PHYSICAL REVIEW B 67, 104517 (2003

Magnetic properties of arrays of superconducting strips in a perpendicular field
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Current profiles and field lines and magnetization and ac losses are calculated for arrays of infinitely long
superconducting strips in the critical state in a perpendicularly applied magnetic field. The strips are arranged
vertically, horizontally, and in a matrix configuration, which are the geometries found in many actudligh-
superconducting tapes. The finite thickness of the strips and the effects of demagnetizing fields are considered.
Systematic results for the magnetization and ac losses of the arrays are obtained as function of the geometry
and separation of the constituent strips. Results allow us to understand some unexplained features observed in
experiments, as well as to propose some future directions.
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[. INTRODUCTION hysteresis losses. Many experimental works showed that the
hysteresis losses depend strongly on the orientation of the
High-temperature superconductifigTSC) cables have a external ac field:=*3 It is shown that the hysteresis losses
large potential for many applications where very high currentunder an applied fieltH, perpendicular to the wide face of
intensities are needed, such as power transmission cabldbg HTSC tapes are more than one order of magnitude higher
magnets, superconducting magnetic energy storage systentisan if H, is either parallel to the wide face or in the trans-
transformers, and motot<. In particular, silver-sheathed port direction.
Bi,Sr,Ca,Cu;044 (Ag/Bi-2223) tape conductors appeared to A very convenient way to study hysteresis in supercon-
be the HTSC most used for practical devices, due to the gooductors is within the framework of the critical-state motfel,
superconductor material quality and the feasibility to makewhich assumes that currents circulating in the SC’s flow with
kilometer-long cables. Many of the HTSC cables applica-a constant density., later extended to currents depending
tions work under ac conditions, like power transmissiononly upon the local magnetic field; .15 The original model
cables, transformers, and motors. An important problem fowas solved in the parallel geometry, that is, for applied fields
the superconducting power devices operating at ac intensitigs, along an infinite dimension for slabs and cylind&ts'®
is caused by their power lossésyhich must be reduced as because in these geometries the problem of the demagnetiz-
low as possible to justify the expenses of the superconducing effects was not present. A further step was presented
ing material and the cryogenic system. We can distinguistwhen the critical-state model was extended to the case of
between self-field ac losses, that is, the power losses due te@ry thin strip$®=2°and disks’}~23for which important de-
transport current inside each conductor, and the magnetic anagnetizing fields were involved. More recently, the more
losses due to a magnetic field external to the conductogeneral case of a critical state in samples with finite thick-
which we deal with in this work. The latter kind of losses areness, such as striffsand cylinder€>~?" was solved by nu-
important for devices where a high magnetic field is presentmerical models.
like magnets and transformers. In spite of this progress, there is no theoretical model that
Magnetic ac losses critically depend on the superconsatisfactorily describes the losses of multifilamentary tapes
ductor wire geometr§:® As was pointed out in Refs. 4—6, under perpendiculaH,.?®%° This general problem has not
dividing the superconductor wire into filaments reduces thébeen systematically solved, although there have been some
magnetic losses. Moreover, it is known that dividing superworks offering partial solutions. Fabbricatoet al>° pre-
conducting wires into filaments and immersing them into asented a comprehensive analysis of the Meissner state in ar-
conducting matrix makes the wire more reliable underrays of strip lines arranged verticallg tack of stripg hori-
quenching'® In addition, it is shown that for Ag/Bi-2223 zontally (x array$ and in the form of a matrix(z array and
tapes, the superconducting properties improve when the seompared their results with actual measurements on mul-
perconducting region is divided into filaments with a high tiflamentary tapes. Their numerical procedure, however, was
aspect ratid:® For these reasons, the latter is the HTSC wirenot adequate to study the more general case of bulk current
geometry most often met in practice. penetration. Mawatatt studied not only the Meissner state
The magnetic ac losses in multiflamentary tapes havéut also the critical state for the case of an infinite set of
their origin in mainly three mechanisms. They are the eddysuperconducting strip lines arranged periodically in the ver-
currents in the conducting sheath, the magnetic hysterest&al or horizontal directions, in the limit that the strip lines
arising from the flux pinning in the superconductor, and thewere infinitely thin. Mawatari and Cleth studied the pen-
interfilament currentgalso known as coupling currentthat  etration of magnetic flux into current-carryingnfinitely
flow across the conducting matftX Although it is somehow  thin) strips lines with slits in the absence of applied magnetic
understood how to reduce the eddy and coupling currentield. All the existing models assume either arrays of infi-
losses’®important work remains to be done concerning thenitely thin strips in the critical state or arrays of strips with

0163-1829/2003/61.0)/10451718)/$20.00 67 104517-1 ©2003 The American Physical Society



ENRIC PARDO, ALVARO SANCHEZ, AND CARLES NAVAU PHYSICAL REVIEW B67, 104517 (2003

finite thickness but only in the Meissner state. The only ex-and mirror symmetry to the vertical plane. However, we will
ception we know is the recent work by Tebaabal®® in  focus onz stacks,x arrays, andxz matrices made up of
which preliminary results on the current penetration anddentical strips infinitely long in the direction.
magnetization were calculated for some realistic arrays based Our numerical model is based on minimizing the mag-
on the procedure developed by Brafitit. . netic energy of the current distribution after each applied
A key issue in the study of superconducting tapes is howie|d variation. We name this model the minimum magnetic
currents circulate in the filaments. There are two importangnergy variation procedure, thereafter referred to as MMEV.
cases conceming this point, depending on whether the Cuirhe model assumes that there is no equilibrium magnetiza-
rentin each filament is restricted to go and return through the ., in the superconductor. In this paper, we further assume

same filament or if there is no such restriction. The desire hat there is no field dependence &f for simplicity. The
case for ac magnetic losses reduction in real HTSC tapeénergy and flux minimization in the critical state was previ-
occurs when current is restricted to return through the Samgusly discussed by Badisetal® and Chaddah and

; 4-6,34 ; . .
filament. We refer to this case as isolated filaments. The, " o4 0 4344 Tha details of the general numerical model

other case is when current can go in one direction in a givelgan be found in Refs. 27 and 45—47. The approach has been

lamnt st ey tver e We o b Lt ) S e et e
pietely : served in the initial magnetization sldpas well as the

limiting Caésse_ggof flaments with a high number of 0 magnetization loop and levitation fofé&° of super-
mtergrowth or when coupling currents through the con- conducting cylinders. We now outline the main characteris-
ducting matrix are of the same magnitude as the SUPErcon:. 5t the model

H 0,34,40,41 H H
ducting currents’ As explained in these references For cylindrical geometr§52746 the superconducting re-

and below, the magnetic behavior for each of these two flla-gion was divided into a certain number of elements of the

ment connection case is strongly different. Therefore, a de'hape of rings with rectangular cross section, which formed

;{ﬁgﬁﬁjeSttLI’J]((jaieOIW?)CCESSeSSeSTweSSl:rpOeanO dr:#grcélr?ge ?r?télgﬁsﬁjr;ormgircular closed circuits. For a given current distribution in the
' 9 linder, the energy variation of setting a new current in a

interconnected or isolated strips can be realized in the current, ;"o ment was calculated. The minimum energy varia-
profiles field lines shown in Figs. 6 and 7 for matrix arrays. ;. method consists in given ;':m applied fiéld, looking

In th'.s paper we study the current and field penetratlor!sfor the circuit which lowers the most the magnetic energy
magnetization, and ac losses of arrays of superconductlngnd set there a new current of magnitutie and then re-
strips of finite thickness. We first present the model and its 9

D . eating the procedure until setting any new current does not
application to the case of an array of a finite number o : )
N . . ) ) reduce the energy. The method as explained above is used to
infinitely long strips of finite thickness arranged vertically (

stack of finite stripswith a perpendicular applied field. This fmd the _|n|t|aI magnetization curil;(H,). Provided thal, .

