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Bosonic model withZ3 fractionalization

O. I. Motrunich
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139

~Received 8 November 2002; published 17 March 2003!

A bosonic model with unfrustrated hopping and short-range repulsive interactions is constructed that realizes
a Z3 fractionalized insulator phase in two dimensions and in zero magnetic field. Such a phase is characterized
as having gapped charged excitations that carry fractional electrical charge 1/3 and also gappedZ3 vortices
above the topologically ordered ground state.
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I. INTRODUCTION

A flurry of recent theoretical activity has produced sp
cific model system realizations of fractionalized phases
two dimensions.1–6 Essentially all of the fractionalized state
constructed so far areZ2 states.7 On a formal level, these
realizations employ the following route toZ2 fractionaliza-
tion: Strong local correlations lead to a U~1! gauge theory as
a low-energy description; this gauge theory is then driv
into a deconfined state by a condensation of objects carr
gauge charge 2 that also appear in the low-energy des
tion. This formal structure has been brought out very direc
in Refs. 8, 5, and 6. On a more physical level, the fractio
alized insulator is produced departing from a supercond
ing state by a condensation of double vortices.9,10 The main
body of work concentrated on theZ2 states since these ar
expected to be the simplest to realize. However, it is cl
that more complicated fractionalized states are also poss
For example, it is conceivable that in some systems the
perconducting state is quantum-disordered by a condens
of triple vortices; the resulting insulator is then aZ3 fraction-
alized state.

In this paper, we indicate how aZ3 fractionalized state
can be engineered in a relatively simple bosonic model w
unfrustrated nearest-neighbor hopping and short-range
body repulsive interactions. Much of the construction par
lels closely theZ2 examples of Refs. 5, 6, and 3: The low
energy Hilbert space is selected—by stipulating particu
charge interactions—in a manner that naturally admits sp
ting the boson charge into three pieces; this Hilbert spac
protected by a large charge gap. The effective descriptio
the fractionalized state has gapped chargons carrying ele
cal charge 1/3 and coupled to some specialZ3 gauge theory
which we analyze in detail. Our main message here is
one does not need very contrived systems to obtain m
complicated fractionalization patterns.

II. Z3 VIA CHARGE FRUSTRATION

The model is defined on the lattice shown in Fig. 1, wh
we can think of as a hexagonal lattice with additional si
placed at the hexagon centers. We havec r

†5eifr bosons re-
siding on the hexagonal lattice~these sites are always labele
lower caser ) and bR

†5eiuR bosons residing at the hexago
centers~uppercaseR). Bosons can hop between the neig
boring sites as indicated by the links on the figure; the h
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ping amplitudes arew1 for ^r ,R& links and w2 for ^r ,r 8&
links. We also stipulate strong repulsive interactions that
vor charge neutrality of the hexagons, in addition to the o
site repulsion that favors charge neutrality of the individu
sites. The completequantum rotorHamiltonian is

H52w1 (
R,r PR

~bR
†c r1H.c.!2w2 (

^rr 8&
~c r

†c r 81H.c.!

1ub(
R

~nR
b !21uc(

r
~nr

c!21U(
R

NR
2 . ~1!

Here,$nR
b ,uR% are conjugate number-phase variables@e.g., in

the phase representationnR
b[2 i ]/]uR , bR

†c r1H.c.
[2 cos(uR2fr)] and similarly for $nr

c ,f r%. The number-
phase variables are particularly appropriate if we think of
model as describing an array of Josephson-coupled su
conducting islands. BothbR and c r bosons carry electrica
chargeqb .

In the above Hamiltonian,NR is the boson number asso
ciated with each hexagon:

NR53nR
b1 (

r PR
nr

c . ~2!

Thus, the total boson number in the system11 is

FIG. 1. Josephson junction array formed by penetrating hexa
nal ~r! and triangular~R! lattices, modeled by the Hamiltonia
~1!. The shaded area indicates schematically hexagon char
energyUNR

2 .
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Ntot5
1

3 (
R

NR . ~3!

