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Theory of the longitudinal vortex-shaking effect in superconducting strips

Grigorii P. Mikitik1,2 and Ernst Helmut Brandt1

1Max-Planck-Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany
2B. Verkin Institute for Low Temperature Physics & Engineering, Ukrainian Academy of Sciences, Kharkov 61103, Ukraine

~Received 18 November 2002; published 24 March 2003!

We show that for a thin superconducting strip placed in a perpendicular dc magnetic field—the typical
geometry of experiments with high-Tc superconductors—the application of a weak ac magnetic field along the
strip ~i.e., perpendicular to the dc field andparallel to the circulating critical currents! generates a dc voltage
in the strip, which causes the critical currents and irreversible magnetic moment to relax completely. This
relaxation process is not due to thermally activated flux creep but to the drift of vortices towards the center of
the strip under the influence of the ac field. Thislongitudinalvortex-shaking theory supplements our previous
theory oftransversevortex shaking where the ac field was perpendicular to the irreversible currents. Together,
both theories clarify the nature of the vortex-shaking effect in real superconducting samples of finite length.
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I. INTRODUCTION

Experimental investigation of the equilibrium properti
of type-II superconductors can be performed only in the
versible region of the magnetic-field~H! versus temperature
~T! plane. But often strong flux-line pinning prevents t
measurement of equilibrium properties. In this conte
Willemin et al.1 recently made an interesting observatio
Their experiments revealed that application of an additio
small oscillating magnetic fieldperpendicularto the main dc
field leads to a fast decay of the currents circulating in
critical state of various high-Tc superconductors. This effec
dramatically extends the observable reversible domain in
H-T plane. The relaxation of the irreversible magnetizat
in these experiments was approximately exponential in ti
and thus was obviously different from thermally activat
flux creep, which would lead to a logarithmic time law. U
ing this vortex-shaking process, the melting transition of
vortex lattice in YBa2Cu3O72d crystals was detected2 at tem-
peratures very close to the critical temperatureTc , where the
melting could not be investigated before. With the sa
shaking method, it was discovered3 that the order-disorde
transition in the vortex lattice of Bi2Sr2CaCu2O8 is of the
first order at low temperatures, where vortex pinning usua
masks the corresponding jump in the equilibrium magnet
tion. Thus, the vortex-shaking process opens new possi
ties in the experimental investigation ofH-T phase diagrams
of superconductors.

In our previous paper,4 we gave a quantitative explanatio
of the transversevortex-shaking effect for an infinitely long
thin strip when the ac magnetic fieldhac lies in the plane of
the strip and isperpendicularnot only to the dc magnetic
field ~which is normal to the plane! but also to the currents
circulating in the superconductor. In this situation, the se
field of the currents adds tohac on the upper~or lower! plane
of the strip and subtracts from it on the opposite plane. A
result, the ac field tilts the vortices asymmetrically relative
the central plane of the strip, forcing them to ‘‘walk’’ toward
the center of the strip, thus causing relaxation of the criti
state, Fig. 1. We note that this result was obtained in
framework of a quasistatic approach based on the stan
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critical state concept and thus is valid even when therm
activated flux creep is negligible. However, it is clear that t
vortex tilt across the width of the strip disappears if the
magnetic field still lies in the plane of the strip but isparallel
to the circulating currents, i.e., parallel to the length of t
strip. In this case the above consideration fails. In r
samples~which have, e.g., the shape of rectangular platele!,
the applied ac field is perpendicular to the circulating c
rents in some regions of the superconductor and paralle
some others. Thus, the explanation of the vortex-shaking
fect in real superconducting samples should combine b
the transverse and longitudinal vortex shaking and requ
further work.

In this paper we show that a vortex in the critical sta
moves towards the center of the strip even when it underg
periodic tilt along the strip. On the basis of this somewh
surprising finding, we develop a quantitative theory of t
longitudinalvortex-shaking effect in a strip when the ac fie
points along the strip, i.e.,parallel to the circulating currents
Specifically, we shall consider the following situation: A th
superconducting strip fills the spaceuxu<w, uyu,`, uzu
<d/2 with d!w; the constant and homogeneous exter
magnetic fieldHa is directed alongz, while the ac magnetic
field hac5h cosvt is applied alongy, i.e., perpendicular to
Ha and parallel to the currents circulating in the sample~Fig.
1!. We also make here the usual Bean assumption that
critical current densityj c' perpendicular to the local induc
tion B does not depend onB. The fieldHa is assumed to be
sufficiently large to exceed both the field of full penetrati
for the strip,5 Hp5( j c'd/p)ln(2ew/d), and the lower critical
field Hc1, and so we putB5m0H. Besides this, to explain
the physics with the least mathematical complication,
also assume thath@Jc/2; this allows us to neglect the influ
ence of the self-field of the currents on the shape of
vortices in the strip. HereJc5d jc' is the critical value of the
sheet currentJ ~i.e., the current density integrated over th
thicknessd) flowing in the strip.