. X . o is field independent, the reverse curve can be found using
geometry is studied first because it is independent of th 3
connection type, since as a result of the system symmetry,
current always go and return through each strip. We then M. (H) =M (H)—2M.T(H-—H.)/2 1
study the cases of horizonték) arrays and matricesxg red(Ha) = Mi(Hr) L(Hn—Ha/2] @
matrix), for which different behaviors arise depending on theand the returning curve using
connections. In all cases, we will concentrate our study on
arrays composed of strips with high aspect ratio since this is MielHa) =—M(—Hyp), 2

the case most often met with in practice, although our model h is th . lied field in the |
is applicable to arrays of strips with arbitrary thickness. Our’V ereHy, is the maximum applied field in the oop.
In the present case of arrays of superconducting strips, we

approach, therefore, is more general than assuming the ap- . L )
proximation of considering infinitely thin strips as in Ref. 31, divide each strip into a set ofrgx 2n, elements with cross

since we take into account the different current penetratio§€ction @x)(Az) and an infinite length iry direction, as
across the superconductor thickness. shown in Fig. 1. The horizontal and vertical dimensions of

The paper is structured as follows. In Sec. Il we presenth€ Strips are @ and 2, respectively. The dimensions of
the calculation model. Current and field profiles are calcu€ach element arax=a/n, and Ay=b/n,. The separation
lated and discussed in Sec. lll. The results of magnetizatioRf thexz-matrix rows ish and the separation of columnsds
and magnetic ac losses are discussed in Sec. IV and V, ré Z Stack and ax array can be considered as a matrix with
spectively. Finally, in Sec. VI we present the main conclu-& Single column and row, respectively, as shown in Fig. 1.
sions of this work. The full penetration fields fearrays and Ve consider that the current density is uniform within the
xz matrices can be analytically calculated, being described i§l€ments and flows through the whole element section and
Appendix A, whereas the analytical formulas for the induc-not only through a linear circuit as in Refs. 27, 45, and 46. A

tances used in the model are described in Appendix B. s%atial(ljy uniform applied fieldH, in the z direction is con-
sidered.

Il. MODEL The main condition for applying the model is that one has
to know in advance the direction of currents. In the case of
arrays andxz-matrix arrays this issue has to be dealt with
The model we present here is suitable for any superconsarefully; we will discuss about it in the next section. How-
ductor geometry with translational symmetry alongytexis  ever, the case of astack presents no difficulty since in this

A. General formulation and vertical array case
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N
Ax z Ha m
M= 4abnf 4abry 2 (2%), @

} Az

wherem, is the total magnetic moment of the set of strips.
The two nonzero components of the total magnetic flux
density,B, andB,, are calculated as the addition of all the
H 7 closed-circuit contributions, which can be calculated analyti-
> cally integrating the Biot-Savart laff.

The magnetic flux lines are calculated as in Ref. 24 using
}’h that for translational symmetry the level curves of yrmom-
ponent of the vector potential, for the gaugeA=0, can be
2b taken as the magnetic flux lines. Tlyecomponent of the
vector potential results from the contribution of all the ele-
ments pairsA,;, whose analytical expressions are Egs.
2a d (B2)—(B4).

FIG. 1. Sketch of the array of superconducting strips. ¥&n We will consider the application of an external ac field
matrix is drawn, although all the parameters described are also valifila= HmCOS@t). In this case we can calculate the imaginary
for z stacks(corresponding to a single column of stiigmdx arrays ~ part of the ac susceptibilityy”, defined as
(corresponding to a single row of strip3hey axis is perpendicular
to the plane and it is oriented inwards.

——

. 2 Hm
X"= red 0)SiN 6= 2f dHM el(Ha).
7THm _Hm

case the induced current front is also symmetrical with re- 5)
spect to thezy plane. Thus, we can consider that the pair of
elements centered at,) and (—x,z) form circuits that are
closed at infinity. This grouping in pairs, forming closed cir- X
cuits, allows for the analytical calculation of self- and mutual
inductances per unit length of the circuits with finite cross
section(see Appendix B for inductance derivations and for-
mulag. The pairs, or circuits, are labeled using the subscript B. Horizontal and matrix array cases
i from 1 toN=2n,n,n;, n; being the number of strips of the

set andN the total number of elements in tlke=0 portion of , . . .
. trices we need to consider two different cases of filament
the set of strips.
connection—when the filaments are all interconnected or

Once the analytical expressions for the inductances aré
When they are isolated to each other—so the model presented
obtained, the energy of thecircuit can be calculated as
above has to be generalized to include these cases.

We now discuss two features that are needed to apply the

The energy los®V per ac cycle of amplitudél , is related to
" by the expressioit?®

W= pwomH2x". (6)

As explained above, for the casesxoérrays andkz ma-

1 MMEYV procedure to any superconductor geometry; this will
Ei= 2 Mijljli+3 MHII +2uoHXili, ) help us to determine which modifications, if necessary, have
]#I to be done to adapt the MMEV procedurextarrays andz
matrices.

where the first two terms are the energy of the circuit owing The first condition to apply the MMEV procedure is that
to the presence of the current distribution in the whole suone needs to know the shape of the closed current loops of
perconducting region, the third term is the energy due to théhe magnetically induced current for any applied field value
uniform applied magnetic fieldVl;; are the self- and mutual H,. For cylinders the closed current loops were simply
inductances from Eq$B5)—(B7), andl; andl; are the total circular?’*° while for z stacks they are made up by an infi-
current intensity that flows through the circuits labeled as nite straight current in thg direction centered atx(z) and
andj, respectively. Since no internal field dependence is conby another centered atx,z), which form a closed circuit
sidered for the critical current);|=(Ax)(Az)J.. The sign at infinity.
of I; is taken as positive when the current of the element at Another feature that has to be taken into account in order
x=0 of the pair follows the positivey axis direction and to apply the numerical method described in this workxto
negative otherwise. arrays andxz matrices is the sign of the induced current,
In the initial magnetization curve, after using the energyonce the shape of the closed current loops is known. For
minimization procedure for a given applied fieft], to find ~ geometries such as rectangular strips and disk&**23el-
the current profile, we can calculate the magnetization, théiptical tapes’®~>' and z stacks! current in the initial mag-
total magnetic field, and the magnetic field lines directlynetization curve is the same for all circuits. However, this

from the current distribution. feature it is not so obvious for geometries with gaps in the
The magnetization, defined as the magnetic moment pdrorizontal direction likex arrays andkz matrices.

unit volume, has only one nonzero componéfy, which As explained in the following subsections, the applicabil-

can be calculated as ity of the two features mentioned is different when consider-
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ing interconnected or isolated strips. So the adaptation of the
MMEYV procedure to the two different connection cases must
be considered separately.

1. Interconnected strips

For the present case of arrays andxz matrices with
completely interconnected strips the two features presented
above are the same as the cases of cylinderszastdcks
presented above. This can be justified as follows.

First, the closed circuits to be used in the simulations are
the same as for stacks, which are each pair of current ele-
ments centered at(z) and (—x,z), Fig. 1. This is due to
the mirroryz symmetry of the system and the fact that the

strips are interconnected at infinity so that currents belongin%nol those used in the simulatitiashed thick lines The case of an

to different strips can be closed. X array with two strips is drawn for simplicity. Four current ele-
Second, the fact that in the initial magnetization curve the y P plcity.

