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A bosonic model with unfrustrated hopping and short-range repulsive interactions is constructed that realizes
aZ, fractionalized insulator phase in two dimensions and in zero magnetic field. Such a phase is characterized
as having gapped charged excitations that carry fractional electrical charge 1/3 and also fiappdttes
above the topologically ordered ground state.
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[. INTRODUCTION ping amplitudes arev, for (r,R) links andw, for (r,r’)
links. We also stipulate strong repulsive interactions that fa-
A flurry of recent theoretical activity has produced spe-vor charge neutrality of the hexagons, in addition to the on-
cific model system realizations of fractionalized phases irsite repulsion that favors charge neutrality of the individual
two dimensions:® Essentially all of the fractionalized states sites. The completquantum rotorHamiltonian is
constructed so far arg, states. On a formal level, these
realizations employ the following route @, fractionaliza- H
tion: Strong local correlations lead to 1) gauge theory as
a low-energy description; this gauge theory is then driven
into a deconfined state by a condensation of objects carrying b2 2 2
gauge charge 2 that also appear in the low-energy descrip- +ub; (Ng) +u¢2 (n7) +UER N&- @
tion. This formal structure has been brought out very directly b ] ) )
in Refs. 8, 5, and 6. On a more physical level, the fractiontere.{ng, 6} are conjugate number-phase variatjkes., in
alized insulator is produced departing from a superconducthe —phase representatiomi=—id/d6g, bl +H.c.
ing state by a condensation of double vortité®The main =2 cos@r— )] and similarly for {n?,¢,}. The number-
body of work concentrated on th&, states since these are phase variables are particularly appropriate if we think of the
expected to be the simplest to realize. However, it is cleamodel as describing an array of Josephson-coupled super-
that more complicated fractionalized states are also possibleonducting islands. Bothg and ¢, bosons carry electrical
For example, it is conceivable that in some systems the swhargeqy, .
perconducting state is quantum-disordered by a condensation In the above Hamiltonian\y is the boson number asso-
of triple vortices; the resulting insulator is theiZafraction-  ciated with each hexagon:

=—w; > (bhy+H.C)—w, X (¢ +H.C)
RreR (rrf>

alized state.
In this paper, we indicate how A; fractionalized state Ng=3n2+ S n¥ )
can be engineered in a relatively simple bosonic model with R RV

unfrustrated nearest-neighbor hopping and short-range two-
body repulsive interactions. Much of the construction paral-Thus, the total boson number in the systés
lels closely theZ, examples of Refs. 5, 6, and 3: The low-
energy Hilbert space is selected—by stipulating particular
charge interactions—in a manner that naturally admits split-
ting the boson charge into three pieces; this Hilbert space is
protected by a large charge gap. The effective description of
the fractionalized state has gapped chargons carrying electri-
cal charge 1/3 and coupled to some spegZiabauge theory
which we analyze in detail. Our main message here is that
one does not need very contrived systems to obtain more
complicated fractionalization patterns.

Il. Z; VIA CHARGE FRUSTRATION

The model is defined on the lattice shown in Fig. 1, which
we can think of as a hexagonal lattice with additional sites
placed at the hexagon centers. We haz\}é e'*r bosons re-
siding on the hexagonal latti¢these sites are always labeled £, 1. josephson junction array formed by penetrating hexago-
lower caser) andb}=e'’= bosons residing at the hexagon nal (r) and triangular(R) lattices, modeled by the Hamiltonian
centers(uppercaseR). Bosons can hop between the neigh-(1). The shaded area indicates schematically hexagon charging
boring sites as indicated by the links on the figure; the hopenergyUN3.
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1 the deconfined phase, but to recover the physical Hilbert
Nior=3 ; Ng. (3)  space, we need to impose the constraint
_ ) _ 2 v
General analysis of the possible phases proceeds as in expi—- Ng— ER ngl|=1. (6)
re

Ref. 6. Here, we focus on the insulating states that are ob-
tained for largeU>wq,w,,up,u,. If the wy,wy,u,,u, In the new variables, the Hamiltonian becomes
terms are all zero, there is a degenerate manifold of ground
states specified by the requireméi=0 for eachR'? The
ground-state sector is separated by a large chargé dapnm
the nearest sectors. Including thg,w,,u,, andu, terms

