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Dynamical local-field factors and effective interactions in the two-dimensional electron liquid
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We present an analytical study of the dynamical local-field factors associated with the response of a homo-
geneous two-dimensional interacting electron liquid as functions of momentum, frequency, and density. We
derive sum rules that constrain their asymptotic forms~in momentum and frequency! for both the spin-
symmetric and spin-antisymmetric cases. Parametrized expressions for the local-field factors are proposed,
based on all available sum rules and on many-body perturbation theory, and these are found to be in good
agreement with quantum Monte Carlo calculations. Finally, these expressions are used to evaluate the effective
electron-electron interaction in a local approximation for two-dimensional systems. It is shown that both the
quantitative and qualitative behaviors of the interaction are sensitive to the inclusion of dynamical correlations.
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I. INTRODUCTION

The theoretical study of interacting electron systems
two dimensions, where dynamical correlation effects
strong, continues as a formidable challenge. A useful
proach to describing the many-body effects of exchange
correlation~xc! in the dynamic responseP(q,v) of interact-
ing electron liquids is via the use of local-field factors1,2

G(q,v). For the proper spin-symmetric~s! and spin-
antisymmetric~a! responses they may be defined through
statements

Ps,a~q,v!5
P̄0~q,v!

11vqGs,a~q,v!P̄0~q,v!
. ~1!

Here, vq52pe2/q is the Fourier-transformed two
dimensional Coulomb potential and the overbar signifies
fact that we must use the modified form of the Lindha
function,3 P0(q,v), which uses theexactoccupation num-
bers, these giving rise to a further local-field factor defin
by4

P̄0~q,v!5
P0~q,v!

11vqGn~q,v!P0~q,v!
. ~2!

Alternatively, the response functions can be expressed
terms of the bare Lindhard function,

Ps,a~q,v!5
P0~q,v!

11vqḠs,a~q,v!P0~q,v!
, ~3!

in which case we must have

Ḡs,a~q,v!5Gs,a~q,v!1Gn~q,v!. ~4!

Physically, the local-field factors represent the deviation
the actual response functions~i.e., the full many-body prob-
lem! away from the random phase approximation~RPA!. De-
termination of these factors is a fundamental problem
many-body theory, and as yet, it is necessary to resor
some form of approximation. The most widely used and e
0163-1829/2003/67~11!/115107~10!/$20.00 67 1151
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liest of such approximations1,5 address the static case whic
is then also implemented in the dynamical response fu
tions, resulting in a double approximation of the dynamic
local-field factors, i.e.,G(q,v)'Gapprox(q). However, in the
dynamical case, the exchange-correlation hole fluctuate
time and so the local-field factors must also exhibit fr
quency dependence,6 more so in two dimensions than i
three. It is the purpose of this paper to determine appro
mate forms of such dynamical local-field factors in homog
neous two-dimensional systems for allq and ~imaginary! v
in a manner similar to the work of Richardson and Ashcro4

who reported results in three dimensions. Working w
imaginary frequencies not only simplifies the numeric
work, circumventing the singularities along the real fr
quency axis, but is also a useful framework in which to ca
out many subsequent calculations of the electron liquid.

A number of exact results are known about the limiti
forms of the local-field factors, and the associated sum ru
are thus useful in constraining approximate theories. For

ample,Ḡs(q→0,v50) is given by the compressibility sum
rule and Gs(q,v→`) is given by the third-moment sum
rule. On the other hand, the response functions, as given
second-order perturbation theory, have a singular structur
q51 ~units of 2kF), a region not accessible by known su
rules. Thus, to determine the quantitative structure atq51
we appeal to a summation of classes of infinite numbers
diagrams within perturbation theory. Guided by both the s
rules and perturbation theory, we derive relatively simp
parametrized forms of the local-field factors which we w
then show to agree rather well with the results from quant
Monte Carlo~QMC! simulations, currently available only in
the static case. However, we find that the singular structur
q51 is less convincingly supported by the QMC data in t
spin-symmetric case, demonstrating that perturbation the
to second order may be insufficient to accurately describe
two-dimensional spin-symmetric response at intermed
wave vectors.