General analysis of the possible phases proceeds a
Ref. 6. Here, we focus on the insulating states that are
tained for largeU@w1 ,w2 ,ub ,uc . If the w1 ,w2 ,ub ,uc
terms are all zero, there is a degenerate manifold of gro
states specified by the requirementNR50 for eachR.12 The
ground-state sector is separated by a large charge gapU from
the nearest sectors. Including thew1 ,w2 ,ub , anduc terms
lifts this degeneracy in each sector, which is best descri
by deriving the corresponding effective Hamiltonian in ea
sector.

The effective Hamiltonian in the ground-state sector (NR
50) is, to third order in the perturbing terms,

Heff
(0)5Hub ,uc

2Jc(
r

@~c r
†!3bR1

bR2
bR3

1H.c.#

2K ring(̋ ~c1
†c2c3

†c4c5
†c61H.c.!. ~4!

Here,Hub ,uc
stands for the on-site repulsion terms as in E

~1!; R1 ,R2, andR3 label the three hexagon centers adjac
to r; Jc5w1

3/(6U2); andK ring53w2
3/U2.

This is our main step in obtainingZ3 fractionalization.
The above Hamiltonian looks similar to a compact U~1!
gauge theory coupled to a charge-3 scalar field. Thus, if
think of thec r as some gauge fields, then it is very sugg
tive to think of thebR as carrying gauge charge 3@see also
Eq. ~2!#. Standard Fradkin-Shenker analysis13 then suggests
that by condensing thebR field, which can be arranged b
makingJc andK ring large, we can deconfine objects carryin
gauge charge 1. By virtue of Eq.~3!, such objects carry
fractional electrical chargeqb/3, and we obtain aZ3 fraction-
alized insulator.

The reader who finds the above statements believable
now declare victory in achievingZ3 fractionalization. How-
ever, if we want to describe the deconfined phase~s! in any
detail, we need to study the above Hamiltonian directly sin
it is not related in any simple manner to conventional gau
theory. This is our focus in the remainder of the paper.
course, we will confirm the deconfinement, but we will al
find that the deconfined state that obtains for largeK ring on
all hexagons is in fact aZ33Z3 state~see below for details!.

Proceeding with this analysis, consider the regime of la
Jc→` and smallub→0. It is convenient to perform the
following change of variables. Define the operatorsbcR

†

5eiucR and c̃ r
†5ei f̃r:

bcR
† 5sReiuR/3, c̃ r

†5c r
†bcR1

bcR2
bcR3

. ~5!

Here,sR51, ei2p/3, or ei4p/3, so thatucRP@0,2p). One can
readily verify thatNR is conjugate toucR , while nr

c is con-

jugate tof̃ r . bcR
† carries electrical chargeqb/3 and can be

thought of as a chargon field, whilec̃ r
† is charge neutral.

These new variables are indeed natural in the descriptio
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the deconfined phase, but to recover the physical Hilb
space, we need to impose the constraint

expF i
2p

3 S NR2 (
r PR

nr
cD G51. ~6!

In the new variables, the Hamiltonian becomes

Heff
(0)5uc(

r
~nr

c!22Jc(
r

@~ c̃ r
†!31H.c.#

2K ring(̋ ~c̃1
†c̃2c̃3

†c̃4c̃5
†c̃61H.c.!. ~7!

Note that we are left with gauge fieldsc̃ r only, since we are
working in the ‘‘uncharged’’ ground-state sector

The termJc acts as aZ3 anisotropy on thef̃ r field. In the
limit Jc→`, ei f̃r becomes aZ3 field: f̃ r50, 2p/3, or 4p/3.

The operatorPr
1[e2 i (2p/3)nr

c
shifts the states of the quan

tum Z3 clock by 11,14 whereas the constraints specifyin
the uncharged sectorNR50 become

)
r PR

Pr
151. ~8!

The uc(nr
c)2 term causes tunneling between the differe

states of the quantum clock, and this can be described b
effective ‘‘transverse field’’2h(Pr

11Pr) acting on the
clock.

The effective Hamiltonian now becomesZ3 ‘‘ring-
exchange’’ Hamiltonian on the hexagonal lattice ofr sites:

2K ring(̋ ~c̃1
†c̃2c̃3

†c̃4c̃5
†c̃61 H.c.!2h(

r
~Pr

11Pr
2!.