. . AR . ments are represented as elongated thin rectangular prisms where a
current is negative in all the circuits is. also valid _for the single straight current flows following theaxis.
present case. We arrived at this conclusion after doing some
preliminary numerical calculations, in which we changed theclosed current loop in a strip at the=0 zone, there is an-
original numerical method, letting the procedure to choosether current loop set symmetrically in the corresponding
which sign in each circuit is optimum to minimize the en- strip in thex<0 zone(Fig. 2). Furthermore, if we take as
ergy. After doing so, we saw that in the initial magnetizationclosed current loops the pairs of elements set symmetrically
curve and for a giver,, current is the same and negative to the yz plane (dashed lines in Fig.)2 the total current
for all circuits, except for very few circuits on the final cur- distribution is the same except at the ends, which do not
rent profile due to numerical error. Notice that this meansmodify the magnetic moment if we consider the strips long
that the current of the strips at tke=0 region return to those enough. Both systems of closed circuits have the same mag-
in the x<0 region, so that current return through different netic properties, including magnetic energy and magnetic
strips for all circuits except for those centeredkatO0. This ~moment. Consequently, since these symmetrical pairs of el-
result is the expected one, because this situation is the or@gnents correspond to the closed loops used fstacks, all
that minimizes the most the energy, so it should be the chathe formulas presented for that case are still applicable.
sen one when there are no restrictions. Taking these symmetrical pairs of elements as closed

Then, we conclude that the numerical method and formutoops for the numerical procedure, as done in Sec. Il B 1 for
las forx arrays andkz matrices are the same as those previ-interconnected strips and the fact that current loops must
ously used forz stacks with the only modifications needed close inside each strip, the MMEV procedure for isolated
for adapting the model to the new geometry. strips becomes the following in this case.

(1) For a given applied fieléH,, a given current distribu-
tion, and for each pair of strips set symmetrically to jhe
] ) ) plane (symmetrical pair of strips there are found(i) the

The model used to describe current isolated strips mughop where setting a negative current would reduce the most
Fakg into accoqnt that all real current loops have to be closeghe magnetic energy and tihe loop where setting a positive
inside each strip, so that there has to be the same amount gfiyent would rise it the least. These loops are referred to as
current following the negativg direction than the positive 4 pair of loops.
one inside each strip. In addition, alt.hough the.current distri- (2) The pair of loops that lower the most the magnetic
bution of the wholex array orxz matrix hasyz mirror sym-  energy is selected among all those belonging to each sym-
me.try for the planex:O, the qurrent dIStI’.IbUtIOH |n.the iN- " metrical pair of strips.
dividual strips is not necessarily symmetrical to their vertical  (3) A current of the corresponding sign is set in the se-
central plane. _ lected loops.

Then, the features of the MMEV procedure described (4) This procedure is repeated until setting current in the
above do not apply, so that we need to do significant modimost energy-reducing pair of loops would not decrease the
fications to the original numerical procedure presentec}m‘gneﬁC energy.
above. o Notice that each pair of loops where current is set in the

The actual current loops in this case have the shape of tweimylations describes two real closed current loops belong-

straight lines within the same strip carrying opposite currentsg to each strip that constitute the symmetrical pair of strips.
and closed at infinity(solid lines in Fig. 2. These straight

currents can be identified with the elements which the strips  |Il. CURRENT PENETRATION AND FIELD LINES
are divided in. The main difficulty is to know which pairs of
elements describe closed current loops.

To help solving this problem we notice that, thanks to the The most important issue to study in the system of super-
overall mirror symmetry to the/z plane atx=0, for any  conducting strips is the influence of magnetic coupling. It is

FIG. 2. Sketch of the real closed current loggslid thick lineg

2. Isolated strips

A. Vertical stacks
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FIG. 3. Current profiles for a stack of three superconducting
strips of width Za and height ® separated a distande) h/a=2,
(b) h/a=0.2, and(c) h/a=0.02. The profiles correspond to applied
fieldsH,/Hpe=0.2, 0.4, 0.6, 0.8, and 1, whekg,,is the penetra-
tion field of the array. For the sake of clarity, the separation, thick-
ness, and width of strips are not on scale.

IfEN

FIG. 4. Field lines corresponding to an applied fiéld/H e,
well known that the superconductors tend to shield the mag=0.4, whereH ., is the penetration field of the stack, for the
netic field change not only in their interior but also in the stacks of Fig. 3. Right and left figures correspond to the total and
space between two superconducting regi@ssillustrated in self-field magnetic field lines, respectively. The distancesdiee
the classical example of a hollow superconducting tube, for=2 (a).(b), 0.2(c),(d), and 0.02(e),(f).

which the whole volume inside the tube and not only the B : ,
tube walls are shieldedIn our array of superconducting fieldsH,/Hpen=0.4. The left images show the total field and

strips one should observe a related effect, because the currdf€ 119t ones only the field created by the currents in the
induced in the strips will tend to shield the magnetic field inSUP€rconductor. It is clear that fdr=0.02a and evenh
their interior as well in the space between them. To study thig~ 0-22, the applied field in the space between superconduct-
effect we present in Fig. 3 calculations corresponding to 'S iS basmally shielded by th_em,_ in c_ontrast_\{wth the case of
vertical array of three strips with/a=0.1 and different N=2&, for which the magnetic field is modified near each
separations{=2a, h=0.2a, andh=0.02, respectively. strip but not enough to make a significant contribution to the

The different profiles correspond to applied fieldg/H ., other two strips. Another way of seeing this effect is illus-
=0.2, 0.4, 0.6, 0.8, and 1, whekb,, is the field at WhpiCh trated in the calculations of the field created by currents
.2, 0.4, 0.6, 0.8, , en

the array is fully penetrated by currefthe calculation of ~(ght images in each figure One can observe that in all
such a field is discussed in Appendiy.AThe results show cases currents create a basically constant f|gld in the spaces
unambiguously the strong influence of magnetic coupling ifP€tWeen strips. However, when the separation is large the
the case that the separation is small, as illustrated in the cadi@! field lines created by the current are wrapped around
for h=0.02a, for which the current profiles are almost the each strip, whereas when the separation decreases up to
same as if there were no gaps between the strips. On t a=0.02 the field lines are hardly distinguishable from the
other hand, the cade=2a is already an example of a very C2S€ of the three strips forming a single thicker one.
weak magnetic coupling, which results in a current penetra-
tion for each strip almost as if the two others were not
present. For the sake of clarity, we discuss separately the results
To further study this point we present in Fig. 4 the field corresponding to the situation in which strips are intercon-
lines calculated for the three arrays of Fig. 3, for appliednected and that in which they are isolated.

B. Horizontal and matrix arrays
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FIG. 5. Total magnetic field lines and current profiles for inter- FIG. 6. Total(left) and self(right) magnetic field lines and cur-

connecteck arrays at an applied field ¢#,=0.2Hpen, HpenD€ING 1ot profiles for interconnectexiz matrices at an applied field of
the complete penetration field for the wholearray. The strips in =0.2H For the stripsh/a=0.1 andd/a=h/a=0.02 (a),(b),
pen-

the arrays have an aspect raiia=0.1 and the distances between g 5 ) (d), and 2(e),(f). Vertical and horizontal scales are rescaled
strips are(a) d/a=0.02, (b) d/a=0.2, and(c) d/a=2. The hori- for clarity.

zontal scale has been contracted for clarity, while the vertical scale
is the same for all figures.
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The general trends described above for the case of an
array are also valid for the case of am matrix. Actually, it
is important to remark that the general trends in current and