Knowledge of the charge and spin responses in an e
tron liquid is an essential input into determination of t
©2003 The American Physical Society07-1
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effective interaction between any two electrons within t
liquid. Kukkonen and Overhauser7 ~KO! have derived an ex
pression for the effective electron-electron interaction in
homogeneous electron liquid, in which all the xc effects
the medium of interacting electrons are treated in a lo
approximation. This permits the effective interaction to
expressed in terms of the local-field factors that act to ren
malize the direct Coulomb potential. Both spin-symmet
and spin-antisymmetric local-field factors are required to
clude direct and exchange contributions in a consistent m
ner. We rewrite the KO expression, using the modified fo
of the Lindhard function, to emphasize the need to inclu
self-energy effects properly to determine the correct beha
at largeq. The evaluation of the resulting modified KO e
pression then requiresGs , Ga , andGn as input.

The plan of this paper is as follows. In Sec. II we deri
the parametrized forms of the local-field factors by first c
rying out a perturbative analysis via the diagrammatic ro
and then later considering all the sum rule constraints
Sec. III we compute the effective electron-electron inter
tion and in Sec. IV we end with some conclusions.

II. TWO-DIMENSIONAL LOCAL-FIELD FACTORS

A. Perturbative calculations

The techniques we employ to solve the integral equati
for the spin-symmetric and spin-antisymmetric vertex fun
tions are detailed in Ref. 4 and Ref. 8, and here we sim
outline the main steps and introduce the notation. The in
gral equations for the electron-electron vertex function t
include the lowest order effects of exchange and correla
are given by@see Fig. 1 of Ref. 4#,

Ls,a~ p̃,q̃!512Trp̃8@vRPA~ p̃2 p̃8!1Gs,a~ p̃,p̃8;q̃!#

3G0~ p̃81q̃!G0~ p̃8!Ls,a~ p̃8,q̃!

2Ls,a~ p̃,q̃!Trp̃8@G0~ p̃1q̃!G0~ p̃81q̃!

1G0~ p̃!G0~ p̃8!vRPA~ p̃82 p̃!#, ~5!

where the superscript denotes symmetric~s! or antisymmet-
ric, ~a! p̃5( ivp ,p), Trp̃ denotes the trace over all frequen
and momenta, i.e.,*dvp*d2p/(2p)2, G0 is the non-
interacting Green’s function,

Gs~ p̃,p̃8;q̃!5Trk̃vRPA~ k̃!vRPA~ k̃1q̃!G0~ k̃2 p̃!

3@G0~ p̃82 k̃!1G0~ k̃1 p̃81q̃!#, ~6!

and finally

Ga~ p̃,p̃8;q̃!50. ~7!

All momenta are expressed in units of 2kF and all energies in
units of 2kF

2/m, (\51). Note that the Coulombic interactio
in Eq. ~5! is screened within the standard RPA, i.e.,

vRPA~ q̃!5vq /@12vqP0~ q̃!#. ~8!
11510
n
f
l

r-

-
n-

e
or

-
e
n
-

s
-
ly
e-
t
n

By means of a variational approach,9 we can implement the
following trial solution with Ls,a( p̃,q̃)5Ls,a(q̃) represent-
ing a local approximation, and we can also express the ve
functions in terms of polarizability functions, thus

Ls~ q̃!5
P0~ q̃!

P0~ q̃!2Pse~ q̃!2Pex~ q̃!2Pfl~ q̃!
, ~9!

and

La~ q̃!5
P0~ q̃!

