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Magnetic properties of arrays of superconducting strips in a perpendicular field
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Current profiles and field lines and magnetization and ac losses are calculated for arrays of infinitely long
superconducting strips in the critical state in a perpendicularly applied magnetic field. The strips are arranged
vertically, horizontally, and in a matrix configuration, which are the geometries found in many actual high-Tc

superconducting tapes. The finite thickness of the strips and the effects of demagnetizing fields are considered.
Systematic results for the magnetization and ac losses of the arrays are obtained as function of the geometry
and separation of the constituent strips. Results allow us to understand some unexplained features observed in
experiments, as well as to propose some future directions.
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I. INTRODUCTION

High-temperature superconducting~HTSC! cables have a
large potential for many applications where very high curr
intensities are needed, such as power transmission ca
magnets, superconducting magnetic energy storage sys
transformers, and motors.1,2 In particular, silver-sheathed
Bi2Sr2Ca2Cu3O10 ~Ag/Bi-2223! tape conductors appeared
be the HTSC most used for practical devices, due to the g
superconductor material quality and the feasibility to ma
kilometer-long cables. Many of the HTSC cables applic
tions work under ac conditions, like power transmissi
cables, transformers, and motors. An important problem
the superconducting power devices operating at ac intens
is caused by their power losses,3 which must be reduced a
low as possible to justify the expenses of the supercond
ing material and the cryogenic system. We can distingu
between self-field ac losses, that is, the power losses du
transport current inside each conductor, and the magnet
losses due to a magnetic field external to the conduc
which we deal with in this work. The latter kind of losses a
important for devices where a high magnetic field is prese
like magnets and transformers.

Magnetic ac losses critically depend on the superc
ductor wire geometry.4,5 As was pointed out in Refs. 4–6
dividing the superconductor wire into filaments reduces
magnetic losses. Moreover, it is known that dividing sup
conducting wires into filaments and immersing them into
conducting matrix makes the wire more reliable und
quenching.4,5 In addition, it is shown that for Ag/Bi-2223
tapes, the superconducting properties improve when the
perconducting region is divided into filaments with a hi
aspect ratio.7,8 For these reasons, the latter is the HTSC w
geometry most often met in practice.

The magnetic ac losses in multifilamentary tapes h
their origin in mainly three mechanisms. They are the ed
currents in the conducting sheath, the magnetic hyster
arising from the flux pinning in the superconductor, and
interfilament currents~also known as coupling currents! that
flow across the conducting matrix.4,5Although it is somehow
understood how to reduce the eddy and coupling curre
losses,9,10 important work remains to be done concerning t
0163-1829/2003/67~10!/104517~18!/$20.00 67 1045
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hysteresis losses. Many experimental works showed that
hysteresis losses depend strongly on the orientation of
external ac field.11–13 It is shown that the hysteresis loss
under an applied fieldHa perpendicular to the wide face o
the HTSC tapes are more than one order of magnitude hig
than if Ha is either parallel to the wide face or in the tran
port direction.

A very convenient way to study hysteresis in superco
ductors is within the framework of the critical-state model14

which assumes that currents circulating in the SC’s flow w
a constant densityJc , later extended to currents dependin
only upon the local magnetic fieldH i .

15 The original model
was solved in the parallel geometry, that is, for applied fie
Ha along an infinite dimension for slabs and cylinders,14–16

because in these geometries the problem of the demagn
ing effects was not present. A further step was presen
when the critical-state model was extended to the case
very thin strips18–20 and disks,21–23 for which important de-
magnetizing fields were involved. More recently, the mo
general case of a critical state in samples with finite thi
ness, such as strips24 and cylinders,25–27 was solved by nu-
merical models.

In spite of this progress, there is no theoretical model t
satisfactorily describes the losses of multifilamentary ta
under perpendicularHa.28,29 This general problem has no
been systematically solved, although there have been s
works offering partial solutions. Fabbricatoreet al.30 pre-
sented a comprehensive analysis of the Meissner state i
rays of strip lines arranged vertically (z stack of strips!, hori-
zontally (x arrays! and in the form of a matrix (xz array! and
compared their results with actual measurements on m
tifilamentary tapes. Their numerical procedure, however, w
not adequate to study the more general case of bulk cur
penetration. Mawatari31 studied not only the Meissner sta
but also the critical state for the case of an infinite set
superconducting strip lines arranged periodically in the v
tical or horizontal directions, in the limit that the strip line
were infinitely thin. Mawatari and Clem32 studied the pen-
etration of magnetic flux into current-carrying~infinitely
thin! strips lines with slits in the absence of applied magne
field. All the existing models assume either arrays of in
nitely thin strips in the critical state or arrays of strips wi
©2003 The American Physical Society17-1
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finite thickness but only in the Meissner state. The only
ception we know is the recent work by Tebanoet al.33 in
which preliminary results on the current penetration a
magnetization were calculated for some realistic arrays ba
on the procedure developed by Brandt.24

A key issue in the study of superconducting tapes is h
currents circulate in the filaments. There are two import
cases concerning this point, depending on whether the
rent in each filament is restricted to go and return through
same filament or if there is no such restriction. The desi
case for ac magnetic losses reduction in real HTSC ta
occurs when current is restricted to return through the sa
filament.4–6,34We refer to this case as isolated filaments. T
other case is when current can go in one direction in a gi
filament and return through any other one. We refer to
latter case as completely interconnected filaments. This is
limiting case of filaments with a high number o
intergrowths35–39or when coupling currents through the co
ducting matrix are of the same magnitude as the super
ducting currents.10,34,40,41As explained in these reference
and below, the magnetic behavior for each of these two fi
ment connection case is strongly different. Therefore, a
tailed study of ac losses in superconducting cables sh
include these two cases. The strong difference in conside
interconnected or isolated strips can be realized in the cur
profiles field lines shown in Figs. 6 and 7 for matrix array

In this paper we study the current and field penetratio
magnetization, and ac losses of arrays of superconduc
strips of finite thickness. We first present the model and
application to the case of an array of a finite number
infinitely long strips of finite thickness arranged verticallyz
stack of finite strips! with a perpendicular applied field. Thi
geometry is studied first because it is independent of
connection type, since as a result of the system symm
current always go and return through each strip. We t
study the cases of horizontal~x! arrays and matrices (xz
matrix!, for which different behaviors arise depending on t
connections. In all cases, we will concentrate our study
arrays composed of strips with high aspect ratio since thi
the case most often met with in practice, although our mo
is applicable to arrays of strips with arbitrary thickness. O
approach, therefore, is more general than assuming the
proximation of considering infinitely thin strips as in Ref. 3
since we take into account the different current penetra
across the superconductor thickness.

The paper is structured as follows. In Sec. II we pres
the calculation model. Current and field profiles are cal
lated and discussed in Sec. III. The results of magnetiza
and magnetic ac losses are discussed in Sec. IV and V
spectively. Finally, in Sec. VI we present the main conc
sions of this work. The full penetration fields forx arrays and
xz matrices can be analytically calculated, being describe
Appendix A, whereas the analytical formulas for the indu
tances used in the model are described in Appendix B.

II. MODEL

A. General formulation and vertical array case

The model we present here is suitable for any superc
ductor geometry with translational symmetry along they axis
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and mirror symmetry to the vertical plane. However, we w
focus on z stacks,x arrays, andxz matrices made up o
identical strips infinitely long in they direction.