We first discuss the current profiles and field lines calcudfield penetration and the magnetic behavior ofxarmatrix
lated for anx array composed of three filaments with dimen-result from the composition of the properties of both e
sionsb/a=0.1. In Fig. 5 we show the current profiles and array and thez stack that forms it. In Fig. 6 we show the
the field lines corresponding to threeearrays with varying calculated current penetration profiles foryanmatrix made
separation between the individual strips. The applied field irof nine strips (3<3), each with dimensions/a=0.1 corre-
all cases is 08 pen, Hpen being the penetration field for the sponding to an applied field of G, We also plot the
whole x array (Appendix A. The common behavior ob- total (left figure9 and self(right) magnetic field, that is, the
served is that currents are induced to try to shield not onlysum of the external magnetic field plus that created by the
the superconductor@he field is zero in the current-free re- superconducting currents and only the latter contribution, re-
gions inside the superconductplarit also the space between spectively. The general trend of shielding the internal volume
them. Actually, we find that there appears an overshieldingf the region bounded by the superconductor, including gaps
near the inner edge of the external stripgy. 5, so that the between strips, is also clearly seen. An interesting feature is
field there is opposite to the external field. This feature hashat a very satisfactory magnetic shielding is achieved for the
been previously predicted for rings in the critical sta@nd  three different matrices, as illustrated from the fact that the
for completely shielded toroids. self-field in the central region has in all cases a constant

1. Interconnected strips
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with the case of anx array composed of three strips with
dimensionsdb/a=0.1. In Fig. 7 we show the current profiles
and the field distribution calculated for threearrays with
varying separation between the individual strips. The applied
field is 0.Hpe,. Again, all strips have dimensionk/a
=0.1. By simple inspection, one can realize how important
the differences are with respect to the case of interconnected

2. Isolated strips

We now present the results calculated for the case that the
superconducting strips are isolated so that current has to go
and return always through the same filament. We start again

b strips. In the present case of isolated strips there is appre-
ciable current penetration in all strips and not only in outer
ones, although the magnetic coupling between them makes
the current distribution in the outer strips different from the
central one in the cas#/a=0.02. Another important effect
to be remarked upon is that there is an important flux com-
pression in the space between the strips. Since all strips tend
to shield the magnetic field in their interiors independently,
the field in the air gap between each pair of strips is stronger
because of the field exclusion in both adjacent strips. Actu-
ally, field lines are very dense not only in the gap between
- strips but also in a zone in the strips nearest to the gap, where
C the current penetrates an important distafites effect is
particularly clear for the case of the smallest separation
This compression effect was also found by Mawatari for the
case ofx arrays of very thin stripd! by Fabbricatore and
co-workers forx arrays,xz matrices, and realistic shapes of
multifilamentary tapes in the Meissner stdté?and by Mi-
kitik and Brandt for a completely shielded double sffip.

We can better compare the current and field profiles for
the interconnected and isolated cases by looking at Fig. 8,
where we plot current profiles for thearray with separation
d=0.2a for both interconnected and isolated cases. It can be

FIG. 7. The same as Fig. 5 but with isolated strips. The applie€€n that for interconnected strips, current penetrates earlier
field is H,=0.1H,e, and the strips have dimensiorga=0.1 (that is, for lower values of the applied figlth the outer
spaced a distande) d/a=0.02, (b) d/a=0.2, and(c) d/a=2. The  Strips, since current flowing there creates an important
horizontal scale has been contracted for clarity. shielding not only in each strip but in the whole space be-

tween them. On the other hand, in the isolated strips case
current returning through the same strip creates a field com-

value over a very large region. However, this shielding is, forpression in the channelshich include the gaps and a por-

the values of the_ applied field considerec_j here, basically P'%on of each strip near the gao that the amount of current
duced by the strips in the two outer vertical columns, whichyenetration is similar for the three strips. The current distri-
are largely penetrated by currents. Only a little current isy tion when the strips are close to each other is slightly
needed to flow in the upper and bottom strips of the innelsymmetric with respect to the central plane of each strip,
column to create a fine adjustment of the field in the centrabecause the field in the channels felt by the inner sides of the

region. outer strips has a different spatial distribution than the homo-
<j [ — ~ C> FIG. 8. Current profiles forx arrays with
_ " b/a=0.1 and d/a=0.2 for (a) interconnected
(a) strips andb) isolated strips. The vertical axis has

been expanded for clarity. The applied field val-
ues corresponding to each current profile Hre

=0.1, 0.2, 0.4, 0.6, 0.8, and 1 in units of the
penetration fieldH ¢, for each case.
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a/ ) b spond to separations dfa=h/a=0.02 and 2, respectively.
The effect of flux compression along the vertical channels
that include the gaps and the surrounding regions is clearly

r( il I M seen in the case of the smallest separation distance.
For the case otz matrices it can be observed how field is

shielded in the vertical gaps between rows but it is enhanced
in the horizontal gaps between columns. Then, for isolated
I il strips, the magnetic interactions between rows and columns
u have opposite effects. Furthermore, the difference between
the field in the vertical gaps and the applied fieldis much
\ higher than for the horizontal gaps, as can be seen in Fig. 9
for the xz matrix with higher separation. This implies that
the magnetic coupling between strips in the horizontal direc-
tion is lost at smaller distances than that in the vertical
direction.

|
-

\

IV. MAGNETIZATION

A. Vertical stacks

@IIIIII
In this section we analyze the magnetization of the arrays,
calculated from the currents following E¢4). The reverse

c/ ( /
\ K @IIIIIII@
‘ \ and returning curve can be obtained from the initial one us-

FIG. 9. Total(left) and self(right) magnetic field lines and cur- ing Egs.(1) and(2).

rent profiles for isolatedxz matrices at an applied fieldd, There are several important properties of the arrays that
=0.1Hen. For the stripd/a=0.1 andd/a=h/a=0.02(a),(b), and  can be understood from the magnetization results. In Fig. 10
2 (c),(d). we plot the calculated magnetizatidn as function of the

applied fieldH, for a set of three arrays, each with semiside

geneous applied field felt in the outer sides. We have foundatio b/a of 0.01 and with different separatiotiga=0.02,
that this asymmetry increases for thicker filaments, that isQ.2, and 2, respectively. We also plot the magnetization for a
higherb/a (not shown. single strip with b/a=0.01 and another one witlb/a

We now present some results for tke-matrix array for  =0.03 corresponding to the case that the three strips are one
the case of isolated strips. As said above, results for the man top of each other. One can observe that the general trend
trix can be understood from the composition of the effects ofs that the saturation magnetization remains the same for all
horizontal and vertical arrays. In Fig. 9 we show the calcu-cases, whereas the initial slope of the magnetization curve
lated current penetration profiles for az array made of changes. The slope is largest in absolute value for the case of
nine strips (3<3) with dimensiond/a=0.1 corresponding a single thin strip k/a=0.01), has intermediate values for
to an applied field of OH,,, together with the totalleft  the three arrayséthe largest slope is for the array with large
figures and self(right) magnetic field. The two cases corre- separation and smallest for the one with the smalles},one

0.0

-0.1

FIG. 10. Initial magnetization as a function of
i the applied field for, from left to right: a single
strip with b/a=0.01, a vertical array of three
strips with b/a=0.01 separated a distantea

4 =2, the same array with a separation distance of
h/a=0.2, the same array with a separation dis-
tance of h/a=0.02, a single strip withb/a

i =0.03, and a single strip with/a=0.05. In the
inset complete magnetization loops are plotted
for the first and last cases.

-0.2

-0.3

M/(J a)

-0.4

-0.5

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
H,/(J.a)
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-0.1 " o .
FIG. 11. Initial magnetization as a function of

the applied field for, from left to right: a single
strip with b/a=0.01, the theoretical expression

0.2 .
for thin strips(almost overlapped a set of three
- strips arranged vertically witb/a=0.01 each, a
g, -0.3 . set of 5 strips withb/a=0.01 each, a set of 9
= strips withb/a=0.01 each, a set of 25 strips with
b/a=0.01 each, and the expression given by Ma-
0.4 1 watari(Ref. 30 for an array of infinite number of
strips of dimensiond/a=0.01. The separation
05 - distance between the strips in all caseshis

=0.2.

