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Theory of the longitudinal vortex-shaking effect in superconducting strips
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We show that for a thin superconducting strip placed in a perpendicular dc magnetic field—the typical
geometry of experiments with high; superconductors—the application of a weak ac magnetic field along the
strip (i.e., perpendicular to the dc field aparallel to the circulating critical currentggenerates a dc voltage
in the strip, which causes the critical currents and irreversible magnetic moment to relax completely. This
relaxation process is not due to thermally activated flux creep but to the drift of vortices towards the center of
the strip under the influence of the ac field. Thiagitudinal vortex-shaking theory supplements our previous
theory oftransversevortex shaking where the ac field was perpendicular to the irreversible currents. Together,
both theories clarify the nature of the vortex-shaking effect in real superconducting samples of finite length.
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I. INTRODUCTION critical state concept and thus is valid even when thermally
activated flux creep is negligible. However, it is clear that the
Experimental investigation of the equilibrium properties vortex tilt across the width of the strip disappears if the ac
of type-ll superconductors can be performed only in the reimagnetic field still lies in the plane of the strip butaarallel
versible region of the magnetic-fiel¢H) versus temperature to the circulating currents, i.e., parallel to the length of the
(T) plane. But often strong flux-line pinning prevents thestrip. In this case the above consideration fails. In real
measurement of equilibrium properties. In this context,samplegwhich have, e.g., the shape of rectangular platglets
Willemin et al! recently made an interesting observation.the applied ac field is perpendicular to the circulating cur-
Their experiments revealed that application of an additionafents in some regions of the superconductor and parallel in
small oscillating magnetic fielderpendicularto the main dc  some others. Thus, the explanation of the vortex-shaking ef-
field leads to a fast decay of the currents circulating in thdfect in real superconducting samples should combine both
critical state of various higfi-, superconductors. This effect the transverse and longitudinal vortex shaking and requires
dramatically extends the observable reversible domain in théirther work.
H-T plane. The relaxation of the irreversible magnetization In this paper we show that a vortex in the critical state
in these experiments was approximately exponential in timenoves towards the center of the strip even when it undergoes
and thus was obviously different from thermally activatedperiodic tilt along the strip. On the basis of this somewhat
flux creep, which would lead to a logarithmic time law. Us- surprising finding, we develop a quantitative theory of the
ing this vortex-shaking process, the melting transition of thdongitudinal vortex-shaking effect in a strip when the ac field
vortex lattice in YBaCu,O5_ 5 crystals was detectéat tem-  points along the strip, i.eparallel to the circulating currents.
peratures very close to the critical temperaflite where the ~ Specifically, we shall consider the following situation: A thin
melting could not be investigated before. With the samesuperconducting strip fills the spadg/<w, [y|<=, |
shaking method, it was discoverethat the order-disorder <d/2 with d<w; the constant and homogeneous external
transition in the vortex lattice of B8r,CaCyQy is of the  magnetic fieldH, is directed along, while the ac magnetic
first order at low temperatures, where vortex pinning usuallyfield h,.=h coswt is applied alongy, i.e., perpendicular to
masks the corresponding jump in the equilibrium magnetizaH, and parallel to the currents circulating in the san(piig.
tion. Thus, the vortex-shaking process opens new possibilil). We also make here the usual Bean assumption that the
ties in the experimental investigation HET phase diagrams critical current density ., perpendicular to the local induc-
of superconductors. tion B does not depend oB. The fieldH , is assumed to be
In our previous papérwe gave a quantitative explanation sufficiently large to exceed both the field of full penetration
of the transversevortex-shaking effect for an infinitely long for the strip? Hy=(jc. d/m)In(2ewd), and the lower critical
thin strip when the ac magnetic fielg,. lies in the plane of field H.;, and so we puB= ugH. Besides this, to explain
the strip and isperpendicularnot only to the dc magnetic the physics with the least mathematical complication, we
field (which is normal to the planebut also to the currents also assume thdt>J./2; this allows us to neglect the influ-
circulating in the superconductor. In this situation, the self-ence of the self-field of the currents on the shape of the
field of the currents adds tw,. on the uppefor lowen plane  vortices in the strip. Herd.=dj., is the critical value of the
of the strip and subtracts from it on the opposite plane. As sheet currend (i.e., the current density integrated over the
result, the ac field tilts the vortices asymmetrically relative tothicknessd) flowing in the strip.
the central plane of the strip, forcing them to “walk” towards  Below we shall use the quasistatic approximation that is
the center of the strip, thus causing relaxation of the criticalvalid at sufficiently small frequency. Within this approxi-
state, Fig. 1. We note that this result was obtained in thenation, the description of the vortex-shaking effect in the
framework of a quasistatic approach based on the standasdrip reduces to solving a two-dimensional critical state prob-
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FIG. 2. Scheme of the vortex shift in a slab when the longitu-
dinal ac magnetic field is increased frdm, to h,.+ h. Shown is
the projection on they plane of a vortexbold solid line which
tilts more away from the axis and at the same time shifts from
X=Xq 10 X=Xg+ 8Xy. The projected shifts of some vortex line ele-
ments are shown as dashed arrows with componérts and
8Y(z), 8y(z)=—06y(—2). These arrows are along the Lorentz
force, which is perpendicular to the local current dengify) (solid
arrows lying in the xy planes at the angle(z) to they axis.