Our numerical model is based on minimizing the ma
netic energy of the current distribution after each appl
field variation. We name this model the minimum magne
energy variation procedure, thereafter referred to as MM
The model assumes that there is no equilibrium magnet
tion in the superconductor. In this paper, we further assu
that there is no field dependence ofJc for simplicity. The
energy and flux minimization in the critical state was pre
ously discussed by Badiaet al.42 and Chaddah and
co-workers.43,44 The details of the general numerical mod
can be found in Refs. 27 and 45–47. The approach has b
successfully applied to describe the experimental featu
observed in the initial magnetization slope45 as well as the
whole magnetization loop and levitation force27,46 of super-
conducting cylinders. We now outline the main characte
tics of the model.

For cylindrical geometry,45,27,46 the superconducting re
gion was divided into a certain number of elements of
shape of rings with rectangular cross section, which form
circular closed circuits. For a given current distribution in t
cylinder, the energy variation of setting a new current in
certain element was calculated. The minimum energy va
tion method consists in, given an applied fieldHa, looking
for the circuit which lowers the most the magnetic ener
and set there a new current of magnitudeJc , and then re-
peating the procedure until setting any new current does
reduce the energy. The method as explained above is us
find the initial magnetization curveMi(Ha). Provided thatJc
is field independent, the reverse curve can be found us
that23

M rev~Ha!5Mi~Hm!22Mi@~Hm2Ha!/2# ~1!

and the returning curve using

M ret~Ha!52M rev~2Ha!, ~2!

whereHm is the maximum applied field in the loop.
In the present case of arrays of superconducting strips

divide each strip into a set of 2nx32nz elements with cross
section (Dx)(Dz) and an infinite length iny direction, as
shown in Fig. 1. The horizontal and vertical dimensions
the strips are 2a and 2b, respectively. The dimensions o
each element areDx5a/nx and Dy5b/nz . The separation
of thexz-matrix rows ish and the separation of columns isd.
A z stack and anx array can be considered as a matrix w
a single column and row, respectively, as shown in Fig.
We consider that the current density is uniform within t
elements and flows through the whole element section
not only through a linear circuit as in Refs. 27, 45, and 46
spatially uniform applied fieldHa in the z direction is con-
sidered.

The main condition for applying the model is that one h
to know in advance the direction of currents. In the case ox
arrays andxz-matrix arrays this issue has to be dealt w
carefully; we will discuss about it in the next section. How
ever, the case of az stack presents no difficulty since in th
7-2
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MAGNETIC PROPERTIES OF ARRAYS OF . . . PHYSICAL REVIEW B 67, 104517 ~2003!
case the induced current front is also symmetrical with
spect to thezy plane. Thus, we can consider that the pair
elements centered at (x,z) and (2x,z) form circuits that are
closed at infinity. This grouping in pairs, forming closed c
cuits, allows for the analytical calculation of self- and mutu
inductances per unit length of the circuits with finite cro
section~see Appendix B for inductance derivations and fo
mulas!. The pairs, or circuits, are labeled using the subsc
i from 1 toN52nxnznf , nf being the number of strips of th
set andN the total number of elements in thex>0 portion of
the set of strips.

Once the analytical expressions for the inductances
obtained, the energy of thei circuit can be calculated as

Ei5(
j 51
j Þ i

N

M i j I j I i1
1

2
Mii I i

212m0Haxi I i , ~3!

where the first two terms are the energy of the circuit ow
to the presence of the current distribution in the whole
perconducting region, the third term is the energy due to
uniform applied magnetic field,Mi j are the self- and mutua
inductances from Eqs.~B5!–~B7!, andI i and I j are the total
current intensity that flows through the circuits labeled ai
andj, respectively. Since no internal field dependence is c
sidered for the critical current,uI i u5(Dx)(Dz)Jc . The sign
of I i is taken as positive when the current of the elemen
x>0 of the pair follows the positivey axis direction and
negative otherwise.

In the initial magnetization curve, after using the ener
minimization procedure for a given applied fieldHa to find
the current profile, we can calculate the magnetization,
total magnetic field, and the magnetic field lines direc
from the current distribution.

The magnetization, defined as the magnetic moment
unit volume, has only one nonzero componentMz , which
can be calculated as

FIG. 1. Sketch of the array of superconducting strips. Anxz
matrix is drawn, although all the parameters described are also v
for z stacks~corresponding to a single column of strips! andx arrays
~corresponding to a single row of strips!. They axis is perpendicular
to the plane and it is oriented inwards.
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I i~2xi !, ~4!

wheremz is the total magnetic moment of the set of strip
The two nonzero components of the total magnetic fl

density,Bz andBx , are calculated as the addition of all th
closed-circuit contributions, which can be calculated anal
cally integrating the Biot-Savart law.48

The magnetic flux lines are calculated as in Ref. 24 us
that for translational symmetry the level curves of they com-
ponent of the vector potential, for the gauge¹•A50, can be
taken as the magnetic flux lines. They component of the
vector potential results from the contribution of all the e
ments pairsAy,i , whose analytical expressions are Eq
~B2!–~B4!.

We will consider the application of an external ac fie
Ha5Hmcos(vt). In this case we can calculate the imagina
part of the ac susceptibility,x9, defined as

x95
2

pHm
E

0

p

duM rev~u!sinu5
2

pHm
2 E

2Hm

Hm
dHaM rev~Ha!.

~5!

The energy lossW per ac cycle of amplitudeHa is related to
x9 by the expression59,23

W5m0pHm
2 x9. ~6!

B. Horizontal and matrix array cases

As explained above, for the cases ofx arrays andxz ma-
trices we need to consider two different cases of filam
connection—when the filaments are all interconnected
when they are isolated to each other—so the model prese
above has to be generalized to include these cases.

We now discuss two features that are needed to apply
MMEV procedure to any superconductor geometry; this w
help us to determine which modifications, if necessary, h
to be done to adapt the MMEV procedure tox arrays andxz
matrices.

The first condition to apply the MMEV procedure is th
one needs to know the shape of the closed current loop
the magnetically induced current for any applied field va
Ha. For cylinders the closed current loops were simp
circular,27,46 while for z stacks they are made up by an in
nite straight current in they direction centered at (x,z) and
by another centered at (2x,z), which form a closed circuit
at infinity.

Another feature that has to be taken into account in or
to apply the numerical method described in this work tox
arrays andxz matrices is the sign of the induced curren
once the shape of the closed current loops is known.
geometries such as rectangular strips and disks,17,24,49,23el-
liptical tapes,49–51 andz stacks,31 current in the initial mag-
netization curve is the same for all circuits. However, th
feature it is not so obvious for geometries with gaps in
horizontal direction likex arrays andxz matrices.

As explained in the following subsections, the applicab
ity of the two features mentioned is different when consid

lid
7-3
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ENRIC PARDO, ALVARO SANCHEZ, AND CARLES NAVAU PHYSICAL REVIEW B67, 104517 ~2003!
ing interconnected or isolated strips. So the adaptation of
MMEV procedure to the two different connection cases m
be considered separately.

1. Interconnected strips

For the present case ofx arrays andxz matrices with
completely interconnected strips the two features prese
above are the same as the cases of cylinders andz stacks
presented above. This can be justified as follows.

First, the closed circuits to be used in the simulations
the same as forz stacks, which are each pair of current e
ments centered at (x,z) and (2x,z), Fig. 1. This is due to
the mirror yz symmetry of the system and the fact that t
strips are interconnected at infinity so that currents belong
to different strips can be closed.