HE=u,> (0?33 [(F)*+He)

lifts this degeneracy in each sector, which is best described o ~ e~ g
by deriving the corresponding effective Hamiltonian in each K”“g% (Y1tharauibsstH.C). ™
sector. - _

The effective Hamiltonian in the ground-state sectdg(  Note that we are left with gauge fieldg only, since we are
=0) is, to third order in the perturbing terms, working in the “uncharged” ground-state sector

The termJ. acts as &3 anisotropy on the}%r field. In the

. i Al T —
Hé?r):Hub,ud,— ch [(¢D3lebR2bR3+H-C-] limit J.—, €'r becomes &5 field: ¢, =0, 27/3, or 4x/3.
r

The operatorPr*Ee*i(z”’?’)”?b shifts the states of the quan-
tum Z5 clock by +1,* whereas the constraints specifying
_Kring% (¢I¢2¢g¢4¢g¢6+ H.c). (4) the uncharged sectdigz=0 become
Here,H,, ., stands for the on-site repulsion terms as in Eq. rl;[R P =1. (8)
(1); Ry,R,, andR; label the three hexagon centers adjacent
tor: JC:WE/(6UZ); and Krmg=3W§/U2. The u,ﬁ(nrw)2 term causes tunneling between the different

This is our main step in obtaining, fractionalization. ~ states of the quantum clock, and this can be described by an
The above Hamiltonian looks similar to a compactll) effective “transverse field”—h(P+P;) acting on the
gauge theory coupled to a charge-3 scalar field. Thus, if wélock.
think of the 4, as some gauge fields, then it is very sugges- The effective Hamiltonian now becomeg; “ring-
tive to think of thebg as carrying gauge charge[8ee also exchange” Hamiltonian on the hexagonal latticer dfites:

Eq. (2)]. Standard Fradkin-Shenker analysithen suggests

that by condensing thby, field, which can be arranged by~ _ . > G5 le+ He)—hY, (P +P)).
makingJ; andK ;g large, we can deconfine objects carrying %5 oot

gauge charge 1. By virtue of E¢3), such objects carry 9
fractional electrical chargey/3, and we obtain &; fraction-  Tne Hamiltonian together with the constraints E&).can be
alized insulator. viewed as some specidl; gauge theory and is analyzed

The reader who finds the above statements believable may, oy and in further detail in Appendixes A and B. We find
now dgclare victory in achlevmzj,3 fract|o.nallzat|on.. How-  ihat generically this theory can hato deconfined phases
ever, if we want to describe the deconfined pltise any iy addition to the confined phaswith the phase diagram
detail, we need to study the above Hamiltonian directly sincgp o in Fig. 2. Here we only describe the deconfined phase
it is not related in any simple manner to conventional gaugenat obtains when all ring-exchange couplings are large,

theory. This is our focus in the remainder of the paper. OI‘Krin >h. As explained below, this phase iax Z, decon-
course, we will confirm the deconfinement, but we will alsoﬁne% phase.

find that the deconfined state that obtains for lakggy on From here on, our focus is on the ab&gring-exchange

all hexagons is in fact 23X Z; state(see below for details  amiltonian. We drop all tildes o fields ¢, and super-
Proceeding with this anal)_/sis, consi_der the regime of Iarg%cripts onn, (which are now integers modulo 3). Also, we

Je—e and smallu,—0. It is convenient to perform the .,nsider az,, generalizatiol of the above Hamiltonian and

following change of variables. Define the operatdr, carry out the analysis in the general case. This is done for

=el%r and | =e'¢r: clarity of notation.
ForK,ing>h, a good caricature of the bulk ground state is
bl=sre' R, Yl= w:bchbchbcR?,- (5)  given by the wave function
_ i2m/3 idm/3 '
Here_,sR—l_, e, ore™™, so thatacRe[O,gw).¢Qne can |GS>=2 1.}, (10)
readily verify thatNg is conjugate tof.r, while n/” is con- {n }

jugate to, . b carries electrical charggy,/3 and can be where the primed sum is over all configuratiofis} that

thought of as a chargon field, whiﬁé;' is charge neutral. satisfy the constraint®), i.e., =, _gn,=0.
These new variables are indeed natural in the description of Let us definezy flux through a given hexagoR,
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© TABLE |. Gauge charges of thBlr=+1 excitations with re-
spect to theA, B, andC Z fluxes as defined by Eq11). Note that
these are consistent with the fusion ru{@g) and (13).
Fully deconfined
Q Q Q
& (ZN X ZN) A B C
h (Np=+1) 0 -1 +1
Confined (Ng=+1) +1 0 -1
(Ne=+1) -1 +1 0
Partially >
0 5 decontined(Z y = usual distinction between two vortices carrying different

