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Fluctuations and dissipation of coherent magnetization

A. Rebei and G. J. Parker
Seagate Research Center, Pittsburgh, Pennsylvania 15222

~Received 31 July 2002; revised manuscript received 13 January 2003; published 31 March 2003!

A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic
moment, including fluctuations and dissipation. The magnetic moment is linearly coupled to a reservoir of
bosonic degrees of freedom. The model reproduces the Gilbert-Brown form of the equation in the classical
limit for a particular choice of the bath parameters. Use of generalized coherent states makes the semiclassical
limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived.
The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how
the approximate classical stochastic description of the thermal field follows from our result. We apply these
results to the calculation of the correlation functions of the magnetization in a thin film with an easy axis and
a hard axis within a linear-response approximation.
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I. INTRODUCTION

The study of thermally induced magnetization rever
was first carried out by Brown.1 His approach was to intro
duce a noise term into the Landau-Lifshitz equation of m
tion, essentially constructing a Langevin-type equati
which we call here the Landau-Lifshitz-Gilbert-Brown equ
tion ~LLGB!. From the LLGB equation the Fokker-Plan
equation can be derived, which describes the time evolu
of the probability density distribution of the moment orie
tations. Solution of this problem was carried out by Brow
for the case of an axially symmetric potential and later
Coffey et al.2 for nonaxially symmetric cases. The numeric
solution of the Langevin equation was used by Lybera
et al.,3 and has since been applied to the study of magn
zation reversal by a number of authors.4,5 Recently, Wang
et al.6 have developed an approach introducing a tensor f
of the damping constant and applied this to the calculation
first mean passage time in the case of an elongated g
represented as a chain of coupled particles. Many of th
calculations are motivated by the need to understand h
frequency magnetization processes in magnetic record
The process of reading information currently involves gia
magnetoresistive~GMR! sensors, the size of which is con
tinually reducing as recording densities increase. This
Smith and Arnett7 to the conjecture that noise due to magn
tization fluctuations in the read head would be a limiti
factor on the device size. This is clearly an important pro
lem, which has been further developed by Smith8 and Ber-
tram and co-workers,9 who have also studied the full micro
magnetic description of the problem using an approach
which the thermal noise is distributed among the norm
modes.10

Clearly the introduction of thermal fluctuations in the m
cromagnetic formalism is important both from the point
view of the physics of magnetization processes and als
relation to important practical problems of magnetic reco
ing. Central to all models, both analytical and numerical
the introduction of a magnetization fluctuation or an effect
field via the fluctuation-dissipation theorem~FDT!.11 The
FDT has a strong physical justification, as discussed in de
0163-1829/2003/67~10!/104434~14!/$20.00 67 1044
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by Landau and Lifshitz;12 however, it should be stressed th
it is strictly valid only for small fluctuations about the loca
minimum. A more serious problem with the use of th
Langevin equation in the LLGB form is the dissipative ter
itself, which has no microscopic justification. It is clear
important to understand the whole problem of fluctuatio
and dissipation within a first principle of quantum mecha
cal approach, if the limits of the current models are to
established and more fundamental theoretical approache
derived. The demand for higher density recording media
faster switching rates requires the use of structures on
nanometer scale or less. Quantum mechanical effects
then bound to become more and more important to cons
in these systems. Effects such as magneto-optical inte
tions may even invalidate the simple damping term tha
currently used in the Landau-Lifshitz equation. Th
prompted us to investigate whether the LLGB equation c
be recovered from a more fundamental treatment rather
the ad hocapproach presently used. Hence, it seems nat
to ask in what limit the LLGB equation can be recover
starting from a quantum model.

In this work, we make first steps towards a more ba
understanding of the LLGB equation. To address the ab
questions, we take a simple quantum model, that of a sin
particle with large spin interacting with a heat bath and
external magnetic field. The spin is taken to be large si
we are primarily interested in a semiclassical representa
of the magnetization vector. This simple model is sufficie
to allow us to study the effects of thermal fluctuations
many different cases, such as magnetization switching
single domain magnetic system with uniaxial anisotropy
noise arising from magnetic fluctuation in GMR heads. T
bath is taken to be of bosonic nature. Nothing else need
be assumed to enable us to include various mechanism
interaction between the magnetic moment and the envir
ment. We calculate the equations of motion of the magn
zation and that of an associated fluctuating field in the se
classical limit. Since our interest is mainly in th
semiclassical limit, coherent states~CS’s! are the natural
choice for the representation of the system. These sta
which form an overcomplete basis, have the property
minimizing the Heisenberg uncertainty relations. Boso
©2003 The American Physical Society34-1
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CS’s were first used by Langer to study dissipation and fl
tuations in a superfluid, many-body problem.13 Starting from
the equation of motion of the density matrix of the who
system,r,

i
]r

]t
5@Ĥ,r#,

a Landau-Ginzburg equation was recovered in the equ
rium case and a Fokker-Planck equation in the classical li
In a CS formulation, only diagonal elements of the reduc
density matrix are needed. Instead of starting from the ab
equation, we can instead start from an integral representa
of the diagonal density matrix elements. This method is w
known and is based on the Feynman-Vernon formalism.14,15