Below we shall use the quasistatic approximation tha
valid at sufficiently small frequencyv. Within this approxi-
mation, the description of the vortex-shaking effect in t
strip reduces to solving a two-dimensional critical state pr
©2003 The American Physical Society11-1
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lem. However, the smallness of the parameterd/w enables
us to simplify this problem by application of the approach
Ref. 6. Within this approach~which was also used in ou
previous paper4!, wesplit the problem into two simpler prob
lems: A one-dimensional problem across the thickness of
sample, and a problem for the infinitely thin strip. Name
we first interpret a small section of the strip around an a
trary pointx ~see Fig. 1! as an ‘‘infinite’’ slab of thicknessd
placed in a perpendicular dc magnetic fieldHz(x), in a par-
allel ac fieldh cosvt, and carrying a sheet currentJy(x). The
resulting dc electric fieldEy obtained for the slab, we the
use as the local electric fieldEy(x) for an infinitely thin strip,
to calculate the temporal evolution of the sheet currentJy(x)

FIG. 1. Visualization of the two geometries of transverse~top!
and longitudinal~bottom! vortex shaking in a long thin strip in a
perpendicular dc magnetic fieldHa@Jc5 j c'd. When the in-plane
ac fieldhac5h cosvt with amplitudeh@Jc/2 is applied, the shee
currentJ relaxes from its maximum valueJc to zero in both geom-
etries since the vortices drift towards the center of the strip. Sho
is one vortex at subsequent timestv/p50, 1, 2, . . . . Top: Ifhac is
transverse toJ, the vortices ‘‘walk’’ in thexz plane as described in
Ref. 4~the vortices are straight since hereJc!hac , Ha is assumed!.
Bottom: If hac is parallel toJ, the vortices periodically tilt in theyz
plane and at the same time move alongx as described in the text.
10451
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and inductionBz(x) in this strip by the method used in Ref
7 and 8.

II. VORTEX DRIFT IN AN AC FIELD

We begin our analysis with the consideration of t
above-mentioned longitudinal shaking mechanism in a sm
region of the strip~nearx5x0) which we approximate by an
infinite slab in thex-y plane. Let a constant and homog
neous sheet currentJy flow in the slab placed in a constan
and homogeneous external magnetic fieldHz perpendicular
to the plane of the slab. The applied ac magnetic fieldhac
5h cosvt is in the y direction. The shaking mechanism
explained in Fig. 2: In order to tilt a vortex fromz towards
the y direction, the critical current densityj c(z)
5@ j cx(z), j cy(z),0# must have a nonzerox component which
is antisymmetric in z, j cx(z)52 j cx(2z). Thus, j c(z)
5 j c(z)@2sinw(z), cosw(z),0# flows at an anglew(z) to they
axis. Since the Lorentz force applied to an infinitesimal e
ment of the vortex is normal toj c(z), and the element shifts
along this force, the tilt alongy is always accompanied by
small shift alongx. This shift is independent of the sign o
hac , and hence, under the influence of an ac field, the vor
will drift in the direction of @Jy3Hz# by an oscillating
screwlike motion.

