL8

FP~A!ZL
A~E,r I !S (

g
P~guA!

3^tLL8
II &A,gDZL8

A
~E,r I8!1P~B!ZL

B~E,r I !

3S (
g

P~guB!^tLL8
II &B,gDZL8

B
~E,r I8!G

2(
L

@P~A!ZL
A~E,r I !JL

A~E,r I8!

1P~B!ZL
B~E,r I !JL

B~E,r I8!#. ~19!

Here P(A) and P(B) are the probablities that siteI is anA
atom and aB atom, respectively~i.e., the concentrations ofA
andB atoms in the material!. This can be rewritten as

^G~E,r ,r 8!&

5(
LL8

F(
g

P~A,g!ZL
A~E,r I !^tLL8

II &A,gZL8
A

~E,r I8!

1(
g

P~B,g!ZL
B~E,r I !^tLL8

II &B,gZL8
B

~E,r I8!G
2(

L
@P~A!ZL

A~E,r I !JL
A~E,r I8!

1P~B!ZL
B~E,r I !JL

B~E,r I8!#, ~20!

where (A,g) and (B,g) denote cluster configurations wit
an A atom andB atom on siteI, respectively. The above
expression is still exact at this stage, however it can be s
plified using the NLCPA. In this approximation,^tLL8

II & I ,g is
constructed using an ‘‘impurity’’ cluster of configuratio
(I ,g) embedded in the NLCPA effective medium. By usin
Eq. ~4! to eliminate the cluster renormalized interactor fro
Eq. ~6!, this is given by

^tLL8
II & I ,g5@~t=̂211 t=cl,imp

21 2 t=̂cl
21!21#LL8

II , ~21!

where the impurity clustert matrix t=cl,imp has configuration
(I ,g), and the notation implies taking theI ,I th site and
L,L8th angular momentum element of the supermatrix on
right-hand side.

It does not matter which cluster site is chosen to be siI

in all the above formulas asĜ(E,r ,r 8), the resulting ap-
proximation to ^G(E,r ,r 8)&, is a translationally invarian
quantity. The density of states per site is given by

r~E!5
21

p
ImE

V I

Ĝ~E,r ,r !dr , ~22!

where the integral is overV I , the volume of siteI.

III. RESULTS FOR ONE-DIMENSIONAL MODEL

The multiple-scattering theory in three dimensions en
sions three-dimensional potential wells of finite range s
rounding the atomic nuclei, the famous muffin-tin potenti
11510
-

e

-
r-
.

A very useful caricature of this realistic situation can be co
structed in one dimension. Evidently, in this case the unit c
is a line segment and the potential wells are described b
function V(x) of one spatial variable only. Interestingly, on
may regard the sign ofx as an angle and develop an anal
of the three-dimensional angular momentum expansion
the usual KKR theory. Since it was first formulated b
Butler,24 it has been made good use of by a number of
thors, for example, see Refs. 25–27. While it is computati
ally simple, as one might expect, it is formally identical
KKR in three dimensions. For example, there are two ‘‘a
gular momentum’’ valuesL50,1 ~and hence all NLCPA su-
permatrices in the algorithm have dimension 2Nc), and there
is an explicit expression for the structure constants. Fo
detailed description, see Refs. 24 and 25.

For a cluster of sizeNc , the one-dimensional reciproca
space patches are simply defined by the points

Kn5
~2n2Nc!p

Nca
,

wherea is the lattice constant andn51, . . . ,Nc . As an ex-
ample, the real-space ‘‘one-dimensional tiles’’ an
reciprocal-space patches for a four-site (Nc54) cluster are
shown in Fig. 1.

We have carried out extensive numerical calculations
the configurationally averaged density of states for a o
dimensional alloy over a wide range of parameters. In
cases we have found that the KKR-NLCPA systematica
improves the density of states with increasing cluster s
compared to the conventional KKR-CPA.