~9!

The Hamiltonian together with the constraints Eq.~8! can be
viewed as some specialZ3 gauge theory and is analyze
below and in further detail in Appendixes A and B. We fin
that generically this theory can havetwo deconfined phase
~in addition to the confined phase! with the phase diagram
shown in Fig. 2. Here we only describe the deconfined ph
that obtains when all ring-exchange couplings are lar
K ring@h. As explained below, this phase is aZ33Z3 decon-
fined phase.

From here on, our focus is on the aboveZ3 ring-exchange
Hamiltonian. We drop all tildes onZ3 fields c r and super-
scripts onnr ~which are now integers modulo 3). Also, w
consider aZN generalization14 of the above Hamiltonian and
carry out the analysis in the general case. This is done
clarity of notation.

For K ring@h, a good caricature of the bulk ground state
given by the wave function

uGS&5(
$nr %

8u$nr%&, ~10!

where the primed sum is over all configurations$nr% that
satisfy the constraints~8!, i.e., ( r PRnr50.

Let us defineZN flux through a given hexagonR,
8-2
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BOSONIC MODEL WITH Z3 FRACTIONALIZATION PHYSICAL REVIEW B 67, 115108 ~2003!
FR5f12f21f32f41f52f6 , ~11!

with the sign convention as in Fig. 3. The ground state
zero flux through each hexagon. Excitations above
ground state areZN vortices. For example, we can add a u
of flux through a given hexagon by applying a ‘‘string’’ op
erator as indicated in Fig. 3. The gap for a vortex carry
one unit of flux is 2K ring@12cos(2p/N)#.

Observe now~Fig. 3! that the hexagon centersR form a
triangular lattice, which consists of three sublatticesA, B,
and C. Observe also that the flux-adding string opera
‘‘steps’’ only through the same sublattice hexagons. We
thus led to the possibility of a topological distinction b
tween vortices on the different sublattices, in addition to

FIG. 2. Generic phase diagram of theZN ring exchange on
hexagonal lattice, Eq.~9!. To explore the different deconfine
states, we allow two different ring-exchange couplings:K ring5KA

for A-type hexagons andK ring5K for B- andC-type hexagons~see
Fig. 3!.

FIG. 3. Hexagonal lattice on which theZN ring-exchange
model, Eq.~9!, is defined.NR[( r PRnr measuresZN ‘‘number’’ on
each hexagon; we can increaseNR on a given hexagon (!) by one
by applying a ‘‘string’’ operatorc†cc†c••• along the indicated
path. FR[f12f21f32f41f52f6 measures ZN ‘‘flux’’
through a given hexagon (123456); to fix the sign convention
always take 1 to be the lowermost hexagon site. We can incr
the flux through a given hexagon (d) by one unit by applying a
string P1P1P1P1

••• along the indicated path. The lower-righ
corner of the figure shows the three sublattice structure of the la
of honeycombs.
11510
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usual distinction between two vortices carrying differe
flux. Indeed, one can see that the topologically distinct s
ations can be characterized by saying that we have two
cies ofZN vortices, say,A andB vortices. Alternatively, if we
want to preserve the symmetry among the three sublatti
we can say that there are three types ofZN vortices—A, B,
and C vortices—but these are not independent and inst
satisfy ‘‘fusion rules’’ such as

~FA511!3~FB511!;~FC521!. ~12!

This means that a nearby pair of11 A and B vortices is
indistinguishable from a21 C vortex ~note also that the
‘‘states’’ on the left and on the right can be connected
local h terms in the Hamiltonian!.

Consider now introducingZN charges in the above gaug
theory, Eq.~9!; e.g., consider placing a pair of opposite61
charges on two hexagonsR1 and R2 : ( r PRnr5dRR1

2dRR2
. This is appropriate when studying the charged s

tors of the microscopic Hamiltonian~1! since the formal
gauge structure represents the crucial coupling of charg
with the aboveZ3 degrees of freedom. A charge can b
added to a hexagon by applying a string operator as indic
in Fig. 3. From several perspectives, one can see that all s
charges are deconfined in theK ring@h phase: Thus, in Ap-
pendix A we approach this ‘‘fully deconfined’’ phase startin
from a ‘‘partially deconfined’’ phase, in which charges a
deconfined on one sublattice only. Also, this fully deconfin
phase corresponds to the fully disordered phase in the
global ZN spin model of Appendix B.