We now formalize this qualitative consideration, using
quasistatic approach. Since the critical current densityj c(z)
at a given depth in general is not normal to the magne
field, its amplitude may exceedj c' ~but its component per-
pendicular toH equalsj c'):6

j c~z!5
j c'

@12sin2u cos2w#1/2
. ~1!

n

FIG. 2. Scheme of the vortex shift in a slab when the longi
dinal ac magnetic field is increased fromhac to hac1dh. Shown is
the projection on thexy plane of a vortex~bold solid line! which
tilts more away from thez axis and at the same time shifts from
x5x0 to x5x01dx0. The projected shifts of some vortex line ele
ments are shown as dashed arrows with componentsdx0 and
dy(z), dy(z)52dy(2z). These arrows are along the Loren
force, which is perpendicular to the local current densityj c(z) ~solid
arrows! lying in the xy planes at the anglew(z) to they axis.
1-2
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THEORY OF THE LONGITUDINAL VORTEX-SHAKING . . . PHYSICAL REVIEW B67, 104511 ~2003!
Hereu is the angle of the magnetic-field tilt, sinu5hac/(Hz
2

1hac
2 )1/2, while the denominator is the sine of the angle b

tweenj c(z) and the total magnetic fieldH ~the vector sum of
the external and the ac fields!. A vortex at an arbitrary mo-
ment of time,t, has the shape of a straight line tilted at
angleu away from thez axis:

x5x0~ t !;

y5y01
hac

Hz
z, ~2!

wherex0(t) and y0 are the coordinates of the vortex in th
planez50. It is clear from symmetry thaty05const, and
without any loss of generality we shall puty050 below. Let
the ac field change bydh. The Lorentz force applied to a
infinitesimal element of the vortex is proportional to@ j c(z)
3H# and hence is directed along the vector

~cosw, sinw,2~hac /Hz!sinw!.

Then, the shift of the element can be written as

dx5dx0 ;

dy5tanwdx0 ;

dz52~hac /Hz!tanwdx0 , ~3!

wheredx0 is the shift of the vortex in the planez50. Since
the shifted element belongs to the vortex with a chan
valuehac1dh, it follows from Eq. ~2! that

dy5
dh

Hz
z1

hac

Hz
dz.

Inserting Eqs.~3! into this expression, we obtain the formu

HzS dx0

dh D S 11
hac

2

Hz
2 D tanw5z, ~4!

which enables one to find the functionw(z) if the ratio
(dx0 /dh)[x08 is known. This ratio can be expressed
terms of the sheet currentJy ,

Jy52E
0

d/2

j c~z!cosw~z!dz, ~5!

as follows: Inserting Eqs.~1! and ~4! into formula ~5!, inte-
grating, and definingv52ux08u(Hz

21hab
2 )1/2/d, we arrive at

J̃y cosu5v ln
11~11v2!1/2

v
, ~6!

whereJ̃y[Jy /Jc and cosu5Hz/(Hz
21hac

2 )1/2.
Let the solution of Eq.~6! for v be ~Fig. 3!

v5g~ J̃y cosu!.

Then, expressingx08 via v and integrating thex08 over hac ,
one can calculate the shift of the vortex during one cycle
the ac field:
10451
-
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0

h g~ J̃y cosu!

~Hz
21hac

2 !1/2
dhac . ~7!

The dc electric field generated by this shift of the vortex lin
is Ey5(v/2p)m0HzDx0, and hence we arrive at

Ey5
m0vd

p
HzE

0

umg~ J̃y cosu!

cosu
du, ~8!

where um is the maximum tilt angle of the total magnet
field H, cosum5Hz/(Hz

21h2)1/2.

III. ELECTRIC FIELD AND CURRENT DENSITY
IN A SLAB

The functiong(u) introduced above is defined in the in
terval 0,u,1 and can be easily found numerically by plo
ting its inverse function ~6!: u5g ln(g211A11g22)
5g arcsinh(1/g), see Fig. 3. At 12u!1, the functiong(u)
has the limiting form:

g~u!'
1

@6~12u!#1/2
. ~9!

At small u!1 we find

g~u!'
u

lnF2

u
lnS 2

u
ln

2

uD G , ~10!

i.e., g(u) is not strictly proportional tou. A very good ap-
proximation valid at allu is ~see Fig. 3!

g~u!'u/ ln
~11g0

2!1/211

g0
,

FIG. 3. The functiong(u) defined by Eq.~6! ~circles!. Also
shown is the approximation~11! ~solid line! and the limits~10!
~dash-dotted line! and ~9! ~dashed line!.
1-3



y

n

n

udi-
se

r

he

x

GRIGORII P. MIKITIK AND ERNST HELMUT BRANDT PHYSICAL REVIEW B 67, 104511 ~2003!
g0~u!5
u1u2

@24~12u!#1/2
. ~11!

If desired,g(u) can be obtained with arbitrary accuracy b
iterating Eq.~11! a few times.