Second, the fact that in the initial magnetization curve
current is negative in all the circuits is also valid for th
present case. We arrived at this conclusion after doing s
preliminary numerical calculations, in which we changed
original numerical method, letting the procedure to choo
which sign in each circuit is optimum to minimize the e
ergy. After doing so, we saw that in the initial magnetizati
curve and for a givenHa, current is the same and negativ
for all circuits, except for very few circuits on the final cu
rent profile due to numerical error. Notice that this mea
that the current of the strips at thex>0 region return to those
in the x<0 region, so that current return through differe
strips for all circuits except for those centered atx50. This
result is the expected one, because this situation is the
that minimizes the most the energy, so it should be the c
sen one when there are no restrictions.

Then, we conclude that the numerical method and form
las for x arrays andxz matrices are the same as those pre
ously used forz stacks with the only modifications neede
for adapting the model to the new geometry.

2. Isolated strips

The model used to describe current isolated strips m
take into account that all real current loops have to be clo
inside each strip, so that there has to be the same amou
current following the negativey direction than the positive
one inside each strip. In addition, although the current dis
bution of the wholex array orxz matrix hasyz mirror sym-
metry for the planex50, the current distribution in the in
dividual strips is not necessarily symmetrical to their verti
central plane.

Then, the features of the MMEV procedure describ
above do not apply, so that we need to do significant mo
fications to the original numerical procedure presen
above.

The actual current loops in this case have the shape of
straight lines within the same strip carrying opposite curre
and closed at infinity~solid lines in Fig. 2!. These straight
currents can be identified with the elements which the st
are divided in. The main difficulty is to know which pairs o
elements describe closed current loops.

To help solving this problem we notice that, thanks to t
overall mirror symmetry to theyz plane atx50, for any
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closed current loop in a strip at thex>0 zone, there is an-
other current loop set symmetrically in the correspond
strip in thex<0 zone~Fig. 2!. Furthermore, if we take as
closed current loops the pairs of elements set symmetric
to the yz plane ~dashed lines in Fig. 2!, the total current
distribution is the same except at the ends, which do
modify the magnetic moment if we consider the strips lo
enough. Both systems of closed circuits have the same m
netic properties, including magnetic energy and magn
moment. Consequently, since these symmetrical pairs o
ements correspond to the closed loops used forz stacks, all
the formulas presented for that case are still applicable.

Taking these symmetrical pairs of elements as clo
loops for the numerical procedure, as done in Sec. II B 1
interconnected strips and the fact that current loops m
close inside each strip, the MMEV procedure for isolat
strips becomes the following in this case.

~1! For a given applied fieldHa, a given current distribu-
tion, and for each pair of strips set symmetrically to theyz
plane ~symmetrical pair of strips!, there are found:~i! the
loop where setting a negative current would reduce the m
the magnetic energy and ii! the loop where setting a positiv
current would rise it the least. These loops are referred to
a pair of loops.

~2! The pair of loops that lower the most the magne
energy is selected among all those belonging to each s
metrical pair of strips.

~3! A current of the corresponding sign is set in the s
lected loops.

~4! This procedure is repeated until setting current in
most energy-reducing pair of loops would not decrease
magnetic energy.

Notice that each pair of loops where current is set in
simulations describes two real closed current loops belo
ing to each strip that constitute the symmetrical pair of stri

III. CURRENT PENETRATION AND FIELD LINES

A. Vertical stacks

The most important issue to study in the system of sup
conducting strips is the influence of magnetic coupling. It

FIG. 2. Sketch of the real closed current loops~solid thick lines!
and those used in the simulation~dashed thick lines!. The case of an
x array with two strips is drawn for simplicity. Four current ele
ments are represented as elongated thin rectangular prisms wh
single straight current flows following they axis.
7-4
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MAGNETIC PROPERTIES OF ARRAYS OF . . . PHYSICAL REVIEW B 67, 104517 ~2003!
well known that the superconductors tend to shield the m
netic field change not only in their interior but also in th
space between two superconducting regions~as illustrated in
the classical example of a hollow superconducting tube,
which the whole volume inside the tube and not only t
tube walls are shielded!. In our array of superconductin
strips one should observe a related effect, because the cu
induced in the strips will tend to shield the magnetic field
their interior as well in the space between them. To study
effect we present in Fig. 3 calculations corresponding t
vertical array of three strips withb/a50.1 and different
separations (h52a, h50.2a, and h50.02a, respectively!.
The different profiles correspond to applied fieldsHa/Hpen
50.2, 0.4, 0.6, 0.8, and 1, whereHpen is the field at which
the array is fully penetrated by current~the calculation of
such a field is discussed in Appendix A!. The results show
unambiguously the strong influence of magnetic coupling
the case that the separation is small, as illustrated in the
for h50.02a, for which the current profiles are almost th
same as if there were no gaps between the strips. On
other hand, the caseh52a is already an example of a ver
weak magnetic coupling, which results in a current pene
tion for each strip almost as if the two others were n
present.

To further study this point we present in Fig. 4 the fie
lines calculated for the three arrays of Fig. 3, for appl

FIG. 3. Current profiles for az stack of three superconductin
strips of width 2a and height 2b separated a distance~a! h/a52,
~b! h/a50.2, and~c! h/a50.02. The profiles correspond to applie
fieldsHa/Hpen50.2, 0.4, 0.6, 0.8, and 1, whereHpen is the penetra-
tion field of the array. For the sake of clarity, the separation, thi
ness, and width of strips are not on scale.
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fieldsHa/Hpen50.4. The left images show the total field an
the right ones only the field created by the currents in
superconductor. It is clear that forh50.02a and evenh
50.2a, the applied field in the space between supercond
ors is basically shielded by them, in contrast with the case
h52a, for which the magnetic field is modified near ea
strip but not enough to make a significant contribution to
other two strips. Another way of seeing this effect is illu
trated in the calculations of the field created by curre
~right images in each figure!. One can observe that in a
cases currents create a basically constant field in the sp
between strips. However, when the separation is large
total field lines created by the current are wrapped aro
each strip, whereas when the separation decreases u
h/a50.02 the field lines are hardly distinguishable from t
case of the three strips forming a single thicker one.

B. Horizontal and matrix arrays

For the sake of clarity, we discuss separately the res
corresponding to the situation in which strips are interco
nected and that in which they are isolated.

-

FIG. 4. Field lines corresponding to an applied fieldHa/Hpen

50.4, whereHpen is the penetration field of thez stack, for the
stacks of Fig. 3. Right and left figures correspond to the total
self-field magnetic field lines, respectively. The distances ared/a
52 ~a!,~b!, 0.2 ~c!,~d!, and 0.02~e!,~f!.
7-5
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ENRIC PARDO, ALVARO SANCHEZ, AND CARLES NAVAU PHYSICAL REVIEW B67, 104517 ~2003!
1. Interconnected strips

We first discuss the current profiles and field lines cal
lated for anx array composed of three filaments with dime
sionsb/a50.1. In Fig. 5 we show the current profiles an
the field lines corresponding to threex arrays with varying
separation between the individual strips. The applied field
all cases is 0.2Hpen, Hpen being the penetration field for th
whole x array ~Appendix A!. The common behavior ob
served is that currents are induced to try to shield not o
the superconductors~the field is zero in the current-free re
gions inside the superconductors! but also the space betwee
them. Actually, we find that there appears an overshield
near the inner edge of the external strips~Fig. 5!, so that the
field there is opposite to the external field. This feature
been previously predicted for rings in the critical state52 and
for completely shielded toroids.53