Similarly to vortices, we need to distinguish the charg
on different sublattices. Again, as far as the gauge structu
concerned, we have fusion rules such as

~NA511!3~NB511!;~NC521!. ~13!

Statistical interactions between the different particles
readily identified by studying the commutation properties
the corresponding strings. These are summarized in Tab
by specifying ‘‘gauge charges’’ of the differentNR511 ex-
citations with respect to theA, B, andC fluxes. Thus,NA5
11 excitation carries gauge chargesQA50,QB521, and
QC511; i.e., it does not ‘‘see’’A vortices, but when trans
ported around aB or C vortex of unit strength, the wave
function acquires an additional phasee2 i2p/N or ei2p/N cor-
respondingly.

This completes the particle description of the fully deco
fined phase. The minimal description would be to say that
haveA hexagon charges that seeB hexagonZN vortices and

e
se

ce

TABLE I. Gauge charges of theNR511 excitations with re-
spect to theA, B, andC ZN fluxes as defined by Eq.~11!. Note that
these are consistent with the fusion rules~12! and ~13!.

QA QB QC

(NA511) 0 21 11
(NB511) 11 0 21
(NC511) 21 11 0
8-3
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B hexagon charges that seeA hexagon vortices. This is es
sentially the claimedZN3ZN structure. Thus, we expec
N2-fold ground-state degeneracy if the system is put o
cylinder, as can be verified by constructing the correspond
ground states starting from the state~10! and threading vor-
tices through the hole of the cylinder.

It should be emphasized here that the above discus
assumed that the three-sublattice structure is respected b
boundary conditions. While it is clear that the bulk propert
do not depend on this, there is an additional quirk when
consider topological degeneracy in a geometry that does
respect the three-sublattice structure. This is legitimate w
all ring-exchange couplings are equal. Consider, e.g., a
lindrical geometry with the circumference along the horizo
tal direction of Figs. 1 and 3. When anA-type particle is
transported around the periodic direction, it does not ret
to its initial position, but rather becomes aB- or C-type par-
ticle. It takes three turns for the particle to return to t
original position. From Table I, such anNR511 particle
will not register any flux in this process. A detailed analy
shows that forN mod 3Þ0 the ground state of the system
this geometry is nondegenerate. On the other hand,
N mod 350 the ground state is found to be threefold deg
erate, since in this case there is a composite object tha
turns to its initial state when transported once around
cylinder and that senses some flux through the hole of
cylinder in the process.

Returning to our microscopic bosonic model, the ‘‘pa
ticle description’’ of theZ33Z3 phase is as follows: We hav
two species ofZ3 vortices ~with gap ;K ring) and we have
charged particles~with charge gap;U) that can be classi
fied as carrying two distinctZ3 gauge charges, in addition t
their fractional electrical charge. Finally, note that theZ3
3Z3 state is associated with the additional symmetries in
hexagonal lattice ring exchange Hamiltonian but is protec
by the same charge gap projection, since any move wi
the uncharged state sector is necessarily a combinatio
hexagon ring exchanges.

III. CONCLUSIONS

We showed that it is possible to produce more com
cated fractionalization patterns such asZ3 fractionalization
in relatively simple bosonic models. While the resulting fra
tionalized state turned out to be even more complicated t
initially intended, the microscopic model was not too co
trived. It is hoped that this work will encourage furth
searches for other exotic states. For example, can a
Abelian fractionalized state be produced in a condensed m
ter system with a global symmetry only, short-range inter
tions, and in zero magnetic field?
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APPENDIX A: PARTIALLY DECONFINED „ZN… PHASE

To better appreciate the character of the deconfinemen
the special gauge theory, Eq.~9!, we allow different ring-
exchange couplings for different hexagons and consider
ticular parameter space with two such couplings:K ring5KA
for the A hexagons andK ring5KB5KC[K for the B andC
hexagons. This is indicated schematically in Fig. 3 where
A hexagons are shaded. Note that by allowing the two c
plings we implicitly assume that the boundary conditions
the lattice respect the three-sublattice structure; this is d
throughout.