Equation ~8! for the electric field is valid for all ratios
h/Hz , see Fig. 4. We now consider the practically importa
case of a weak ac field,h2!Hz

2 ~but still h@Jc/2). In this

case Eq. ~8! simplifies. If q2[(h/Hz)
2@2(12 J̃y)#21!1

~i.e., J̃y is not too close to unity!, we obtain

Ey5
m0vd

p
hg~ J̃y!, ~12!

FIG. 4. The electric fieldE generated by longitudinal vorte

shaking in unitsm0Jcvd/p plotted versusJ̃y5Jy /Jc for h/Jc55
andHz /Jc55 ~top!, 10 ~middle!, and 25~bottom!. Shown isE and
E• ln(10Jc /Jy)(Jc

2/hJy) to enlarge the area nearE50. The circles
and crosses mark the exact result, Eq.~8!. The solid lines show the
analytic approximation, Eq.~16!.
10451
t

while if the parameterq2 is of the order of or greater tha
unity @i.e., 12 J̃y,(h/Hz)

2], we find

Ey5
m0vd

p

Hz

A3
ln@~11q2!1/21q#. ~13!

It should be emphasized that these expressions for longit
nal vortex shaking noticeably differ from the transver
shaking formula:4

Ey5
m0vd

p
hJ̃y , ~14!

which gives the electric field whenhac is directed along the
x axis and under our assumptionh@Jc/2. If we generalize
the definition of the parameterq as follows,

q[A3
h

Hz
g~ J̃y!, ~15!

it is easy to verify that Eq.~13! reduces to Eq.~12! at q2

!1. Thus, formula~13! is a good interpolation formula fo

FIG. 5. Direction of the current densityj c(z) flowing in thexy
planes of a slab as a function of the heightz. The anglew(z)
betweenj c and they axis given by Eq.~18! is shown at the left.

Top: For J̃y50.975, corresponding to the onset of relaxation in t

strip. Bottom: ForJ̃y50.4, corresponding to some later time.
1-4
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THEORY OF THE LONGITUDINAL VORTEX-SHAKING . . . PHYSICAL REVIEW B67, 104511 ~2003!
the electric field at all magnitudes ofJ̃y except very close to
J̃51, see below. This formula may be rewritten in expli
form as

Ey5
m0vd

p

Hz

A3
arcsinhFA3

h

Hz
g~ J̃y!G , ~16!

with J̃y5Jy /Jc andg(u) from Eq. ~11!. Figure 4 shows tha
this expression is an excellent approximation to the ex
electric field, Eq.~8!, for h2!Hz

2 and leads to reasonab
results even whenh;Hz .

Let us now consider the distribution ofj c(z) in the critical
state of the slab, Fig. 5. Again, we confine ourselves to
case,h2!Hz

2 . In this case the magnitude ofj c(z) remains
almost constant,j c(z)' j c' , see Eq.~1!. As to the directions
of j c(z), one obtains from Eq.~4!

tanw~z!5
2z

d

cosu

g~ J̃y cosu!

x08

ux08u
. ~17!

Note that the ratiox08 sharply changes its sign whenhac

reaches its maximum or minimum value. At small (h/Hz)
2,

we may put cosu'1 in this formula, and hence

tanw~z!'
2z

d

1

g~ J̃y!

x08

ux08u
. ~18!

At 12 J̃y!1 ~beginning of the relaxation! one obtains

w~z!'
2z

d

x08

ux08u
@6~12 J̃y!#1/2, ~19!

i.e., the direction of the current density deviates from thy

axis very little. But if J̃y!1 ~near the end of the relaxation!
one arrives at

tanw~z!'
2z

d

x08

ux08u

ln~2A24/J̃y!

J̃y

, ~20!

and the direction ofj c(z) is almost normal to they axis
except in the vicinity of the planez50, where a sharp turn
of the directions occurs. In this case the small value ofJ̃y is
due to the smallx component ofj c(z) in almost the whole
volume of the slab.

IV. VORTEX SHAKING IN A STRIP

We now consider the temporal evolution of the profil
Jy(x) andBz(x) in the infinitely thin strip.7 This evolution is
caused by the slow drift of vortices toward the center of
strip and is given by the Maxwell equation

]Bz

]t
52

]Ey

]x
, ~21!

with Ey specified by the formulas obtained above. SinceEy
5vxBz , wherevx is the average velocity of the vortices, th
above equation simply expresses the conservation law o
10451
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vortex number inside the strip. On the other hand, the B
Savart law yields a relation between the sheet currentJy and
Bz :

Bz~x!

m0
5Ha1

1

2pE2w

w Jy~u!du

u2x
. ~22!