As a simple illustration we set the lattice constant to
a56.00 a.u. and potential-well radius to ber MT52.25 a.u.
for each of the constituent potentials forA andB sites, which
are square potential wells of depths21.2 Ry and20.6 Ry,
respectively. The concentration ofA sites is taken to be 80%
The density of states for the electrons in lattices of purelyA
sites and purelyB sites together with the CPA result for th
A80B20 alloy is shown in Fig. 2. In Fig. 3 we show for com
parison the results for a four-site supercell calculation. T
is obtained by considering an infinite periodic supercell co
taining four sites of a particular configuration and then av

FIG. 1. A one-dimensional tile for a one-dimensional effecti
four-site (Nc54) cluster is shown in~a!. Its lengthL is 4a, where
a is the lattice constant. The corresponding set of cluster mom
~denoted by dots! and reciprocal-space patches of length 2p/L in
relation to the first Brillouin zone are shown in~b!.
9-6
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aging over all 24 possible configurations. The supercell, c
culation is not the exact result due to the finite size of
supercell but it gives an indication of the type of structure
expect if we are to improve upon the CPA. A KKR-NLCP
calculation with a cluster size of 4 (Nc54) is shown in Fig.
4. It is evident that much of the structure missing from t
CPA calculation, which can be associated with energy ba
of particular configurations of the supercell, is reproduc
here. States also appear in the band gaps at either side o
impurity band centered at 0.2 Ry, which are absent in
CPA calculation. This is because the states near the b
edges are the contributions of large clusters of like ato
and these cannot be dealt with by a single-site theory suc
the CPA. To investigate this further, an eight-site (Nc58)
calculation is shown in Fig. 5. Clearly, with increasing clu
ter size, more and more states enter the band gaps.

Next we illustrate the ability of the KKR-NLCPA to tak
into account the effects of short-range order. As mentio
earlier, the KKR-NLCPA can be implemented for arbitra
ensembles including those in which the occupancy of a

FIG. 2. Density of states for a one-dimensional model. Res
shown are for a pureA lattice, a pureB lattice, and a KKR-CPA
calculation for anA80B20 alloy.

FIG. 3. A four-site (Nc54) supercell calculation for theA80B20

alloy obtained by averaging over all 24 possible configurations o
an infinite periodic supercell containing four sites.
11510
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by anA or B atom is correlated to that of neighboring site
As a simple example, we increase the probablity of an at
occupying a site by a factorb if it follows a like atom, and
decrease its probability by the same factor if it follows
unlike atom in the one-dimensional cluster. Thus posit
values ofb correspond to short-range clustering and ne
tive values ofb correspond to short-range ordering. As
example, for a four-site impurity cluster of configuratio
ABBA, we haveP(ABBA)5@P(A)1b#@P(B)2b#@P(B)
1b#@P(A)2b# where we have made use of the period
boundary conditions imposed on the cluster. In Fig. 6
show a four-site (Nc54) KKR-NLCPA calculation for the
density of states using the same parameters as before, a
with short-range order parameter valuesb520.1, b50.0,
andb510.1. Peaks which increase or decrease can be id
tified with specific cluster configurations, and the increa
or decreases in the amplitude of the peaks are consistent
the increased or decreased cluster probabilities.

IV. CONCLUSIONS

We have presented the formalism for the KKR-NLCP
method which systematically improves upon the conv
tional KKR-CPA for describing disordered systems on t
basis of a first-principles description of the crystal potent
We have demonstrated its use on a one-dimensional m
and illustrated in detail the necessary coarse-graining pro
dure for real three-dimensional lattices. We have also sho
how to calculate observable quantities with a view to co
bining the KKR-NLCPA with density-functional theory. In
the explicit calculations, the emphasis was on the impro
structure in the density of states with increasing cluster s
due to nonlocal correlations, and on a simple example of
ability of the KKR-NLPCA to model the effects of compo
sitional short-range order.