This path-integral approach is in real-time as opposed to
imaginary-time approach in equilibrium thermodynamic
Hence, questions like approach to equilibrium can be stud
within this approach. This method has seen many differ
applications since the Caldeira-Leggett~CL! work.16 The CL
model was successful in showing how to recover the Lan
vin equation by coupling an oscillator to a bath of oscillato
It seems natural then to ask if the LLGB equation can
recovered by coupling a spin to a bath of oscillators. T
important question does not seem to have been address
the literature. Spin coherent states are the natural langua
answer this question. Hence, we formulate the question
terms of CS and use path integral techniques to write
density matrix elements of the system. Use of path-integ
with spin CS is not as straightforward as in the case
bosons.17 Nevertheless it is the most suitable method
which we can address questions that pertain to the semi
sical limit of the model treated here. Clearly this meth
allows a consistent treatment of the magnetization and fl
tuations from the start. If the thermal field is decoupled fro
the magnetization, the LLGB equation will be shown to c
respond to a given choice of density of states of the reser
and of its interaction parameters with the magnetic mom

This work is able to provide a different perspective fro
which to discuss the LLGB equation and its limitation. W
also set a basis against which we can examine the disc
ancy in the recent calculations of the noise spectrum in m
netic recording heads.7,10,18 Therefore, a treatment of th
noise problem by a self-consistent method, such as the
presented here, can shed some light on why this differe
exists. We stress that our results are very general for
model considered and no linear approximation is assum

The paper is organized as follows. In Sec. II, we introdu
a simple model Hamiltonian that can describe dissipat
and fluctuations. We linearly couple a single domain m
netic particle to an external magnetic field and to a Boso
bath with infinite number of degrees of freedom. In Sec.
we show how to calculate the trace of the reduced den
matrix of the magnetic moment. The density matrix eleme
are naturally expressed in terms of path integrals over
phase space of the moment.15 An appendix supplements thi
section in which we discuss the topological Wess-Zum
~WZ! term. In Sec. IV, we derive coupled equations for t
magnetization and fluctuations. We show that a gen
10443
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fluctuation-dissipation theorem is satisfied. We also dem
strate how to recover the LLGB equation by decoupling
thermal fluctuations, taking the high-temperature limit a
constraining the choice of reservoir. In the particular case
LLGB, this corresponds to the Gaussian fluctuations a
constant dissipation. Similar results have been obtained
the case when the magnetic moment is replaced by a
monic oscillator. This is no surprise, since in this case
semiclassical approximation corresponds to a particle w
large spin. In Sec. V, we compare the classical stocha
treatment to this quantum treatment. As an example we
culate the correlation functions of the magnetic moment fo
single domain particle with an easy axis and a hard axis.
external field is taken to be along the easy axis. Finally,
Sec. VI, we summarize our results.

II. DEFINITION OF THE MODEL

The model we choose is simple but general enough
include many interesting physical situations. It is mainly m
tivated by the recent work of Safonov and Bertram.19 They
used a two-level impurity system to simulate relaxation
fects in a single domain grain. They showed that the dam
ing in their model is of the Gilbert form. No fluctuations a
considered in their calculation. If we consider a collection
spins that are independent, then the magnetization vectoM
is a simple sum of these coherent spins,

M5gmB

NS

V
, ~1!

whereS is the average spin vector of the spin operatorŜ and
gmB /\ is the gyromagnetic ratio.mB is the Bohr magneton
g is the spectroscopic splitting factor, andV is the volume of
the system. In the following, we set\51, gmB51, and the
densityN/V51. In the rest of this paper, we use the wor
spin and magnetic moment interchangeably.

We take a single spinS(S2@1) and couple it linearly to a
set of oscillators and to a constant external fieldH. The
former may represent phonons, a time-dependent magn
field or other Bosonic degrees of freedom. No assumpt
will be made about the coupling constants or the density
states of the reservoir. The Hamiltonian assumes the foll
ing form

Ĥ52H•Ŝ1(
k

vkak
1ak1(

k
gkak

1Ŝ21(
k

gk* Ŝ1ak ,

~2!

whereH is a static external magnetic field.Ŝ is the magnetic
moment operator of a single particle.ak

1 andak are creation
and annihilation operators of the reservoir. The coupling c
stantsgk may be time dependent, but will be taken as ind
pendent of time in the final result. A word about notation
that operators are usually represented by a hat unless the
no fear of confusion. The fieldH is taken along thez axis,
the axis of spin quantization. Coupling thez component of
the vectorS to the reservoir can be easily added, but it w
be omitted in this work. This Hamiltonian is sufficient t
4-2
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describe all the desired physics. Using the equation of m
tion for Sz , it is not difficult to show that it is not a constan
of the motion, and hence no linearization is implied in th
model.