PR U TR NP RPN NS PR R S R
000 0.01 002 003 004 005 006 007 008 009 0.10

H/(aJ))

and finally the case with/a=0.03, which, interestingly, is regions of thez stack, and not the total thickness of the
hardly distinguishable from the array with the smallest sepastack including the gaps.

ration. The reason for such an enhancement of the initial Another interesting feature to study is the effect of the
slope is the demagnetizing effect associated with the larg@ddition of more strips to the array. We compare in Fig. 11

sample aspect ratio, according to which the thinner thdn€ calculated(H,) curves for arrays with a fixed distance
sample, the larger the initial slop&2* In the arrays for (h=0.2) and a different number of strips. We include in the

which the separation between the strips is small, the mad_igpre the two analytically known limits of one infinitely thin

netic coupling increases, in agreement with the discussion i g;?lcg?]cciigoénig 'Eg?xgesﬁﬁé Sctglﬁ.lgti?jur:sﬂl]tcsm;o? griti:r;gle
i?gkr:géssgrfga:ht‘reef?)?;nFl)leessl,s dgﬁqhaavr:g%z?: h;;f/g:;?s E;lrl]":‘]lrglieestrip with finite although small thickness and the results from
S ' ' . 9 g € tite analytical formula for very thin strip§. With adding
initial slope. In order to study in more detail this effect, we more strips, the initial slope of the magnetizaticiefined as
have included in Fig. 10 the calculated magnetization of g4 magnet,ic moment divided by volume, so independent of
single strip withb/a=0.05; this strip corresponds to the ar- the syperconductor volumeets smaller in absolute value.
ray with h/a=0.02 but as if the gaps between the strips wereye find that even the case of 25 strips is significatively dif-
filled by superconducting material as well. We can see thaferent from the Mawatari case for an infinite stack, so we can
this case has the smallest slope, and there are large diffefonclude that Mawatari’s formula should be valid only for a
ences with respect to the case of the array of three strips witery large number of strips. In Fig. 12 we show the magne-
separationh/a=0.02. From these results we can concludetization curvesM (H,) for arrays of strips separated a larger
that, provided that the strips are close enough, the behavialistance fi/a=2). It can be observed that now the differ-
of azstack is similar to that of a single strip with a thicknessences in the slope are smaller than in the previous case,
equal to the sum of the thickness of the superconductingpecause there is less magnetic coupling among the strips.

0.0 . , . T . , . T

0.1 -

02 \ -

M/(aJ))

03 Y FIG. 12. Same as Fig. 11, but for a separation
had i \ ] h/a=2.

04 | Q .

-0.5
0.000 0.005 0.010 0.015 0.020 0.025
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0.0 y T y T T T T creasing separation. The reason for this behavior can be
traced back to the presence of the flux compression effect
01k 2_a 2& 2_a2b 4 discussed in Sec. IlIB, since a sn_1a||er separation means
d d | thinner channels and a corresponding larger flux compres-
w2 L i sion. The enhancement of the initial slope can also be ex-
' \ plained by the fact that the strips have to shield not only the
= \N 1 external applied field but also the field created by the other
5\5 03 \ 7 strips. This enhancement gf, has already been predicted in
= S - other related situation:%0->437
0.4 N - We have found that the initial slope calculated with our
i N | approach is coincident, within a 4% difference, with that
05 _(a) calc%lc?ted numerically by finite ele_ments by F_abbric_atore
- ) i ) ; . ; et al™ for the case of X5 and 5< 3 filament matrices with
’ ' ' ' ' ' ' complete shielding. The initial slope has also been compared
with other works®>’for a single strip for a high range bfa
05 ] (0.001=<b/a=<100), obtaining a difference smaller than a
1%.
A8 T When comparing the results for isolated strip to the case
— of interconnected ones, important differences appear. The
< 1er first difference is that the saturation magnetization in the lat-
§ i 1 ter case is not only larger in general with respect to the
2.0 - isolated case but also depends on the separation. The second
difference is that the trend found when decreasing the sepa-
25 e ration distance between strips is reversed: whereas for iso-
- (b) 1 lated strip decreasing separation distaca results in a
-3.0 . L . L L L L larger (in absolute valugeslope of the initial magnetization,
0.00 0.05 0.10 0.15 020 for interconnected strips the slope gets smaller with decreas-
H./(aJ,) ing separation.

We explain the reasons for both differences as follows.
FIG. 13. Initial magnetization curveldl (H,) for x arrays with ~ The different behavior in the saturation magnetization arises
three strips withb/a=0.1 and several strip separatiatis for the  from the fact that this value corresponds to the magnetic
cases of(@) isolated strips andb) interconnected strips. For graph moment per unit volume when all the strips are fully pen-
(a) solid lines correspond ta arrays withd/a=2, 0.2, and 0.02 etrated. The magnetic moment is proportional to the area
from top to bottom, while the dashed line represevittH,) for a  threaded by the current loops, which in the interconnected
single strip withb/a=0.1. For graphb) solid lines correspond ®  case are not restricted to a single strip but they can span from
arrays withd/a=0.02, 0.2, and 2 from top to bottom and the eyen one extreme of the array to the other. Actually, the
dashed line is for a single strip with half-widia’=3a and b gatyration magnetizatioM can be analytically calculated
=0.1. considering that, for isolated strips, at saturation thé,
_ interface is close to a straight line, so tihag is the same as
B. Horizontal arrays for a single uncoupled strip, beinlf ;= (1/2)J.a.}*'" For
We now analyze the results for the magnetization ofxhe the case of interconnected strips, the current distribution at
arrays. In Fig. 13 we plot the calculated magnetizatibas  saturation is]= —Jc§/ for x=0 andJ=JC§/ for x=<0, so that
function of the applied fieldH , for the threex arrays of Figs. Mg can be calculated as
5 and 7. For each strip/a=0.1, and the separation distance

between strips igl/a=0.02, 0.2 and 2. The upper figure _Jea d
shows the results for the isolated strips whereas the data in MS_T 1+ 2a Nex (Nex even, @
the bottom part are for interconnected strips.
The magnetization for both isolated and interconnected J.a d 1
strips shows important differences, arising from the different Ms=—-|Next 55| Mix— m) (nsx odd), (8)

current penetration profiles studied in Sec. IIl. We first dis-
cuss the results for isolated strips. It can be seen Ithat whereng , is the number of strips in thedirection for either
saturates at smaller values than for the case of interconnected x array or anxz matrix.

strips and that this saturation value is the same for the dif- As to the initial slope of théVl(H,) curve, in the case of
ferent separations. The results for the largest separatiomterconnected strips the flux compression effect discussed
d/a=2, are not very different from the results obtained fromabove does not exist, so the reason for the behavior of the
a single strip withb/a=0.1, corresponding to the limit of initial slope of theM (H,) curve must be a different one. The
complete magnetically uncoupled strips, which is also showmgoverning effects now are the demagnetizing effects arising
in the figure. An important result is that the initial slope of from the large aspect ratio of thearray taken as a whole.
the M(H,) curve x, increaseqin absolute valuewith de- The demagnetizing effects tend to enhance the initial
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FIG. 14. Initial magnetization curveBl(H,) for xz matrices
with 3X 3 strips of dimensionb/a=0.1, forh/a=0.2 and several
values ofd/a for the cases ofa) isolated strips andb) intercon-
nected strips. For grapta curves correspond td/a=2, 0.2, and
0.02 from top to bottom. For graptb) curves correspond td/a

=0.02, 0.2, and 2 from top to bottom.
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sult, a smallefin absolute valuginitial slope of the magne-
tization.

