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Shortest path across a mesoscopic system
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We study distribution functions~DF’s! of mesoscopic hopping conductance numerically by searching for the
shortest path and the results are compared with analytical predictions. We have found that distributions ob-
tained by choosing the chemical potentials randomly~for a fixed impurity configuration!, which corresponds to
a typical experimental situation, coincide with those obtained when both impurity configuration and chemical
potential is chosen randomly, in agreement with the ergodicity hypothesis. The DF’s obtained for one-
dimensional~1D! systems were found to be quite close to the independent predictions of Mel’nikovet al. and
Raikh and Ruzin. ForD52, the DF’s both for a narrow system and a thin film look similar~and close to the
1D case!, which means that the short 2D still lies in the narrow regime defined by Raikh and Ruzin. The
distribution function for the conductance of the square sample is nearly Gaussian as predicted by both Altshuler
et al.and Serotaet al.Our results also hint that the puncture nature of 2D systems seems to be featured by the
position of DF peak and the long tail might show the preference of conductance fluctuation.
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Mesoscopic conductance fluctuations in the insulating
gime of small, disordered transistors were first observed
Pepper1 in GaAs MESFET’s and then studied in detail in
MOSFET’s by Fowler, Webb, and co-workers2 in the early
1980’s. Extremely strong random fluctuations, spanning s
eral orders of magnitude, were observed at low temperat
in the conductances of narrow-channel devices as the
voltage was varied. Lee3 proposed a model in which elec
trons move by variable-range hopping~VRH! along a 1D
chain, and the lognormal distribution for one-dimension
~1D! conductors was analytically predicted by Mel’niko4

and Abrikosov.5 Serota, Kalia and Lee6 and Yu and Serota7

went on to study the ensemble distribution of the total ch
resistanceR and its dependence on the temperatureT and the
sample lengthL. In their ensemble, the random impuritie
are distributed uniformly in energy and position along t
chain. In experiments a single device is generally used
that the impurity configuration is fixed, and fluctuations a
observed as a function of some variable external param
such as the chemical potential. An ergodicity hypothesis
then invoked to the effect that the same ensemble is sam
in both cases, something that has been verified experim
tally by Orlov et al.8 Using the natural logarithm of the re
sistance, the authors of Ref. 6 obtained for the mean
standard deviation

^ ln r&;S T0

T D 1/2F lnS 2L

j D G1/2

, ~1!

s[^~ ln r2^ ln r&!2&;S T0

T D 1/2F lnS 2L

j D G21/2

, ~2!

wherej is the localization radius andT0 is the characteristic
temperature for Mott VRH:T0 5 1/kBrj (r is the density
of states at the Fermi energy!. It can be seen that the sizes of
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the fluctuations decreases extremely slowly with length
result characteristic of 1D which was first pointed out
Kurkijarvi.9 The explanation is simply that exceptional
large resistance elements, even though they may be sta
cally rare, dominate the overall resistance since they can
be by-passed in this geometry. The averaging assumed in
derivation of Mott’s hopping law for 1D does not occur an
the total resistance takes on the activated form of the lar
individual element.

The crossover from 1D to 2D were also studied.10–14The
theoretical description of hopping conductivity in narrow 2
strips was given by Raikh and Ruzin~RR!10,11 and Serota,12

and numerical simulations from narrow 2D to square 2D a
certain temperature were also done by Xie and Das Sarm13

The conductance DF~on the metallic side! was first fully
considered analytically in 2D and above by Altshule
Kravtsov, and Lerner,14 where they have predicted th
Gaussian distribution with long lognormal tails. Similar
the 1D case, these fluctuations are also of ‘‘geometric
origin, arising the finite widths of channels. In a previo
work,15 He et al. did numerical simulations on all 2D case
by percolating the system, including the short 2D which h
been studied experimentally by Hugheset al.16 The results
for the long 2D and square 2D are in accordance with
work of others. Due to the large size in width, the electric
network within the short 2D was thought to be composed
parallel resistors, and it was expected that there would b
long tail of DF towards the high conductance,16 but obtained
numerical DF for short 2D is of a long tail to the low con
ductance. To check the results further, we numerically sim
lated these samples by searching for the shortest path a
system other than by percolating it. The shortest paths
punctures which short out less conductive paths in the
geometry. The aim of the present work is to report this stu
and first of all, it is also started by replacing the transp
©2003 The American Physical Society01-1
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problem across a 2D mesoscopic system in Mott hopp
regime with a random resistor network as was done pr
ously.

Imagine that a particle is about to transport a conduc
network. In the principle of lowest energy, it prefers to t
path of the smallest overall resistance among all poss
paths. The path of lowest energy cost is equivalent to
shortest path of graph theory, which is just what the natur
puncture of the system means. It means that we could
approximate the resistance of the system by looking for
shortest path, as well as by percolating the system as u
The shortest paths among percolation systems have
studied considerably recently17–21 in terms of minimal path
or optimal path between a pair of sites within the same c
ter, and the study on the scaling form of the probability of t
shortest path with regard to their Euclidean distance and
cluster mass (MB)19 has shown that the average conductan
of the percolation backbone is strongly correlated with
shortest path, and it decreases with increasing minimal p
This means the shortest path determines the average con
tance in nature.

A network is set up by resistorsr i j between sitesi and j

ln r i j 52ad1~ uEi2mu1uEj2mu1uEi2Ej u!/2kT. ~3!