P0~ q̃!2Pse~ q̃!2Pex~ q̃!
, ~10!

where the leading-order contributions to the expansion of
polarizability function are shown in Fig. 1. The sel
consistent choice of diagrams is dictated by the requirem
of gauge invariance or, equivalently, by the application
Ward-Pitaevskii identities,10 thereby ensuring that conserva
tion laws are enforced in the electron dynamics.11 As previ-
ously noted,8,12,13the polarizability diagrams in Fig. 1 can a
be expressed in terms of the three-point functionL (3)(q̃,p̃);
thus

Pse~ p̃!5Trq̃vRPA~ q̃!F ]

]~ ivq!
2

]

]~ ivp!G
3@L (3)~ p̃,qt!1L (3)~ q̃,p̃!#, ~11!

Pex~ p̃!5Trq̃

vRPA~ q̃!

p•q
@L (3)~ p̃,q̃!1L (3)~ q̃,p̃!

2L (3)~2 p̃,q̃!2L (3)~ q̃,2 p̃!#, ~12!

Pfl~ p̃!52
1

2
Trq̃vRPA~ q̃!vRPA~ p̃2q̃!

3@L (3)~ q̃,p̃2q̃!1L (3)~ p̃2q̃,q̃!#2. ~13!

FIG. 1. Leading-order contributions to the proper polarizabil
function. ~a! Diagrammatic representation of polarization bubb
arising from self-energy, exchange, and fluctuations.~b! Dyson
equation for the screened potential~RPA!.
7-2
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An explicit formula for the three-point functionL (3)( p̃,q̃) in
two dimensions has been given by Neumayr and Metzne14

To make connection with the local-field factors it is ne
essary to isolate the first-order correction to the modifi
Lindhard function,

P̄0
(1)~ q̃!5P0~ q̃!1Pse~ q̃!2P̄se~ q̃!, ~14!

where

P̄se~ q̃!5
2m

kf
2

ReTr
G0~ k̃!@SRPA~ k̃1q̃!2SRPA~ k̃!#

~ ivq2q222k•q!2
,

~15!

is the number-renormalized self-energy contribution to
polarizability@cf. Pse(q̃) that incorporates the free Fermi ga
occupation numbers#. Here SRPA( k̃) is the electron self-
energy in the RPA.

The local-field factors are then given by

Gs~ q̃!5
21

vqP0
2~ q̃!

@P̄se~ q̃!1Pex~ q̃!1Pfl~ q̃!#, ~16!

Ga~ q̃!5
21

vqP0
2~ q̃!

@P̄se~ q̃!1Pex~ q̃!#, ~17!

and

Gn~ q̃!5
21

vqP0
2~ q̃!

@P̄0
(1)~ q̃!2P0~ q̃!#. ~18!

The results of the numerical calculations have been parti
reported elsewhere8,15 and it has been noted that for the tw
dimensional electron liquid the inclusion of fluctuation di
grams provides significant enhancement to the proper po
izability function.

A shortcoming of the perturbative method is that, in a
dition to the increasing inaccuracy at higherr s , the calcu-
lated local-field factors diverge at largeq and thus do not
obey the known largeq sum rules that predict finite
asymptotic values. In the following section we discuss
sum-rule constraints that will then later be used, in conju
tion with the numerical results from Eqs.~16!–~18! at low q,
to determine simple parametrized expressions for the lo
field factors.

B. Constraints

In the static limit,v50, all local-field factors are linea
in q in the limit of smallq, i.e.,

lim
q→0

Gi~q,0!5l i
0~r s!q ~ i 5s,a,n!. ~19!

The combinationls
0(r s)1ln

0(r s) is determined from the
compressibility sum rule,
11510
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0~r s!1ln

0~r s!5
2

p
1

r s
2

25/2

]ec~r s!

]r s
2

r s
3

25/2

]2ec~r s!

]r s
2

,

~20!

whereec(r s) is the correlation energy per particle~expressed
in units of Rydbergs! which can be extracted from Mont
Carlo simulations.16 The combinationla

0(r s)1ln
0(r s) is de-

termined from the spin susceptibility,

la
0~r s!1ln

0~r s!5
2

p
2

r s

21/2

]2ec~j!

]j2
, ~21!

where j is the spin polarization. Another constraint is r
quired to separately determineln

0 and for this we appeal to
the perturbative calculations, where we find that

ln
0~r s!

la
0~r s!