Another feature observed in the interconnected case is the
observation of a kinKchange in the slopan the magneti-
zation curve, particularly for the cases of a large separation
between strips. This effect is explained as follows. Since the
magnetic moment is proportional to the area enclosed by the
loops, currents in the external strips contribute more to the
magnetization than those in the inner ones. So, when the
external strips become saturated, new current can only be
induced in the central strip, having a lower contribution to
the magnetizatioiV, so that thevl rate wherH , is increased
is lower in magnitude; a similar effect has been predicted for
rings in the critical-state modéf.In a single strip or even in
the case of a array with isolated filaments, this process is
continuous, but not in the present case of interconnected
strips separated a horizontal distance.

C. Matrix arrays

The magnetization ofy matrices is again a combination
of the effects discussed above for horizontal and vertical ar-
rays. In Fig. 14 the initial magnetization curie(H,) for xz
matrices with the same vertical separation is plotted, for a
vertical separatiom/a=0.2, and several horizontal separa-
tionsd/a. The curves are qualitatively similar to those for
arrays and the same values @fa, so that the discussion
done forx arrays is still valid. The main difference between
x arrays andkz matrices lies in both the value of the satura-
tion field Hg, that is, the field whichM reaches its saturation
value, and the magnitude of the initial slope. For the case of
both isolated and interconnecte@ matrices,H; is higher
than forx arrays, while the initial slope is lower. This is due
to the reduction of the demagnetizing effects owing to the
stacking in thez direction®*° Moreover, the differences
mentioned of thevi(H,) curve betweernx arrays and matri-

slopgé’%845when the sample aspect ratio increases. Thereses would be qualitatively the same if we consideredxan
fore, when the separation is small the array is behaving simiarray with a larger filament thickness. Detailed results of the
larly to a single strip with the same thickness but 3 times thanagnetization okz matrices calculated by our model will be
width, which shows less demagnetizing effect and, as a represented elsewhere.

FIG. 15. Imaginary part of the ac susceptibil-
ity, x”, as a function of the amplitude of the ac
field H,, corresponding to the curves of Fig. 10,

in the same ordefthe case of a single strip with
b/a=0.05 is not plotted in this figupe The cor-
responding power losses are shown in the inset.
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FIG. 16. Imaginary part of the ac susceptibil-
ity, x”, as a function of the amplitude of the ac
field H,, corresponding to the curves of Fig. 11,

ol .
10 [ in the same order.

V. ac LOSSES The results in Fig. 15 show that th&(H,) curve goes as
H? for low fields, with n ranging from 1.5 for a strip with
i i ) i b/a=0.01, corresponding to the hidtia limit for a z stack,

In this section we study the imaginary part of the ac SUSi5 1.3 for a strip withb/a=0.03, being the lovh/a limit for
ceptibility, ", calculated from the magnetization loops from arrays. These values lie betw’een the known limiting values
Eq. (5). Herey” is directly related to the power losses by Eq. for infinite slabs a=1) (Ref. 14 and thin strips 1=2).

©). The corresponding power lossp®lated toy” by Eg. (6);

We present in Fig. 15 the calculated results jdr as . no .
function of the maximum applied ac field, corresponding see insefgo therefore asi;, with nranging from 3.5 to 3.3.

to the magnetization curves of Fig. 10. All curves show aFor high fields,x” goes asH, " in all cases.

peak at some value of the applied field amplitude. It can be In Figs. 16 and 17 we calculate the results fdras func-
seen that the peak corresponding to the maximupifend ~ tion of the maximum applied ac fielt, with the goal of
therefore a change in slope of the ac losses, since they agéudying the effect of adding more strips in the array. We use
proportional toy” timesH2 as seen in Eq6)] is shifting to  the same cases as in Figs. 11 and 12, corresponding to two
higher fields and decreasing in magnitude with decreasindifferent separations in the arrayls/@=0.2, and 2, respec-
separation distance. The reason for that can be obtained frotively). Again, there is a close relation between the increase
the analogous shifting in the initial slope of the magnetiza4in the initial slope of the magnetization curves and the shift-
tion shown in Fig. 10. Since the ac losses are related to thimg of the position of the peak iy” to higher fields. It is
area of theM(H,) curve[Egs.(5) and(6)] and the magne- interesting to comment, however, that the formulas provided
tization saturation is the same for all cases, the key factor foby Mawatari for the case of an infinite array are not adequate
the loss behavior is the initial slope governed by the demagto describe quantitatively the ac losses of a finite array even

A. Vertical stacks

netizing effects as discussed in Sec. IV. if the array consists of up to 25 strips.
T T
7 v
/ —— N
4 7T TN
4 / A N
4 /
i’ /
10" | 4 ’ .
- /4 / 4
4 /
g /
/ J
) I 4 s FIG. 17. Imaginary part of the ac susceptibil-
= ) ) 1 ity, x”, as a function of the amplitude of the ac
! /) ] field H,, corresponding to the curves of Fig. 12,
K ’ ) in the same order.
/ //
/ /
/ 1
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/ /
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0.01 0.1
H./(aJ)

104517-12



MAGNETIC PROPERTIES OF ARRAYS B. .. PHYSICAL REVIEW B 67, 104517 (2003

FIG. 18. Imaginary ac susceptibility” as a
function of the ac applied field amplitudi&,. cor-
responding to theM (H,) curves showed in Fig.
13 for x arrays. The strips dimensions dboéa
=0.1. Solid lines are for the case of intercon-
nected strips fod/a=2, 0.2, and 0.02 from top
to bottom, while dashed lines are for isolated
strips withd/a=0.02, 0.2, and 2 from top to bot-
tom.

N A ST

0.01 0.1 1
H./(aJ,)

It is clear from the calculations presented in this sectiontogether for comparison. The results show that the general
that in order to reduce the magnetic contribution to the adrend is the appearance of a peak in ffiecurve (and there-
losses in a real superconducting tape withstack geometry fore a change of slope of the ac logs&his peak, however,
one should increase the coupling of the filaments by decreass wider for the case of isolated strigalso shown in the
ing the distance between thesee Fig. 15 Also, the results  figure), especially on the left part of the peak. This effect has
in Fig. 16 and 17 show that the ac losses decrease witheen experimentally found in several woR$>6061Actu-
increasing the number of filaments while keeping the disy)ly the cause of the disagreement between theoretical pre-
tance between them, particularly in the case of a small sepgjictions and experiments in these works is that they used
ration (h/a=0.2, Fig. 16. These results can be understood ,4qels for single strips or disks, which yielded narrow

again as arising from the effect of demagnetizing fields, eaks. Our model allows for the explanation of this effect.