FIG. 5. Total magnetic field lines and current profiles for inte
connectedx arrays at an applied field ofHa50.2Hpen, Hpen being
the complete penetration field for the wholex array. The strips in
the arrays have an aspect ratiob/a50.1 and the distances betwee
strips are~a! d/a50.02, ~b! d/a50.2, and~c! d/a52. The hori-
zontal scale has been contracted for clarity, while the vertical s
is the same for all figures.
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The general trends described above for the case of ax
array are also valid for the case of anxz matrix. Actually, it
is important to remark that the general trends in current
field penetration and the magnetic behavior of anxz matrix
result from the composition of the properties of both thex
array and thez stack that forms it. In Fig. 6 we show th
calculated current penetration profiles for anxz matrix made
of nine strips (333), each with dimensionsb/a50.1 corre-
sponding to an applied field of 0.2Hpen. We also plot the
total ~left figures! and self~right! magnetic field, that is, the
sum of the external magnetic field plus that created by
superconducting currents and only the latter contribution,
spectively. The general trend of shielding the internal volu
of the region bounded by the superconductor, including g
between strips, is also clearly seen. An interesting featur
that a very satisfactory magnetic shielding is achieved for
three different matrices, as illustrated from the fact that
self-field in the central region has in all cases a const

le

FIG. 6. Total~left! and self~right! magnetic field lines and cur
rent profiles for interconnectedxz matrices at an applied field o
Ha50.2Hpen. For the stripsb/a50.1 andd/a5h/a50.02 ~a!,~b!,
0.2 ~c!,~d!, and 2~e!,~f!. Vertical and horizontal scales are rescal
for clarity.
7-6
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MAGNETIC PROPERTIES OF ARRAYS OF . . . PHYSICAL REVIEW B 67, 104517 ~2003!
value over a very large region. However, this shielding is,
the values of the applied field considered here, basically p
duced by the strips in the two outer vertical columns, wh
are largely penetrated by currents. Only a little current
needed to flow in the upper and bottom strips of the in
column to create a fine adjustment of the field in the cen
region.

FIG. 7. The same as Fig. 5 but with isolated strips. The app
field is Ha50.1Hpen and the strips have dimensionsb/a50.1
spaced a distance~a! d/a50.02, ~b! d/a50.2, and~c! d/a52. The
horizontal scale has been contracted for clarity.
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2. Isolated strips

We now present the results calculated for the case tha
superconducting strips are isolated so that current has t
and return always through the same filament. We start ag
with the case of anx array composed of three strips wit
dimensionsb/a50.1. In Fig. 7 we show the current profile
and the field distribution calculated for threex arrays with
varying separation between the individual strips. The app
field is 0.1Hpen. Again, all strips have dimensionsb/a
50.1. By simple inspection, one can realize how importa
the differences are with respect to the case of interconne
strips. In the present case of isolated strips there is ap
ciable current penetration in all strips and not only in ou
ones, although the magnetic coupling between them ma
the current distribution in the outer strips different from t
central one in the cased/a50.02. Another important effec
to be remarked upon is that there is an important flux co
pression in the space between the strips. Since all strips
to shield the magnetic field in their interiors independen
the field in the air gap between each pair of strips is stron
because of the field exclusion in both adjacent strips. Ac
ally, field lines are very dense not only in the gap betwe
strips but also in a zone in the strips nearest to the gap, w
the current penetrates an important distance~this effect is
particularly clear for the case of the smallest separatio!.
This compression effect was also found by Mawatari for
case ofx arrays of very thin strips,31 by Fabbricatore and
co-workers forx arrays,xz matrices, and realistic shapes
multifilamentary tapes in the Meissner state,30,54 and by Mi-
kitik and Brandt for a completely shielded double strip.55

We can better compare the current and field profiles
the interconnected and isolated cases by looking at Fig
where we plot current profiles for thex array with separation
d50.2a for both interconnected and isolated cases. It can
seen that for interconnected strips, current penetrates ea
~that is, for lower values of the applied field! in the outer
strips, since current flowing there creates an import
shielding not only in each strip but in the whole space b
tween them. On the other hand, in the isolated strips c
current returning through the same strip creates a field c
pression in the channels~which include the gaps and a po
tion of each strip near the gap!, so that the amount of curren
penetration is similar for the three strips. The current dis
bution when the strips are close to each other is sligh
asymmetric with respect to the central plane of each st
because the field in the channels felt by the inner sides of
outer strips has a different spatial distribution than the hom

d

s
l-

e

FIG. 8. Current profiles forx arrays with
b/a50.1 and d/a50.2 for ~a! interconnected
strips and~b! isolated strips. The vertical axis ha
been expanded for clarity. The applied field va
ues corresponding to each current profile areHa

50.1, 0.2, 0.4, 0.6, 0.8, and 1 in units of th
penetration fieldHpen for each case.
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ENRIC PARDO, ALVARO SANCHEZ, AND CARLES NAVAU PHYSICAL REVIEW B67, 104517 ~2003!
geneous applied field felt in the outer sides. We have fo
that this asymmetry increases for thicker filaments, that
higherb/a ~not shown!.

We now present some results for thexz-matrix array for
the case of isolated strips. As said above, results for the
trix can be understood from the composition of the effects
horizontal and vertical arrays. In Fig. 9 we show the cal
lated current penetration profiles for anxz array made of
nine strips (333) with dimensionsb/a50.1 corresponding
to an applied field of 0.1Hpen, together with the total~left
figures! and self~right! magnetic field. The two cases corr

FIG. 9. Total~left! and self~right! magnetic field lines and cur
rent profiles for isolatedxz matrices at an applied fieldHa

50.1Hpen. For the stripsb/a50.1 andd/a5h/a50.02~a!,~b!, and
2 ~c!,~d!.
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spond to separations ofd/a5h/a50.02 and 2, respectively
The effect of flux compression along the vertical chann
that include the gaps and the surrounding regions is cle
seen in the case of the smallest separation distance.

For the case ofxz matrices it can be observed how field
shielded in the vertical gaps between rows but it is enhan
in the horizontal gaps between columns. Then, for isola
strips, the magnetic interactions between rows and colum
have opposite effects. Furthermore, the difference betw
the field in the vertical gaps and the applied fieldHa is much
higher than for the horizontal gaps, as can be seen in Fi
for the xz matrix with higher separation. This implies tha
the magnetic coupling between strips in the horizontal dir
tion is lost at smaller distances than that in the verti
direction.

IV. MAGNETIZATION

A. Vertical stacks

In this section we analyze the magnetization of the arra
calculated from the currents following Eq.~4!. The reverse
and returning curve can be obtained from the initial one
ing Eqs.~1! and ~2!.