We argue below that the ring-exchange Hamiltonian h
the phase diagram shown in Fig. 2 with three phases: Foh
@K,KA the system is in a fully confined phase. ForK@h
@AKAK the system is in a partially deconfined (ZN) phase.
In this phase, the charges on theA hexagons are deconfined
while the charges on theB and C hexagons are confined
Finally, for K,KA@h the system is in a fully deconfine
(ZN3ZN) phase with all charges deconfined. The phase d
gram of Fig. 2 is also supported by the analysis of the d
global ZN spin model summarized in Appendix B.

In what follows, we give a detailed description of th
partially deconfined phase. As a representative of this ph
consider the Hamiltonian withKA50, i.e., with ring ex-
changes around theB and C hexagons only~see Fig.3!. In
this case, there are additional conserved quantities

L̂AA8[nr1nr 85const ~model withKA50! ~A1!

for each hexagonal lattice link̂rr 8& between twoA hexa-
gonsA andA8 ~see Fig. 3!. This facilitates the analysis, sinc
we can consider separately each subsector specified by
corresponding eigenvalues$LAA8%. Note that the allowed
$LAA8% are very much constrained by the constraints Eq.~8!
on thenr themselves; however, we will not use the details
these explicitly.

First of all, observe that theA hexagons in turn form a
triangular lattice, while the linkŝrr 8& between such hexa
gons can also be viewed as the links of this ‘‘A lattice,’’
^AA8&[^rr 8&. In a given subsector with fixed$LAA8%, there
remains oneZN degree of freedom for each such link. It
convenient to work in the number basis and label these
maining link degrees of freedom by

NA→A8[nr2nr
(0)52~nr 82nr 8

(0)
![2NA8→A , ~A2!

where $nr
(0)% is one particular instance:LAA85nr

(0)1nr 8
(0)

~and our convention is thatr PA and r 8PA8—see Fig. 3!.
Thus,NAA8[NA→A8 are oriented fields on the links of theA
lattice. The subsector is now completely specified by
conditions

(
A8PA

NAA850, ~A3!

which are the neutrality constraints Eq.~8! for the A
hexagons.
8-4
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BOSONIC MODEL WITH Z3 FRACTIONALIZATION PHYSICAL REVIEW B 67, 115108 ~2003!
The action of the Hamiltonian~9! in this subsector is
readily described in terms of the new variables. Thus,
transverse field~h! terms are diagonal in the new numb
variables, while theB andC hexagon ring exchanges simu
taneously raise~or lower! the three oriented number field
circulating around the correspondingA-lattice triangular
plackets. Writing the raising operator for a given link numb
variableNAA8 aseiJAA8, the resulting Hamiltonian is

Ĥ@L#52K(
n

~eiJAA8eiJA8A9eiJA9A1H.c.!

2 (
^AA8&

~GAA8e
2 i (2p/N)NAA81H.c.!, ~A4!

where

GAA85he2 i (2p/N)nr
(0)

~11ei (2p/N)LAA8!. ~A5!

Together with the constraints~A3!, this is precisely the con
ventionalZN lattice gauge theory defined on the triangularA
lattice but with link-dependentGAA8 specific for the particu-
lar subsector$LAA8%. We can now use the conventional wi
dom to characterize each such subsector and in turn the
hexagonal ring-exchange Hamiltonian withKA50.

