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Shortest path across a mesoscopic system
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We study distribution function€DF’s) of mesoscopic hopping conductance numerically by searching for the
shortest path and the results are compared with analytical predictions. We have found that distributions ob-
tained by choosing the chemical potentials randoffdy a fixed impurity configuration which corresponds to
a typical experimental situation, coincide with those obtained when both impurity configuration and chemical
potential is chosen randomly, in agreement with the ergodicity hypothesis. The DF's obtained for one-
dimensional1D) systems were found to be quite close to the independent predictions of Mel'sfkadvand
Raikh and Ruzin. Fob =2, the DF’s both for a narrow system and a thin film look simiamd close to the
1D casg, which means that the short 2D still lies in the narrow regime defined by Raikh and Ruzin. The
distribution function for the conductance of the square sample is nearly Gaussian as predicted by both Altshuler
et al.and Serotat al. Our results also hint that the puncture nature of 2D systems seems to be featured by the
position of DF peak and the long tail might show the preference of conductance fluctuation.
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Mesoscopic conductance fluctuations in the insulating rethe fluctuations decreases extremely slowly with length, a
gime of small, disordered transistors were first observed byesult characteristic of 1D which was first pointed out by
Peppet in GaAs MESFET’s and then studied in detail in Si Kurkijarvi.® The explanation is simply that exceptionally
MOSFET’s by Fowler, Webb, and co-workéris the early  |arge resistance elements, even though they may be statisti-
1980’s. Extremely strong random fluctuations, spanning sevcally rare, dominate the overall resistance since they cannot
eral orders of magnitude, were observed at low temperatur@se py-passed in this geometry. The averaging assumed in the
in the conductances of narrow-channel devices as the gatgrivation of Mott's hopping law for 1D does not occur and
voltage was varied. Léeproposed a model in which elec- the total resistance takes on the activated form of the largest
trons move by variable-range hoppifgRH) along a 1D  jndividual element.
chain, and the lognormal distribution for one-dimensional The crossover from 1D to 2D were also studi&et? The
(1D) conductors was analytically predicted by MelniKov theoretical description of hopping conductivity in narrow 2D
and Abrikosov Serota, Kalia and Léeand Yu and Serofa strips was given by Raikh and RuziRR):*‘*and Serotd?
went on to study the ensemble distribution of the total chairgnd numerical simulations from narrow 2D to square 2D at a
resistanc&k and its dependence on the temperafliend the  certain temperature were also done by Xie and Das S&tma.
sample lengthL. In their ensemble, the random impurities The conductance DFon the metallic sidewas first fully
are distributed uniformly in energy and position along theconsidered analytically in 2D and above by Altshuler,
chain. In experiments a single device is generally used, sRravtsov, and Lernel® where they have predicted the
that the impurity configuration is fixed, and fluctuations areGaussian distribution with long lognormal tails. Similar to
observed as a function of some variable external parametghe 1D case, these fluctuations are also of “geometrical”
such as the chemical potential. An ergodicity hypothesis igyigin, arising the finite widths of channels. In a previous
then invoked to the effect that the same ensemble is samplgglork 15 He et al. did numerical simulations on all 2D cases
in both cases, something that has been verified experimemy percolating the system, including the short 2D which has
ta”y by Orlov et a|.8 USing the natural Iogarithm of the re- been studied experimenta”y by Hughesaj_le' The results
SiStance, the authors of Ref. 6 obtained for the mean anfbr the |ong 2D and square 2D are in accordance with the

standard deviation work of others. Due to the large size in width, the electrical
VT oL 112 network wit_hin the sho_rt 2D was thought to be composed of
(In p>~<_0) In(—” (1) parallel resistors, and it was expected that there would be a
T & ' long tail of DF towards the high conductant®eyut obtained

numerical DF for short 2D is of a long tail to the low con-
2L ductance. To check the results further, we numerically simu-
'”(?) ' 2 lated these samples by searching for the shortest path across
system other than by percolating it. The shortest paths are
where¢ is the localization radius anfl, is the characteristic punctures which short out less conductive paths in the 2D
temperature for Mott VRHT, = 1/kgpé (p is the density geometry. The aim of the present work is to report this study,
of states at the Fermi enerngyt can be seen that the sig®f  and first of all, it is also started by replacing the transport

—-1/2

s=((Inp—(In p>)2>~(¥) N
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problem across a 2D mesoscopic system in Mott hopping

regime with a random resistor network as was done previ-0.104 I 0.10. I

ously. 7 all
Imagine that a particle is about to transport a conductiveg gg| - 1 -

network. In the principle of lowest energy, it prefers to the T 0.084

path of the smallest overall resistance among all possible 06 | i B

paths. The path of lowest energy cost is equivalent to the | 0.06+ sl

shortest path of graph theory, which is just what the nature of

puncture of the system means. It means that we could als©-941 0.041

approximate the resistance of the system by looking for the il

shortest path, as well as by percolating the system as usuao.o2- 0.021

The shortest paths among percolation systems have bee

studied considerably recentfly* in terms of minimal path g0 Ln o -fI(]l] W 000 Il

or optimal path between a pair of sites within the same clus- -2 11 10 9 -8 -7 -105 -100 95 -90 -85

ter, and the study on the scaling form of the probability of the InG Ing

shortest path with regard to their Euclidean distance and the
cluster massNl g)*° has shown that the average conductance FIG. 1. The conductance of 1D system fb=0.001: (a) en-
of the percolation backbone is strongly correlated with thesemble distribution function(b) chemical potential distribution
shortest path, and it decreases with increasing minimal patffunction. The histograms in both figures are the numerical result.
This means the shortest path determines the average conduc-
tance in nature. is w=—0.1-+0.1. The results are shown in Fig. 1. Accord-
A network is set up by resistoys; between sites andj ing to the RR theory for the 1D cad®the conductance is
predicted as 9.49, while we see from Efs.and(2) that the
In pij=2ad+ (|E;— u|+|Ej— u| + |E;—Ej|)/2KT. (3) expectation occurs at about 8.59 and the standard deviation
is around 3.92. The former is in good agreement with the

