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A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic
moment, including fluctuations and dissipation. The magnetic moment is linearly coupled to a reservoir of
bosonic degrees of freedom. The model reproduces the Gilbert-Brown form of the equation in the classical
limit for a particular choice of the bath parameters. Use of generalized coherent states makes the semiclassical
limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived.
The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how
the approximate classical stochastic description of the thermal field follows from our result. We apply these
results to the calculation of the correlation functions of the magnetization in a thin film with an easy axis and
a hard axis within a linear-response approximation.
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. INTRODUCTION by Landau and Lifshit2? however, it should be stressed that

it is strictly valid only for small fluctuations about the local

The study of thermally induced magnetization reversaiminimum. A more serious problem with the use of the
was first carried out by BrowhHis approach was to intro- Langevin equation in the LLGB form is the dissipative term

duce a noise term into the Landau-Lifshitz equation of mo_!tself, which has no microscopic justification. It is clearly

tion, essentially constructing a Langevin-type equation/MPOrant to understand the whole problem of fluctuations
which we call here the Landau-Lifshitz-Gilbert-Brown equa- and dissipation within a first principle of quantum mechani-

) ; cal approach, if the limits of the current models are to be
tion (I.‘LGB)' From 'ghe LLGB equation the Fqkker-PIank established and more fundamental theoretical approaches are
equation can be derived, which describes the time evolutio

e L 'Ul%Qerived. The demand for higher density recording media and
of the probability density distribution of the moment orien- ¢oqier switching rates requires the use of structures on the
tations. Solution of this problem was carried out by Brownsnometer scale or less. Quantum mechanical effects are

for the case of an axially symmetric potential and later byihen pound to become more and more important to consider
COffey et a|.2 for nonaxia”y SymmetriC cases. The numerical in these Systems_ Effects SUCh as magneto_optica' interac-
solution of the Langevin equation was used by Lyberatosions may even invalidate the simple damping term that is
etal,? and has since been applied to the study of magneticurrently used in the Landau-Lifshitz equation. This
zation reversal by a number of auth6rsRecently, Wang prompted us to investigate whether the LLGB equation can
et al® have developed an approach introducing a tensor forrbe recovered from a more fundamental treatment rather than
of the damping constant and applied this to the calculation ofhe ad hocapproach presently used. Hence, it seems natural
first mean passage time in the case of an elongated grain ask in what limit the LLGB equation can be recovered
represented as a chain of coupled particles. Many of thesstarting from a quantum model.
calculations are motivated by the need to understand high- In this work, we make first steps towards a more basic
frequency magnetization processes in magnetic recordinginderstanding of the LLGB equation. To address the above
The process of reading information currently involves giantquestions, we take a simple quantum model, that of a single
magnetoresistivéGMR) sensors, the size of which is con- particle with large spin interacting with a heat bath and an
tinually reducing as recording densities increase. This le@xternal magnetic field. The spin is taken to be large since
Smith and Arnettto the conjecture that noise due to magne-we are primarily interested in a semiclassical representation
tization fluctuations in the read head would be a limitingof the magnetization vector. This simple model is sufficient
factor on the device size. This is clearly an important probto allow us to study the effects of thermal fluctuations in
lem, which has been further developed by Sfhiind Ber-  many different cases, such as magnetization switching in a
tram and co-worker$who have also studied the full micro- single domain magnetic system with uniaxial anisotropy or
magnetic description of the problem using an approach imoise arising from magnetic fluctuation in GMR heads. The
which the thermal noise is distributed among the normabath is taken to be of bosonic nature. Nothing else needs to
modest’ be assumed to enable us to include various mechanisms of
Clearly the introduction of thermal fluctuations in the mi- interaction between the magnetic moment and the environ-
cromagnetic formalism is important both from the point of ment. We calculate the equations of motion of the magneti-
view of the physics of magnetization processes and also igation and that of an associated fluctuating field in the semi-
relation to important practical problems of magnetic record-classical limit. Since our interest is mainly in the
ing. Central to all models, both analytical and numerical, issemiclassical limit, coherent staté€S’s) are the natural
the introduction of a magnetization fluctuation or an effectivechoice for the representation of the system. These states,
field via the fluctuation-dissipation theoref®DT).!* The  which form an overcomplete basis, have the property of
FDT has a strong physical justification, as discussed in detathinimizing the Heisenberg uncertainty relations. Bosonic
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CS'’s were first used by Langer to study dissipation and flucfluctuation-dissipation theorem is satisfied. We also demon-
tuations in a superfluid, many-body probléiStarting from  strate how to recover the LLGB equation by decoupling the
the equation of motion of the density matrix of the whole thermal fluctuations, taking the high-temperature limit and

system,p, constraining the choice of reservoir. In the particular case of
LLGB, this corresponds to the Gaussian fluctuations and

dp . constant dissipation. Similar results have been obtained for

IEZ[H,P], the case when the magnetic moment is replaced by a har-

monic oscillator. This is no surprise, since in this case the
a Landau-Ginzburg equation was recovered in the equi|ib§emicla§sical approximation corresponds to a particle With
rium case and a Fokker-Planck equation in the classical limi@r9€ Spin. In Sec. V, we compare the classical stochastic
In a CS formulation, only diagonal elements of the reduced"®atment to this quantum treatment. As an example we cal-
density matrix are needed. Instead of starting from the abovgUlate the correlation functions of the magnetic moment for a
equation, we can instead start from an integral representatictind!e domain particle with an easy axis and a hard axis. The
of the diagonal density matrix elements. This method is welfXternal field is taken to be along the easy axis. Finally, in
known and is based on the Feynman-Vernon formalista,  S€c- VI, we summarize our results.
This path-integral approach is in real-time as opposed to the
imaginary-time approach in equilibrium thermodynamics. Il. DEFINITION OF THE MODEL
Hence, questions like approach to equilibrium can be studied Th del h is simple but | ht
within this approach. This method has seen many different € model we Choose 1S simple but general enougn 1o
applications since the Caldeira-Leggé@L) work 1® The CL mclude many interesting physical situations. It is Egnly mo-
model was successful in showing how to recover the Langet-'vatmj by the recent wprk of Safonov_ and Bertr .h_ey
vin equation by coupling an oscillator to a bath of oscillators used a two-level impurity system to simulate relaxation ef-