When the superconducfung strips are separated_a small OIIg’oncerning hysteresis losses only, as we do in this work, the
tance, the whole array is acting basically as a single super-

conducting tape with a thickness equal to the sum of th [eason for this widening of the peak is that #¢H,) curve

thickness of the strips, so the demagnetizing effects are Iest ecomest n?nllnefar at srr:.allflapplletd f'lelq \{[?llues tbecaufse of
the initial magnetization has a smaller slofia absolute € penetration ol magnetic flux not only In the outer surtace

value as discussed in Sec. V, and the area of the hysteresf€9i0ns Of the strips but also in the channels between strips,
loops is less for a given maximum applied ac field, so thay.vhere:' th.e field intensity is enhance.d. ThI.S deviation from
the ac losses are reduced. On the other hand, when the sepg€arity in the M(H;) curve results in an increase of the
ration of the strips gets larger, the magnetic coupling beloss.
tween them is less so that they act more like magnetically We also find that decreasing the distance between strips
decoupled filaments with high aspect ratio and the demagnéesults in a higher or a smaller value of the peak, depending
tizing effects act more, increasing the ac losses. It is interestpon whether we are considering the isolated or intercon-
ing to notice that when we talk about the separatidieing  nected case, respectively. This dependence on the separation
small one should understand it as small compared with thdistance is only slight for the case of isolated strips and much
horizontal dimension @ and not to the strip thicknessh2  more evident for the interconnected ones. These results can
Calculations of the same values bfa for the caseb/a  be understood from the magnetization curves of Fig. 13, in
=0.1 (instead ofb/a=0.01 as in the results presented which we observe two important properties: the initial slope
above, for example, yield qualitatively the same effects for of the magnetization curve for interconnected strips increases
the samen/a values. (in absolute valupwith increasing distance between strips,
while it decreases for isolated strips, and, most important, for
interconnected strips, the saturation magnetization has very
different values for the different separations, while it remains
In this section we study the imaginary part of the ac susalmost constant for isolated strips. All these effects have
ceptibility, x”, calculated from the magnetization loops ob- been explained in Sec. IV. Another characteristic observed in
tained in Sec. IV, which can be easily related to the acthe two upper curves of Fig. 18 is a kink at a particular field
losses?® In Fig. 18 we present calculated results fgt as  value that is directly related to the presence of a similar kink
function of the ac field amplitudel . for the samex arrays  in the magnetization data shown in Fig. 13. This kink was
discussed in the previous sectigmgth b/a=0.1 and differ- already predicted for ringé and later experimentally
ent separation distance$a=2, 0.2, and 0.02 The two dif-  observed? Furthermore, experimental evidence of a kink in
ferent cases of interconnected and isolated strips are pl@ictual superconducting tapes was shown for the case of a

B. Horizontal arrays
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FIG. 19. Imaginary ac susceptibility” as a
function of H 4 for x arrays with several numbers
of strips n; (solid lineg, corresponding ton;
=9, 5, 3, 2 from top to bottom, compared to a
single strip(dashed lingand the analytical limits
for a single thin strip(lower dotted ling and an
infinite x array of thin strips(upper dotted ling
The strips dimensions atga=0.01.

1E-4
H /(ad)

Ag/Bi-2223 tape with the superconducting core shaped as a C. Matrix arrays

circular sheff® or two concentric elliptical shelf In Fig. 20 we present the dependencey8fupon the ac
Another interesting result for the” calculations is shown  gppied field amplitudeH 5. for xz matrices withb/a=0.1,

in Fig. 19, where we show the calculated results{@arrays  h/a=0.2, and several values dfa. It can be seen that the
of several strips wittb/a=0.01 with a fixed separation dis- qualitative variations of the”(H,o curve when considering
tance ofd/a=0.02. Results are shown for arrays of two, jsolated or interconnected strips is the same asfarrays,
three, five, and nine strips. We consider the isolated stripas well as the effect of changirdja. However, forxz ma-
case, in order to compare our results with the analytical pretrices there is both a reduction of the peak in fHgH )
diction for an infinite array of Mawataf: We also include curve and a shifting to highet . values. These facts can be
the calculated result for a single strip witita=0.01 as well  explained returning to the initial magnetization curves in
as the same curve calculated from the analytical formulas foFigs. 13 and 14, where the initial slope was lower forxal
thin strips'® On the other limit, we check that the results for matrices and the saturation field was higher. A detailed study
a large number of strips tend to the analytical results obf the ac losses from thg” values, including the real part of

Mawatari®* although 9 is not a sufficient number for ap- the susceptibilityy’, for xz matrices will be presented else-
proaching the limiting caséhigher number of strips yield where.
values closer to Mawatari's results; not shown for clarity

The general trend observed is that the losses increase with

the number of strips is due to the fact that the effect of the
channels discussed above increases for higher number of We have presented a numerical model for calculating cur-

strips 305437 rent penetration profiles and field lines and magnetization

VI. CONCLUSIONS

10 ——————rm —

FIG. 20. Imaginary ac susceptibility” as a
function of H,. corresponding to theM(H,)
curves showed in Fig. 14 foxz matrices. The
strips dimensions arb/a=0.1 and the vertical
separation is fixed, being/a=0.2. Solid lines
are for the case of interconnected strips dida
=2, 0.2, and 0.02 from top to bottom, while
dashed lines are for isolated strips witlla
=0.02, 0.2, and 2 from top to bottom.

0.01

H_/(aJ,)

C

104517-14



MAGNETIC PROPERTIES OF ARRAYS B. .. PHYSICAL REVIEW B 67, 104517 (2003

and ac losses of arrays of superconducting strips. In thi®roject No. SGR2001-00189, and DURSI from Generalitat
work we have analyzed the cases of arrays arranged in vede Catalunya for financial support.

tical, horizontal, and matrix configurations. We have found

that the demagnetizing effects have strong influences on both APPENDIX A:  FIELD OF FULL PENETRATION

the magnetic response of the tapes and the ac losses appear—m this appendix we present a simole wav to analvticall
ing when an ac magnetic field is applied. PP P P Y y y

For vertical stacks of strips, we find that the intial mag_calculate the field of full penetration of the arrdype,, de-

T fined as the minimum applied field in the initial magnetiza-
netization(in absolute valupand the ac losses are reduced bp 9

hen d g th ical tion betw il ttion curve for which current fills the whole of the supercon-
when decreasing the vertical separation between fllamenty,, jng region. The penetration field can be calculated in

When the vertical separation is small as compared with thenera| as minus the field generated by the current distribu-
filaments width, then the array is behaving as a single filazjg, H, in the last induced current point, where

ment with thickness the sum of the superconducting materia‘._| _ HJ2.24'6480 both the current distribution at the penetra-

These results_ could be used as guides for .deIS|gn|ng actu%n field and the last induced current point positignmust
superconducting tapes. Then, in order to optimize the IosseBe known to calculatéd
pen-

for filaments with a fixed aspect ratio, it is preferable to have
a large number of them separated small distances so that
there is a good magnetic coupling between them, as has been
already experimentally fourd. In the geometry of a set of rectangular cross-section strips
For horizontal and matrix arrays, the different cases ofordered as a stack we can distinguish two different cases,
isolated and completely interconnected strips have been distepending on whether the number of stnipss odd or even.
cussed separately. Current penetration results show thalthough in both cases the current distribution e, is
whereas in the interconnected cases the filaments magne#vident, it is not so for,. The last induced current point can
cally shield the whole internal volume of the array, in thebe found as where the field generated by the currents is
case of isolated strips, the shielding is within each of themmaximum in magnitude, since,, is the last point where
The latter effect in the isolated strip case creates channels efkternal field is shielded. For the odd number of strips case,
field compression between the strips, particularly when the ., is simply the position of the center of the central strip,
separation distance between them is small. These channelthough it is not so easy to determine when the number of
govern the magnetic and ac losses properties of the arrays efrips is even.
isolated strips. Because of them, when decreasing the hori- For az stack of an odd number of stripg with dimen-
zontal distance between strips, the initial slope of the magsions 21 and 2 in thex andz directions separated a distance
netization curve increase@n absolute valug and, corre- hthe penetration field is therefore
spondingly, there are larger ac losses. Moreover, the

1. Vertical arrays

experimentally found effect of a widening of the peak in the Hped @,b,h,ny¢)
imaginary part of the ac susceptibility can be explained by (ng-1)/2
the same effect. On the other hand, for the case of intercon- c ;

; =—|F,0,a,b)+2 F.i((2b+h)i,a,b
nected strips, the trend is the opposite: decreasing the hori- 277[ il ) Zl il ) )
zontal distance between strips reduces both the initial slope

of the magnetization curve and the ac losses. The effects (n; odd), (A1)

governing these latter features are now the demagnetizin\glherel:

effects: when strips are close to each other they behave as'a

single strip with smaller aspect ratio and, therefore, with u+d u—d

smaller demagnetizing effects. Fi(u,t,d)= 2t1 arctant— - arctant—]
The magnetic properties of superconductor matrix arrays

1(u,t,d) is defined as

are a composition of those for horizontal and vertical arrays. (u—d)?