Equations~21! and ~22!, together with the initial condition

Jy~x!u t50'2Jcx/uxu, ~23!

are sufficient to determine the temporal evolution ofJy , Ey ,
andBz in the strip, i.e., the functionsJy(x,t), Ey(x,t), and
Bz(x,t).

Equations~21! and ~22! can be reduced to a single equ
tion in Jy(x,t). Namely, taking the time derivative of Eq
~22! and inserting Eq.~21!, we obtain

]Ey~x,t !

]x
52

m0

2pE2w

w J̇y~u!du

u2x

( J̇y5]Jy /]t). Integrating this formula overx and using the
symmetryJy(2x)52Jy(x), we arrive at8

Ey~Jy~x,t !!5
m0

2pE0

w

lnUx2u

x1uUJ̇y~u,t !du, ~24!

with Ey(Jy) given by formulas of the previous sections. Th
implicit equation forJy(x,t) is easily solved numerically by
writing it as a matrix equation for the functionsJi(t)
5Jy(xi ,t) calculated at discrete valuesxi of the coordinate
x. Inverting this matrix, one obtains an explicit expressi
for the time derivativesJ̇i(t) as a function of allJi(t), and
Jy(x,t) is then obtained by simple time integration. Equiv
lently, the equation forJy(x,t) can be also represented in th
explicit form4

]Jy~x,t !

]t
5

2

pm0
E

2w

w du

u2x S w22u2

w22x2D 1/2]Ey~J!

]u
. ~25!

In the derivation ofEy ~Sec. II!, we have assumed thatJy
andHz do not change during one cycle of the ac field. Th
approximation is justified when the relaxation time of t
profiles Jy(x) and Hz(x) considerably exceeds the perio
2p/v of the ac field. Equation~25! shows that this condition
is fulfilled if the sheet currentJy is not too close toJc , and
if the strip is sufficiently wide. Indeed, the right-hand side
the equation is proportional to (d/w)vh; this becomes evi-
dent if one introduces the dimensionless lengthx/w and
takes into account formula~12!. Thus, the decrease ofJ̃y
5Jy /Jc during one cycle is determined by the parame
h/(w jc'), and the above formulas are applicable wh
w jc'@h@d jc'/2. At the beginning of the relaxation whe
Jy is very close toJc , the right-hand side of Eq.~25! con-
tains Hz instead of h, see formula~13!. Hence, if Ha
.w jc' , our assumption fails at this initial stage. Howeve
the duration of this stage is so small ath2!Ha

2 that one may
neglect it in calculations.
1-5
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The numerical method of solving Eq.~24! is well
elaborated,7,8 and we use it to analyze the evolution of th
sheet currentJ(x,t). In Fig. 6 the profiles of the sheet cu
rent Jy(x,t) in the strip are shown at various times. Wh
h2!Ha

2 , formula ~12! is practically valid at anyJ̃y , and the
relaxation depends only on the combinationv(d/w)(h/Jc).
Hence, if the time is measured in units oft1
5(pw jc' /vh), all profiles for variousv, h, and various
specimens coincide at equal times. But the profiles do
have a time-independent universal spatial shape here, a
occurred with transverse vortex shaking4 at long times due to
the fact thatE}J, Eq. ~14!. However, at large times, whe
J̃y!1, the voltage-current characteristic becomes almost
ear@see Eq.~10!#, and the profiles tend to the universal sha
obtained for the linearEy(Jy).

In Fig. 7 we show the time dependence of the magn
moment9 per unit length of the strip, M (t)
5*2w

w J(x,t)xdx, at various amplitudesh of the ac magnetic
field. Again, whenh2!Ha

2 , the rate of the magnetic-momen
decay is proportional to the combinationv(d/w)(h/Jc). In
other words, all dependencesM (t) should map onto one