It seems natural then to ask if the LLGB equation can befeCtS in a single domain grain. They showed that the damp-

recovered by coupling a spin to a bath of oscillators This"9 in their model is of the Gilbert form. No fluctuations are

important question does not seem to have been addressedclﬂ.nS'dered in their calculation. If we consider a collection of

the literature. Spin coherent states are the natural Ianguage?g"’]s.that are independent, then the magnetization vattor
answer this question. Hence, we formulate the question it? & simple sum of these coherent spins,
terms of CS and use path integral techniques to write the NS
density matrix elements of the system. Use of path-integrals M=gug—-, (1)
with spin CS is not as straightforward as in the case of v
bosons.’ Nevertheless it is the most suitable method by , , , .
which we can address questions that pertain to the semiclaheresS is the average spin vector of the spin oper&and
sical limit of the model treated here. Clearly this method9#s/# is the gyromagnetic ratiqug is the Bohr magneton,
allows a consistent treatment of the magnetization and flucd i the spectroscopic splitting factor, awds the volume of
tuations from the start. If the thermal field is decoupled fromthe system. In the following, we sét=1, gug=1, and the
the magnetization, the LLGB equation will be shown to cor-densityN/V=1. In the rest of this paper, we use the words
respond to a given choice of density of states of the reservofPin and magnetic moment interchangeably.
and of its interaction parameters with the magnetic moment. We take a single spi§(S™>1) and couple it linearly to a
which to discuss the LLGB equation and its limitation. We former may represent phonons, a time-dependent magnetic
also set a basis against which we can examine the discrefiéld or other Bosonic degrees of freedom. No assumption
ancy in the recent calculations of the noise spectrum in mag?ill be made about the coupling constants or the density of
netic recording headst®'® Therefore, a treatment of the States of the reservoir. The Hamiltonian assumes the follow-
noise problem by a self-consistent method, such as the orieg form
presented here, can shed some light on why this difference
exists. We stress that our results are very general for the +_ _, & + +e * &
model considered and no linear approximation is assumed. H=-H S+§k: K3k ak+§k: NS+ Ek: Vi S,

The paper is organized as follows. In Sec. Il, we introduce 2
a simple model Hamiltonian that can describe dissipation R
and fluctuations. We linearly couple a single domain magWwhereH is a static external magnetic fieli.is the magnetic
netic particle to an external magnetic field and to a Bosonignoment operator of a single partic, anda, are creation
bath with infinite number of degrees of freedom. In Sec. Ill,and annihilation operators of the reservoir. The coupling con-
we show how to calculate the trace of the reduced densitgtantsy, may be time dependent, but will be taken as inde-
matrix of the magnetic moment. The density matrix elementpendent of time in the final result. A word about notation is
are naturally expressed in terms of path integrals over théhat operators are usually represented by a hat unless there is
phase space of the momeéntAn appendix supplements this no fear of confusion. The fieléH is taken along the axis,
section in which we discuss the topological Wess-Zuminahe axis of spin quantization. Coupling tzecomponent of
(WZ) term. In Sec. IV, we derive coupled equations for thethe vectorS to the reservoir can be easily added, but it will
magnetization and fluctuations. We show that a generdbe omitted in this work. This Hamiltonian is sufficient to
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describe all the desired physics. Using the equation of mo- Similarly for the spin states, we use a CS
tion for S,, it is not difficult to show that it is not a constant representatiof®?* They are defined by analogy to the har-
of the motion, and hence no linearization is implied in thismonic oscillator CS’s. The spin components in this state sat-

model. isfy a minimum uncertainty relation, i.e., two of the three

The operators are in the Heisenberg representation. Theomponents commut@As in the harmonic oscillator case, a

spin operatolS satisfies the usual commutation relatiéfls: ~ “ground” state |0) is required from which to generate all the
L other states. In this case the state with the lar§esbmpo-
[$%,S.]=0, 3 nent is taken as the reference state. If #hexis is taken as
the quantization axis and if we tak&=j(j+1), then by

with definition, we have
1 . . N .
32=5{3+,s,}+s§, (4) 10)=1j.j), (13
. . and
where the curly brackets are for anticommutation and
5, =5+i§,, (5) $,0)=j0), (14)
. i.e., the state with the minimum fluctuatioffsThe spin CS’s
S_=S-iS,, (6)  are a generalization of the Holstein-Primakoff construcfon.

while the operators of the reservoir satisfy Bose commuta:rhe.y. are defined in terms of Qewatlons from the maximum
tion relations positive z component of the spi®

[a.a,,]= S 7) SIp)=(j—p)lp). (15

Instead of the usual Fock space representation, we use lde¢ CS’s are then constructed by using
CS-space representation for these operatois.

For a Bosonic harmonic oscillator with positiog,, _ 1 A
momentump,, and frequencyy,, the CS|®,) are defined )= (1+] u/?)] exp(uS-)[0)
as eigenfunctions of the annihilation operatoa,
~ ; o 2j ; 12
= (oW 2)Y4 i+ [1/(20) "] pi}: 1 (2)!

- 2\j &= i —
A Py =Dy D), (8) (1+]|u|?)! p=0 2j—p
with complex eigenvaluesp, (Ref. 2]). These states can Whereu is a complex number. Since the configuration space
also be generated from the ground stdtg by applying a  Of Sis the surface of a sphere, it will be more clear to have
displacement operatob(z,), which defines a one-to-one # Pparametrize the surface of a sphere through a stereo-
correspondence between the complex plane and the oscillatefaphic projection,
states,

|2)=D(z)|0k) 9 ,u=tar<%0)e“/’, (17
and In this representation, a CS corresponds to a unit vector with
D(z)=expza; — 2z} ay). (10) a solid angleq):
CS’s form an overcomplete basis and satisfy the minimum |Q)=16,0)=(cost 6)2extan 1 )e'*S_1|0). (18)

uncertainty relation. Hence, they are the most suitable repre-

sentation for a semiclassical treatment. We also adopt th& useful property for a path integral formulation is that the
normalization in Ref. 22 unit operator has the familiar decomposition in terms of pro-

jection operators on all CS's,

(D D)=k, (1D 21
They also satisfy the following relation, the resolution of the ?f dQ[Q)(Q[=1. (19
identity operator:
In this representation, the overlap of two coherent states rep-
dbyddy, .o resents an area on a sphere, the surface of which is the con-
| S e imog@d-1 a2 foe - |
27 figuration space of the spi8. The overlap is