'2
r s

1015r s
~22!

provides a reasonable approximation for the ratio of the g
dients of the respective local-field factors atq50 for 1<r s
<10. Note that, other than the fact that we chose to ma
the Richardson-Ashcroft4 formalism as much as possible
there is noa priori reason why the fitting formula Eq.~22!
should take the proposed form. However, some justificat
for retaining this form is providedex post factoby the good
agreement with QMC data, as will be demonstrated in
following section.

In the determination of the dynamic local-field factors
has been overlooked in some previous work that at very l
wavelengths the low-v limit does not correspond to the stat
limit as given above,17 i.e., limv→0limq→0Þ limq→0limv→0.
Mathematically this behavior stems from the singular va
of the vertex functionL(q,v) at the origin. A more physica
explanation can be seen in the work of Conti and Vignal18

who derived limv→0limq→0G(q,iv)5EF /(2vq)@(F223F1
14F0)/(F112)# whereFl are the Landau parameters. Fro
the available QMC calculations19 of the Landau parameter
we find that this expression differs from Eq.~19! by 3% at
r s51 and 4% atr s55, and hence, for the sake of simplicit
we choose not to take this minor difference into account

We turn our attention to further constraints onGs andGa .
The largev limit of Gs andGa is determined by the third-
moment sum rule,20,21 which in the lowq limit is given by

lim
q→0

lim
v→`

Gs~q,iv!5ls
`~r s!q, ~23!

and by

lim
q→0

lim
v→`

Ga~q,iv!5la
`~r s!/q. ~24!

Here

ls
`~r s!5

5

3p
1

7

25/2
r sec~r s!1

19

27/2
r s

2 ]ec~r s!

]r s
, ~25!

and
7-3
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la
`~r s!52E

0

`

dkk2@S̃~k!2S~k!#, ~26!

whereS̃(k) is the antisymmetric structure factor andS(k) is
the symmetric structure factor~Sec. II C!. The largev limit
of Gn follows from an appropriate expansion of the expre
sion for the modified Lindhard function, namely,

lim
v→`

P̄0~q,iv!5 lim
v→`

P0~q,iv!1
3mq4

pv4
~^EKE&2^EKE&0!,

~27!

giving21

lim
q→0

lim
v→`

Gn~q,iv!5ln
`~r s!q, ~28!

where

ln
`~r s!5

3r s

21/2

]

]r s
@r sec~r s!#. ~29!

In the last line we have applied the generalized vir
theorem.2 The largeq limits of Gs and Ga turn out to be
frequency-independent~in contrast to the equivalent three
dimensional results! and have been evaluated to be22

lim
q→`

Gs~q,iv!512g~0! ~30!

and

lim
q→`

Ga~q,iv!5g~0!, ~31!

whereg(0) is the electron pair correlation function evaluat
at the origin. In addition, a largeq expansion of the modified
Lindhard integral gives the asymptotic behavior ofGn ,
namely,

lim
q→`

Gn~q,iv!52
r sq

21/2

d

drs
@r sec~r s!#52

ln
`

3
q. ~32!

At intermediate wave vectors there are extrema inGi : in the
static case (v50) the peaks occur atq51 arising from the
singular nature of the response at this value ofq. We find that
the perturbative results, at lowq and highr s , are well ap-
proximated by taking

Gi~q51,0!'z il i
0~r s! ~ i 5s,a,n!, ~33!

where zs51.4, za50.9, andzn51.0. Since the numerica
local-field factors are nonlinear in the region 0,q,1, Eq.
~33! notably underestimates the peak heights nearq51.
However, the error in the combined local-field factors Eq.~4!
is reduced somewhat by the opposing signs ofGn andGs,a
in this region. The comments made just after Eq.~22! also
apply here for retaining the form of Eq.~33!.