and inductiorB,(x) in this strip by the method used in Refs.
7 and 8.

II. VORTEX DRIFT IN AN AC FIELD

We begin our analysis with the consideration of the
above-mentioned longitudinal shaking mechanism in a small
region of the strignearx=Xy) which we approximate by an
. . . . . . . infinite slab in thex-y plane. Let a constant and homoge-
neous sheet curred, flow in the slab placed in a constant
and homogeneous external magnetic fielgd perpendicular
to the plane of the slab. The applied ac magnetic freld
=hcoswt is in they direction. The shaking mechanism is
explained in Fig. 2: In order to tilt a vortex fromtowards
rlihe y direction, the critical current densityj.(2)
=[Jex(2):Jcy(2),0] must have a nonzerocomponent which

FIG. 1. Visualization of the two geometries of transve(tsm)
and longitudinal(bottom vortex shaking in a long thin strip in a
perpendicular dc magnetic field,>J.=]j., d. When the in-plane
ac fieldh,.=h coswt with amplitudeh>J_./2 is applied, the sheet
currentJ relaxes from its maximum valug, to zero in both geom-
etries since the vortices drift towards the center of the strip. Show

is one vortex at subsequent times/ 7=0, 1, 2,.... Top: Ith,.is . : o4 . . )
transverse td, the vortices “walk” in thexz plane as described in 1S _antisymmetric inz jc(2)=—jc(—2). Thus, j¢(2)
Ref. 4(the vortices are straight since hekg<h,., H, is assumed = 1c(Z)[ —Sin¢(2), cose(2),0] flows at an anglex(z) to they

Bottom: If h,. is parallel tod, the vortices periodically tilt in thgz ~ a@xis. Since the Lorentz force applied to an infinitesimal ele-
plane and at the same time move alonas described in the text. ment of the vortex is normal tp(z), and the element shifts
along this force, the tilt along is always accompanied by a
lem. However, the smallness of the parameter enables  small shift alongx. This shift is independent of the sign of
us to simplify this problem by application of the approach ofy, . and hence, under the influence of an ac field, the vortex

Ref. 6. Within this approacliwhich was also used in our yj grift in the direction of [J,xH,] by an oscillating
previous papéy, we split the problem into two simpler prob-  gcrewlike motion.