The latter relation is essential for a path-integral representa- / _ 1 14 cind gaind o7 al(0—0')72]
tion in terms of CS’s. It is used repeatedly in the discretiza- (€']€2)=[cos; 6 cos; '+ sin; 6 sin 6" e ] (20)
tion of the path integral when calculating transition rates
between various statésppendix. and its magnitude is
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1+n-n’'\! From now on, we normalize the magnitude of all spin vec-
> (2)  tors byj. Since all classical physical properties of the system

involve a tracing operation, it is enough to consider only

This defines the area of a triangle on a unit sphere witldiagonal elements of the density matrix. The reduced diago-

vertices at the points defined K,Q" and #=0. This ex- nal density matrix element of the spin particgy, is by

pression is fundamental for the developments below. definition the density matrix element of the whole system
Since we plan to use a path-integral technique, we need taveraged over the statés,), of the bath,

write the expectation values of the Hamiltonian in the coher-

ent representation. TheseAerectatlonAvalues follow,.ln turnp”(t):<sf|p(t)|sf>zj [T 20 2® (S ;®|p(t)|S;; D),

from those of the operatofs,, S, , andS_ . The following k

(Q|Q)=

expectation values are deduced from E) and Eq.(20): (28
. where|S;) and|®) are two arbitrary CS of the spin and the
(Qj—S,|Q)=j(1—cosh), (220 bath, respectively. Here the sta® is a k vector, ®
R ) :(q)j_,q)z,q)g,...).
(Q|S,|Q)=] singe'?, (23 For simplicity, from now on we use the following notation
for the functional measure of the Bosonic degrees of free-
(Q|S_|Q)=jsinge ¢, (24)  dom,
(Q|§)=jn, (25) J ’D((I)*,(I))EJ’ l"k[ DDOF DDy (29

wheren is a unit vector with anglesé,¢). For j>1, the

off-diagonal terms of the spin operator are smaller than the The calculation of density matrix elements is easily car-
diagonal ones by a factor of abodf. Hence, they are neg- ried out using a path integral representation. The propagator
ligible in the classical limit. This limit will be implicit in all of the Bosonic part can be written in terms of a path
subsequent calculations of the reduced density matrix eldntegral®

ments. L
(@] Te~ o) @)
Ill. REDUCED DENSITY MATRIX ELEMENTS .
OF THE SPIN PARTICLE _ f'b (t)=a% @((I)*,(I))exp[ D OF (1D (1)
In the following, we make use of CS for both the bath PO)=i .

degrees of freedom and the magnetic moment. The proce- t N
dure we follow is by now mostly standard. Reference 27 +iJ dr > iq”k‘(T)ﬁfq)k(T)—H(‘I’*7‘1’,3)“-
(and references thergiprovides a general overview of these 0 K
methods and hence we omit most of the intermediate steps in (30
our calculation. Tis the time-ordering operator. Running from an initial time

The calculation we present below takes into account the _ 40 yime 7=t, we use a real-time path integral to aver-

correct boundary conditions as emphasized in Ref. 17. Howége over all intermediate states. The trace of the density ma-

ever, we avoid using the abstract but more appropriate hOIQ['rix is then expressed as an integral in terms of the initial

morphic representation in favor of a more geometric onedensity matrix element of the system
i.e., in terms of unit vectors. The physical space for the '

Hamiltonian , Eq.(2), is the product of the Hilbert space of
the spin particle and that of the harmonic oscillators, TfPff(t)=f @(@*,q))f @M(Ql)f Du(€2y)
T I9e]oy. (26) ><J (P} ,<I>1)f (D3, D,)
Using the expectation values of the different operators in the X{S,®@;t|Qq,P1;0)(Qy,®;0|p|Q,,P,;0)
Hamiltonian, Eq.(22)—(25), we get the expectation value of _
the Hamiltonian in the coherent representation, X(Q2,®2;0S;,D.1). (3D
The integrand is now expressed in termscafumbers only.
H[D*,D,S]=—H,j cosa(t)+2 w0 @} (DD (1) We make no assumption about the initial state of the spin
K particle. Hence, we have to calculate a forward propagator, a

backward propagator, and the density matrix element at the

+jz Y (1)sing(t)e e initial ti_me. The system ?s a;sumed to be at.finite tempera-
K ture. Since the Hamiltonian is quadratic, the integrations are
easily carried out in the stationary-phase approximation. We

+jz yE D (D)sino(t)e' e, (27) show_a_few steps in the calculation of the forward propaga-
K tor. Similar calculations are also done for the other two fac-
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tors in EQ.(31). Some of the steps in these calculations are, . . o) o it wo ,
however, valid only within a trace calculation and not for the ®ix(7)=®f e )+'e'w”f dt’e” "k (1) Si(t'),
seperate propagatotsee Appendix for further detajlsThe 7
forward propagator is first written as a path integral,
O=r=<t.
S
(S, ®;t|Qy,P;;0)= (S, P|Te /7 Q, ,®,) At the endpoints, we then have
= f Sf@ f d)z) @ D !
= o, m(Sy) o, ( Py) q)l,k(t):q)l,ke_lwkt+ie_lwktJ dt’elwkt"yk(t/)s,(t,),
0

(39
X exp[ ; DT (1) Dy y(t)

t
+ifd7'
0

~H(®I,P,1.S)

: t A
cIJ;k(O):@;:e*'wkwifodt'e*'wkt V() S.(t).

ig DF (1), D1(7)

These solutions are then put back in E§1). Similar
‘a expressions follow from the calculations of the backward
]exp[l w Sl propagator. The density matrix element at the initial time is
32 calculated with the assumption that the bath is initially at
(32) equilibrium with the spin. The bath relaxes much faster than
The measure of the integration over the spin variables is th#he spin, a reasonable approximation in many problems in
measure of th&U(2) Lie group over a spher€?. If Sisa  magnetics. In this case the density matrix is separable at the
three-vector, then th8U(2)-invariant measure is given by initial time, i.e., p(0)=ps(0)pg(0). Thebath density ma-
trix, pg, is then known and its matrix elements can be writ-

2j+1 ten explicitly in terms of the Hamiltoniarf{g, of the bath
f QM(S)EWJ DSH(S-1). B3 omy Y "

The last factor in Eq(32) is a geometrical term, the Wess-
Zumino ternf® (and references therginwhich for our pur-
poses will be enough to be taken of this form, but with the
correct boundary conditionsee Appendix for details

1 _ gy
<‘I)1|PB(O)|‘I’2>=Z_B<‘I’1|Te B|®,)

1 (o
=5 33(<D*,<I>)exp( K(B)PK(B)
BJ ®,

dS(s,7) « dS(s, )

1 t
S = d d7rS(s,7)- ,
wAS1] fo Sfo (s,7) ( s aT a +ifoﬁdf[i¢>§(r)87@k(r)—H(T)]),

where S(s, 7) is a homotopy map between the side(®,) (40)
and the sideZ,S;).?° This term therefore represents the are
enclosed by the trajectory of the spin vec®iThis formula
will be only used as part of a trace calculation such as in Sec. ®(0)=D, (41)
V below. The bath degrees of freedom are eliminated by a ’
stationary-phase evaluation of the integral. The phase is an
extremum for states that satisfy

8ith the boundary conditions

D*(B)=D5 .