In the largev limit the peaks occur atv5q2, as can be
seen by differentiation of the the expression of the local fi
factors in this limit,23,24 i.e.,
11510
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lim
v→`

Gs,a~q,iv!5
1

2N (
q8

(
s,s8

Fa~q,v!
~q•q8!2vq8

q4vq

2hs,a~s,s8!
@q•~q1q8!#2vq1q8

q4vq
G

3@Ss,s8~q8!2dss8#, ~34!

wherehs(s,s8)51, ha(s,s8)5sgn(ss8), and

a~q,v!5
~ iv1q2!41~ iv2q2!4

2~v21q4!2
. ~35!

These peak values are found to be identical to those give
Eq. ~30! and Eq.~31!. From Eq.~27! it is possible to show
thatGn(q,iv) has a minimum atq25v/A750.38v with the
peak height given by

Gn~q5qmin ,iv!51.304v1/2r s

d

drs
@r sec~r s!#, ~36!

again, in the largev limit.

C. Parametrization

To obtain expressions for the parametrized forms of
local-field factors, we must specify, in addition to the abo
constraints, where the extrema lie as functions of allq and
v. We interpolate between the location of the extrema at
static regime and the high-frequency regime as follows:
maxima ofGs andGa are taken to be located atq2511v
and the minima ofGn is taken to be located atq251
10.38v.

1. Gs„q,i v…

Guided by the sum rules, we parametrize the dynam
spin-symmetric local field factor as a rational fraction, po
nomial in q and withv-dependent coefficients,

Gs~q,iv!5
as~v!q1bs~v!q7

11cs~v!q1ds~v!q7
, ~37!

where the coefficients are constrained to be

as~v!5
ls

01v2ls
`

11v2
, ~38!

bs~v!5ds~v!@12g~0!#, ~39!

cs~v!5
as~v!

12g~0!
2

7

6~11v!1/2
2

as~v!

6bs~v!~11v!7/2
,

~40!

and

ds~v!5
zs

6@zs211g~0!#~11v4!
2

ls
`v

@12g~0!#~11v4!
.

~41!
7-4
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The polynomials are simply chosen to be of the lowest
ders such that not only are sum rules satisfied but also
root solutions in the denominator are obviated. The exp
sion forcs(v) follows from the condition that the maxima b
located atq2511v.

2. Ga„q,i v…

In a similar way, the spin-antisymmetric local-field fact
is parametrized as

Ga~q,iv!5
aa~v!q211ba~v!q1ca~v!q7

11d~v!q1e~v!q7
, ~42!
er
as

be
p
C
le
th

nd
e-

11510
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where

aa~v!5
la

`v2

11v2
, ~43!

ba~v!5
la

0

11v2
, ~44!

ca~v!5ea~v!g~0!, ~45!
da~v!5
aa~v!@8ea~v!~11v!7/211#1ba~v!@6ea~v!~11v!9/2211v#27ca~w!~11v!4

6ca~v!~11v!9/222aa~v!~11v!1/2
, ~46!
and

ea~v!5
la

`v2

g~0!~11v4!
1

za

6@za2g~0!#~11v4!
. ~47!

3. Gn„q,i v…

Finally, the local-field factor associated with numb
renormalisation of the Lindhard function is parametrized

Gn~q,iv!5
an~v!q1bn~v!q7

11cn~v!q1dn~v!q6
, ~48!

where
an~v!5
ln

01v2ln
`

11v2
, ~49!

bn~v!52
ln

`dn~v!

3
, ~50!

cn~v!5
an~v!

2ln
`dn~v!~110.38v!7/2

2
15an~v!17ln

`

6ln
`~110.38v!1/2

2
dn~v!

6
~110.38v!5/2, ~51!

and
dn~v!5
zn

~5zn12ln
`!~11v4!

1
gnv9/2

@5gnv1/212ln
`~110.38!1/2#~110.38v!3~11v4!

. ~52!
s at
n,

.

Heregn is determined by the peak height at largev, i.e.,

gn51.304r s

d

drs
@r sec~r s!#. ~53!