The operators are in the Heisenberg representation.
spin operatorS satisfies the usual commutation relations:20

@Ŝ2,Ŝ6#50, ~3!

with

Ŝ25
1

2
$Ŝ1 ,Ŝ2%1Ŝz

2 , ~4!

where the curly brackets are for anticommutation and

Ŝ15Ŝx1 iŜy , ~5!

Ŝ25Ŝx2 iŜy , ~6!

while the operators of the reservoir satisfy Bose commu
tion relations,

@ak ,ak8
1

#5dkk8 . ~7!

Instead of the usual Fock space representation, we u
CS-space representation for these operators.21,22

For a Bosonic harmonic oscillator with positionqk ,
momentumpk , and frequencyvk , the CSuFk& are defined
as eigenfunctions of the annihilation operatorak

5(vk/2)1/2$q̂k1@ i /(2vk)
1/2# p̂k%:

akuFk&5FkuFk&, ~8!

with complex eigenvalues,Fk ~Ref. 21!. These states ca
also be generated from the ground stateu0k& by applying a
displacement operatorD(zk), which defines a one-to-on
correspondence between the complex plane and the osci
states,

uzk&5D~zk!u0k& ~9!

and

D~zk!5exp~zkak
12zk* ak!. ~10!

CS’s form an overcomplete basis and satisfy the minim
uncertainty relation. Hence, they are the most suitable re
sentation for a semiclassical treatment. We also adopt
normalization in Ref. 22

^FkuFk8&5eFk* Fk8. ~11!

They also satisfy the following relation, the resolution of t
identity operator:

E dFk* dFk

2p i
e2Fk* FkuFk&^Fku51. ~12!

The latter relation is essential for a path-integral represe
tion in terms of CS’s. It is used repeatedly in the discreti
tion of the path integral when calculating transition ra
between various states~Appendix!.
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Similarly for the spin states, we use a C
representation.23,24 They are defined by analogy to the ha
monic oscillator CS’s. The spin components in this state s
isfy a minimum uncertainty relation, i.e., two of the thre
components commute.25 As in the harmonic oscillator case,
‘‘ground’’ state u0& is required from which to generate all th
other states. In this case the state with the largestSz compo-
nent is taken as the reference state. If thez axis is taken as
the quantization axis and if we takeS25 j ( j 11), then by
definition, we have

u0&[u j , j &, ~13!

and

Ŝzu0&5 j u0&, ~14!

i.e., the state with the minimum fluctuations.20 The spin CS’s
are a generalization of the Holstein-Primakoff construction26

They are defined in terms of deviations from the maximu
positivez component of the spinS

Ŝzup&5~ j 2p!up&. ~15!

The CS’s are then constructed by using

um&5
1

~11umu2! j
exp~mŜ2!u0&

5
1

~11umu2! j (
p50

2 j S ~2 j !!

p! ~2 j 2p!! D
1/2

mpup&, ~16!

wherem is a complex number. Since the configuration spa
of S is the surface of a sphere, it will be more clear to ha
m parametrize the surface of a sphere through a ste
graphic projection,

m5tanS 1

2
u Deiw. ~17!

In this representation, a CS corresponds to a unit vector w
a solid angleV:

uV&5uu,w&5~cos1
2 u!2 jexp@ tan~ 1

2 u!eiwŜ2#u0&. ~18!

A useful property for a path integral formulation is that th
unit operator has the familiar decomposition in terms of p
jection operators on all CS’s,

2 j 11

4p E dVuV&^Vu51. ~19!

In this representation, the overlap of two coherent states
resents an area on a sphere, the surface of which is the
figuration space of the spinS. The overlap is

^V8uV&5@cos1
2 u cos1

2 u81sin1
2 u sin1

2 u8ei (w2w8)#2 j

~20!

and its magnitude is
4-3
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A. REBEI AND G. J. PARKER PHYSICAL REVIEW B67, 104434 ~2003!
u^V8uV&u5S 11n•n8

2 D j

. ~21!

This defines the area of a triangle on a unit sphere w
vertices at the points defined byV,V8 and u50. This ex-
pression is fundamental for the developments below.

Since we plan to use a path-integral technique, we nee
write the expectation values of the Hamiltonian in the coh
ent representation. These expectation values follow, in t
from those of the operatorsŜz , Ŝ1 , andŜ2 . The following
expectation values are deduced from Eq.~18! and Eq.~20!:

^Vu j 2ŜzuV&5 j ~12cosu!, ~22!

^VuŜ1uV&5 j sinueiw, ~23!

^VuŜ2uV&5 j sinue2 iw, ~24!

^VuŜuV&5 j n, ~25!

wheren is a unit vector with angles (u,w). For j @1, the
off-diagonal terms of the spin operator are smaller than
diagonal ones by a factor of aboutAj . Hence, they are neg
ligible in the classical limit. This limit will be implicit in all
subsequent calculations of the reduced density matrix
ments.

III. REDUCED DENSITY MATRIX ELEMENTS
OF THE SPIN PARTICLE

In the following, we make use of CS for both the ba
degrees of freedom and the magnetic moment. The pr
dure we follow is by now mostly standard. Reference
~and references therein! provides a general overview of thes
methods and hence we omit most of the intermediate step
our calculation.