Here Zg is the partition function of the bath only and sum-

10D (7)= oH (35) mation overk is implicit above. The constang is equal to
Tk % (7) the inverse temperatufiewith the Boltzmann constakg; set
' to 1.
and similar equations fob1, . We have, for alk, We find, after applying a stationary-phase approximation
to the integral, the expression
10, ®1(7)= 0 Pyy(7) = yi(7)S-, (36)
= * ~Bo

10,01 = 0PI (D= (DS, (3D (@ulpe(O] ) eXp{Ek PixPae k]' 42

are left with only integrals over paths in the spin space. The

® —P efiwkf_i_iefiwkff dt’el e’y (t')S_(t'), ef_fectlye action of the spin is now complex, as is common

() LK 0 (St with dissipative systems. The trace of the reduced density
(38 matrix is now given by
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St Q,
S 0u0=3 [ ou(0) [ 0u0(0u00,0102) [ ouis) [ ouis)
T T 0, S
t
xexp[infodt'(sl,za')—sz,z<t'>>+iSWﬂsl]—iSWﬂsz]]W<sl,sz>, 43

where the last factor is entirely due to the coupling between the bath and the spin particle and often called the Feynman-Vernon
functional®® It is given by

t t
NWS,8) =~ | at [ drent —io (' —t) 17 ) WEHOW -1)S, (1), (1)

t t
H[1=O(t"=t")]S; 1 (t)S; (")} + fodt’ fodt”exd—iwk(t’ —t) 7 (1) (1) S 1 (1) Sy - (1)

1 t t
+ eﬁ“’k—lfodt, fodt”exr[—iwk(t’ —t") 17k (1) V() Sy (1) Sy - (1) + S, 4 (1) Sy - (1)}
1 t t
. fdt’J dt’"exg —ioi(t" —t") Jp(t") vi (1)[ Sy (1) Sy - (1) + S5 (1) S, - (1")], (44)
er®k—1Jo 0

where® is the unit step function. The variabl& andS,  The variableD, we will see, represents the fluctuating field

are associated with forward and backward propagation iithat is coupled to the classical spin and is due to the inherent

time, respectively. irreversibility in the system. In terms of these new variables,
By taking the limit of an infinite nhumber of oscillators, the trace of the reduced density matrix becomes

this latter term becomes responsible for the appearance of

dissipation in this model. After calculating the elements of

the rrt)aduced density matrix, we can nowgcalculate its time Trp—Z f 33'“(91)] D p(€2;)(Q4|ps(0)|Q2)

evolution and find a Fokker-Plank-type equation, as was

done in the original work of CI® We choose rather to take

t
the semiclassical limit of this expression and see under what Xf :D'“(S)f @M(D)exp{|fodt H-D(t")
conditions, if any, a LLGB equation can be recovered.

+iS§J£S,D]}W(S,D), (46)
IV. THE SEMI-CLASSICAL APPROXIMATION

In this section, we find the equation of motion of the where
magnetization by calculating the most probable configura- bsvffis D]=5wd St1 - Swd Sol. 47

tional paths. This is done by calculating the path in the re-
duced density matrix element for the spin field that has thethe Feynman-Vernon function#/(S;,S,) now becomes
largest weight. Then we show that these paths are really the

semiclassical limit of the classical paths averaged over the L 1 ) ,
thermal fluctuations in the LLGB equation. We also show W[S,D]:exp[ fodt J;dt J(t't )[_§D+(t )D (1)
that the fluctuation-dissipation theorem is naturally satisfied.

It reduces to the Brown form only in the high-temperature +0O(t"—t")S, (t")D_(t")

limit and only in the linear-response approximation. It is

claimed that this approximation fails when the system is 1 n_gr / "
highly anisotropic® but as we will show in the following [1=0"~)ID(t)S-(t")

section we see no evidence that this is the ¢hsesee Ref. . .
18). N _ o —f dt’f dt’Fa(t',t")D,(t)D_(t")}, (48
To facilitate the taking of the classical limit we make the 0 0

change of variables, . . .
with D. =D, *iD,. The functionsJ(t',t") and F4(t’,t")
are dependent solely on the bath parameters,

S(71)=2[S1(1) +S,(7)], (49)

Iy — —iwpt’ plopt” x4 "
D(7)=Sy(7) — Sy(7). =3 e et (), (49
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e—iwkt'eiwkt” * t’ t" ) -
T UGRUEDY g ky k(l LR a(Si(1—-1)= f Dy (r)eldrnOEO-D - (51)
ervk—

In these new variables, the phase ofdiclearly shows that A similar expression holds for the other spin vector variable
the action of the reservoir results in an extra linear couplingS, and 7,. These constraints are then put back in the expres-
in SandD. Moreover, we now have a quadratic term involv- sion for the reduced density matrix element. The phase of the
ing the variableD. This quadratic term is easily seen to be path integral is now a function of four independent fielgds

real and negative, assuring convergence of the sum over afl,, S, andD. Extremizing the phase of these paths gives the
configurations oD. The linear term describing interaction of semiclassical solution in the large spin limit. After solving
the fieldsS andD is imaginary, however. In fact, it is such a for the constrained fields in terms of the spin fiellsand
term that gives rise to dissipation in the energy of the §in S,, we write the remaining two equations $iand D only,

As we will show belowD is the field that is associated with obtaining a generalized form of the LLGB equation

the classical random field in the LLGB equation. If this is the

case than averaging ot should give us a Langevin-type ds(t’) 1
equation for the spin variabl®. This Feynman-Vernon fac- ——=SX(H+TO+T®)+ -DxWw, (52)
tor doesnotdepend on the nature of the variaBleThe same dt’ 4

factor would have been obtained if we replég®y another

oscillator?” The difference between an oscillator and a spinand

lies inS&I%. Itis this latter term, which is responsible for not

having only additive noise, but also multiplicative one, as dD(t')

will be seen below. —=DX(H+TO+T®)+5xw. (53
To find the semiclassical result for the reduced density dt

matrix, we again resort to a stationary-phase approximation

to the phase of the path integrals in E46). First, we im- The vectorsT®, T(®) andW are associated with dissi-

pose constraints on the spin magnitude by introducing twgation, thermal fluctuations and magnitude fluctuations, re-
Lagrangian multiplier fieldsyp,(t) and7,(t). These are then spectively. In the Cartesian form, they are, respectively,
coupled to the spin fieldS; andS,, respectively, as follows, given in terms of the functiond andF ; by

