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Permanent current from noncommutative spin algebra
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We show that a spontaneous electric current is induced in a nanoscale conducting ring just by attaching three
ferromagnets. The current is a direct consequence of the noncommutativity of the spin algebra, and is propor-
tional to the noncoplanarity~chirality! of the magnetization vectors. The spontaneous current gives a natural
explanation to the chirality-driven anomalous Hall effect.
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Persistent~permanent! current in metallic rings is an equi
librium current which can be induced when the time-rever
symmetry is broken.1 Such a current is expected in the pre
ence of a magnetic flux through a normal ring2,3 and was
indeed detected experimentally.4–6 The effect is due to a
U~1! phase factor attached by the flux to the electron w
function. Here we show theoretically that a permanent c
rent is induced in a conducting normal ring just by attach
three ferromagnets, without magnetic flux through the ri
This surprising effect can be seen in nanoscales at low t
peratures. The key here is the noncommutativity of the SU~2!
spin algebra, which breaks the time-reversal symmetry,
leads, in the presence of electron coherence, to a perma
electron current. Such a system would be utilized in s
polarized transport7 or in quantum computers as a differe
kind of logic gates.8

The electron has spin 1/2~i.e., has two components!, and
the spin obeys SU~2! algebra. The algebra is represented
three 232 Pauli matricess i ( i 5x,y,z) satisfying the com-
mutation relation

@s i ,s j #52i e i jksk , ~1!

wheree i jk is the totally antisymmetric tensor withexyz51.
When a conduction electron in a conductor is scattered
some magnetic object, the electron wave function is mu
plied by an amplitudeA(n)5aeibn•s, which is generally
spin dependent and is represented by a 232 matrix in spin
space. Herea andb are complex numbers andn is a three-
component unit vector characterizing the scattering ob
~such as the magnetization direction!. We consider in this
paper only classical, static scattering objects, and assumn’s
are constant vectors.

Let us consider two successive scattering events re
sented byA(n1) andA(n2) ~Fig. 1!. Due to the noncommu
tativity of s i , the amplitude depends on the order of t
scattering event;A(n1)A(n2)ÞA(n2)A(n1) in general. Vari-
ous features in spin transport, which is under intensive p
suit recently,9,10 arise from this noncommutativity. It, how
ever, does not affect the charge transport, since the char
given as a sum of the two spin components~denoted by tr!,
and tr@A(n1)A(n2)#2tr@A(n2)A(n1)#50. Anomaly in the
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charge transport arises at the third order. We have, by vi
of Eq. ~1! and the relation tr@s is j #52d i j ,

tr@A~n1!A~n2!A~n3!#2tr@A~n3!A~n2!A~n1!#

54a3 sin3bn1•~n23n3![ iC123, ~2!

where the cross denotes the vector product, i.e.,n1•(n2
3n3)5( i jke i jkn1

i n2
j n3

k . This relation indicates that in the
presence of fixedni ’s with n1•(n23n3)Þ0, the symmetry
under time reversal~more appropriately, reversal of motion!
is generally broken in the charge transport. In fact, relat
~2! indicates that the contribution from one path,x→X1
→X2→X3→x @Fig. 1~a!#, and its ~time! reversed one,x
→X3→X2→X1→x @Fig. 1~b!#, are not equal, and this dif
ference results in a spontaneous electron motion in a di
tion specified by the sign ofC123, namely, a permanent cur
rent. What is essential here is the noncommutativity of
SU~2! algebra. In fact,C123 vanishes if allni ’s lie in a plane,
in which case the algebra is reduced to a commutative U~1!
algebra. The degree of the symmetry breaking,n1•(n2
3n3), is given by the noncoplanarity, often called sp
chirality ~Fig. 2!.

The spontaneous current above would be realized o
small conducting ring with three ferromagnets with differe
magnetization direction,n1 , n2, and n3. The ferromagnets
may be attached to the ring@Fig. 3~a!#, or embedded in the
ring @Fig. 3~b!#, both being within the reach of present e
perimental technique. In either case, the electron in a r
feels an effective spin polarization when it goes through
region (Fi) affected by the ferromagnets, and the effect w
be modeled by the exchange~spin-dependent! potential,
V(x)52Dni•s for xPFi . HereD represents the effective
exchange field. The equilibrium charge current in the ring

FIG. 1. A closed path contributing to the amplitude of the ele
tron propagation fromx to x. At Xi , the electron experiences
scattering represented by an SU~2! amplitude,A(ni). The contribu-
tion from one path~a! and the reversed one~b! are different in
general due to the noncommutativity ofA(ni)’s.
©2003 The American Physical Society16-1
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calculated from j (x)5(\e/2m)Im(¹x2¹x8)trG(x,x8,t
502)ux85x , whereG(x,x8,t)[2^Tc(x,t)c†(x8,0)& is the
thermal Green function,e,m,c being the charge, the mas
the annihilation operator of electrons, respective
G(x,x8,t) is calculated perturbatively from the Dyson equ
tion, G5g1gVG, whereg represents the free Green fun
tion. As is seen from Eq.~2!, possible finite current arises a
the third order inV. By summing the contribution of the two
paths,x→X1→X2→X3→x and the reversed one, we hav
j (x)52(\e/m)B(x)ReC123. Here C123 is defined by Eq.
~2! with a5 iD, b5p/2, and

B~x!5)
i 51

3 E
XiPFi

dXiE dv

2p
f ~v!