K/h flux. Indeed, one can see that the topologically distinct situ-
ations can be characterized by saying that we have two spe-
FIG. 2. Generic phase diagram of tig ring exchange on cies ofZ vortices, sayA andB vortices. Alternatively, if we
hexagonal lattice, Eq(9). To explore the different deconfined want to preserve the symmetry among the three sublattices,
states, we allow two different ring-exchange couplings,,=Ka.  we can say that there are three typeZfvortices—A, B,
for A-type hexagons anl,i,;=K for B- andC-type hexagongsee  and C vortices—but these are not independent and instead
Fig. 3. satisfy “fusion rules” such as

Dr=p1— P+ 3= Pst bs— Ps, (11 (Pp=+1)X(Pg=+1)~(Pc=—-1). (12

with the sign convention as in Fig. 3. The ground state hashis means that a nearby pair 6f1 A and B vortices is

zero flux through each hexagon. Excitations above thisndistinguishable from a-1 C vortex (note also that the

ground state argy vortices. For example, we can add a unit “states” on the left and on the right can be connected by

of flux through a given hexagon by applying a “string” op- |ocal h terms in the Hamiltonian

erator as indicated in Fig. 3. The gap for a vortex carrying  Consider now introducing, charges in the above gauge

one unit of flux is XKyl 1 —cos(2m/N)]. theory, Eq.(9); e.g., consider placing a pair of oppositel
Observe nowFig. 3) that the hexagon centeRsform a charges on two hexagon®; and R,: RN = Ogp,

triangular lattice, which consists of three sublattidgsB, _ o ' : g
and C. Observe also that the flux-adding string operator ORRy This is appropriate when studying the charged sec

“steps” only through the same sublattice hexagons. We ardors of the microscopic Ham|Iton|a(!1) smce_the formal
thus led to the possibility of a topological distinction be- 92U9€ structure represents the crucial coupling of chargons

tween vortices on the different sublattices, in addition to theVith the aboveZ; degrees of freedom. A charge can be
added to a hexagon by applying a string operator as indicated

in Fig. 3. From several perspectives, one can see that all such
charges are deconfined in thg,;>h phase: Thus, in Ap-
pendix A we approach this “fully deconfined” phase starting
from a “partially deconfined” phase, in which charges are
deconfined on one sublattice only. Also, this fully deconfined
phase corresponds to the fully disordered phase in the dual
global Zy spin model of Appendix B.

Similarly to vortices, we need to distinguish the charges
on different sublattices. Again, as far as the gauge structure is
concerned, we have fusion rules such as

(Na=+1)X(Ng=+1)~(Nc=-1). (13

Statistical interactions between the different particles are
readily identified by studying the commutation properties of
the corresponding strings. These are summarized in Table |
by specifying “gauge charges” of the differeNig=+1 ex-
citations with respect to tha, B, andC fluxes. ThusN,=
+1 excitation carries gauge charg€s=0,Qg=—1, and
Qc=+1; i.e., it does not “see’A vortices, but when trans-
doorted around & or C vortex of unit strength_,zt%:- wave
temN cor-

FIG. 3. Hexagonal lattice on which th&y ring-exchange
model, Eq.(9), is definedNg=3, _gn, measureZy “number” on
each hexagon; we can increddg on a given hexagonx) by one
by applying a “string” operatoryTyyty- - - along the indicated
path. ®g=dd1— Po+ d3— Pps+ ds— pg measures Zy  “flux”
through a given hexagon (123456); to fix the sign convention w A - o Py
always take 1 to be the lowermost hexagon site. We can increaJémCt'On_vaU'reS an additional phase ore
the flux through a given hexagor®) by one unit by applying a  respondingly.
string P*PTP*P*... along the indicated path. The lower-right ~ This completes the particle description of the fully decon-
corner of the figure shows the three sublattice structure of the latticBned phase. The minimal description would be to say that we
of honeycombs. haveA hexagon charges that sBehexagonZy vortices and
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B hexagon charges that s@ehexagon vortices. This is es- DMR-9808941 and DMR-0213282.