These expressions for the local field factors, though cum
some, are straightforward to evaluate and they require in
of various quantities that we can readily obtain from QM
and other studies of the homogeneous two-dimensional e
tron gas. The correlation energy can be obtained from
diffusion Monte Carlo simulations of Rapisarda a
Senatore.16 For the pair correlation function we use the r
cently proposed expression25
r-
ut

c-
e

g~0!5
0.5

111.372r s10.0830r s
2

~54!

that interpolates between the results of analytical studie
high densities and near Wigner crystallization. In additio
the spin susceptibility sum rule Eq.~21! can approximated
by the following parametrization, namely,

la
0~r s!1ln

0~r s!5
2

p11.4954r s10.3193r s
1/2

, ~55!

which is based on an extrapolation of available QMC data26

Finally, the structure factors appearing in Eq.~26! can be
7-5
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TABLE I. Evaluation ofr s-dependent parameters as used in parametrized local-field factor expres
Eq. ~37!, Eq. ~42!, and Eq.~48!. Note that most of these values depend on the QMC calculations o
correlation energy and structure factors as reported in Ref. 16 and Ref. 27, respectively.

r s g(0) ls
0 ls

` la
0 la

` ln
0 ln

` gn

1 0.2037 0.6907 0.3889 0.4324 0.2640 20.0288 20.3011 20.1851
2 0.1227 0.7284 0.3889 0.3375 0.3301 20.0338 20.3622 20.2227
5 0.0503 0.7998 0.4570 0.2059 0.4008 20.0294 20.3659 20.2249
10 0.0217 0.8632 0.5424 0.1256 0.2271 20.0209 20.3211 20.1968
na e

are

is
le
of

ble
e
pro-

es-
ree,
f
-

fit-
q.
ost
-
he
d

in

at
pin-

c-
obtained from the Fourier transforms of the two-dimensio
spin-resolved pair correlation functions,

S̃~k!215
n

2E d2r @g↑↑~r !2g↑↓~r !#exp~2 ik•r !, ~56!

and

S~k!215
n

2E d2r @g↑↑~r !1g↑↓~r !22#exp~2 ik•r !.

~57!

We obtain values ofg(r ) at various values ofr s from very
recent QMC studies27 thereby enabling us to evaluatela

`(r s)

FIG. 2. Static local-field factors atr s51. ~a! Evaluation from
perturbation theory, Eqs.~16!–~18!. ~b! Evaluation from param-
etrized expressions, Eq.~37!, Eq. ~42!, and Eq.~48!.
11510
las given by Eq.~26!. We report our results, along with all th
other r s-dependent parameters, in Table I.

The static local-field factors atr s51, as calculated by
both the parametrized forms and by perturbation theory,
plotted in Fig. 2. The differences at largeq highlight the
failure of perturbation theory to satisfy the large-q sum rules.
A comparison of the static and dynamic local-field factors
shown in Fig. 3 atr s55, and we collate some data in Tab
II for referential purposes in any future implementation
our parametrized scheme.

The static combinations of local-field factors Eq.~4! are
shown in Fig. 4 and Fig. 5 and are compared with availa
data from QMC studies27 at r s values of 1, 2, 5, and 10. Th
generally favorable comparison demonstrates that the
posed parametrized expressions do capture most of the
sential aspects of electron correlation to a very good deg
especially in the spin-antisymmetric case up to values oq
51 ~i.e., 2kF). At higher values ofq the parametrized ex
pressions are strongly dependent ong(0) and the deviation
of the Monte Carlo data at this regime suggests that the
ting formula for g(0) proposed in Ref. 28 as given by E
~54!, overestimates the results of QMC simulations for m
densities in the regime 1<r s<10. This conclusion concern
ing Eq. ~54! has also very recently been pointed out in t
work of Bulutay and Tanatar.29 In general, it can be gleane
from the figures that the perturbation scheme employed
Sec. II A, which determines the structure at lowq, is quite
accurate for the spin-antisymmetric case~Fig. 5! but less so
for the spin-symmetric case~Fig. 4!. The structure predicted
by the perturbative calculations, in particular the maxima
q51, appears to be somewhat washed out in the s
symmetric QMC results for lowr s or is shifted to higher