The calculation we present below takes into account
correct boundary conditions as emphasized in Ref. 17. H
ever, we avoid using the abstract but more appropriate h
morphic representation in favor of a more geometric o
i.e., in terms of unit vectors. The physical space for
Hamiltonian , Eq.~2!, is the product of the Hilbert space o
the spin particle and that of the harmonic oscillators,

)
k

uS& ^ uFk&. ~26!

Using the expectation values of the different operators in
Hamiltonian, Eq.~22!–~25!, we get the expectation value o
the Hamiltonian in the coherent representation,

H@F* ,F,S#52Hzj cosu~ t !1(
k

vkFk* ~ t !Fk~ t !

1 j(
k

gkFk* ~ t !sinu~ t !e2 iw(t)

1 j(
k

gk* Fk~ t !sinu~ t !eiw(t). ~27!
10443
h

to
r-
n,

e

e-

e-
7

in

e
-

o-
,

e

e

From now on, we normalize the magnitude of all spin ve
tors byj. Since all classical physical properties of the syst
involve a tracing operation, it is enough to consider on
diagonal elements of the density matrix. The reduced dia
nal density matrix element of the spin particle,r f f , is by
definition the density matrix element of the whole syste
averaged over the states,uFk&, of the bath,

r f f~ t !5^Sf ur~ t !uSf&5E )
k

DFk* DFk^Sf ;Fur~ t !uSf ;F&,

~28!

whereuSf& and uF& are two arbitrary CS of the spin and th
bath, respectively. Here the stateF is a k vector, F
5(F1 ,F2 ,F3 , . . . ).

For simplicity, from now on we use the following notatio
for the functional measure of the Bosonic degrees of fr
dom,

E D~F* ,F![E )
k

DFk* DFk . ~29!

The calculation of density matrix elements is easily c
ried out using a path integral representation. The propag
of the Bosonic part can be written in terms of a pa
integral,22

^Ff uTe2 i *0
t dtĤ(t)uFi&

5E
F(0)5F i

F* (t)5F f* D~F* ,F!expH(
k

Fk* ~ t !Fk~ t !

1 i E
0

t

dtF(
k

iFk* ~t!]tFk~t!2H~F* ,F,Ŝ!G J .

~30!

T is the time-ordering operator. Running from an initial tim
t50 to timet5t, we use a real-time path integral to ave
age over all intermediate states. The trace of the density
trix is then expressed as an integral in terms of the ini
density matrix element of the system,

Trr f f~ t !5E D~F* ,F!E Dm~V1!E Dm~V2!

3E D~F1* ,F1!E D~F2* ,F2!

3^Sf ,F;tuV1 ,F1 ;0&^V1 ,F1 ;0uruV2 ,F2 ;0&

3^V2 ,F2 ;0uSf ,F,t&. ~31!

The integrand is now expressed in terms ofc numbers only.
We make no assumption about the initial state of the s

particle. Hence, we have to calculate a forward propagato
backward propagator, and the density matrix element at
initial time. The system is assumed to be at finite tempe
ture. Since the Hamiltonian is quadratic, the integrations
easily carried out in the stationary-phase approximation.
show a few steps in the calculation of the forward propa
tor. Similar calculations are also done for the other two fa
4-4
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tors in Eq.~31!. Some of the steps in these calculations a
however, valid only within a trace calculation and not for t
seperate propagators~see Appendix for further details!. The
forward propagator is first written as a path integral,

^Sf ,F;tuV1 ,F1 ;0&5^Sf ,FuTe2 i *0
t ĤdtuV1 ,F1&

5E
V1

Sf
Dm~S1!E

F1

F

D~F1* ,F1!

3expH(
k

F1,k* ~ t !F1,k~ t !

1 i E
0

t

dtF i(
k

F1,k* ~t!]tF1,k~t!

2H~F1* ,F1 ,S1!G J exp$ iSWZ@S1#%,

~32!

The measure of the integration over the spin variables is
measure of theSU(2) Lie group over a sphereS2. If S is a
three-vector, then theSU(2)-invariant measure is given by

E Dm~S![
2 j 11

4p E DSd~S221!. ~33!

The last factor in Eq.~32! is a geometrical term, the Wess
Zumino term28 ~and references therein!, which for our pur-
poses will be enough to be taken of this form, but with t
correct boundary conditions~see Appendix for details!

SWZ@S1#5E
0

1

dsE
0

t

dtS~s,t!•S ]S~s,t!

]s
3

]S~s,t!

]t D ,

~34!

whereS(s,t) is a homotopy map between the side (z,V1)
and the side (z,Sf).

29 This term therefore represents the ar
enclosed by the trajectory of the spin vector.24 This formula
will be only used as part of a trace calculation such as in S
V below. The bath degrees of freedom are eliminated b
stationary-phase evaluation of the integral. The phase is
extremum for states that satisfy

i ]tF1,k~t!5
dH

dF1,k* ~t!
~35!

and similar equations forF1,k* . We have, for allk,

i ]tF1,k~t!5vkF1,k~t!2gk~t!S2 , ~36!

i ]tF1,k* ~t!5vkF1,k* ~t!2gk* ~t!S1 . ~37!