FIG. 6. Profiles of the sheet currentJ(x,t) for a strip with
Ha /Jc525 andh/Jc55. Shown are the profiles at various timest
in units t15(p/v)(w/d)(Jc /h), from top to bottom. Upper panel
t50, 0.005, 0.01, 0.02,. . . ,1.28, 2.56, and 5.12. Lower panel:t
50, 0.025, 0.1, 0.4, 1.6, 6.4, 25.6, and 102.4. To show how
shape changes, the profiles in the lower panel are normalize
unity maximum value. The limiting profile, obtained for a strip wi
linear E(J), is shown as the dashed line.
10451
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universal curve if one uses the time unitt15pw jc' /(vh).
Figure 7~bottom! shows that this coincidence occurs with
line thickness forh/Ha<0.4. But in contrast to the trans
verse vortex-shaking effect,4 this universal dependence is n
exactly exponential in time sinceEy is not strictly propor-
tional to Jy ~‘‘ohmic’’ ! even at smallJy @compare Eqs.~10!
and ~12! with Eq. ~14!#. The deviation from an exponentia
law is only weak over each decade inM (t) but is such that
the relaxation becomes slower at larger times. An excel
fit within line thickness of bothM and lnM up to times
t/t1'8, corresponding toM (t)/M (0)>1023, is

M ~ t !'M ~0!exp@21.68~ t/t1!0.64#, ~26!

while for transverse shaking Ref. 4 yields ath@Jc

M ~ t !'M ~0!exp@24.01t/t1#. ~27!

Comparing the relaxation ofM (t) during longitudinal and
transverse vortex shaking, one can see in Fig. 7 that initi

e
to

FIG. 7. Time dependence of the magnetic momentM (t) of the
strip relaxing during longitudinal shaking at various amplitudesh
@Jc/2 of the ac magnetic field. Top:h/Jc55, 7, and 10, and
Ha /Jc525. The time unit ist05pw/(vd). Bottom: The same
data, when plotted versus the reduced time (t/t0)(h/Jc)5t/t1, col-
lapse into one universal curve~solid line!, which is not exactly
exponential even at large times. The dashed line shows the m
netic moment relaxing during transverse shaking withE(J) from
Eq. ~14!. This ohmic relaxation (E}J) is exactly exponential~after
a short transient time!. The curves cross at the point (0.08
20.34). The circles and triangles show the analytical express
~26! and ~27!.
1-6
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THEORY OF THE LONGITUDINAL VORTEX-SHAKING . . . PHYSICAL REVIEW B67, 104511 ~2003!
the longitudinal shaking yields faster relaxation, but at sh
times t/t1'0.087 the two curves cross atM (t)/M (0)
'0.71, and at longer times the relaxation by longitudin
shaking is slower.

Knowing the functionJy(x,t) in the infinitely thin strip
and the distribution ofj c over the thickness of the slab, E
~17!, one can construct the two-dimensional distribution
critical current density over the cross section of a strip w
finite thicknessd and the evolution of this distribution in
time. Figure 8 shows stream lines of the current density
the surface of the strip at the beginning, at an intermed
moment, and at the end of the relaxation process. It is s
that the longitudinal currents flowing in the initial state of t
strip evolve into a long loop which gradually shortens its s
in the y direction, and eventually the currents circulate on
in the x-z plane. In other words, the initial critical stat
across the width of the strip~caused byHa) relaxes, and the
critical state only across the thickness of the supercondu
~caused byhac) remains.

V. LARGE AC MAGNETIC FIELDS

We now consider the case in which the magnitude of
ac magnetic field is large,h. j c'w, and thus our above as
sumption thatJy is constant during one cycle of the ac fie
fails. Although in this situation the decay ofJy is fast and
takes only a few periods of the ac field, 2p/v, the quasi-
static approximation~Bean model! is still valid if v is small,
thus formulas~1!–~6! remain true. One should only modif
the expression for the electric fieldEy .

Thex component of the velocity of a vortex line when th
ac field changes bydh is

vx~ t !5~dx0 /dh!•~dhac /dt!5vhucosvtuux08u,

where ux08u5(d/2)cosug(J̃y cosu)/Hz @see also Eq.~6!#;
cosu5Hz/(Hz

21h2 sin2vt)1/2 is a function of timet. Here we
choosehac in the formhac5h sinvt, to start with the value

FIG. 8. Current stream lines at the surface of the strip.~a! Onset
of the relaxation: longitudinal currents caused by the applied
field. ~b! During the relaxation: long current loops standing s
during most of each period, but stretching and flipping periodica
at the moments whendhac /dt50. ~c! End of the relaxation: shor
current loops caused by the ac field. Inside the strip the cur
density is j c(z)5 j c(z)@2sinw(z), cosw(z),0#, with magnitude~1!

and angle~17!. Thus, in~a! j c(z)52 j c' sgn(x) ŷ, in ~b! the angle
w(z) varies continuously acrossz, see Fig. 5, and in~c! j c(z)

52 j c' sgn(z) x̂.
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u50 at t50. Inserting thisvx(t) into the formula for the
electric fieldEy5vxBz , we arrive at

Ey~ t !5
m0hvd

2
ucosvtucosug~ J̃y cosu!. ~28!