lems A one-dimensional problem across the thickness of the \we now formalize this qualitative consideration, using a

sam.ple,.and a problem for the infinitely thin strip. Namelygquasistatic approach. Since the critical current derjs(t)
we first interpret a small section of the strip around an arbi; 4 given depth in general is not normal to the magnetic

trary pointx (see Fig. 1 as an “infinite” slab of thicknessl field, its amplitude may exceeid, (but its component per-
placed in a perpendicular dc magnetic figld(x), in a par- pendicular toH equalsj,, ):®

allel ac fieldh coswt, and carrying a sheet currelif(x). The
resulting dc electric field, obtained for the slab, we then .
use as the local electric fiele (x) for an infinitely thin strip, i — Joi
: ic(2) : " (1)
to calculate the temporal evolution of the sheet curdg(w) [1-sirf0cose]
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Here 0 is the angle of the magnetic-field tilt, s&#hac/(Hﬁ af
+hZ)Y2, while the denominator is the sine of the angle be-
tweenj.(z) and the total magnetic field (the vector sum of
the external and the ac field®A vortex at an arbitrary mo-
ment of time,t, has the shape of a straight line tilted at an

angle # away from thez axis: 2f
X=Xo(1); o
hac
y= y0+ H_Zv (2) 1t

z

wherexg(t) andy, are the coordinates of the vortex in the
planez=0. It is clear from symmetry thag,=const, and
without any loss of generality we shall pyg=0 below. Let

the ac field change byh. The Lorentz force applied to an 0 ; - . -
infinitesimal element of the vortex is proportional [tix(z) 0 0.2 04 o, 08 08 1
X H] and hence is directed along the vector

_ _ FIG. 3. The functiong(u) defined by Eq.(6) (circles. Also
(cose, sing, —(hyc/Hy)sing). shown is the approximatioiill) (solid line) and the limits(10)

Then, the shift of the element can be written as (dash-dotted lingand (9) (dashed ling

OX=Xo; h g(J, coso)
AXOZZd 0 —H2+h2 12 ac - (7)
oy=tangoxo; (H; ac)
__ The dc electric field generated by this shift of the vortex lines
02= = (hac/H2)tane oo, @ is Ey=(w/2m) uoH,AX,, and hence we arrive at
where X, is the shift of the vortex in the plane=0. Since
th(T sr;]iftefﬁﬁlem?r;lt belcf)ngs |t50 thze \;lortex with a changed . :MowdH Jemg(jy cosé’)d‘9 ®
valueh,. , it follows from Eq.(2) that y= 4 Mz), T cosa %9
sh hye . . . :
Sy=—z+— 6z where 6, is the maximum tilt angle of the total magnetic
H, - H, field H, cosfy,=H,/(H2+h?)2,

Inserting Egs(3) into this expression, we obtain the formula
h lll. ELECTRIC FIELD AND CURRENT DENSITY
OX
5—ho)(1+ —azc)tanzpzz, (4) INASLAB
Hz The functiong(u) introduced above is defined in the in-

which enables one to find the functiap(z) if the ratio  terval 0<u<1 and can be easily found nurplerically by plot-
(8%o/5h)=x} is known. This ratio can be expressed inting its inverse function (6): u=glin(g "+\1+g ?)

H,

terms of the sheet curredy, =garcsinh(1g), see Fig. 3. At :u<1, the functiong(u)
has the limiting form;
dr2
3,=2 f jc(2)cosg(2)dz, (5) L
0
g(u)~ ———. ©)
as follows: Inserting Eqg1) and (4) into formula(5), inte- [6(1—u)]
: T _ ’ 2 2\1/2 H
grating, and defining = 2|x{|(Hz+h%,)"9d, we arrive at At small u<1 we find
~ 1+(1+0%)?
Jycosf=v Inf, (6) u 10
whereJ,=J,/J; and cosi=H,/(HZ+hZ)"2 nogMa™y

Let the solution of Eq(6) for v be (Fig. 3
i.e., g(u) is not strictly proportional tas. A very good ap-

vzg(jy €0s06). proximation valid at allu is (see Fig. 3
Then, expressing} via v and integrating the; over h,, (1+g2)12+1
one can calculate the shift of the vortex during one cycle of g(u)%u/mgo—,
the ac field: Y0
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hid = 5 B
4 1 :
E in units _dred %
w 3 uOJcoo d/zm .
ol FIG. 5. Direction of the current densify(z) flowing in thexy
E* In(10Jc/Jy)*(J§/th) planes of a slab as a function of the heightThe angleo(2z)
] | betweenj. and they axis given by Eq.(18) is shown at the left.
Top: For3y=0.975, corresponding to the onset of relaxation in the
strip. Bottom: Forjy=0.4, corresponding to some later time.