The solutions with the correct boundary conditions are

F1,k~t!5F1,ke
2 ivkt1 ie2 ivktE

0

t

dt8eivkt8gk~ t8!S2~ t8!,

~38!
10443
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F1,k* ~t!5Fk* eivk(t2t)1 ieivktE
t

t

dt8e2 ivkt8gk* ~ t8!S1~ t8!,

0<t<t.

At the endpoints, we then have

F1,k~ t !5F1,ke
2 ivkt1 ie2 ivktE

0

t

dt8eivkt8gk~ t8!S2~ t8!,

~39!

F1,k* ~0!5Fk* e2 ivkt1 i E
0

t

dt8e2 ivkt8gk* ~ t8!S1~ t8!.

These solutions are then put back in Eq.~31!. Similar
expressions follow from the calculations of the backwa
propagator. The density matrix element at the initial time
calculated with the assumption that the bath is initially
equilibrium with the spin. The bath relaxes much faster th
the spin, a reasonable approximation in many problems
magnetics. In this case the density matrix is separable a
initial time, i.e., r(0)5rS(0)rB(0). The bath density ma-
trix, rB , is then known and its matrix elements can be wr
ten explicitly in terms of the Hamiltonian,ĤB , of the bath
only,

^F1urB~0!uF2&5
1

ZB
^F1uTe2bĤBuF2&

5
1

ZB
E

F2

F1
D~F* ,F!expS Fk* ~b!Fk~b!

1 i E
0

b

dt@ iFk* ~t!]tFk~t!2H~t!# D ,

~40!

with the boundary conditions

F~0!5F2 , ~41!

F* ~b!5F2* .

HereZB is the partition function of the bath only and sum
mation overk is implicit above. The constantb is equal to
the inverse temperatureT with the Boltzmann constantkB set
to 1.

We find, after applying a stationary-phase approximat
to the integral, the expression

^F1urB~0!uF2&5expH(
k

F1,k* F2,ke
2bvkJ . ~42!

After integrating out the degrees of freedom of the bath,
are left with only integrals over paths in the spin space. T
effective action of the spin is now complex, as is comm
with dissipative systems. The trace of the reduced den
matrix is now given by
4-5
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(
f

r f f~ t !5(
f
E Dm~V1!E Dm~V2!^V1urs~0!uV2&E

V1

Sf
Dm~S1!E

Sf

V2
Dm~S2!

3expH iH zE
0

t

dt8~S1,z~ t8!2S2,z~ t8!!1 iSWZ@S1#2 iSWZ@S2#J W~S1 ,S2!, ~43!

where the last factor is entirely due to the coupling between the bath and the spin particle and often called the Feynma
functional.16 It is given by

ln W~S1 ,S2!52E
0

t

dt8E
0

t

dt9exp@2 ivk~ t82t9!#gk* ~ t8!gk~ t9!$Q~ t92t8!S2,1~ t8!S2,2~ t9!

1@12Q~ t92t8!#S1,1~ t8!S1,2~ t9!%1E
0

t

dt8E
0

t

dt9exp@2 ivk~ t82t9!#gk* ~ t8!gk~ t9!S2,1~ t8!S1,2~ t9!

1
1

ebvk21
E

0

t

dt8E
0

t

dt9exp@2 ivk~ t82t9!#gk* ~ t8!gk~ t9!$S1,1~ t8!S2,2~ t9!1S2,1~ t8!S1,2~ t9!%

2
1

ebvk21
E

0

t

dt8E
0

t

dt9exp@2 ivk~ t82t9!#gk~ t9!gk* ~ t8!@S1,1~ t8!S1,2~ t9!1S2,1~ t8!S2,2~ t9!#, ~44!
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whereQ is the unit step function. The variablesS1 and S2
are associated with forward and backward propagation
time, respectively.

By taking the limit of an infinite number of oscillators
this latter term becomes responsible for the appearanc
dissipation in this model. After calculating the elements
the reduced density matrix, we can now calculate its ti
evolution and find a Fokker-Plank-type equation, as w
done in the original work of CL.16 We choose rather to tak
the semiclassical limit of this expression and see under w
conditions, if any, a LLGB equation can be recovered.

IV. THE SEMI-CLASSICAL APPROXIMATION

In this section, we find the equation of motion of th
magnetization by calculating the most probable configu
tional paths. This is done by calculating the path in the
duced density matrix element for the spin field that has
largest weight. Then we show that these paths are really
semiclassical limit of the classical paths averaged over
thermal fluctuations in the LLGB equation. We also sho
that the fluctuation-dissipation theorem is naturally satisfi
It reduces to the Brown form only in the high-temperatu
limit and only in the linear-response approximation. It
claimed that this approximation fails when the system
highly anisotropic,10 but as we will show in the following
section we see no evidence that this is the case~but see Ref.
18!.