When h[0, all the different subsectors are degenera
The lowest-energy state in each such subsector has the
ergy of 22K per triangle and is an equal weight superpo
tion of all possible configurations ofNAA8 that satisfy the
constraints~A3!. Nonzeroh eliminates this degeneracy an
selects one particular subsector, namely, with allLAA850, as
containing the true ground state of the full Hamiltonian w
KA50. Indeed, treatingGAA8 perturbatively, the lowest en
ergy in a given subsector is

EGS@L#'2(
n

2K2 (
^AA8&

uGAA8u
2

2K@12cos~2p/N!#
, ~A6!

where for simplicity we assumed that the system has
boundaries. It is now clear that for small nonzeroh the
ground state of the full ring-exchange Hamiltonian withKA
50 is in the subsector with allLAA850. The subsectors tha
are closest in energy have the smallest number of non
LAA8 and can be characterized as having alternatingLA0A8
511 and LA0A8521 values on the six links to a give

hexagonA0 ~this subsector is obtained from the ground-st
subsector by applying the hexagon ring exchange around
hexagonA0). The energy gap to these subsectors is 6h2/K.
We see that we have a peculiar situation where a non
transverse fieldh is needed to stabilize thisZN deconfined
ground state; this is because we are competing here ag
theZN3ZN deconfined state that is obtained for largeKA ,K.

We are all set to discuss confinement of charges in
model withKA50. The above analysis was carried out in t
uncharged sector but is readily extended to the charged
tors. First, consider placing a pair of opposite charges on
B hexagons:( r PB1

nr511 and( r PB2
nr521. Proceeding

exactly as before, one is led to consider different subsec
~of this charged sector! specified by$LAA8%. In each such
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subsector, the Hamiltonian has precisely the form~A4! with
the number variables satisfying precisely the constra
~A3!. All information about the two charges is encoded in t
allowed configurations$LAA8%, and one can clearly see tha
LAA8Þ0 at least on a string ofA-lattice bonds connectingB1
andB2. From the earlier arguments, the energy cost of int
ducing two such charges is then proportional to the length
this string; i.e., such charges are confined with the str
tension;h2/K.

Consider now placing a pair of opposite charges on twA
hexagonsA1 and A2 : ( r PA1

nr511 and ( r PA2
nr521.

The analysis of the subsectors$LAA8% will be somewhat dif-
ferent in this case. For each such subsector in this cha
sector there corresponds a subsector in the uncharged s
having exactly the same$LAA8%. It is convenient to ‘‘mea-
sure’’ each charged subsector relative to the correspon
uncharged subsector. This is achieved by defining link v
ablesNAA8 via Eq. ~A2! using an uncharged instance$nr

(0)%
of $LAA8% ~i.e., ( r PRnr

(0)50 for each R and LAA85nr
(0)

1nr 8
(0) for each^AA8&). In each subsector, the Hamiltonia

again has the form~A4! when written in these link variables
which now satisfy new constraints(A8PA1

NA1A8511 and

(A8PA2
NA2A8521. This corresponding precisely to intro

ducing two charges in the correspondingA-lattice gauge
theory. Clearly, for large enoughK@h, these charges will be
deconfined.

We now have essentially complete description of the p
tially deconfined phase. Thus, one can readily identify theZN
vortex excitations of theA-lattice gauge theory withZN vor-
tices on theB and C hexagons. These vortices will hav
usual statistical interactions with the deconfined charges
the A hexagons. Also, as should become clear by review
the above discussion, we can essentially account for the
ferent subsectors$LAA8% by saying that there are additiona
particle excitations living on theA hexagons obtained from
the ground state by the action of the correspond
A-hexagon ring exchanges. These new particles hav
‘‘mass’’ of 6h2/K and have no statistical interaction with th
other particles.

We can now consider what happens when we allow n
zeroKA . As discussed above, the ring exchanges around
A hexagons introduce mixing between the different subs
tors. However, as long asKA is much smaller than the cor
responding gap;h2/K, the partially deconfined phase su
vives and is characterized by the same particle descripti

OnceKA is sufficiently large, the system enters the ful
deconfined phase described in the main text.

APPENDIX B: DUAL GLOBAL ZN SPIN MODEL

Here we summarize dual perspective on the hexago
lattice ring-exchange Hamiltonian~9!. We work directly in
the Hamiltonian language. Simple counting shows that
dimensionality of the physical Hilbert space is consiste
with having oneZN degree of freedom per hexagon. Let
define

TR
2[c1

†c2c3
†c4c5

†c6 , TR
1[~TR

2!†, ~B1!
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where we use the same sign convention as in Fig. 3. Le
also define

VR
†[)→R

P1, ~B2!

where the product is along the vertical path that reachesR as
in Fig. 3. Note that the path ‘‘steps’’ through the same su
lattice hexagons.@If we were to take some other such pat
we would need to replace someP1 with P2. The total prod-
uct is path independent due to constraints~8!.# VR

† can be
thought of as a vortex creation operator.