while if the parameten? is of the order of or greater than
FIG. 4. The electric fieldE generated by longitudinal vortex unity [i.e., 1—3y<(h/HZ)2], we find
shaking in unitsugJ.wd/ 7 plotted versu§y=\]y/\]C for h/J.=5

andH,/J.=5 (top), 10 (middle), and 25(bottom). Shown isE and powd H,
E-In(103./3,)(J%/hJ,) to enlarge the area nelr=0. The circles E,= —In[(1+g?)Y?+q]. (13
and crosses mark the exact result, ). The solid lines show the \/3

analytic approximation, Eq16). ) ) o
It should be emphasized that these expressions for longitudi-

5 nal vortex shaking noticeably differ from the transverse
u+u shaking formuld®

go(u)= [241—w ] (11)

pmowd -

If desired,g(u) can be obtained with arbitrary accuracy by Ey= T hJy,
iterating Eqg.(11) a few times.

Equation (8) for the electric field is valid for all ratios which gives the electric field whelm, is directed along the

h/H,, see Fig. 4. We now consider the practically importantx axis and under our assumptidr®>J./2. If we generalize

case of a weak ac fieldy?><H2 (but still h>J/2). In this  the definition of the parameteyas follows,
case Eq.(8) simplifies. If g?=(h/H,)?[2(1-J,)] *<1

(14)

Lo~ . . h .
(i.e.,Jy is not too close to unity we obtain =13 I_ng(\]y), (15)
E :Mowd hg(3,) (12) it is easy to verify that Eq(13) reduces to Eq(12) at g°
Yoo yo <1. Thus, formula(13) is a good interpolation formula for
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the electric field at all magnitudes 31} except very close to

J=1, see below. This formula may be rewritten in explicit
form as

_ powd H,

h -
ﬁarcsimii J3 H—Zg(Jy) ,

(16)

y

with ‘~Jy=Jy/JC andg(u) from Eq.(11). Figure 4 shows that

this expression is an excellent approximation to the exact

electric field, Eq.(8), for h?><H? and leads to reasonable
results even wheh~H,.
Let us now consider the distribution pf(z) in the critical

PHYSICAL REVIEW B67, 104511 (2003

vortex number inside the strip. On the other hand, the Biot-
Savart law yields a relation between the sheet cudgrand

:
BAX) _
Mo

1 (wJ,(uwdu
= y
Ha+27rf,w u—x -

Equations(21) and(22), together with the initial condition

(22

Jy(0) |t~ = IeX/|x], (23

are sufficient to determine the temporal evolutiordpf E, ,
andB, in the strip, i.e., the functiond,(x,t), E,(x,t), and

state of the slab, Fig. 5. Again, we confine ourselves to thé,(x,t).

case,h?<H2. In this case the magnitude §f(z) remains
almost constani,.(z)~j., , see Eq(1). As to the directions
of j.(z), one obtains from Eq4)

‘ 2 2z
ane(z)=— —=——— .
d g(J, cosh) |x{|

!
cosf X4

7

Note that the ratiox; sharply changes its sign whem,
reaches its maximum or minimum value. At smaild,)?,
we may put co®~1 in this formula, and hence

2z 1
d g3, [xg|

At 1—jy<1 (beginning of the relaxatiorone obtains

!
Xo

tane(z)~ (18)

27 X§ ~
¢(2)~ = —-[6(1-3,)]*2
d x|
i.e., the direction of the current density deviates from yhe

axis very little. But if3y<1 (near the end of the relaxatipn
one arrives at

(19

2z x§ In(22413,)

~= 0 T 20
tane(2)= G 3 (20)

y
and the direction of.(z) is almost normal to they axis
except in the vicinity of the plane=0, where a sharp turn

of the directions occurs. In this case the small valuaps
due to the smalk component ofj.(z) in almost the whole
volume of the slab.