There are several important properties of the arrays
can be understood from the magnetization results. In Fig
we plot the calculated magnetizationM as function of the
applied fieldHa for a set of three arrays, each with semisi
ratio b/a of 0.01 and with different separationsh/a50.02,
0.2, and 2, respectively. We also plot the magnetization fo
single strip with b/a50.01 and another one withb/a
50.03 corresponding to the case that the three strips are
on top of each other. One can observe that the general t
is that the saturation magnetization remains the same fo
cases, whereas the initial slope of the magnetization cu
changes. The slope is largest in absolute value for the cas
a single thin strip (b/a50.01), has intermediate values fo
the three arrays~the largest slope is for the array with larg
separation and smallest for the one with the smallest o!,
f

of
is-

ed
FIG. 10. Initial magnetization as a function o
the applied field for, from left to right: a single
strip with b/a50.01, a vertical array of three
strips with b/a50.01 separated a distanceh/a
52, the same array with a separation distance
h/a50.2, the same array with a separation d
tance of h/a50.02, a single strip withb/a
50.03, and a single strip withb/a50.05. In the
inset complete magnetization loops are plott
for the first and last cases.
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FIG. 11. Initial magnetization as a function o
the applied field for, from left to right: a single
strip with b/a50.01, the theoretical expressio
for thin strips~almost overlapped!, a set of three
strips arranged vertically withb/a50.01 each, a
set of 5 strips withb/a50.01 each, a set of 9
strips withb/a50.01 each, a set of 25 strips wit
b/a50.01 each, and the expression given by M
watari ~Ref. 30! for an array of infinite number of
strips of dimensionsb/a50.01. The separation
distance between the strips in all cases ish/a
50.2.
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and finally the case withb/a50.03, which, interestingly, is
hardly distinguishable from the array with the smallest se
ration. The reason for such an enhancement of the in
slope is the demagnetizing effect associated with the la
sample aspect ratio, according to which the thinner
sample, the larger the initial slope.27,24 In the arrays for
which the separation between the strips is small, the m
netic coupling increases, in agreement with the discussio
Sec. III, so that the sample is behaving as having a la
thickness and, therefore, less demagnetizing effects and
initial slope. In order to study in more detail this effect, w
have included in Fig. 10 the calculated magnetization o
single strip withb/a50.05; this strip corresponds to the a
ray with h/a50.02 but as if the gaps between the strips w
filled by superconducting material as well. We can see t
this case has the smallest slope, and there are large d
ences with respect to the case of the array of three strips
separationh/a50.02. From these results we can conclu
that, provided that the strips are close enough, the beha
of a z stack is similar to that of a single strip with a thickne
equal to the sum of the thickness of the superconduc
10451
-
al
e
e

g-
in
er
ss

a

e
at
er-
ith

ior

g

regions of thez stack, and not the total thickness of thez
stack including the gaps.

Another interesting feature to study is the effect of t
addition of more strips to the array. We compare in Fig.
the calculatedM (Ha) curves for arrays with a fixed distanc
(h50.2) and a different number of strips. We include in t
figure the two analytically known limits of one infinitely thin
strip18 and for an infinite set of strips.31 Results show a prac
tical coincidence between the calculated results for a sin
strip with finite although small thickness and the results fro
the analytical formula for very thin strips.18 With adding
more strips, the initial slope of the magnetization~defined as
the magnetic moment divided by volume, so independen
the superconductor volume! gets smaller in absolute value
We find that even the case of 25 strips is significatively d
ferent from the Mawatari case for an infinite stack, so we c
conclude that Mawatari’s formula should be valid only for
very large number of strips. In Fig. 12 we show the mag
tization curvesM (Ha) for arrays of strips separated a larg
distance (h/a52). It can be observed that now the diffe
ences in the slope are smaller than in the previous c
because there is less magnetic coupling among the strip
on
FIG. 12. Same as Fig. 11, but for a separati
h/a52.
7-9
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ENRIC PARDO, ALVARO SANCHEZ, AND CARLES NAVAU PHYSICAL REVIEW B67, 104517 ~2003!
B. Horizontal arrays

We now analyze the results for the magnetization of thx
arrays. In Fig. 13 we plot the calculated magnetizationM as
function of the applied fieldHa for the threex arrays of Figs.
5 and 7. For each stripb/a50.1, and the separation distan
between strips isd/a50.02, 0.2 and 2. The upper figur
shows the results for the isolated strips whereas the da
the bottom part are for interconnected strips.

The magnetization for both isolated and interconnec
strips shows important differences, arising from the differ
current penetration profiles studied in Sec. III. We first d
cuss the results for isolated strips. It can be seen thaM
saturates at smaller values than for the case of interconne
strips and that this saturation value is the same for the
ferent separations. The results for the largest separa
d/a52, are not very different from the results obtained fro
a single strip withb/a50.1, corresponding to the limit o
complete magnetically uncoupled strips, which is also sho
in the figure. An important result is that the initial slope
the M (Ha) curve x0 increases~in absolute value! with de-

FIG. 13. Initial magnetization curvesM (Ha) for x arrays with
three strips withb/a50.1 and several strip separationsd/a for the
cases of~a! isolated strips and~b! interconnected strips. For grap
~a! solid lines correspond tox arrays withd/a52, 0.2, and 0.02
from top to bottom, while the dashed line representsM (Ha) for a
single strip withb/a50.1. For graph~b! solid lines correspond tox
arrays with d/a50.02, 0.2, and 2 from top to bottom and th
dashed line is for a single strip with half-widtha853a and b
50.1.
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creasing separation. The reason for this behavior can
traced back to the presence of the flux compression ef
discussed in Sec. III B, since a smaller separation me
thinner channels and a corresponding larger flux comp
sion. The enhancement of the initial slope can also be
plained by the fact that the strips have to shield not only
external applied field but also the field created by the ot
strips. This enhancement ofx0 has already been predicted
other related situations.31,30,54,37

We have found that the initial slope calculated with o
approach is coincident, within a 4% difference, with th
calculated numerically by finite elements by Fabbricato
et al.30 for the case of 535 and 533 filament matrices with
complete shielding. The initial slope has also been compa
with other works56,57for a single strip for a high range ofb/a
(0.001<b/a<100), obtaining a difference smaller than
1%.

When comparing the results for isolated strip to the c
of interconnected ones, important differences appear.
first difference is that the saturation magnetization in the
ter case is not only larger in general with respect to
isolated case but also depends on the separation. The se
difference is that the trend found when decreasing the se
ration distance between strips is reversed: whereas for
lated strip decreasing separation distanced/a results in a
larger ~in absolute value! slope of the initial magnetization
for interconnected strips the slope gets smaller with decre
ing separation.

We explain the reasons for both differences as follow
The different behavior in the saturation magnetization ari
from the fact that this value corresponds to the magn
moment per unit volume when all the strips are fully pe
etrated. The magnetic moment is proportional to the a
threaded by the current loops, which in the interconnec
case are not restricted to a single strip but they can span f
even one extreme of the array to the other. Actually,
saturation magnetizationMs can be analytically calculated
considering that, for isolated strips, at saturation the6Jc
interface is close to a straight line, so thatMs is the same as
for a single uncoupled strip, beingMs5(1/2)Jca.14,17 For
the case of interconnected strips, the current distribution
saturation isJ52Jcŷ for x>0 andJ5Jcŷ for x<0, so that
Ms can be calculated as

Ms5
Jca

2 F11
d

2aGnf ,x ~nf ,x even!, ~7!

Ms5
Jca

2 Fnf ,x1
d

2a S nf ,x2
1

nf ,x
D G ~nf ,x odd!, ~8!

wherenf ,x is the number of strips in thex direction for either
an x array or anxz matrix.

As to the initial slope of theM (Ha) curve, in the case of
interconnected strips the flux compression effect discus
above does not exist, so the reason for the behavior of
initial slope of theM (Ha) curve must be a different one. Th
governing effects now are the demagnetizing effects aris
from the large aspect ratio of thex array taken as a whole
The demagnetizing effects tend to enhance the ini
7-10



r
im
th
r

the

tion
the
the
the
the
be

to

for

is
ted

n
ar-

r a
a-

n
a-

of

e
the

n
the
e

MAGNETIC PROPERTIES OF ARRAYS OF . . . PHYSICAL REVIEW B 67, 104517 ~2003!
slope27,58,45 when the sample aspect ratio increases. The
fore, when the separation is small the array is behaving s
larly to a single strip with the same thickness but 3 times
width, which shows less demagnetizing effect and, as a

FIG. 14. Initial magnetization curvesM (Ha) for xz matrices
with 333 strips of dimensionsb/a50.1, for h/a50.2 and several
values ofd/a for the cases of~a! isolated strips and~b! intercon-
nected strips. For graph~a! curves correspond tod/a52, 0.2, and
0.02 from top to bottom. For graph~b! curves correspond tod/a
50.02, 0.2, and 2 from top to bottom.
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sult, a smaller~in absolute value! initial slope of the magne-
tization.