[ ifoudt’@(u—t')[J(u—t’)S_(t’)—J*(u—t’)S+(t’)]

Oy = u
W —fodt’(u—t’)[J(u—t’)S,(t’)+J*(u—t’)S+(t’)] ! (64
L 0 i
- 1 -
ifotdt’HEJ(u—t'HFB(u—t’)}D(t')+[J*(u—t')+F;;(u—t’)]m(t')]
TON u)= t 1

() —fodt’HEJ(u—t’)wLFB(u—t’)}D(t’)—[J*(u—t’)+F’ﬁ‘(u—t’)]DJr(t’)] ' ®9

L 0 i

and
[ —ifotdt’(@(t’—u)[J(u—t’)D_(t’)—J*(u—t’)D+(t’)]-

W(u)= (56)

J;dt’@(t’—u)[J(u—t’)D,(t’)+J*(u—t’)D+(t')]

0
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These vectors are, in general, nonlocal in time and hencmagnetization of the particle. Having a complex equation for

include memory effects in the equations of motion $and

the extremum path of the spin is, however, expected, given

D. This type of behavior is clearly needed when the relaxthe dissipation present in the spin subsystem. The same result
ation time of the reservoir is of the same order as that of théiappens in the case of the harmonic oscillatdk solution

spin particle. We will not discuss such a situation here. Wefor the fluctuating magnetization is then sought through a
are mainly interested to recover the constant dissipation casgirect calculation of the propagators in H§J).

Even though we called Eq&2) and(53) generalized LLGB
equations, it imotyet clear how a Gilbert damping term can

Now we show that a generalized fluctuation-dissipation
theorem is satisfied as expected for this system since we

arise in the;e equations. However, through a .careful choicgiarted from a closed system and integrated out a large part
of the density of states of the bath, the coupling constantsy i1 jegrees of freedom. We will also show that it is indeed

and the initial conditions, such damping form can be recov
ered as shown below.

To describe dissipation, we take the continuum limit for
the bath states,

Then the spectral functionkandF 4 are given by
3r=)= [ don (@) yo)l7ext —io(r— )]
i (58)
and
Fﬁw—r'):fwdw—m’)_ |7(w)|Pexd ~iw(r—1)].
o exdBw]-1

(59

F 5 is simply the nonzero temperature counterpad.of(w)
is the density of states of the bath. In fact, the function

1
Q(T—T')=§J(T—T’)+FIB(T—7") (60)
is the inverse of the free propagator of the fi€ld

The vectorsS and D are orthogonal as follows from the

constraint equations, E¢51). Note that wherD is set to

zero, the density matrix becomes diagonal but the equatio

of motion for S will still have an extra term besides the
precessional term that is due to the external fidld This
extra termT((u) clearly always has a damping effect. We
conclude that it is the vectd® that must be identified with
the classical magnetization and tHatis the part that gives
rise to the thermal fluctuations B Finally, we observe that
the last term in Eq(52) cannot be recovered in the classical

the vectorD that should be regarded as the quantum source
of the thermal fluctuations in the spin system as treated in
LLGB. The average of is then the physically measurable
magnetization. To better understand the physical meaning of
the fieldD and to recover the standard stochastic description
of the thermal fluctuations, we introduce yet another field,
&(t). In Eq. (46), we replace the quadratic term Dhin the
Feynman-Vernon functional by an average over a Gaussian
field, i.e., the left hand side of the following expression with
its right-hand side:

ex;{ - ftdt' ftdt”D+(t')g(t’—t”)D(t”))
0 0
1t t 1
oyl @fexp( —5 o [[avaanzeite-vaw)

t
—if dt’§|(t’)D|(t’)), (61)
0

whereNis a normalization constant. The quadratic terrin

is then assumed to be a result of an averaging over all con-
figurations of the fieldé. Hence the path integral for the
reduced density, Eq46), is now in terms of three fields. The
field & will now result in a third equation of motion. How-
Bver, to recover a thermal field similar to that introduced by
Brown ! we proceed by assuming that the figlis classical,
i.e., we ignore its equation of motion. At this point the field
& is treated as a nondynamical field similar to the external
field H. Next we solve for the magnetizatiéfor a given&
and only then do we average over all configuration§ with

the quadratic weight that we originally ignored in the solu-

LLGB equation and is beyond a classical linear-responsée classical limit, that of high temperature and BetO0.
treatment of the problem of fluctuations. It is of higher orderThis is easily seen from the fact thandH enter the same
in D and temperature independent. It is easy to see that thigay in the exponent and hence in the equation of motion of

term gives rise to fluctuations in the magnitude of the spin

S. From this, we clearly see that the LLGB equation is es-

These fluctuations cannot be accounted for classically sincgentially correconly for small fluctuations, i.e., smab, so

the magnitude of the magnetization is assumed to be coritigher-order terms i in the geometrical terns,;

stant.
One important thing to note from Ed52) is that the

eff can be

neglected. Given these observations, we can now assume
that the effective thermal field with which the spin is inter-

vectorT(®) is complex and hence, if fluctuations are presentacting is really nothing more than the abstracfield that

the equation of motion fog becomes complex. The physical
interpretation of this equation then becomes obscure at th

has been introduced in this calculation of the reduced density
imatrix element. In facg has the following correlation func-

level and may not be used as it stands to get the effectiviéons
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(E(N&(1))=28,G(—1") LLG is clearly an artificial one. Moreover, the integration by
) parts alluded to above give rise to boundary terms. These
—ié * ; Bw| 7\ (w)]y(o)| terms are basically ignored. This means that LLG cannot
o), deecoin 5 w capture the true transient behavior of the system. In fact, this
is observed in experiments on small magnetic particles with
xXexg —io(r—1")]. (62)  fast switching rate¥’ In the following section we study a

concrete example where we show how to recover classical

To recover the correlations of the thermal field assumed iBogits which are consistent with LLGB. from our simple
the LLGB equation, we simply take the high-temperature,,oqel’ '

limit and require that the bath satisfies the condition,
)] Y()|2 about the condition, Eq(63), by which we recovered the
TN _ a, (63) LLG limit. If we assume constant coupling constants for the
@ interaction between the spin and the bath, we find that the
wherea is a constant. This condition provides the simplestd€nsity of states must be linear. For phonons, the density of

relation between fluctuations and dissipation. In this case, thetates is quadratic and hence, based on this assumption, can-
real part of the correlation functions for the random field N0t be the major source of the damping constantn fact,