IV. VORTEX SHAKING IN A STRIP

Equations(21) and(22) can be reduced to a single equa-
tion in Jy(x,t). Namely, taking the time derivative of Eq.
(22) and inserting Eq(21), we obtain

JEy(XD) o [ Jy(u)du
Ix 27)_w U—X

(JyzaJy/at). Integrating this formula ovex and using the
symmetryd,(—x) = —J,(x), we arrive at

Mo AU

w X—
E,(J,(x,t)) = ﬁfo Il s

ul.
Jy(u,t)duy,

(24)

with Ey(J,) given by formulas of the previous sections. This
implicit equation forJ,(x,t) is easily solved numerically by
writing it as a matrix equation for the functiong;(t)
=Jy(x;,t) calculated at discrete values of the coordinate

X. Inverting this matrix, one obtains an explicit expression

for the time derivatives);(t) as a function of all;(t), and
Jy(x,t) is then obtained by simple time integration. Equiva-
lently, the equation fod,(x,t) can be also represented in the

explicit form’
fw du
_WU —X

In the derivation ofE, (Sec. I), we have assumed t
andH, do not change during one cycle of the ac field. This
approximation is justified when the relaxation time of the
profiles J,(x) and H,(x) considerably exceeds the period
27/ w of the ac field. Equatiof25) shows that this condition
is fulfilled if the sheet currend, is not too close td., and
if the strip is sufficiently wide. Indeed, the right-hand side of
the equation is proportional ta(w)wh; this becomes evi-

W2_u2
W2_X2

3dy(X,t)

2
ot

1/2 &Ey(J)
T .

ou

(25

We now consider the temporal evolution of the profiles yont if one introduces the dimensionless lengfhv and

J,(x) andB,(x) in the infinitely thin strip This evolution is , ~
cé\used by the slow drift of vortices toward the center of thetfljef Jm?ufi‘r?;og;t fg;g;gl?izge:crehrﬁhézeb?/etcrzgazgr:r?qeter
) o ; c
strip and is given by the Maxwell equation h/(\)//vjci), and the above formulas are applicable when
Wj., >h>dj. /2. At the beginning of the relaxation when
Jy is very close tal., the right-hand side of E|25) con-
tains H, instead ofh, see formula(13). Hence, if H,
with E, specified by the formulas obtained above. Siige >Wj., , our assumption fails at this initial stage. However,
=v,B,, Whereu, is the average velocity of the vortices, the the duration of this stage is so smallré<H2 that one may
above equation simply expresses the conservation law of theeglect it in calculations.

B,  JE,
T

(21)
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FIG. 7. Time dependence of the magnetic monmdift) of the
FIG. 6. Profiles of the sheet curred{x,t) for a strip with strip relaxing during longitudinal shaking at various amplituties
H,/J.=25 andh/J.=5. Shown are the profiles at various timtes >J./2 of the ac magnetic field. Toph/J.=5, 7, and 10, and
in unitst, = (7/w)(w/d)(J./h), from top to bottom. Upper panel: H,/J.=25. The time unit isty=7w/(wd). Bottom: The same
t=0, 0.005, 0.01, 0.02,..,1.28, 2.56, and 5.12. Lower pan¢l: data, when plotted versus the reduced titigy§(h/J.) =t/t;, col-
=0, 0.025, 0.1, 0.4, 1.6, 6.4, 25.6, and 102.4. To show how thdapse into one universal curvsolid line), which is not exactly
shape changes, the profiles in the lower panel are normalized texponential even at large times. The dashed line shows the mag-
unity maximum value. The limiting profile, obtained for a strip with netic moment relaxing during transverse shaking V() from

linear E(J), is shown as the dashed line. Eq. (14). This ohmic relaxationE«J) is exactly exponentiglafter
a short transient time The curves cross at the point (0.087,
The numerical method of solving Eq24) is well —0.34). The circles and triangles show the analytical expressions

elaborated;® and we use it to analyze the evolution of the (26) and (27).
sheet currend(x,t). In Fig. 6 the profiles of the sheet cur-
rent Jy(X,t) in the strip are shown at various times. When
h2<H3, formula(12) is practically valid at anyl,, and the
relaxation depends only on the combinatie(d/w)(h/J.).