sentially the claimedZyXZy structure. Thus, we expect

N*-fold ground-state degeneracy if the system is put on aAPPENDIX A: PARTIALLY DECONFINED (Z,) PHASE
cylinder, as can be verified by constructing the corresponding _ _ )
ground states starting from the stéé®) and threading vor- To bet_ter appreciate the character of the Qeconf|n§ment in
tices through the hole of the cylinder. the special gauge theory, E(), we allow different ring-

It should be emphasized here that the above discussidgfxchange couplings for different hexagons and consider par-
assumed that the three-sublattice structure is respected by tHeular parameter space with two such couplingg;g= K
boundary conditions. While it is clear that the bulk propertiesfor the A hexagons andny=Kg=Kc=K for the B andC
do not depend on this, there is an additional quirk when wdexagons. This is indicated schematically in Fig. 3 where the
consider topological degeneracy in a geometry that does ndt hexagons are shaded. Note that by allowing the two cou-
respect the three-sublattice structure. This is legitimate wheRlings we implicitly assume that the boundary conditions on
all ring-exchange couplings are equal. Consider, e.g., a cythe lattice respect the three-sublattice structure; this is done
lindrical geometry with the circumference along the horizon-throughout.
tal direction of Figs. 1 and 3. When aktype particle is We argue below that the ring-exchange Hamiltonian has
transported around the periodic direction, it does not returihe phase diagram shown in Fig. 2 with three phaseshfor
to its initial position, but rather becomesBa or C-type par- >K,Ka the system is in a fully confined phase. Ro»-h
ticle. It takes three turns for the particle to return to the>VK,K the system is in a partially deconfined() phase.
original position. From Table I, such alg=-+1 particle In this phase, the charges on théiexagons are deconfined,
will not register any flux in this process. A detailed analysiswhile the charges on thB and C hexagons are confined.
shows that folN mod 3+ 0 the ground state of the system in Finally, for K,K,>h the system is in a fully deconfined
this geometry is nondegenerate. On the other hand, fdfZnXZy) phase with all charges deconfined. The phase dia-
N mod 3=0 the ground state is found to be threefold degengram of Fig. 2 is also supported by the analysis of the dual
erate, since in this case there is a composite object that r@lobal Zy spin model summarized in Appendix B.
turns to its initial state when transported once around the In what follows, we give a detailed description of the
cylinder and that senses some flux through the hole of thgartially deconfined phase. As a representative of this phase,
cylinder in the process. consider the Hamiltonian withkK,=0, i.e., with ring ex-

Returning to our microscopic bosonic model, the “par- changes around thB and C hexagons onlysee Fig.3. In
ticle description” of theZ; X Z3 phase is as follows: We have this case, there are additional conserved quantities
two species oZ; vortices (with gap ~K,;) and we have .
charged particle$with charge gap~U) that can be classi- Laar=n;+n;,=const (model withK,=0) (A1)
fied as carrying two distincZ; gauge charges, in addition to

. . . . for each hexagonal lattice linkr’) between twoA hexa-
their fractional electrical charge. Finally, note that the g fr)

7 ) iated with the additional ies in th onsA andA’ (see Fig. 3 This facilitates the analysis, since
;: 3 statellls assoclate erwt t ea |t_||ona_ syg1m_etr|es int §/e can consider separately each subsector specified by the
exagonal lattice ring exchange Hamiltonian but is protecte orresponding eigenvalueay ). Note that the allowed

by the same charge gap pro_jection, sin(_:e any move Withi%ﬁAA,} are very much constrained by the constraints (By.
thhe uncha.rged Stﬁte sector is necessarily a combination then, themselves; however, we will not use the details of
exagon ring exchanges. these explicitly.