A result of practical importance is that ac losses are reduced +(u=d)in m}

when decreasing the vertical separation between strips in the

tape, because when stacking strips in the vertical direction (u+d)?

they behave as thicker strips and therefore have less demag- +(utd)in 2+ (u+d)2| (A2)

netizing effects and less ac losses. ) , . .
In the present version, the model cannot be used to thEquation(Al) has been derived using the expression for the

study of the case in which a transport current flows in themagnetic field created by a completely penetrated strip with

field. This extension will be presented elsewhere. law. The casen;=1 reproduces the known result for the

penetration field for a strif*

As mentioned above, whenzastack has an even number
of strips we must find the last point where current is induced,
at which the self-fieldH ; is maximum in magnitude. Owing

We thank Fedor Gmory and Riccardo Tebano for com- to the symmetry of the current fronts in tlyz plane, this
ments. We thank MCyT Project No. BFM2000-0001, CIRIT point will be on thez axis. Thus, only maximization dfl; ,
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along thez axis is needed. Since the maximization of the The penetration field for ar array with an odd number of

field H, , is different for every specific value of;, we only

strips is the same as in EQGA5) but removing the term with

report the result fon;=2, which is the most important case, the double sum and taking ,=1.

concerning the magnetic coupling, for an ewvgn Then, the
last induced current point will be at a position

1
Zn=5[—a*~hp

+(@%+hB)%2+hB(2a%+h?/2+2p%+hp)],
(A3)

Z, being thez component ofr,, and 8 defined asg=2b
+h/2. The penetration field for two strips is

J
Hped@,0,n¢=2) = ﬁ[Fl(Zm—b—h/Z,a,b)

+F,(zn+b+h/2a,b)],
where the functiori4(u,t,d) is defined in Eq(A2).

(A4)

2. Horizontal and matrix arrays

When eithem; , or n¢ , are even, the last induced current
point is not easy to be determined. In those strips that current
returns through the same filament, the total magnetic field
increases monotonically from the edges of the strip to the
current profile. Whemy , is odd andn;, is even the last
strips to be fully penetrated are those in the central column
and in the inner rows. Then, the last induced current point
I'm, whereH; ,(rm)=—Hpe,, is on thez axis and can be
determined as the point whekg; , is maximum in absolute
value. Whem , is even, we have found no way to analyti-
cally calculater,, andH pep.

b. Current isolated strips

As discussed in Sec. Il B, the current interface at the
penetration field is almost a vertical straight line at the center
of the strip. We have found that this approximation is rea-
sonable even for strips with a ratida as large ab/a=1.

Whenn; , is odd, the last penetrated current point is at the
center of the strips belonging to the central row and the most

For x arrays andxz matrices we differentiate again two external columns. This is so because external rows shield
cases depending on the way that the strips are connectedianer ones and external columns increase the field on the
infinity: completely interconnected strips and current isolatednner ones. Then, using the Biot-Savart law and assuming

strips.

a. Completely interconnected strips

For this case, the volume current density at the penetra-

tion field is J=—J.y for x>0 andJ=J.y for x<O0.
When both the number of strips in tlxeaxis n; , and in
the z axis n¢ , are odd, the last induced current poig is

simply the center of the central strip. Using the Biot-Savart

law to calculateH ; ,(r=0), we obtain

Hpen,matrb(nf,x vnf,z)
(nfyxfl)/Z
c .
= Hpen,stacﬁnf,z) +Z 2 21 F2((2a+ d)i,0a,b)

(nf x—1)/2 (ng ,—1)/2

+4 -21 >, Fy((2a+d)i,(2b+h)j,a,b)

(A5)

whereH e, siackdS the penetration field for a stack and the
function F,(u,v,t,d) is defined as

B v—d v+d
F,(u,v,t,d)=(u—t)| arcta Ty —arctal =
’£v+d r{v—d
+(u+t)| arcta Ty —arctal U
(u—d) [(u—t)°+(v—d)?
2 MUurHZ+(v—d)y?
(u+d) [(u+t)?+(v+d)?
2 Mu—vrrwraz  #O

straight current interfaces, the penetration field foxama-
trix with odd n¢ , is

_J nfyx—l
penmarid Nt Mt 2) =75 2 Fa(2a+d)i,0a,b)

nfyxfl (nf'Z*l)/Z

+2 > > F,
=0 =1

X((2a+d)i,(2b+h)j,a,b)|,
(A7)

where the functionF;(u,v,t,d) is defined as~3(u,v,t,d)
=F,(u—t2p,t/12d)—F,(u+t/2p,t/2d). Notice that Eg.
(A7) is valid whenny , is either odd or even, while EGA5)
is only valid for an oddn¢ . The penetration field for ar
array is the same as described in E47) but removing the
term with the double sum.

APPENDIX B: CALCULATION OF INDUCTANCES

In this appendix we calculate the self- and mutual induc-
tances used in Eq3). These inductances are calculated for
closed circuits of the shape of a pair of identical rectangular
infinite prisms of dimensions & X2b’ carrying uniform
current density. The prisms are set symmetrically to zkie
plane, taking they axis parallel to the infinite direction. The
current of the prism set in the=0 region is taken positive,
while it is taken negative for the other.

The self- and mutual inductances are calculated from the
magnetic energy using the equafibn
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ML =We = | 7 dx Zi+b,dzA,-(x 2)J; f(t d)=E tdIn(t2+dz)—3td+t261rctanq+t2arctan(1
U] 1] Xi_a/ Zi_br ) ! ! ! 2 t t .
(B4)
7x,+a’d zi+b’d
B —x—a’ X Z-b' ZA (%23, (BD) Taking into account that the current density in the prisms

) ) ) is uniform, M;; can be deduced integrating E@1) using
whereM; is the mutual inductance per unit length of two gqs. (B2)—(B4), which yield

closed circuits labeled asandj, respectivelyl; andl; are

the current intensity flowing through the circuit4j; is the Lo

magnetic energy per unit length of the circuits; ,¢;) is the M, =———— (G =Xy, =Y~ G(=X—X,y;—¥i)],
central position of the prism in the=0 region of thei 16ma’“b’
circuit, a’ andb’ are the dimensions of the prisms in the (B5)

andz directions, respectively, andl, ; is they component of

the vector potential created by the circpiaking the gauge where the functiorG(u,v) is defined as

V-A=0. 2
The vector potentiah, ; can be calculated by direct inte- G(up)= D, (—1)*'*ntmgR(k,n)a’
gration, leading to kJ,nm=1
/LOJJ +u!R(|1m)b,+U)1 (BG)

Ay i(x,2)= [F(x—x;,2)—F(x+x;,2)], (B2

2

where the functiorf(u,v) is defined as

definingR(i,j)=(—1)'— (—1)!, and the functiorg(t,d) as
25, , dtf d td® t

F(uw)=f(a'—u,b'—v)+f(a’—u,b’ +0v) g(t,d):4—8t d —?arctant——?arctana

+f(a’+u,b’—v)+f(a’+u,b’+v), (B3

1
(14 4_ 1242 2 2
definingf(t,d) as +48(t +d*—6t°d?)In(t*+d°). (B7)
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