To facilitate the taking of the classical limit we make th
change of variables,

S~t!5 1
2 @S1~t!1S2~t!#, ~45!

D~t!5S1~t!2S2~t!.
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The variableD, we will see, represents the fluctuating fie
that is coupled to the classical spin and is due to the inhe
irreversibility in the system. In terms of these new variabl
the trace of the reduced density matrix becomes

Trr5(
f
E Dm~V1!E Dm~V2!^V1urs~0!uV2&

3E Dm~S!E Dm~D!expH i E
0

t

dt8H•D~ t8!

1 iSWZ
e f f@S,D#J W~S,D!, ~46!

where

SWZ
e f f@S,D#5SWZ@S1#2SWZ@S2#. ~47!

The Feynman-Vernon functionalW(S1 ,S2) now becomes

W@S,D#5expH E
0

t

dt8E
0

t

dt9J~ t8,t9!F2
1

2
D1~ t8!D2~ t9!

1Q~ t92t8!S1~ t8!D2~ t9!

2@12Q~ t92t8!#D1~ t8!S2~ t9!G
2E

0

t

dt8E
0

t

dt9Fb~ t8,t9!D1~ t8!D2~ t9!J , ~48!

with D65Dx6 iD y . The functionsJ(t8,t9) and Fb(t8,t9)
are dependent solely on the bath parameters,

J~ t8,t9!5(
k

e2 ivkt8eivkt9gk* ~ t8!gk~ t9!, ~49!
4-6
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Fb~ t8,t9!5(
k

e2 ivkt8eivkt9gk* ~ t8!gk~ t9!

ebvk21
. ~50!

In these new variables, the phase of lnW clearly shows that
the action of the reservoir results in an extra linear coupl
in S andD. Moreover, we now have a quadratic term invol
ing the variableD. This quadratic term is easily seen to b
real and negative, assuring convergence of the sum ove
configurations ofD. The linear term describing interaction o
the fieldsS andD is imaginary, however. In fact, it is such
term that gives rise to dissipation in the energy of the spinS.
As we will show below,D is the field that is associated wit
the classical random field in the LLGB equation. If this is t
case than averaging outD should give us a Langevin-typ
equation for the spin variableS. This Feynman-Vernon fac
tor doesnot depend on the nature of the variableS. The same
factor would have been obtained if we replaceS by another
oscillator.27 The difference between an oscillator and a s
lies in SWZ

e f f . It is this latter term, which is responsible for n
having only additive noise, but also multiplicative one,
will be seen below.

To find the semiclassical result for the reduced den
matrix, we again resort to a stationary-phase approxima
to the phase of the path integrals in Eq.~46!. First, we im-
pose constraints on the spin magnitude by introducing
Lagrangian multiplier fields,h1(t) andh2(t). These are then
coupled to the spin fieldsS1 andS2, respectively, as follows
10443
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d~S1
2~t!21!5E Dh1~t!ei *dth1(t)„S1

2(t)21…. ~51!

A similar expression holds for the other spin vector varia
S2 andh2. These constraints are then put back in the expr
sion for the reduced density matrix element. The phase of
path integral is now a function of four independent fieldsh1 ,
h2 , S, andD. Extremizing the phase of these paths gives
semiclassical solution in the large spin limit. After solvin
for the constrained fields in terms of the spin fieldsS1 and
S2, we write the remaining two equations inS and D only,
obtaining a generalized form of the LLGB equation

dS~ t8!

dt8
5S3~H1T(S)1T(D)!1

1

4
D3W, ~52!

and

dD~ t8!

dt8
5D3~H1T(S)1T(D)!1S3W. ~53!

The vectorsT(S), T(D), andW are associated with dissi
pation, thermal fluctuations and magnitude fluctuations,
spectively. In the Cartesian form, they are, respective
given in terms of the functionsJ andFb by
T(S)~u!5F i E
0

u

dt8Q~u2t8!@J~u2t8!S2~ t8!2J* ~u2t8!S1~ t8!#

2E
0

u

dt8Q~u2t8!@J~u2t8!S2~ t8!1J* ~u2t8!S1~ t8!#

0

G , ~54!

T(D)~u!5F i E
0

t

dt8H F1

2
J~u2t8!1Fb~u2t8!GD2~ t8!1@ J* ~u2t8!1Fb* ~u2t8!#D1~ t8!J

2E
0

t

dt8H F1

2
J~u2t8!1Fb~u2t8!GD2~ t8!2@ J* ~u2t8!1Fb* ~u2t8!#D1~ t8!J

0

G , ~55!

and

W~u!5F 2 i E
0

t

dt8Q~ t82u!@J~u2t8!D2~ t8!2J* ~u2t8!D1~ t8!#

E
0

t

dt8Q~ t82u!@J~u2t8!D2~ t8!1J* ~u2t8!D1~ t8!#

0

G . ~56!
4-7
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These vectors are, in general, nonlocal in time and he
include memory effects in the equations of motion forS and
D. This type of behavior is clearly needed when the rel
ation time of the reservoir is of the same order as that of
spin particle. We will not discuss such a situation here.
are mainly interested to recover the constant dissipation c
Even though we called Eqs.~52! and~53! generalized LLGB
equations, it isnot yet clear how a Gilbert damping term ca
arise in these equations. However, through a careful ch
of the density of states of the bath, the coupling consta
and the initial conditions, such damping form can be rec
ered as shown below.