First of all, observe that thé& hexagons in turn form a
[ll. CONCLUSIONS triangular lattice, while the linkgrr ") between such hexa-

L ) _gons can also be viewed as the links of thia fattice,”
We showed that it is possible to produce more compI|—<AA,>E<”,>. In a given subsector with fixefC, ), there

cated fractionalization patterns such &g fractionalization o \4ing oneZ,, degree of freedom for each such link. It is

in relatively simple bosonic models. While the resulting frac'convenient to work in the number basis and label these re-
tionalized state turned out to be even more complicated thaﬁlaining link degrees of freedom by

initially intended, the microscopic model was not too con-

trived. It is hoped that this work will encourage further Ny ar=n—n©@=—(n ,_n(0>)E_N, (A2)
searches for other exotic states. For example, can a non- AnAT T v AoA
Abelian fractionalized state be produced in a condensed matyhere {nEO)} is one particular instancef, = n§°)+ n(®

ter system with a global symmetry only, short-range interaC(and our convention is thate A andr’ € A'—see Fig_r;g

tions, and in zero magnetic field? Thus,NMaa =Na_ as are oriented fields on the links of tie
lattice. The subsector is now completely specified by the
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The action of the Hamiltoniart9) in this subsector is subsector, the Hamiltonian has precisely the foA®) with
readily described in terms of the new variables. Thus, thehe number variables satisfying precisely the constraints
transverse fieldh) terms are diagonal in the new number (A3). All information about the two charges is encoded in the
variables, while thd and C hexagon ring exchanges simul- allowed configuration$£sa/}, and one can clearly see that
taneously raisdor lowern the three oriented number fields £, #0 at least on a string d&-lattice bonds connecting;
circulating around the corresponding-lattice triangular andB,. From the earlier arguments, the energy cost of intro-
plackets. Writing the raising operator for a given link numberducing two such charges is then proportional to the length of
variable N5 ase'=A~" | the resulting Hamiltonian is this string; i.e., such charges are confined with the string
tension~h?/K.

Consider now placing a pair of opposite charges onAwo
hexagonsA; and Ay: =, o N=+1 and =, 5N =—1.

The analysis of the subsectdiSa,/} will be somewhat dif-
— > (Tape 1@ NMaa 1 He), (A4) ferentin this case. For each such subsector in this charged
)

A[L]=—KD, (eFaneEaneEaatH.c)
A

(AA/ sector there corresponds a subsector in the uncharged sector
having exactly the samgL/}. It is convenient to “mea-
where » ; i
sure” each charged subsector relative to the corresponding
FAA,:he*‘(z’f”“)”ﬁo)(lﬂLei(ZW’N)'CAA’). (A5) uncharged subsector. This is achieved by defining link vari-

ablesNa via Eq. (A2) using an uncharged instan{:eﬁo)}
Together with the constrainté3), this is precisely the con- of {Laa} (€., =, gn{?=0 for eachR and La =n{®
ventionalZy lattice gauge theory defined on the triangudar +n§?) for each(AA’)). In each subsector, the Hamiltonian
lattice but with link-dependerif 5o+ specific for the particu-  again has the formiA4) when written in these link variables,

lar subsectof La . We can now use the conventional wis- which now satisfy new constrain®ar .o Na a=+1 and
dom to characterize each such subsector and in turn the fuﬂAleAzNAzA,: 1. This corresponding precisely to intro-

hexagonal ring-exchange Hamiltonian =0. . . . .
xag Ing-ex g iitonian wHi ducing two charges in the correspondidglattice gauge

When h=0, all the different subsectors are degenerate, Clearly. for | >h. th h ib
The lowest-energy state in each such subsector has the etn_eory. early, for large enough>h, these charges will be

. . . ._deconfined.
ergy of — 2K per triangle and is an equal weight superposi- . .
tion of all possible configurations ok, that satisfy the We now have essentially complete description of the par-

constraints(A3). Nonzeroh eliminates this degeneracy and tially deconfined phase. Thus, one can readily identifyge

selects one particular subsector, namely, withCall, =0, as vortex excitations of thé-lattice gauge theory wit&, vor-

containing the true ground state of the full Hamiltonian with tices on t_heB and c he_xagon;. These vort!ces will have
Ko=0. Indeed, treating",, perturbatively, the lowest en- usual statistical interactions with the deconfined charges on