TABLE II. Calculated values of the parametrized local-field fa
tors atr s55.

v q Gs(q,iv) Ga(q,iv) Gn(q,iv)

0 0.5 0.522 0.106 20.016
0 1.0 1.120 0.185 20.029
0 1.5 0.997 0.105 0.023
0.5 0.5 0.414 0.082 20.030
0.5 1.0 0.939 0.500 20.066
0.5 1.5 0.970 0.049 20.001
1.0 0.5 0.349 0.151 20.093
1.0 1.0 0.854 0.056 20.165
1.0 1.5 0.967 0.050 20.132
7-6
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FIG. 3. Parametrized local-field factors from Eq.~37!, Eq. ~42!,
and Eq.~48! at r s55. ~a! Static (v50). ~b! Dynamic (v51).
11510
values ofq as in the case ofr s510. This suggests that, a
least in two dimensions, the higher-order diagrams exclu
from Fig. 1 may play a significant role in calculations of th
charge-density response, but are not important to calculat
for the spin-density response because of mutual cancellat
amongst the diagrams. We speculate on the nature of t
cancellations in Sec. IV.

There exists, at present, no corresponding dynam
QMC studies of electrons in two dimensions and thus
efficacy of the parametrized local field factors at finite fr
quencies remains to be tested directly.

III. EFFECTIVE ELECTRON-ELECTRON INTERACTIONS

With the many-body effects encaptured by the local-fie
factors it is now possible to determine the effective inter
tion between two electrons in a fully interacting sea of ele
trons that rearrange themselves because of screening
change, and other correlation effects. We use the expres
for the effective electron-electron interaction as proposed
KO, namely,

Vss8
eff

5L2~ q̃!
vq

e~ q̃!
1

@vqGs~ q̃!#2P̄0~ q̃!

11vqGs~ q̃!P̄0~ q̃!

1ss8
@vqGa~ q̃!#2P̄0~ q̃!

11vqGa~ q̃!P̄0~ q̃!
, ~58!
FIG. 4. Spin-symmetric local-field factors. The continuous lines are evaluated from the parametrized expressions, Eq.~37! and Eq.~48!,
and the individual data points are from QMC calculations~Ref. 27!.
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FIG. 5. Spin-antisymmetric local-field factors. The continuous lines are evaluated from the parametrized expressions, Eq.~42! and Eq.
~48!, and the individual data points are from QMC calculations~Ref. 27!.
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whereL(q̃) is the vertex function,

L~ q̃!5
1

11vqGs~ q̃!P̄0~ q̃!
, ~59!

s are the Pauli spin matrices, ande(q̃) is the dielectric
function,

e~ q̃!512vqP̄0~ q̃!L~ q̃!. ~60!

The KO expression neglects the contribution of transve
spin fluctuations30 and thus represents a strictly local a
proximation. The static effective electron-electron interact
using the parametrized local-field factors is shown in Fig
for triplet pairing. As previously shown,8 the singular nature
at q51 ~i.e., 2kF) is more pronounced in two dimension
than in three4 and is also reflected in anattractiveinteraction
for triplet pairing at lower densities. Approximations that n
glect the peaked structure atq51 do not give rise to attrac
tive regions of the interelectron potential.

The frequency-dependent effective electron-electron in
action is shown in Fig. 7 at various values ofr s . The non-
monotonic deviation from the static approximation (v50) is
quite evident and, as expected, the non-negligible freque
dependence increases with correlation, i.e.,r s .

IV. DISCUSSION AND CONCLUSIONS

In summary, we have determined parametrized exp
sions for the two-dimensional dynamical local-field facto
based on all available sum rules and diagrammatic sum
tion of classes of diagrams. The parametrized expressi
11510
e

n
6

-

r-

cy

s-

a-
s,

which have no further adjustable constants, have been sh
to compare well with~static! QMC simulations, particularly
in the spin-antisymmetric case. Finally, the effective tw
dimensional electron-electron interaction has been evalu
using the parametrized local-field factors within the KO loc
approximation.