Before we end this section, we make a final comment

become simply that of white noise, dissipation due to currents is believed to be much lather.
Ferromagnetic compounds, such as FeNi, show a complex
Re(& ()& /(7'))=28, akgTo(7—7"). (64)  density of states for the nonlocalized electrons; hence a con-

- . . . ) dition such as that given in Eq63) is representative of
A similar condition arises if we r_eplace_ the spin degrees Ofmany competing mechanisms. It is only the lower part of the
freedom by those of a harmonic oscillatBrHowever, at  gpectrum that is important for a constant approximation to

high temperature, as we mentioned earlier, a large spin Cafissipation. In fact, in Eq(58), the limit of integration can-
be approximated well by an oscillator. This condition is, hot pe taken to be infinite for a real bath. This, in turn, will

however, still true even if the bosonic degrees of freedom oftroduce a new cutoff parameter in conditiéd3), which
the bath are replaced by fermionic degrees of freedom. il pe system dependent.

Finally, we consider recovering the LLG equation with
the Gilbert form of damping. Equation®2) and (53) are
very general as they stand and it is not clear if the dissipation V. CORRELATION FUNCTIONS
has the Gilbert form. To deduce the very special case of OF THE MAGNETIZATION IN THIN FILMS

constant damping with the Gilbert form, we set the fluctua- |n this last section, we study the magnetic noise in a thin
tions to zero and take the following form for the spectralanisotropic film. The magnetization is taken to be uniform
function J: and near equilibrium, that is, along an easy axp i the
plane of the film. Here we are simply interested in the case
I+ - T):iaié(T,_T)_ (65) that reproduces thg classical LLG resu!ts for thi; problem:
dt The general case includes other possible solutions and is
treated elsewheré.
Clearly the bath influence on the magnetic moment with
and without anisotropy is the same as before, but now there
is coupling between the fluctuating field and the spin field

After an integration by parts of the term containii§® in
the reduced density matrix element, E81), the equation of
motion for S, the magnetization, becomes simply

A that is anisotropy dependent.
ds(r) =9(7) H+a( ds(7) — d(S(T)'Z)Q) . (66) The Hamiltonian of the spin-bath system is taken in this
dr dr dr case to be

The boundary terms in the integration by parts are easily

_dealt with by a re_normalization of the measure pf the_ path H=—HS,— Ké§+ Kpéi—z Vkalé—

integral. Keeping in mind the model used to derive this re- K

sult, this equation reduces to the LLG form only in the limit

of small deviations from local equilibrium. It is also impor- -> " S.a+> walay, (67)

tant to note that the choice we made HIEqg. (65), is com- K K

patible with the Gaussian white noise approximation for the . . i o
thermal field. Hence the stochastic LLG equation, i.e.WhereH is a large positive external in-plane magnetic field
LLGB, is compatible with the FDT at high temperature and@ong thez axis and the hard axis is along theaxis. K and
small fluctuations. Therefore, as far as the model considereldp @ré positive constants. The remaining terms describe the
here, we do not see any breakdown of LLGB within theinteraction of t_he heat bath with thg transverse components
above stated approximations. However, since the bath is vel9f the magnetization. We are only interested in the regime
general, this does not preclude other equations that descrijéere the equilibrium position is along tieaxis and the
the dynamics of a spin in contact with a reservoir. The LLGBCOUPIINg between the spin and the bath is small. After writ-
equation is just the simplest equation with white noise andng Sf( in terms ofS. , dropping a term proportional &, a
small fluctuations. The condition on the bath, E8p), to get  constant, the Hamiltonian of the spin subsystem becomes
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o= 1AE+1BE, 68  The vectorsT® and T®) have the same definitions as
above, Eqgs(52) and (53), and account for the d|SS|pa£on

Wh?rle ;r}he'colefficients\ and B are given in terms of the 4nq the fluctuations, respectively. The remaining vec®rs
Initial physical constants, and D are due to the specific coupling considered in this

A=H+ 2K + 2K (69)  Section among the spin components due to anisotropy. They
b have the following definitions:

and

After integrating out the bath degrees of freedom, we find D=(AD,, BD,, 0). (76)

that the sum of the diagonal reduced density matrix elements

in the presence of anisotropy becomes Note that for small fluctuations, the magnetization is constant

in magnitude within this approximation.
E = E D oS ¢ , Next we calculate the correlation functions of the magne-
? pri(t) z S S(Sles(to)|S) tization vectorS. This is done more effectively through the
method of virtual external sourcés®® This functional

St s . method is an extension of similar methods applied to the
XL BDSlfo @Szex;{mswisl]—sﬂsz]) equilibrium casé? First, we observe that the correlation

function
t
*'HZJtOd"[SH(")‘32»2("” (S(1)S,(0))=Tr(S,(1)S(0)p) (7
¢ 1 can be derived by first coupling the transverse components of
—if dt’(—A[Sﬁx(t’)—ng(t’)] S andD to time-dependent external sourde@sand Q. The
2 » L . .
to effective action of the system becomes

1 2 ’ 2 ’
T2 BISL() =Syt ”) MSLS). (7D Fe”[S,D;P,Q]:F[S,D]Jrf df{P-S+Q-D]. (79

In the following we are interested only in calculating the " s the action of the spin system and the bath with the
fluctuations in the magnetization around equilibrium. Henceexternal sources set to zero. Next, we define the generating
nonlinear terms irD will be neglected. Moreover, we shall fynctional
not study the short time behavior of the system, hence initial
conditions are irrelevant. It will therefore be assumed that the effra .
initial density matrix element is nonzero only for one state, 7 P,Q]=j DSpD e 1SPPAl, (79
the initial equilibrium state. We also take the linjt— — o
and t—<. Since, we will be calculating correlation func- The correlation functions are then found by differentiating
tions, we define the following effective action functional this latter functional with respect to the external sources,
I'[S;,S;] which is needed in finding averages,

t L (St
ir[S;,S)= —(Swz[Sl]—Swz[Sz])—Hzft dt'[S,(t") SPi(D)OP(t) [p_ o o
0
i ! ’ 1 2 ’ 2 ’ t>t/, i,j:X,y.
~ S+ | dt| FAISL() - S(t)] (80)
1 Since we are looking for small deviations from equilibrium,
+ EB[Siy(t’)—S;y(t’)] +i lnW(S,,S)). we have for the transverse components
(72) (Si(1)=0, (81
The minimization of this action gives the equations of mo- (Dy(1))=0 82)
tion for the magnetizatiois and the corresponding fluctua- ! ’
tions D,
| (D(1)D;(0))=0, >0 (83)
d_S:SX(H+T(S)+T(D)_§), (73)  in the absence of any external forces.
dt To calculate two-point correlation functions, we average
the previous equations of motion f8randD in the presence
dD = of the external sources and then differentiate with respect to