We now interpretVR
† as aZN spin variable. It is easy to

verify that TR
1 is the corresponding conjugate variable~i.e.,

raising operator14!:

VR
†TR

15ei2p/NTR
1VR

† . ~B3!

Also, we can readily ‘‘solve’’ forPr
1 :

Pr
15VR1

† VR2

† VR3

† . ~B4!

The dual Hamiltonian is
11510
us

-
,

H52K(
R

~TR
11H.c.!2h(

n
~VR1

† VR2

† VR3

† 1H.c.!,

~B5!

which is a globalZN spin model with three-spin interactions
A little thought shows that the model has in fact aZN3ZN
global symmetry corresponding to independent global ro
tions of the spins on two of the three sublattices. Note a
that the three-spin interaction around triangles promotes
dering of the spins on the same sublattice. This is beca
two neighboring sitesA andA8 on the same sublattice sha
a BC side in the respective triangle interactionsnABC and
nA8BC.

The global model clearly has a fully disordered phase
K@h. In the original ring-exchange Hamiltonian, this corr
sponds to all vortices being gapped, and we obtain theZN
3ZN fully deconfined phase. Varying theA hexagon ring-
exchange couplingKA independently, for sufficiently smal
KA and largeK the system can clearly order on theA sublat-
tice ~i.e., A vortices condense!, but remain disordered on th
individual B and C sublattices. This is our partially decon
fined ZN phase.
ent,

ing
,

f
t can
on-

t
ed by
1N. Read and S. Sachdev, Phys. Rev. Lett.66, 1773~1991!; X.-G.
Wen, Phys. Rev. B44, 2664~1991!.

2R. Moessner and S. L. Sondhi, Phys. Rev. Lett.86, 1881~2001!.
3L. B. Ioffe et al., Nature~London! 415, 503 ~2002!.
4L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B65,

224 412~2002!.
5T. Senthil and O. I. Motrunich, Phys. Rev. B66, 205104~2002!.
6O. I. Motrunich and T. Senthil, Phys. Rev. Lett.89, 277004

~2002!.
7One notable example of non-Z2 fractionalized state is the U~1!

Coulomb phase in three dimensions~Ref. 6! @see also X.-G.
Wen, Phys. Rev. Lett.88, 011 602~2002!; cond-mat/0210040
~unpublished!#.

8S. Sachdev and M. Vojta, J. Phys. Soc. Jpn.69, 1 ~2000!.
9L. Balents, M. P. A. Fisher, and C. Nayak, Phys. Rev. B60, 1654

~1999!; 61, 6307~2000!.
10T. Senthil and M. P. A. Fisher, Phys. Rev. B62, 7850~2000!.
11To avoid any complications at boundaries when such are pres
we require that eachr site has precisely threeR neighbors
R1 ,R2, andR3. We can construct such an array, e.g., by start
from a triangular lattice of theR sites, possibly with boundaries
and placing ther sites at the centers of the triangles.

12Recall that the operatorsnR
b andnrr 8

c are defined as conjugates o
the corresponding phase variables and have eigenvalues tha
take all integer values including negative ones; thus, the c
strained Hilbert spaceNR50 is indeed nontrivial.

13E. Fradkin and S. H. Shenker, Phys. Rev. D19, 3682~1979!.
14Each ZN variable is represented byc†5eif5ei2pm/N, m

50,1, . . . ,N21. P1 is the raising operator on the phasef and

is defined by the commutation relationei f̂P15ei2p/NP1ei f̂. It

is convenient to writeP15e2 i (2p/N)n̂, wheren can be thought
of as the number variable conjugate to the phase. Note thac†

indeed acts as a raising operator on this number as suggest
the notation.
8-6