To describe dissipation, we take the continuum limit f
the bath states,

(
k

→E dv
dk

dv
. ~57!

Then the spectral functionsJ andFb are given by

J~t2t8!5E
0

`

dvl~v!ug~v!u2exp@2 iv~t2t8!#

~58!

and

Fb~t2t8!5E
0

`

dv
l~v!

exp@bv#21
ug~v!u2exp@2 iv~t2t8!#.

~59!

Fb is simply the nonzero temperature counterpart ofJ. l(v)
is the density of states of the bath. In fact, the function

G~t2t8!5
1

2
J~t2t8!1Fb~t2t8! ~60!

is the inverse of the free propagator of the fieldD.
The vectorsS and D are orthogonal as follows from th

constraint equations, Eq.~51!. Note that whenD is set to
zero, the density matrix becomes diagonal but the equa
of motion for S will still have an extra term besides th
precessional term that is due to the external fieldH. This
extra termT(S)(u) clearly always has a damping effect. W
conclude that it is the vectorS that must be identified with
the classical magnetization and thatD is the part that gives
rise to the thermal fluctuations inS. Finally, we observe tha
the last term in Eq.~52! cannot be recovered in the classic
limit. This quantum mechanical term is not present in t
LLGB equation and is beyond a classical linear-respo
treatment of the problem of fluctuations. It is of higher ord
in D and temperature independent. It is easy to see that
term gives rise to fluctuations in the magnitude of the sp
These fluctuations cannot be accounted for classically s
the magnitude of the magnetization is assumed to be c
stant.

One important thing to note from Eq.~52! is that the
vectorT(D) is complex and hence, if fluctuations are prese
the equation of motion forS becomes complex. The physic
interpretation of this equation then becomes obscure at
level and may not be used as it stands to get the effec
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magnetization of the particle. Having a complex equation
the extremum path of the spin is, however, expected, gi
the dissipation present in the spin subsystem. The same r
happens in the case of the harmonic oscillator.16 A solution
for the fluctuating magnetization is then sought through
direct calculation of the propagators in Eq.~31!.

Now we show that a generalized fluctuation-dissipat
theorem is satisfied as expected for this system since
started from a closed system and integrated out a large
of its degrees of freedom. We will also show that it is inde
the vectorD that should be regarded as the quantum sou
of the thermal fluctuations in the spin system as treated
LLGB. The average ofS is then the physically measurab
magnetization. To better understand the physical meanin
the fieldD and to recover the standard stochastic descrip
of the thermal fluctuations, we introduce yet another fie
j(t). In Eq. ~46!, we replace the quadratic term inD in the
Feynman-Vernon functional by an average over a Gaus
field, i.e., the left hand side of the following expression w
its right-hand side:

expS 2E
0

t

dt8E
0

t

dt9D1~ t8!G~ t82t9!D2~ t9! D
5NE DjexpS 2

1

2E0

t

dt8E
0

t

dt9j l~ t8!
1

2
G l l

21~ t82t9!j l~ t9!

2 i E
0

t

dt8j l~ t8!Dl~ t8! D , ~61!

whereN is a normalization constant. The quadratic term inD
is then assumed to be a result of an averaging over all c
figurations of the fieldj. Hence the path integral for th
reduced density, Eq.~46!, is now in terms of three fields. Th
field j will now result in a third equation of motion. How
ever, to recover a thermal field similar to that introduced
Brown,1 we proceed by assuming that the fieldj is classical,
i.e., we ignore its equation of motion. At this point the fie
j is treated as a nondynamical field similar to the exter
field H. Next we solve for the magnetizationS for a givenj
and only then do we average over all configurations ofj with
the quadratic weight that we originally ignored in the so
tion. In fact,j becomes the Brown stochastic field if we ta
the classical limit, that of high temperature and setD50.
This is easily seen from the fact thatj andH enter the same
way in the exponent and hence in the equation of motion
S. From this, we clearly see that the LLGB equation is e
sentially correctonly for small fluctuations, i.e., smallD, so
higher-order terms inD in the geometrical termSWZ

e f f can be
neglected. Given these observations, we can now ass
that the effective thermal field with which the spin is inte
acting is really nothing more than the abstractD field that
has been introduced in this calculation of the reduced den
matrix element. In factj has the following correlation func
tions
4-8
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FLUCTUATIONS AND DISSIPATION OF COHERENT . . . PHYSICAL REVIEW B 67, 104434 ~2003!
^j l~t!j l 8~t8!&52d l l 8G~t2t8!

5
1

p
d l l 8E

0

`

dvvcothS bv

2 D pl~v!ug~v!u2

v

3exp@2 iv~t2t8!#. ~62!