universal curve if one uses the time ubjt= 7wj., /(wh).
Figure 7(bottom shows that this coincidence occurs within
line thickness forh/H,=<0.4. But in contrast to the trans-
. i ) . 4 verse vortex-shaking effeéthis universal dependence is not
Hencez it the tlme. IS meas_ured N units .Ofl exactly exponential in time sinci, is not strictly propor-
=(mWic, /wh), all profiles for variousw, h, and various iqna116 3 " (“ohmic” ) even at smalll, [compare Eqs(10)
specimens coincide at equal times. But the profiles do noénd(lZ) V\zith Eq. (14)]. The deviatiory1 from an exponential

have a timg-independent universal %patial shgpe here, as hI%\/ is only weak over each decadeM(t) but is such that
occurred with transverse vortex shakirg long times due to the relaxation becomes slower at larger times. An excellent

Ehe fact thate=J, Eq. (14). However_, ?t large times, When. fit within line thickness of bothM and InM up to times
Jy<1, the voltage-current characteristic becomes almost ling/t, ~8, corresponding td(t)/M(0)=10"3, is

ear[see Eq(10)], and the profiles tend to the universal shape

obtained for the lineaE,(J,). M(t)~M(0)exd —1.6Qt/t;)%%4], (26)

In Fig. 7 we show the time dependence of the magnetic | . . .
momen% per unit length gf the strip, M(tg)J while for transverse shaking Ref. 4 yieldshet J,

=", J(x,t)xdx, at various amplitudes of the ac magnetic M (t)~M (0)exd —4.01t/t,]. (27)
field. Again, Wherh2<H§, the rate of the magnetic-moment
decay is proportional to the combinaties(d/w)(h/J;). In Comparing the relaxation &l (t) during longitudinal and

other words, all dependencég(t) should map onto one transverse vortex shaking, one can see in Fig. 7 that initially
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FIG. 8. Current stream lines at the surface of the steEpOnset
of the relaxation: longitudinal currents caused by the applied dc
field. (b) During the relaxation: long current loops standing still
during most of each period, but stretching and flipping periodically
at the moments whedh,./dt=0. (c) End of the relaxation: short
current loops caused by the ac field. Inside the strip the currer
density isj.(z) =j.(2)[ —sin¢(2), cose(2),0], with magnitude(1)
and angleg(17). Thus, in(@) j.(2)=—j.. sgnk)y, in (b) the angle ) ) )
¢(2) varies continuously acrosg see Fig. 5, and irc) j.(2) F_IG. 9. Relaxathn of the magnetic njonjeMt(t) of the strip
= o SGNB)R. obtained from the time-averaged electric field, Ef6) (dashed

lines, see also Fig.)7and from the exacE,(t), Eq. (28) (solid
lines), plotted versus- (w/7) for w/d=20, H,/J.=25, and three
rtamplitudesh/\]czs, 10, and 25. For the latter large amplitude the
inset showdMi (t) plotted versus the ac field,.(t) = h sin(wt).

the longitudinal shaking yields faster relaxation, but at sho
times t/t;~0.087 the two curves cross awl(t)/M(0)
~0.71, and at longer times the relaxation by longitudinal
shaking is slower.

Knowing the functiondy(x,t) in the infinitely thin strip
and the distribution of. over the thickness of the slab, Eq.
(17), one can construct the two-dimensional distribution of wohwd
critical current density over the cross section of a strip with Ey(t)= 2
finite thicknessd and the evolution of this distribution in
time. Figure 8 shows stream lines of the current density aFormula (28) gives the instantaneous value of the electric
the surface of the strip at the beginning, at an intermediatéield E, in the slab. In the limiting case considered above,
moment, and at the end of the relaxation process. It is seephen the sheet curredf, and the fieldH, are approximately
that the longitudinal currents flowing in the initial state of the constant during one cycle of the ac field, the averaging of Eq.
strip evolve into a long loop which gradually shortens its size(28) over one cycle leads to expressi).
in they direction, and eventually the currents circulate only  To describe the longitudinal vortex-shaking effect in the
in the x-z plane. In other words, the initial critical state strip ath>j., w, one can use the equations of Sec. IV with
across the width of the strigaused byH,) relaxes, and the E, given by formula(28), which replaces the expressi8)
critical state only across the thickness of the superconductasr its approximation, Eq(16). Figure 9 shows the relaxation