Another feature observed in the interconnected case is
observation of a kink~change in the slope! in the magneti-
zation curve, particularly for the cases of a large separa
between strips. This effect is explained as follows. Since
magnetic moment is proportional to the area enclosed by
loops, currents in the external strips contribute more to
magnetization than those in the inner ones. So, when
external strips become saturated, new current can only
induced in the central strip, having a lower contribution
the magnetizationM, so that theM rate whenHa is increased
is lower in magnitude; a similar effect has been predicted
rings in the critical-state model.52 In a single strip or even in
the case of anx array with isolated filaments, this process
continuous, but not in the present case of interconnec
strips separated a horizontal distance.

C. Matrix arrays

The magnetization ofxy matrices is again a combinatio
of the effects discussed above for horizontal and vertical
rays. In Fig. 14 the initial magnetization curveM (Ha) for xz
matrices with the same vertical separation is plotted, fo
vertical separationh/a50.2, and several horizontal separ
tions d/a. The curves are qualitatively similar to those forx
arrays and the same values ofd/a, so that the discussion
done forx arrays is still valid. The main difference betwee
x arrays andxz matrices lies in both the value of the satur
tion field Hs , that is, the field whichM reaches its saturation
value, and the magnitude of the initial slope. For the case
both isolated and interconnectedxz matrices,Hs is higher
than forx arrays, while the initial slope is lower. This is du
to the reduction of the demagnetizing effects owing to
stacking in thez direction.31,30 Moreover, the differences
mentioned of theM (Ha) curve betweenx arrays and matri-
ces would be qualitatively the same if we considered ax
array with a larger filament thickness. Detailed results of
magnetization ofxz matrices calculated by our model will b
presented elsewhere.
il-
c
,

t.
FIG. 15. Imaginary part of the ac susceptib
ity, x9, as a function of the amplitude of the a
field Hm corresponding to the curves of Fig. 10
in the same order~the case of a single strip with
b/a50.05 is not plotted in this figure!. The cor-
responding power losses are shown in the inse
7-11
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FIG. 16. Imaginary part of the ac susceptib
ity, x9, as a function of the amplitude of the a
field Hm corresponding to the curves of Fig. 11
in the same order.
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V. ac LOSSES

A. Vertical stacks

In this section we study the imaginary part of the ac s
ceptibility, x9, calculated from the magnetization loops fro
Eq. ~5!. Herex9 is directly related to the power losses by E
~6!.

We present in Fig. 15 the calculated results forx9 as
function of the maximum applied ac fieldHa corresponding
to the magnetization curves of Fig. 10. All curves show
peak at some value of the applied field amplitude. It can
seen that the peak corresponding to the maximum inx9 @and
therefore a change in slope of the ac losses, since they
proportional tox9 timesHa

2 as seen in Eq.~6!# is shifting to
higher fields and decreasing in magnitude with decreas
separation distance. The reason for that can be obtained
the analogous shifting in the initial slope of the magneti
tion shown in Fig. 10. Since the ac losses are related to
area of theM (Ha) curve @Eqs. ~5! and ~6!# and the magne-
tization saturation is the same for all cases, the key factor
the loss behavior is the initial slope governed by the dem
netizing effects as discussed in Sec. IV.
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The results in Fig. 15 show that thex9(Ha) curve goes as
Ha

n for low fields, with n ranging from 1.5 for a strip with
b/a50.01, corresponding to the highh/a limit for a z stack,
to 1.3 for a strip withb/a50.03, being the low-h/a limit for
arrays. These values lie between the known limiting valu
for infinite slabs (n51) ~Ref. 14! and thin strips (n52).
The corresponding power losses@related tox9 by Eq. ~6!;
see inset# go therefore asHa

n , with n ranging from 3.5 to 3.3.
For high fields,x9 goes asHa

21 in all cases.
In Figs. 16 and 17 we calculate the results forx9 as func-

tion of the maximum applied ac fieldHa with the goal of
studying the effect of adding more strips in the array. We u
the same cases as in Figs. 11 and 12, corresponding to
different separations in the arrays (h/a50.2, and 2, respec
tively!. Again, there is a close relation between the incre
in the initial slope of the magnetization curves and the sh
ing of the position of the peak inx9 to higher fields. It is
interesting to comment, however, that the formulas provid
by Mawatari for the case of an infinite array are not adequ
to describe quantitatively the ac losses of a finite array e
if the array consists of up to 25 strips.
il-
c
,

FIG. 17. Imaginary part of the ac susceptib
ity, x9, as a function of the amplitude of the a
field Hm corresponding to the curves of Fig. 12
in the same order.
7-12
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FIG. 18. Imaginary ac susceptibilityx9 as a
function of the ac applied field amplitudeHac cor-
responding to theM (Ha) curves showed in Fig.
13 for x arrays. The strips dimensions areb/a
50.1. Solid lines are for the case of interco
nected strips ford/a52, 0.2, and 0.02 from top
to bottom, while dashed lines are for isolate
strips withd/a50.02, 0.2, and 2 from top to bot
tom.
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It is clear from the calculations presented in this sect
that in order to reduce the magnetic contribution to the
losses in a real superconducting tape with az-stack geometry
one should increase the coupling of the filaments by decr
ing the distance between them~see Fig. 15!. Also, the results
in Fig. 16 and 17 show that the ac losses decrease
increasing the number of filaments while keeping the d
tance between them, particularly in the case of a small se
ration (h/a50.2, Fig. 16!. These results can be understo
again as arising from the effect of demagnetizing fiel
When the superconducting strips are separated a small
tance, the whole array is acting basically as a single su
conducting tape with a thickness equal to the sum of
thickness of the strips, so the demagnetizing effects are
the initial magnetization has a smaller slope~in absolute
value! as discussed in Sec. V, and the area of the hyster
loops is less for a given maximum applied ac field, so t
the ac losses are reduced. On the other hand, when the
ration of the strips gets larger, the magnetic coupling
tween them is less so that they act more like magnetic
decoupled filaments with high aspect ratio and the demag
tizing effects act more, increasing the ac losses. It is inter
ing to notice that when we talk about the separationh being
small one should understand it as small compared with
horizontal dimension 2a and not to the strip thickness 2b.
Calculations of the same values ofh/a for the caseb/a
50.1 ~instead of b/a50.01 as in the results presente
above!, for example, yield qualitatively the same effects f
the sameh/a values.

B. Horizontal arrays

In this section we study the imaginary part of the ac s
ceptibility, x9, calculated from the magnetization loops o
tained in Sec. IV, which can be easily related to the
losses.59 In Fig. 18 we present calculated results forx9 as
function of the ac field amplitudeHac for the samex arrays
discussed in the previous sections~with b/a50.1 and differ-
ent separation distancesd/a52, 0.2, and 0.02!. The two dif-
ferent cases of interconnected and isolated strips are
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together for comparison. The results show that the gen
trend is the appearance of a peak in thex9 curve~and there-
fore a change of slope of the ac losses!. This peak, however,
is wider for the case of isolated strips~also shown in the
figure!, especially on the left part of the peak. This effect h
been experimentally found in several works.28,29,60,61Actu-
ally, the cause of the disagreement between theoretical
dictions and experiments in these works is that they u
models for single strips or disks, which yielded narro
peaks. Our model allows for the explanation of this effe
Concerning hysteresis losses only, as we do in this work,
reason for this widening of the peak is that theM (Ha) curve
becomes nonlinear at small applied field values becaus
the penetration of magnetic flux not only in the outer surfa
regions of the strips but also in the channels between str
where the field intensity is enhanced. This deviation fro
linearity in the M (Ha) curve results in an increase of th
loss.