The agreement of the spin-antisymmetric local-field fac
with the QMC results, at intermediate wave vectors, is p
ticularly notable given that perturbation theory, and not ex
sum rules, has been used to determine the peak heigh
q51. This, fortuitously, suggests that higher-order diagra
are mutually cancelled to a large degree even though
individual diagrams may themselves have large contri

FIG. 6. Static effective electron-electron potential atr s55. The
inset shows the real-space behavior.
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DYNAMICAL LOCAL-FIELD FACTORS AND EFFECTIVE . . . PHYSICAL REVIEW B 67, 115107 ~2003!
tions. There are two possible reasons for this cancellation~i!
summation of terms alternating in spin~sign! and ~ii ! self-
consistent cancellation of self-energy and vertex correcti
attributable to gauge invariance~i.e., Ward identities!. Ex-
plicit evaluation of higher-order diagrams will be needed
assess these conjectures.

However, the case of the spin-symmetric local-field fac
is less satisfactory atq51, probably because of the lack o
cancellation between spin-up and spin-down contributio
The singular peaks atq51 found in perturbation theory do
not appear convincingly in the QMC data: it is either wash
out or, surprisingly, shifted to higher wave vectors. With on
one set of such data available we have to await further,
more accurate, QMC calculations, which are currently be
carried out27 before we can make any definitive conclusion

The q andv dependences of the local-field factors are
reflection of the spatial and temporal nonlocality of the
kernel Kxc(r ,t;r 8,t8) in time-dependent density-functiona
theory. Leinet al.31 have investigated the importance of su
dependences from various approximate forms of thr
dimensional local-field factors and concluded that, in de
mining the correlation energy, the momentum depende
cannot be neglected, while the frequency depende
though significant, is less important. Physically, this impl
that, at least for correlation energy calculational purpose
is necessary to acknowledge the spatial extent of xc h

FIG. 7. Dynamical effective electron-electron interaction atq
50.5 as a function of imaginary frequency.
ev
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whilst the retarded nature of the dynamics can be neglec
i.e., through use of the adiabatic approximation. In two
mensions correlation effects on theq dependence are
greater,32,33 as demonstrated by the singular peak in the
larizability at q51. In addition, the gapless nature of th
two-dimensional plasmon requires that the characteri
charge-density response time goes to infinity in the lo
wavelength limit, and hence the adiabatic approximat
~i.e., neglect ofv dependence! is expected to be even les
satisfactory in two dimensions than in three.34 In summary,
the case of two dimensions is interestingly different fro
that of three dimensions in that the (q,v) dependences o
correlation effects are enhanced for a givenr s . Hence, it
would be useful to carry out a similar calculation of th
correlation energy to explicitly verify the increasing impo
tance of dynamical correlation in two dimensions.

It is worth emphasizing that the results reported here
ply strictly to a single-band system. Multiband systems,
particular compensated electron-hole systems, permit
possibility of correlated charge fluctuations between
bands. Previous work35 on three-dimensional systems h
demonstrated that the two-band case has a strikingly dif
ent effect on the effective electron-electron interactio
where an additionalattractive term arises precisely from
these charge fluctuations. This reflects an enhancement o
underlying local-field effects which we expect to occur als
if not to a greater extent, in compensated two-dimensio
electron-hole systems.

Finally, we note that an intriguing application of the d
namical local-field factors is in the effective electro
electron interaction where correlation effects may be giv
rise to regions of attraction, and thus possibly mediating
trinsic superconducting instabilities.36 Preliminary numerical
solutions of the Eliashberg gap equation have been car
out,37 indicating that electronic dynamical correlatio
raises the intrinsic pairing transition temperature as
dimensionality of the isotropic electron liquid is lowere
from three to two.
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