——=DX(H+T®+TP) -D), (74)

dt PorQ, e.qg.,
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8(S (1)) whereGg is the “free” propagator of thes field

2

Gal(t,t)= d + w2+ a(A+B d S(t—t’ 92
s(,)—@woa( )ﬁ( ), (92

t>t'. (84
and w3=AB is the renormalized ferromagnetic resonance

To recover the correlation functions of the original system, o2 ) ) ‘
frequency. Similarly, thé field has the equations of motion

we set the field$ andQ to zero at the end of the calcula-
tions. Hence these fields are assumed small but arbitrary in d
the rest of this calculation. This is equivalent to a linear- f dt’Ggl(t,t’)Sx(t’)zAPX(t)+—Py(t), (93
response calculation in this particular system. dt

In the following we will be interested in studying the case

; d
where the bath is chosen such that f dt’Ggl(t,t’)Sy(t’)=BPy(t)— apx(t)’ (94)

d 1. . . .
Jt—t")=ia—d8(t—t"). (85) WhereGD1 is the propagator associated with thdield and
dt is equal toGg*.
This corresponds to the LLG case, which is equivalent to It is interesting to note that within this approximation the

assuming the following form for the bath parameters: external sourc® does not appear in the equations of motion
of Sand hence accounts only for nonlinear terms in the equa-

tion of motion. For thesS field equations, th® field appears
on the right-hand side of Eq€0) and(91) as a source term,
while the D field equations are sourceless, which is consis-
where, as beforey(w) is the density of states of the bath and tent with having random forces acting on the magnetization

Moly@)P=—, (80

@ is a constant that we will consider to be small here. with no back reaction. Even though these equations are simi-
The damping ternT(® becomes after an integration by |ar to those of a damped harmonic oscillator, the equation of
parts, motion for S has additional terms on the right-hand side that
depend on the derivative of the fluctuations.
TS(t)= _agS(t) i=x,y. 87) To get the two-point correlation functions of the magne-
: dt ' ' tization, we average the equations of motion fr&and D

with respect to the reduced density matrix of the spin system.
Since these equations are linear, the average values have
o similar equations of motion. To get the equation of motion
TiD(t)zif dt’'g(t—t")D;(t"), i=x,y, (88  for (S,(1)S,(t")), we differentiate(S,(t)) with respect to
0 P(t'). The other equations of motion are obtained in the
whereG(t—t') is in the high-temperature limit, same way. These equations are easily solved in the Fourier
space. However, in this particular linear case, these correla-
akgT ( 1 ) tion functions can also be derived by a simpler method by
G(t—t")=akgTo(t—t")+i Pl —|. (89 first deriving the classical equation of motion for the average
m t—t' magnetization and then applying the FDT to get the average
of any anticommutator of two operatdtsin the equation of
motion for S, Eq.(73), quantum effects are included through
4e fluctuationsD, and hence the classical equation of mo-
jon is found by setting the field to zero and invoke the
hrenfest theorem to write the equations of motion for the
average magnetization:

The fluctuation term is simply

The imaginary part ofj is absorbed in the definition of the
coefficientsA andB. The equations of motion for the field
in the presence of the external sources then take the form
those of a damped harmonic oscillator with source terms th
are functions of the external sourQeand the fluctuationB,

r~—1 ’ ’
J arssianise [ avesinusan=ram+ 5o m, ©9

D d D
=ATO+ Q]+ G [Ty (D +Qy(D)],

d
f dt'Gs {(LU')(S,(1))=BQy() = 7:Qu(1). (99
(90)

We observe that in this case the derivative of the magnetiza-
tion S with respect toQ is the response function:

asm)

Now a straightforward application of the FDT gives the mag-
(91 netization correlation functions

f dt'Gg(t,t")S,(t")

d t>0. (97
=B[Ty () +Qy()] = HITX(D+QuD],
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S (1) =2(Si(1)S;(0)+S(0)Si(1)). (98) o i

In the Fourier space they are related to the dissipative part of 0 2
the response functiog, = !

, Lo g™
Sij(w)=coth Bw/2) xjj(w), (99 C
-ifkT

wherey” is the imaginary part of the susceptibility tensor.

It is not difficult now to show that the different two-point

correlation functions of the magnetization vec®are FIG. 1. Complex time path for the trace of the density matrix,
Eq. (31).

w?+B?

2_ 22 2
(wg— )+ (a  cw)

S w)=2akgT , (200 {ion is clearly a consistent theory within the assumptions

stated in the text. But the assumption, E&p), on the bath to
reproduce it is highly idealized and cannot be taken seri-
(101) ously. In the last section, we have shown how the classical
results of LLGB can be recovered from this quantum model.
More complicated couplings, other than the linear coupling
® 1 considered here, naturally induce a tensor character for the

w2+ A2

2
(wo_w2)2+(aLLGw)2

Syy(w)=2akgT

7 2.2 > relaxation. Most of these conclusions are true even in the
(0p— )"+ (aLcw) purely classical treatment. Garcia-Palacios treated similar

(102 questions at the classical level and our results agree with his
where results in that limit” Future work will address questions
beyond which LLGB is not valid.