Herea is the inverse localization length;d is the distance of
two localized sites;Ei andEj are energies of sitesi , j ; m is
the chemical potential; andT is the temperature. Energy i
chosen randomly from a uniform distribution in the ran
20.5;10.5. Thus the mesoscopic system is reduced t
random resistor network~RRN!. To percolate the network
the resistors joining electrodes are selected in ascending
der until the first percolation path connects the reservo
The resistance of the percolation path is taken to be the
sistance of the entire system.

To solve it by the shortest path, the Dijkstra algorithm22 is
applied, which is used to search for shortest paths to
nodes from a single source in a fully connected graph. In
graph, the RRN is partially connected and there are m
than one source node except for the 1D case. So, some m
fications on this algorithm have been done in the simulati

In the calculation, positions of impurities are uniform
distributed over the system, their energies are distribu
evenly between20.5;10.5, and the gate voltagem is ran-
domly chosen. Thus we can consider the chemical poten
distributions~for a fixed impurity configuration! and the en-
semble distributions~for a fixed chemical potential!. For a
1D system ofL51000, chemical potentialm50, and tem-
peratureT50.001, we found that the profile of their ind
vidual resistances is similar to that along the percolating p
~Fig. 1 of Ref. 15!. This means that it is also the sing
largest hop along the shortest path that controls the ove
conductance of the system. With increasing temperature
sizes of fluctuation of individual resistors along the short
path become close.

As has been done previously,15 we also validate the ap
proach by obtaining the DF’s of 1D systems first. The size
the 1D system is 1000 in length and 50 in localization len
at a temperature ofT50.001. The chemical potential rang
11320
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is m520.1–10.1. The results are shown in Fig. 1. Accor
ing to the RR theory for the 1D case,23 the conductance is
predicted as 9.49, while we see from Eqs.~1! and~2! that the
expectation occurs at about 8.59 and the standard devia
is around 3.92. The former is in good agreement with
numerical results of the chemical distribution function a
the latter predicted by Ref. 6 shows good agreement with
results of the ensemble distribution function. As found
Ref. 15, with the increase of temperature, the fluctuation
1D resistance also becomes small.

On the basis of the above validity, the 2D cases are
merically simulated by the shortest path, including cases
long 2D, square 2D, and short 2D. In our simulation on a
system ofW3L, parameters, such as localization leng
temperature, etc., are the same as in the 1D case, whilW
5100,L51000 for long 2D,W51000 andL5100 for short
2D, and W5L51000 for a square 2D system. Figure
shows the results.

According to Mott’s law

ln sc52~T0 /T!1/3, ~4!

the critical log conductance for a 2D system atT50.001 is
21.77. The great difference between it and the numer
result (lns'29) shows the size effect stemming from th
high Ohmic regime on the conductance.11 According to the
RR theory for 2D,11 the effective width of this long 2D sys
tem isv5W/j(ln sc)

250.64, which means that it lies in th
regime of optimal breaks and its resistance has to be

ln~R/L !51/~2jrWT!. ~5!

So the log resistance of long 2D provided by it is 7 which
closer to but smaller than our numerical result. Note that
prediction of RR theory for 1D is 9.49, which is a littl
greater than our numerical result. With the increase of
ratio of width to length, the magnitude of conductance su
stantially increases, which has been predic
theoretically.11–14The results reveal that the situation of lon
2D is close to the 1D case, and the normal 2D is close

FIG. 1. The conductance of 1D system forT50.001: ~a! en-
semble distribution function,~b! chemical potential distribution
function. The histograms in both figures are the numerical resu
1-2
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FIG. 2. The ensemble distribution function fo
the conductance of 2D system:~a! long 2D, ~b!
square 2D,~c! short 2D. Histograms are numer
cal results. The solid curve in~b! is the Gaussian
fitting.
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Gaussian. Just as discovered previously,15 the DF of conduc-
tance across the short 2D system calculated in this pap
still close to that of the 1D case other than a mirror reflect
of the latter as expected.16 From ln(L/j)!(W/j)1/2, it seems
that the short 2D still lies in the regime discussed in Ref.
and the conductance through the typical cross section is
trolled by the inhomogeneous cuts within the infin
cluster.11 From the fact that the DF peak of short 2D
shifted to the low end of resistance much more than thes
other two cases, it seems to be more proper to explain
puncture nature of 2D systems by the position of the pea
DF while the long tail of DF shows the bias conductan
fluctuations.

In conclusion, we have numerically studied the DF’s
hopping conductance through 2D mesoscopic systems
various aspect ratios. The simulations are based on a se
of the shortest path which is supposed to reflect the punc
nature of VRH system more directly, and the results are co
pared with analytical predictions. The results show that
shortest path provides the resistances across 2D sys
closer to predictions than the percolation.15 In our work,
three cases of 2D systems, i.e., long 2D, square 2D, and s
2D, have been studied, and the obtained resistances o
samples are greater than the prediction of Mott’s law due
J.
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the size effect. For the long 2D, the conductance obtai
numerically is smaller than its corresponding RR predict
but is little greater than the RR prediction for the 1D ca
The DF of the square sample is close to Gaussian.14 Just as
discovered previously for the short 2D system,15 the shape of
its DF is similar to that of the long 2D opposed to a mirr
reflection of the latter. According to the RR theory,11 the
short 2D seems to be still a narrow one where the sp
inhomogeneous cuts or breaks control the conducta
From the DF’s in Fig. 2, it seems to be more reasonable
feature the puncture nature of 2D systems by the peak p
tion of DF’s whose long tails may show the preference
conductance fluctuation.
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