3¹X0
Im@g01g12g23g34#uX45X05x ~3!

describes the electron propagation through the ring, whic
common to both paths. In Eq.~3!, f (v) is the Fermi distri-
bution function and gi j 5gr(Xi2Xj ,v) is the retarded
Green’s function of free electrons. Approximating the tran
port along the ring as one dimensional and neglecting m
tiple circulation, we have gr(x,v).2 ip(D/L)eikFuxu,
wherekF is the Fermi wave number,D the density of states
(;1/eF ; eF5\2kF

2/2m being the Fermi energy!, andL the
length of the ring perimeter. The final result is given by

j 522e
vF

L
cos~kFL !S J

eF
D 3

n1•~n23n3!, ~4!

at zero temperature. HereJ[pWD/L with W being the
width of the ferromagnets, andvF5\kF /m is the Fermi ve-
locity.

The current is thus induced by the spin chiralityn1•(n2
3n3) of the ferromagnets. This quantity reduces to t
Pontryagin index~density! for the case of smoothly varying
field n(x),11 which is also interpreted as Berry phase12 of the
spin. The effect of spin Berry phase on the electron trans
has so far been investigated in the limit of strong coupling
n(x) where the electron spin adiabatically followsn(x).13,14

In contrast, the present result~4! is obtained in the opposite
limit; we have treated the coupling ton perturbatively~weak
coupling! and made no assumption of smoothness onn(x).
To see the relation between the two approaches, we fo
the reasoning used in Ref. 13. We write the Hamiltonian
our system in a general form using a spatially varying po
ization Dx as H5(x@(1/2m)u¹cxu21Dxnx•(c†sc)x# and
move on to a gauge transformed frame,c̃x[Uxcx , with Ux
5Mx•s. Here Mx5@sin(u/2)cosf, sin(u/2)sinf, cos(u/2)#,
and (u,f) is the polar coordinate ofnx . The Hamiltonian is
then written as H5(x@(1/2m)u(¹1 iA) c̃u21Dxc̃

†szc̃#,

FIG. 2. Three magnetization vectors with a finite chirali
n1•(n23n3).
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whereA[2 iU †¹U is an SU~2! gauge field. In the adiabatic
limit ~infinitely large and uniformDx) on one hand, only the
majority spin channel~denoted by1) becomes relevant an
hence the gauge field reduces to a U~1! field, a[A11 (1

1-component ofA). Thus the new electron,c̃, subject to a
U~1! magnetic field (¹3a), exhibits a persistent current. I
the present weakly coupled case on the other hand, bot
the two spin channels inc̃ are relevant and so off-diagona
components and SU~2! nature ofA become essential. Finite
and spatially varyingDx complicates the problem furthe
Thus, within the adiabatic scheme, the appearance of pe
tent current in the perturbative regime is not obvious. O
result indicates that even in the perturbative regime, the e
tron feels an analog of spin Berry phase and the transpo
modified.

The spontaneous current considered here is due to
memory during successive scattering events, and the elec
coherence over the system is essential. The current dim
ishes as the temperature and/or the ring size are increase
in the conventional persistent current due to the exter
magnetic flux.3 The present current is also an equilibriu
current, which cannot be measured by electrical means
present it can only be measured by detecting its magn
moment. The conventional persistent current was obser
on a single ring of gold5 and of GaAs-AlGaAs.6 Compared
to the conventional one, the persistent current propose
this paper will be smaller in magnitude by a factor
(J/eF)3. Careful extraction of the magnetic signal due to t
persistent current from those of ferromagnets will also
required in the present case. This may be carried out
fixing one of the magnetizations, say,n1, perpendicularly to
the plane containing the ring, keepingn2 andn3 in the plane.
By changing the mutual angle betweenn2 and n3 in the
plane, the spin chirality is controlled without affecting th
perpendicular component of the magnetic moment. Meas
ment on many rings on a ferromagnetic network will be
fective in amplifying the signal.~The total signal fromN
rings grows by a factor;AN even in the worst case wher
the sign of the current, represented by coskFL, is random.!

The phenomenon predicted here is not restricted to ar
cial nanostructures, but will be present rather generally
metallic frustrated spin systems such as pyrochlore fe
magnets and spin glasses, where finite spin chirality is o

FIG. 3. Setup for the chirality-driven permanent current.~a!
Three insulating ferromagnets are put on a normal conducting r
~b! Three metallic ferromagnets are embedded in a ring. In b
cases, a conduction electron will feel the effective exchange fiel
it goes through the region (Fi) affected by the ferromagnets.
6-2



u

t
ric
ri

e

d
ce

ed

is
his

or
n-

ct.
ld

BRIEF REPORTS PHYSICAL REVIEW B67, 113316 ~2003!
realized.15,16The spin chirality was recently pointed out,14 in
the adiabatic limit, to be the origin of the peculiar anomalo
Hall effect observed in experiments.15 The present chirality-
driven persistent current affords an intuitive interpretation
it. The circulating current starts to drift when the elect
field is applied, in the direction perpendicular to the elect

FIG. 4. Schematic picture of the chirality-induced Hall effe
Circulating permanent currents drift under applied electric fie
The crosses denote impurity scattering.
ev
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field ~Fig. 4!, just as in the normal Hall effect. With th
frequency of the circulating motion, read from Eq.~4! as
V.(2pvF /L)(J/eF)3n1•(n23n3), we may estimate the
Hall conductivity bysxy5s0Vt.17 Heres0 is the classical
~Boltzmann! conductivity, t is the elastic lifetime, and the
dirty caseVt!1 is assumed. If the spin chirality is locate
uniformly on every triangle of size of interatomic distan
@i.e., n1•(n23n3)5x0 and L;1/kF], we have sxy /s0

.x0J3t/eF
2 . This result agrees with the one obtained bas

on the linear-response theory.18

To summarize, we have shown that a spin chirality
generally accompanied by a permanent electric current. T
effect is a direct consequence of the spin SU~2! algebra.

We thank J. Inoue, H. Akai, H. Fukuyama, and T. Ono f
discussion. G.T. thanks the Mitsubishi Foundation for fina
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