#=0 att=0. Inserting thisv,(t) into the formula for the
electric fieldE,=v,B,, we arrive at

|coswt|cosAg(d, cosd). (28)

(caused byh,c) remains. of the magnetic momenw (t) of the strip obtained both
from the exacE(t), Eq.(28), and from approximatio(l6),
V. LARGE AC MAGNETIC EIELDS for w/d=20. It can be seen that at not too large relative

] . ) ] amplitudes h/wj., =(h/J;)(d/w)<1 the exact M(t)

We now consider the case in which the magnitude of thesjightly oscillates about the smooM(t) of Fig. 7. At large
ac magnetic field is largdy> |, w, and thus our above as- gmplitudesh=H,>wj., >J., the magnetic moment re-
sumption that, is constant during one cycle of the ac field |axes practically completely within a few periods of the ac
fails. Although in this situation the decay df is fast and  fie|d, and it oscillates about a curve which now deviates from
takes only a few periods of the ac fields2w, the quasi-  the smoothM (t) obtained using Eq(16). Interestingly, this
static approximatioriBean modelis still valid if w is small,  theoreticalM (t) (see inset to Fig. Pqualitatively resembles
thus formulas(1)—(6) remain true. One should only modify the experimental daté*? obtained earlier for different ge-

the eXpI’eSSiOI’l f0r the eleCtriC f|eE%, . Ometries of the Superconductor_
Thex component of the velocity of a vortex line when the

ac field changes byh is V1. CONCLUSIONS
vy(t)=(8%g/Sh)- (dh,./dt) = wh|coswt||xy), In the vortex-shaking effect the applied ac magnetic field
_ h,¢ is perpendicular to the external dc magnetic fidlg, or
where |xo|=(d/2)cosbg(J,cosb)/H, [see also Eq.(6)];  almost perpendiculdr:® We consider this effect in an infi-
cosf=H,/(H2+h?sirfwt) is a function of timet. Here we  nitely long thin strip of thickness, with the dc field perpen-
chooseh,.. in the formh,.=h sinwt, to start with the value dicular to the plane of the strip, and distinguish between the
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longitudinal and the transverse effects since they have diffetaxation of the currents and of the irreversible magnetic mo-
ent physical origin. We classify these effects according to thenent of the strip during longitudinal shaking is not described
direction of the ac field relative to the direction of the cur- by an exponential lawas it occurs in the transverse effect
rents circulating in the critical state of the strip. In the trans-put is well approximated by a stretched exponential, Eq.
verse effect the ac field lies in the plane of the strip and i§26). Shortly after its onset, the relaxation is faster than that
perpendicular to the currentse. to the length of the stp  with transverse shaking, but then it becomes noticeably
while in the longitudinal effect the ac field is along the cur- sjower than this. Interestingly, in the longitudinal effect, the
rents. The theory of the transverse effect was given in oufe|axation not only causes a redistribution of currents over
previous papet.Here we have presented the theory of thethe cross section of the strip, but it also changes their direc-
longitudinal effect, when the ac field is along the strip, undertjon (eventually by=/2), see Fig. 7, while in the transverse
the assumption that the amplitudestdf andh, consider-  effect the direction of the currents remains unchanged. The
ably exceed the critical value of the sheet curredd, obtained results together with those of Ref. 4 will enable one
=djc, . Note that if both the dc and ac magnetic fields aretp describe the vortex-shaking effect in real superconducting

normal to the strip plane, no relaxation should occur, excepsamples of finite length, where both types of shaking occur.
when an additional transport current is applied to the $frip.

We have shown that periodic tilt of vortices along the
strip is accompanied by a drift of the vortices towards the
center of the sample. This drift generates an electric field that
eventually leads to the complete relaxation of the critical This work was supported by the German Israeli Research
state across the width of the strip. Strictly speaking, the reGrant AgreementGIF) with Grant No. G-705-50.14/01.
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