Herea is the inverse localization lengthd;is the distance of numerical results of the chemical distribution function and
two localized sitesE; andE; are energies of siteisj; w is  the latter predicted by Ref. 6 shows good agreement with the
the chemical potentia'; and is the tempera‘[ure_ Energy is results of the en-SGmble distribution function. As fOUI:]d n
chosen randomly from a uniform distribution in the rangeRef. 15, with the increase of temperature, the fluctuation of
—0.5~+0.5. Thus the mesoscopic system is reduced to &D resistance also becomes small.
random resistor networkRRN). To percolate the network, ~ On the basis of the above validity, the 2D cases are nu-
the resistors joining electrodes are selected in ascending omerically simulated by the shortest path, including cases of
der until the first percolation path connects the reservoirslong 2D, square 2D, and short 2D. In our simulation on a 2D
The resistance of the percolation path is taken to be the resystem of WXL, parameters, such as localization length,
sistance of the entire system. temperature, etc., are the same as in the 1D case, While

To solve it by the shortest path, the Dijkstra algorifis = 100L = 1000 for long 2DW=1000 and. =100 for short
applied, which is used to search for shortest paths to afD, and W=L=1000 for a square 2D system. Figure 2
nodes from a single source in a fully connected graph. In th&hows the results.
graph, the RRN is partially connected and there are more According to Mott's law
than one source node except for the 1D case. So, some modi- 3
fications on this algorithm have been done in the simulation. Inge=—(To/T)™, (4)

In the calculation, positions of impurities are uniformly t
distributed over the system, their energies are distribute
evenly between-0.5~+0.5, and the gate voltage is ran-
domly chosen. Thus we can consider the chemical potenti
distributions(for a fixed impurity configurationand the en-
semble distributiongfor a fixed chemical potential For a
1D system ofL =1000, chemical potentigh=0, and tem-
peratureT=0.001, we found that the profile of their indi-
vidual resistances is similar to that alor_lg _the percolating path IN(RIL)=1/2&pWT). (5)
(Fig. 1 of Ref. 15. This means that it is also the single
largest hop along the shortest path that controls the overa$fo the log resistance of long 2D provided by it is 7 which is
conductance of the system. With increasing temperature, thdoser to but smaller than our numerical result. Note that the
sizes of fluctuation of individual resistors along the shortesprediction of RR theory for 1D is 9.49, which is a little
path become close. greater than our numerical result. With the increase of the

As has been done previousR/we also validate the ap- ratio of width to length, the magnitude of conductance sub-
proach by obtaining the DF’'s of 1D systems first. The size ofstantially  increases, which has been predicted
the 1D system is 1000 in length and 50 in localization lengththeoretically'*~#The results reveal that the situation of long
at a temperature of =0.001. The chemical potential range 2D is close to the 1D case, and the normal 2D is close to

e critical log conductance for a 2D systemTat 0.001 is
=1.77. The great difference between it and the numerical
result (Inc~—9) shows the size effect stemming from the
igh Ohmic regime on the conductandeAccording to the
RR theory for 2D the effective width of this long 2D sys-
tem isw=WI/&(In 0)?=0.64, which means that it lies in the
regime of optimal breaks and its resistance has to be
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Gaussian. Just as discovered previotisthe DF of conduc- the size effect. For the long 2D, the conductance obtained
tance across the short 2D system calculated in this paper fmumerically is smaller than its corresponding RR prediction
still close to that of the 1D case other than a mirror reflectiorbut is little greater than the RR prediction for the 1D case.
of the latter as expectéd.From InL/&<(W§™, it seems  The DF of the square sample is close to Gaus¥aust as
that the short 2D still lies in the regime discussed in Ref. 11discovered previously for the short 2D syst&hthe shape of
and the conductance through the typical cross section is cofs DF is similar to that of the long 2D opposed to a mirror
trolled by the inhomogeneous cuts within the infinité reflection of the latter. According to the RR thedtythe
cluster” From the fact that the DF peak of short 2D is gnort 2D seems to be still a narrow one where the spare
shifted to the low end of resistance much more than these ghnomogeneous cuts or breaks control the conductance.
other two cases, it seems to be more proper to explain therom the DF's in Fig. 2, it seems to be more reasonable to
puncture nature of 2D systems by the position of the peak Ofeatyre the puncture nature of 2D systems by the peak posi-
DF while the long tail of DF shows the bias conductanceijon of DF's whose long tails may show the preference of

fluctuations. _ _ conductance fluctuation.
In conclusion, we have numerically studied the DF’s of
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