: . : the A hexagons. Also, as should become clear by reviewing
ergy in a given subsector is the above discussion, we can essentially account for the dif-
IT apr|? ferept subs_ectgr@ﬁA_A,} by saying that there are_additional
2K[1—cos 2m/N)]’ (AB6) particle excitations living on thé hexagons obtained from
) the ground state by the action of the corresponding
Avhexagon ring exchanges. These new particles have a

where for simplicity we assumed that the system has n 2 O : .
boundaries. It is now clear that for small nonzewcthe  Mass”of 6h“/K and have no statistical interaction with the

ground state of the full ring-exchange Hamiltonian wity ~ Other particles. ,
=0 is in the subsector with all,, =0. The subsectors that W& can now consider what happens when we allow non-

are closest in energy have the smallest number of nonzeff'0Ka . As discussed above, the ring exchanges around the
Lan and can be characterized as having alternatiagy, A hexagons introduce mixing between the different subsec-
=+1 and Ly o-=—1 values on the six links to a given tors. However, as long &S is mUCh smallgr than the cor-
A ) ) 9 responding gap-h?/K, the partially deconfined phase sur-
hexagorA, (this subsector is obtained from the ground-stateyjyes and is characterized by the same particle description.
subsector by applying the hexagon ring exchange around the OnceK, is sufficiently large, the system enters the fully

hexagonA,). The energy gap to these subsectorshié/B.  deconfined phase described in the main text.
We see that we have a peculiar situation where a nonzero

transverse fieldh is needed to stabilize thi&y deconfined
ground state; this is because we are competing here against
theZy X Zy deconfined state that is obtained for laKe, K. Here we summarize dual perspective on the hexagonal-
We are all set to discuss confinement of charges in théattice ring-exchange Hamiltoniaf®). We work directly in
model withK,=0. The above analysis was carried out in thethe Hamiltonian language. Simple counting shows that the
uncharged sector but is readily extended to the charged sedimensionality of the physical Hilbert space is consistent
tors. First, consider placing a pair of opposite charges on twevith having oneZ, degree of freedom per hexagon. Let us

Eod £]~~2) 2K— X,

(AA!

APPENDIX B: DUAL GLOBAL Z, SPIN MODEL

B hexagonsZ; g n,=+1 andX, g n,=—1. Proceeding define
exactly as before, one is led to consider different subsectors S . o
(of this charged sectprspecified by{Lxa/}. In each such Tr=notbspatbshs, Tr=(Tg)' (B1)
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where we use the same sign convention as in Fig. 3. Let us
also define H=— K; (Th+H.c)— h% (VR VR VR +H.c),
(B5)
V;EHR P, (B2)  \whichis a globalZy, spin model with three-spin interactions.

A little thought shows that the model has in facZgxZy
where the product is along the vertical path that reaéba@s  global symmetry corresponding to independent global rota-
in Fig. 3. Note that the path “steps” through the same sub-ions of the spins on two of the three sublattices. Note also
lattice hexagond.If we were to take some other such path, that the three-spin interaction around triangles promotes or-
we would need to replace sorfe with P~. The total prod-  dering of the spins on the same sublattice. This is because
uct is path independent due to constraif@s] V% can be  two neighboring site# andA’ on the same sublattice share

thought of as a vortex creation operator. a BC side in the respective triangle interactioh#\BC and
We now interpret\/;re as aZy spin variable. It is easy to AA’'BC.
verify that T is the corresponding conjugate varialfie., The global model clearly has a fully disordered phase for
raising operatdf): K> h. In the original ring-exchange Hamiltonian, this corre-
_ sponds to all vortices being gapped, and we obtainZge
VETE=e2"NTEVE. (B3)  xz, fully deconfined phase. Varying th& hexagon ring-

exchange coupling 5 independently, for sufficiently small

Also, we can readily “solve” forP;" :
y ' K, and largeK the system can clearly order on tAesublat-

Pr=VE Vi Vi (B4) tice(i.e., A vortices condengebut remain disordered on the
N individual B and C sublattices. This is our partially decon-
The dual Hamiltonian is fined Zy phase.
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