Sxy(w) = Syx( —w)=2iay ckgT

aLLGZa(A-I— B) (103)

Similar correlation functions have been derived from classi- ACKNOWLEDGMENTS
cal LLG by Smith® These results can also be derived from . :
the Heisenberg equations of motion by assuming from the Ve would like to thank L. Benkhemis, R.W. Chantrell,

. L e - - and W.N.G. Hitchon for critical reading of the manuscript.
start that the commutation relations®f andS_ are similar Discussions with O. Chubykalo, C. Goebel, A. Lyberatos, V.
to those of a harmonic oscillatdt!® This shows again that ' . U L

. Safonov, N. Smith, and X. Wang were also very helpful. We

LLGB is very reasonable within the assumptions stated Niso thank J. Hannay for bringing Ref. 37 to our attention.
the last section. Finally, we would like to mention that had

we not seD to zero, then differentiation of the averagef
with respect toP will give the average of the two-point cor- APPENDIX
relation functions of the fIgctu_ations or the average of the pare we briefly address some questions related to the
commutator of the magnetization due to quantum effects. o ngary conditions on the path integrals in the density ma-
trix representation. The path integrals in E§1) are time-
VI. CONCLUSION ordered expressions along the patk-C(uc@uct),
C§|ig. 1. For the trace only diagonal elements of the density

Using coherent states and a simple quantum mechani ; ded- h | iodic bound d
model for a single large spin particle, we have shown that &“at”x are needed, hence we apply periodic boundary condi-
tions at the end points of the path similar to the equilibrium

generalized form of the Landau-Lifshitz equation can be re-

covered in the semiclassical limit. We have also shown how3S€: _ _ _

fluctuations give rise to two different contributions to the The density ma_ltrlx element at t|r_rteof a States can be
magnetization. One contribution is magnitude conservin _xpressed as an integral along a single path in the complex
and the other is not. We derived generalized equations for thiMme Plane,
magnetization that include nonlocal effects in the dissipation

term and go beyond the simple linear-response approach. An p(S=(Stlp[St) (A1)
immediate result of this work is the dependence of fluctua- . A

tions on the anisotropy of the system, especially if the fluc- =(Sp(1)|S)=(9Te "p(0)T Le™|S),
tuations are large. In this latter case, the fluctuations cannot (A2)

be treated by a simple isotropic thermal field. The LLGB ) ) ) )

equation, i.e., Gaussian white noise thermal field, is clearlyvhere7 is the time-ordering operator. Assuming the system
inadequate in this respect. However, these deficiencies caf initially at equilibrium, we have

be corrected by using the right correlation functions for the .

fluctuations. Changing the damping to a tensor quantity in p(0)=e A%, (A3)

the LLG equatioh’ to account for noise is then not neces- . .
sary; however, it cannot be ruled out either based on thélence, if we make use of the trace propertyABe= TrBA,
work presented her®. Only experiment can decide which the trace of the density matrix can be written in the following
model is best suited to explain its results. The LLGB equaform:
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N The expressions used in the propagators in the main text, Eq.

TFP=J DY(S|Tce VHts). (A4)  (34), follow by writing Sy S] as a sum of three contribu-
tions from the different branches of the complex time path,

7Tc is now a time-ordering operator along the p&thFig. 1.

It can be shown that if timeis taken to be very large or the Swd S1=5G 2SI+ 54,21 S]+57Y S]. (A11)

initial time is taken to be-«, the initial conditions will be

irrelevant and the contribution of the pa@{® is factored

out!® This is the case of interest in the main text. The dis-

wheresS{;J)[ S] is the contribution coming fronse C(*) and

so on. Hence, it is permissible to use the Wess-Zumino for-
o . ) .~ mula for a segment of a closed path, as long as we are cal-
cr.etlzatlpn of the path mtegral in the gg'ne.ral ca;tge of arb'tra%ulating properties that depend solely on closed paths, such
:hlztce;]rgreed (\)/\L/g ezgsgy ?r?ré?a thber aiqctﬁ:ggnuf?r ¢ thfxgsﬁf le2S the trace of the density matrix and the correlation func-
. . oo P%ons of the magnetization. An alternate expression for the
time path 'Ta.ther than one as in thg equilibrium €aS€\WZ term in terms of the components of the vec®is also

First, we divide the path into I8 subintervals each of possible. We first observe that the overlap of two nearest unit

|ength At:(2t+B)I3N, tO:O, tj_:At, ey tN:titN+l
:t_At, e t2N:01 t2N+]_: _|E/N, L 1t3N+1: _Iﬂ VeCtorSS‘l(al’] 1¢I”I) andS”l+l(0n+11¢n+l) on the patml
Hence, the integral operators can be written in the following Onir  On
discrete form: (Shrlsh)= COS—,—C0S,-
e R O O PN
e*l‘]‘dt H:e7|; H(ti)At. (AS) _l’_SInTSIn?e i(én+1—on) , (Alz)
At each pointt; , we insert a resolution of the identity opera- can be written, to first order ik 6,=6,,.,— 6, and A¢,
tor, Eq.(19), =¢n1— ¢n, as a phase
i 3N-1 ) (Shealsn)y=exg —ij(1-cosf)Ad,].  (AL3)
—ifHdt Q \ _ —i(t;) At
(Sanle |So) i[[l fcdu($)<s|e IS-0)- Recalling that on a unit sphere with tangent vect@s ),
(A6)  we have
From Eq.(20), we have As,-e4=sin0,A ¢, . (Al4)
s S 1 1+5-S 4\ Then we can define a vector potenthg(s) as
(SIS-1y=eifeas Sua| = =2 (A7)
A= 5050 (A15)
( sing ¢

where Area§ ,S_;,2) is the area on the sphere of the tri-

angle with vertices5 ,S_,, andz. The path-integral repre- and write the overlap between the two nearest neighbors
sentation of a diagonal element of the density matrix along

the pathC is then given by (Shralsh)=exp{—ijA(s) - As,) (Al6)
3N-1 Hence, the Wess-Zumino term for the whole p@thecomes
p=| 11 dM(S)eXP[iJ'5wz[S] an
Cci=1 L.
A nE[l <sq+1|sq>=exr{—u 2 A(%)-Asn}
+J—f dt’(at,S(t'))Z—if dt’H[S]], (A8)
4 Jc c

=exp{ijf dt(cos6—1)¢|. (A17)
where the Wess-Zumino terfiy, S] is given as in the equi- €
librium case by the following integral formula: Finally, it can be shown that the WZ term can be written,
. within a constant, in terms of the components of the spin
SWZ[S]zf dff dtS(t,7) - (2:S(t, ) X 9,8, 7)) vectors,
0 C
(A9) B S, .
SwASl= | dt5-5(S5-58). (A1)
with the boundary conditions c §t+§
B Such an expression for the WZ term could have been used
S(t.O=S(1), from the start; however, it is very cumbersome due to the
first term in the integrand and hence the holomorphic repre-
S(t1) =z sentation does seem to be the natural representation for the
spin systems, especially in the problems where the calcula-
Sy=8(ty,7)=S(t3n,7) =Ssn - (A10)  tion of transition rates is needéd.
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