Formula ~28! gives the instantaneous value of the elect
field Ey in the slab. In the limiting case considered abov
when the sheet currentJy and the fieldHz are approximately
constant during one cycle of the ac field, the averaging of
~28! over one cycle leads to expression~8!.

To describe the longitudinal vortex-shaking effect in t
strip ath. j c'w, one can use the equations of Sec. IV w
Ey given by formula~28!, which replaces the expression~8!
or its approximation, Eq.~16!. Figure 9 shows the relaxatio
of the magnetic momentM (t) of the strip obtained both
from the exactEy(t), Eq.~28!, and from approximation~16!,
for w/d520. It can be seen that at not too large relati
amplitudes h/w jc'5(h/Jc)(d/w)!1 the exact M (t)
slightly oscillates about the smoothM (t) of Fig. 7. At large
amplitudes h5Ha.w jc'@Jc , the magnetic moment re
laxes practically completely within a few periods of the
field, and it oscillates about a curve which now deviates fr
the smoothM (t) obtained using Eq.~16!. Interestingly, this
theoreticalM (t) ~see inset to Fig. 9! qualitatively resembles
the experimental data10–13 obtained earlier for different ge
ometries of the superconductor.

VI. CONCLUSIONS

In the vortex-shaking effect the applied ac magnetic fi
hac is perpendicular to the external dc magnetic fieldHa , or
almost perpendicular.1–3 We consider this effect in an infi
nitely long thin strip of thicknessd, with the dc field perpen-
dicular to the plane of the strip, and distinguish between

c

y

nt

FIG. 9. Relaxation of the magnetic momentM (t) of the strip
obtained from the time-averaged electric field, Eq.~16! ~dashed
lines, see also Fig. 7!, and from the exactEy(t), Eq. ~28! ~solid
lines!, plotted versust•(v/p) for w/d520, Ha /Jc525, and three
amplitudesh/Jc55, 10, and 25. For the latter large amplitude t
inset showsM (t) plotted versus the ac fieldhac(t)5h sin(vt).
1-7
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longitudinal and the transverse effects since they have di
ent physical origin. We classify these effects according to
direction of the ac field relative to the direction of the cu
rents circulating in the critical state of the strip. In the tran
verse effect the ac field lies in the plane of the strip and
perpendicular to the currents~i.e. to the length of the strip!,
while in the longitudinal effect the ac field is along the cu
rents. The theory of the transverse effect was given in
previous paper.4 Here we have presented the theory of t
longitudinaleffect, when the ac field is along the strip, und
the assumption that the amplitudes ofHa andhac consider-
ably exceed the critical value of the sheet current,Jc
5d jc' . Note that if both the dc and ac magnetic fields a
normal to the strip plane, no relaxation should occur, exc
when an additional transport current is applied to the stri14

We have shown that periodic tilt of vortices along t
strip is accompanied by a drift of the vortices towards
center of the sample. This drift generates an electric field
eventually leads to the complete relaxation of the criti
state across the width of the strip. Strictly speaking, the
.

.
ev

H.
.
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laxation of the currents and of the irreversible magnetic m
ment of the strip during longitudinal shaking is not describ
by an exponential law~as it occurs in the transverse effec!
but is well approximated by a stretched exponential, E
~26!. Shortly after its onset, the relaxation is faster than t
with transverse shaking, but then it becomes noticea
slower than this. Interestingly, in the longitudinal effect, t
relaxation not only causes a redistribution of currents o
the cross section of the strip, but it also changes their dir
tion ~eventually byp/2), see Fig. 7, while in the transvers
effect the direction of the currents remains unchanged.
obtained results together with those of Ref. 4 will enable o
to describe the vortex-shaking effect in real superconduc
samples of finite length, where both types of shaking occ
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