We also find that decreasing the distance between s
results in a higher or a smaller value of the peak, depend
upon whether we are considering the isolated or interc
nected case, respectively. This dependence on the separ
distance is only slight for the case of isolated strips and m
more evident for the interconnected ones. These results
be understood from the magnetization curves of Fig. 13
which we observe two important properties: the initial slo
of the magnetization curve for interconnected strips increa
~in absolute value! with increasing distance between strip
while it decreases for isolated strips, and, most important,
interconnected strips, the saturation magnetization has
different values for the different separations, while it rema
almost constant for isolated strips. All these effects ha
been explained in Sec. IV. Another characteristic observe
the two upper curves of Fig. 18 is a kink at a particular fie
value that is directly related to the presence of a similar k
in the magnetization data shown in Fig. 13. This kink w
already predicted for rings52 and later experimentally
observed.62 Furthermore, experimental evidence of a kink
actual superconducting tapes was shown for the case
7-13
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FIG. 19. Imaginary ac susceptibilityx9 as a
function ofHac for x arrays with several number
of strips nf ~solid lines!, corresponding tonf

59, 5, 3, 2 from top to bottom, compared to
single strip~dashed line! and the analytical limits
for a single thin strip~lower dotted line! and an
infinite x array of thin strips~upper dotted line!.
The strips dimensions areb/a50.01.
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Ag/Bi-2223 tape with the superconducting core shaped a
circular shell63 or two concentric elliptical shells.40

Another interesting result for thex9 calculations is shown
in Fig. 19, where we show the calculated results forx arrays
of several strips withb/a50.01 with a fixed separation dis
tance ofd/a50.02. Results are shown for arrays of tw
three, five, and nine strips. We consider the isolated st
case, in order to compare our results with the analytical p
diction for an infinite array of Mawatari.31 We also include
the calculated result for a single strip withb/a50.01 as well
as the same curve calculated from the analytical formulas
thin strips.18 On the other limit, we check that the results f
a large number of strips tend to the analytical results
Mawatari,31 although 9 is not a sufficient number for a
proaching the limiting case~higher number of strips yield
values closer to Mawatari’s results; not shown for clarit!.
The general trend observed is that the losses increase
the number of strips is due to the fact that the effect of
channels discussed above increases for higher numbe
strips.30,54,37
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C. Matrix arrays

In Fig. 20 we present the dependence ofx9 upon the ac
applied field amplitudeHac for xz matrices withb/a50.1,
h/a50.2, and several values ofd/a. It can be seen that the
qualitative variations of thex9(Hac) curve when considering
isolated or interconnected strips is the same as forx arrays,
as well as the effect of changingd/a. However, forxz ma-
trices there is both a reduction of the peak in thex9(Hac)
curve and a shifting to higherHac values. These facts can b
explained returning to the initial magnetization curves
Figs. 13 and 14, where the initial slope was lower for allxz
matrices and the saturation field was higher. A detailed st
of the ac losses from thex9 values, including the real part o
the susceptibility,x8, for xz matrices will be presented else
where.

VI. CONCLUSIONS

We have presented a numerical model for calculating c
rent penetration profiles and field lines and magnetizat
e

FIG. 20. Imaginary ac susceptibilityx9 as a
function of Hac corresponding to theM (Ha)
curves showed in Fig. 14 forxz matrices. The
strips dimensions areb/a50.1 and the vertical
separation is fixed, beingh/a50.2. Solid lines
are for the case of interconnected strips ford/a
52, 0.2, and 0.02 from top to bottom, whil
dashed lines are for isolated strips withd/a
50.02, 0.2, and 2 from top to bottom.
7-14
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and ac losses of arrays of superconducting strips. In
work we have analyzed the cases of arrays arranged in
tical, horizontal, and matrix configurations. We have fou
that the demagnetizing effects have strong influences on
the magnetic response of the tapes and the ac losses ap
ing when an ac magnetic field is applied.

For vertical stacks of strips, we find that the intial ma
netization~in absolute value! and the ac losses are reduc
when decreasing the vertical separation between filame
When the vertical separation is small as compared with
filaments width, then the array is behaving as a single fi
ment with thickness the sum of the superconducting mate
These results could be used as guides for designing a
superconducting tapes. Then, in order to optimize the los
for filaments with a fixed aspect ratio, it is preferable to ha
a large number of them separated small distances so
there is a good magnetic coupling between them, as has
already experimentally found.28

For horizontal and matrix arrays, the different cases
isolated and completely interconnected strips have been
cussed separately. Current penetration results show
whereas in the interconnected cases the filaments mag
cally shield the whole internal volume of the array, in t
case of isolated strips, the shielding is within each of the
The latter effect in the isolated strip case creates channe
field compression between the strips, particularly when
separation distance between them is small. These chan
govern the magnetic and ac losses properties of the arra
isolated strips. Because of them, when decreasing the h
zontal distance between strips, the initial slope of the m
netization curve increases~in absolute value!, and, corre-
spondingly, there are larger ac losses. Moreover,
experimentally found effect of a widening of the peak in t
imaginary part of the ac susceptibility can be explained
the same effect. On the other hand, for the case of interc
nected strips, the trend is the opposite: decreasing the h
zontal distance between strips reduces both the initial s
of the magnetization curve and the ac losses. The eff
governing these latter features are now the demagneti
effects: when strips are close to each other they behave
single strip with smaller aspect ratio and, therefore, w
smaller demagnetizing effects.

The magnetic properties of superconductor matrix arr
are a composition of those for horizontal and vertical arra
A result of practical importance is that ac losses are redu
when decreasing the vertical separation between strips in
tape, because when stacking strips in the vertical direc
they behave as thicker strips and therefore have less de
netizing effects and less ac losses.

In the present version, the model cannot be used to
study of the case in which a transport current flows in
array in addition to those induced by the applied magn
field. This extension will be presented elsewhere.
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APPENDIX A: FIELD OF FULL PENETRATION

In this appendix we present a simple way to analytica
calculate the field of full penetration of the array,Hpen, de-
fined as the minimum applied field in the initial magnetiz
tion curve for which current fills the whole of the superco
ducting region. The penetration field can be calculated
general as minus the field generated by the current distr
tion HJ in the last induced current point, wher
HJ5HJẑ.24,64So both the current distribution at the penetr
tion field and the last induced current point positionrm must
be known to calculateHpen.

1. Vertical arrays

In the geometry of a set of rectangular cross-section st
ordered as az stack we can distinguish two different case
depending on whether the number of stripsnf is odd or even.
Although in both cases the current distribution atHpen is
evident, it is not so forrm . The last induced current point ca
be found as where the field generated by the current
maximum in magnitude, sincerm is the last point where
external field is shielded. For the odd number of strips ca
rm is simply the position of the center of the central str
although it is not so easy to determine when the numbe
strips is even.

For az stack of an odd number of stripsnf with dimen-
sions 2a and 2b in thex andz directions separated a distanc
h the penetration field is therefore

Hpen~a,b,h,nf !