In order for disordered systems to receive a ‘‘firs
principles’’ description, electronic density-functiona
theory16 ~DFT! needs to be combined with treatments of d

ts FIG. 4. A four-site (Nc54) KKR-NLCPA calculation for the
A80B20 alloy. Notice the improved structure and the partial filling
of the band gaps compared with the KKR-CPA calculation in Fig
9-7
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order. The self-consistent-field Korringa-Kohn-Rostock
coherent-potential approximation~SCF-KKR-CPA!28,29 ap-
proach is a ‘‘first-pass’’ way at doing this, and has been
plied to a wide range of disordered alloys.30,31 It has also
been adapted for the problem of itinerant magnets at fi
temperatures whose ‘‘disordered local-moment’’ spin flu
tuations are handled using the CPA.32,33 In principle, a DFT
calculation of a disordered system should mean that sepa
SCF calculations are carried out to minimize the total ene
for each disorder configuration individually, and then an a
erage taken over all disorder configurations. This is,
course, intractable, and the strategy behind SCF-KKR-C
calculations has been to minimize a functional for the av
aged energy in terms of partially averaged charge~and spin!
densities, i.e., the average of charge densities arising from
configurations that have either anA or a B atom on one site.
From this approach, however, it is not straightforward
include local environment effects such as electrosta
‘‘charge-correlation’’31,34,35 Madelung, and local lattice dis
placement effects in alloys or indeed short-range order

FIG. 5. An eight-site (Nc58) KKR-NLCPA calculation for the
A80B20 alloy. Notice the increasing density of states inside the C
band gaps.

FIG. 6. Effects of short-range ordering (b520.1) and cluster-
ing (b510.1) on the four-site (Nc54) KKR-NLCPA calculation
for the A80B20 alloy.
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fects in general. For disordered alloys, the implementat
requires the solution of the Kohn-Sham equations for el
trons moving in the disordered arrays of the effective pot
tials associated withA and B sites which are insensitive to
their environments. In the context of finite temperature m
netism, it means that the thermally induced spin fluctuatio
must be characterized as ‘‘local moments’’ associated w
single sites and not larger clusters. In this paper we sh
how these serious omissions may be rectified by presenti
scheme within the KKR framework, which goes systema
cally beyond the CPA.
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APPENDIX A:

Consider a finite-sized clusterC of sites in the effective
medium. Equation~2! for sites i , j belonging to the cluster
can be written in the form

t̂ i j 5 t̂d i j 1 (
kPC

t̂ Ĝ~Rik!t̂k j1 (
kP” C

t̂ Ĝ~Rik!t̂k j, ~A1!

where the sum over all sitesk has been split into those in
volving sitesk within the cluster and sitesk outside of the
cluster. It can be shown5,36 that

(
kP” C

Ĝ~Rik!t̂k j5 (
l PC

D̂ i l t̂ l j , ~A2!

with the effective cluster renormalized interactorD̂ i j given
by the locator expansion

D̂ i j 5 (
kP” C

Ĝ~Rik! t̂ Ĝ~Rk j!

1 (
kP” C,l P” C

Ĝ~Rik! t̂ Ĝ~Rkl! t̂ Ĝ~Rl j !1•••. ~A3!

Inserting Eq.~A2! into Eq. ~A1! and using the notation tha
cluster sites are denoted by capital letters gives

t̂ IJ5 t̂d IJ1(
K

t̂~Ĝ~RIK !1D̂ IK !t̂KJ, ~A4!

which can be rearranged as

t̂ IJ5 t̂ cl
IJ1(

K,L
t̂cl
IKD̂KL t̂LJ ~A5!

to include the effective clustert matrix given by Eq.~5!.

APPENDIX B:

First we note that the correlations between the clus
sites that we are aiming to reproduce in the effective latt

A

9-8
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are of a finite range, say&L/2, whereL is the linear size of
the tile surrounding the cluster sites~see Sec. II F!. The next
step is to divide or ‘‘coarse-grain’’ the first Brillouin zone o
the lattice ofN sites intoNc5LD patches of size (2p/L)D

~whereD is the dimension! centered at the cluster momen

$Kn%. We now consider each coarse-grained valueâ(Kn) to
be the average ofâ(k) over theN/Nc lattice momentak̃
within the patch surrounding the pointKn :

â~Kn!5
Nc

N (
k̃

â~Kn1 k̃!. ~B1!
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coarse-grained valuesâ(Kn) to be a good approximation to
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