5
Jc

2p FF1~0,a,b!12 (
i 51

(nf21)/2

F1~~2b1h!i ,a,b!G
~nf odd!, ~A1!

whereF1(u,t,d) is defined as

F1~u,t,d!52tH arctan
u1d

t
2arctan

u2d

t J
1~u2d!lnF ~u2d!2

t21~u2d!2G
1~u1d!lnF ~u1d!2

t21~u1d!2G . ~A2!

Equation~A1! has been derived using the expression for
magnetic field created by a completely penetrated strip w
uniform Jc calculated by direct integration of the Biot-Sava
law. The casenf51 reproduces the known result for th
penetration field for a strip.24

As mentioned above, when az stack has an even numbe
of strips we must find the last point where current is induc
at which the self-fieldHJ is maximum in magnitude. Owing
to the symmetry of the current fronts in theyz plane, this
point will be on thez axis. Thus, only maximization ofHJ,z
7-15
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along thez axis is needed. Since the maximization of t
field HJ,z is different for every specific value ofnf , we only
report the result fornf52, which is the most important cas
concerning the magnetic coupling, for an evennf . Then, the
last induced current point will be at a position

zm
2 5

1

2
@2a22hb

1A~a21hb!21hb~2a21h2/212b21hb!#,

~A3!

zm being thez component ofrm and b defined asb52b
1h/2. The penetration field for two strips is

Hpen~a,b,nf52!5
Jc

2p
@F1~zm2b2h/2,a,b!

1F1~zm1b1h/2,a,b!#, ~A4!

where the functionF1(u,t,d) is defined in Eq.~A2!.

2. Horizontal and matrix arrays

For x arrays andxz matrices we differentiate again tw
cases depending on the way that the strips are connect
infinity: completely interconnected strips and current isola
strips.

a. Completely interconnected strips

For this case, the volume current density at the pene
tion field is J52Jcŷ for x.0 andJ5Jcŷ for x,0.

When both the number of strips in thex axis nf ,x and in
the z axis nf ,z are odd, the last induced current pointrm is
simply the center of the central strip. Using the Biot-Sav
law to calculateHJ,z(r50), we obtain

Hpen,matrix~nf ,x ,nf ,z!

5Hpen,stack~nf ,z!1
Jc

2p F2 (
i 51

(nf ,x21)/2

F2„~2a1d!i ,0,a,b…

14 (
i 51

(nf ,x21)/2

(
j 51

(nf ,z21)/2

F2„~2a1d!i ,~2b1h! j ,a,b…G ,

~A5!

whereHpen,stackis the penetration field for az stack and the
function F2(u,v,t,d) is defined as

F2~u,v,t,d!5~u2t !FarctanS v2d

u2t D2arctanS v1d

u2t D G
1~u1t !FarctanS v1d

u1t D2arctanS v2d

u1t D G
1

~u2d!

2
lnF ~u2t !21~v2d!2

~u1t !21~v2d!2G
1

~u1d!

2
lnF ~u1t !21~v1d!2

~u2t !21~v1d!2G . ~A6!
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The penetration field for anx array with an odd number o
strips is the same as in Eq.~A5! but removing the term with
the double sum and takingnf ,z51.

When eithernf ,x or nf ,z are even, the last induced curre
point is not easy to be determined. In those strips that cur
returns through the same filament, the total magnetic fi
increases monotonically from the edges of the strip to
current profile. Whennf ,x is odd andnf ,z is even the last
strips to be fully penetrated are those in the central colu
and in the inner rows. Then, the last induced current po
rm , whereHJ,z(rm)52Hpen, is on thez axis and can be
determined as the point whereHJ,z is maximum in absolute
value. Whennf ,x is even, we have found no way to analyt
cally calculaterm andHpen.

b. Current isolated strips

As discussed in Sec. III B, the current interface at t
penetration field is almost a vertical straight line at the cen
of the strip. We have found that this approximation is re
sonable even for strips with a ratiob/a as large asb/a51.

Whennf ,z is odd, the last penetrated current point is at t
center of the strips belonging to the central row and the m
external columns. This is so because external rows sh
inner ones and external columns increase the field on
inner ones. Then, using the Biot-Savart law and assum
straight current interfaces, the penetration field for anxz ma-
trix with odd nf ,z is

Hpen,matrix~nf ,x ,nf ,z!5
2Jc

2p F (
i 50

nf ,x21

F3„~2a1d!i ,0,a,b…

12 (
i 50

nf ,x21

(
j 51

(nf ,z21)/2

F3

3„~2a1d!i ,~2b1h! j ,a,b…G ,

~A7!

where the functionF3(u,v,t,d) is defined asF3(u,v,t,d)
5F2(u2t/2,v,t/2,d)2F2(u1t/2,v,t/2,d). Notice that Eq.
~A7! is valid whennf ,x is either odd or even, while Eq.~A5!
is only valid for an oddnf ,x . The penetration field for anx
array is the same as described in Eq.~A7! but removing the
term with the double sum.

APPENDIX B: CALCULATION OF INDUCTANCES

In this appendix we calculate the self- and mutual indu
tances used in Eq.~3!. These inductances are calculated f
closed circuits of the shape of a pair of identical rectangu
infinite prisms of dimensions 2a832b8 carrying uniform
current density. The prisms are set symmetrically to thezy
plane, taking they axis parallel to the infinite direction. The
current of the prism set in thex>0 region is taken positive
while it is taken negative for the other.

The self- and mutual inductances are calculated from
magnetic energy using the equation48
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Mi j I i I j5Wi j 5E
xi2a8

xi1a8
dxE

zi2b8

zi1b8
dzAy, j~x,z!Ji

2E
2xi2a8

2xi1a8
dxE

zi2b8

zi1b8
dzAy, j~x,z!Ji , ~B1!

whereMi j is the mutual inductance per unit length of tw
closed circuits labeled asi and j, respectively,I i and I j are
the current intensity flowing through the circuits,Wi j is the
magnetic energy per unit length of the circuits, (xi ,zi) is the
central position of the prism in thex>0 region of thei
circuit, a8 andb8 are the dimensions of the prisms in thex
andz directions, respectively, andAy, j is they component of
the vector potential created by the circuitj taking the gauge
¹•A50.

The vector potentialAy, j can be calculated by direct inte
gration, leading to

Ay, j~x,z!5
m0Jj

2p
@F~x2xj ,z!2F~x1xj ,z!#, ~B2!

where the functionF(u,v) is defined as

F~u,v !5 f ~a82u,b82v !1 f ~a82u,b81v !

1 f ~a81u,b82v !1 f ~a81u,b81v !, ~B3!

defining f (t,d) as
ii

nd

en

n

pl

ni,
.

D.

ns

.
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f ~ t,d!5
1

2 F td ln~ t21d2!23td1t2arctan
d

t
1t2arctan

d

t G .
~B4!

Taking into account that the current density in the pris
is uniform, Mi j can be deduced integrating Eq.~B1! using
Eqs.~B2!–~B4!, which yield

Mi j 5
m0

16pa82b82
@G~xj2xi ,yj2yi !2G~2xj2xi ,yj2yi !#,

~B5!

where the functionG(u,v) is defined as

G~u,v !5 (
k,l ,n,m51

2

~21!k1 l 1n1mg„R~k,n!a8

1u,R~ l ,m!b81v…, ~B6!

definingR( i , j )5(21)i2(21) j , and the functiong(t,d) as

g~ t,d!5
25

48
t2d2 2

dt3

6
arctan

d

t
2

td3

6
arctan

t

d

1
1

48
~ t41d426t2d2!ln~ t21d2!. ~B7!
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