To recover the correlations of the thermal field assume
the LLGB equation, we simply take the high-temperatu
limit and require that the bath satisfies the condition,

pl~v!ug~v!u2

v
5a, ~63!

wherea is a constant. This condition provides the simple
relation between fluctuations and dissipation. In this case,
real part of the correlation functions for the random fie
become simply that of white noise,

Rê j l~t!j l 8~t8!&52d l l 8akBTd~t2t8!. ~64!

A similar condition arises if we replace the spin degrees
freedom by those of a harmonic oscillator.16 However, at
high temperature, as we mentioned earlier, a large spin
be approximated well by an oscillator. This condition
however, still true even if the bosonic degrees of freedom
the bath are replaced by fermionic degrees of freedom.

Finally, we consider recovering the LLG equation wi
the Gilbert form of damping. Equations~52! and ~53! are
very general as they stand and it is not clear if the dissipa
has the Gilbert form. To deduce the very special case
constant damping with the Gilbert form, we set the fluctu
tions to zero and take the following form for the spect
function J:

J~t82t!5 ia
d

dt
d~t82t!. ~65!

After an integration by parts of the term containingT(S) in
the reduced density matrix element, Eq.~31!, the equation of
motion for S, the magnetization, becomes simply

dS~t!

dt
5S~t!FH1aS dS~t!

dt
2

d~S~t!• ẑ!

dt
ẑD G . ~66!

The boundary terms in the integration by parts are ea
dealt with by a renormalization of the measure of the p
integral. Keeping in mind the model used to derive this
sult, this equation reduces to the LLG form only in the lim
of small deviations from local equilibrium. It is also impo
tant to note that the choice we made forJ, Eq. ~65!, is com-
patible with the Gaussian white noise approximation for
thermal field. Hence the stochastic LLG equation, i.
LLGB, is compatible with the FDT at high temperature a
small fluctuations. Therefore, as far as the model conside
here, we do not see any breakdown of LLGB within t
above stated approximations. However, since the bath is
general, this does not preclude other equations that des
the dynamics of a spin in contact with a reservoir. The LLG
equation is just the simplest equation with white noise a
small fluctuations. The condition on the bath, Eq.~65!, to get
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LLG is clearly an artificial one. Moreover, the integration b
parts alluded to above give rise to boundary terms. Th
terms are basically ignored. This means that LLG can
capture the true transient behavior of the system. In fact,
is observed in experiments on small magnetic particles w
fast switching rates.30 In the following section we study a
concrete example where we show how to recover class
results, which are consistent with LLGB, from our simp
model.

Before we end this section, we make a final comm
about the condition, Eq.~63!, by which we recovered the
LLG limit. If we assume constant coupling constants for t
interaction between the spin and the bath, we find that
density of states must be linear. For phonons, the densit
states is quadratic and hence, based on this assumption,
not be the major source of the damping constanta. In fact,
dissipation due to currents is believed to be much large31

Ferromagnetic compounds, such as FeNi, show a com
density of states for the nonlocalized electrons; hence a c
dition such as that given in Eq.~63! is representative of
many competing mechanisms. It is only the lower part of
spectrum that is important for a constant approximation
dissipation. In fact, in Eq.~58!, the limit of integration can-
not be taken to be infinite for a real bath. This, in turn, w
introduce a new cutoff parameter in condition~63!, which
will be system dependent.

V. CORRELATION FUNCTIONS
OF THE MAGNETIZATION IN THIN FILMS

In this last section, we study the magnetic noise in a t
anisotropic film. The magnetization is taken to be unifo
and near equilibrium, that is, along an easy axis (z) in the
plane of the film. Here we are simply interested in the ca
that reproduces the classical LLG results for this proble
The general case includes other possible solutions an
treated elsewhere.18

Clearly the bath influence on the magnetic moment w
and without anisotropy is the same as before, but now th
is coupling between the fluctuating field and the spin fie
that is anisotropy dependent.

The Hamiltonian of the spin-bath system is taken in t
case to be

Ĥ52HŜz2KŜz
21KpŜx

22(
k

gkak
†Ŝ2

2(
k

gk* Ŝ1ak1(
k

vkak
†ak , ~67!

whereH is a large positive external in-plane magnetic fie
along thez axis and the hard axis is along thex axis.K and
Kp are positive constants. The remaining terms describe
interaction of the heat bath with the transverse compone
of the magnetization. We are only interested in the regi
where the equilibrium position is along thez axis and the
coupling between the spin and the bath is small. After w
ing Ŝx

2 in terms ofŜ6 , dropping a term proportional toŜ2, a
constant, the Hamiltonian of the spin subsystem become
4-9
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Ĥ05 1
2 AŜx

21 1
2 BŜy

2 , ~68!

where the coefficientsA and B are given in terms of the
initial physical constants,

A5H12K12Kp , ~69!

and

B5H12K. ~70!

After integrating out the bath degrees of freedom, we fi
that the sum of the diagonal reduced density matrix elem
in the presence of anisotropy becomes

(
f

r f f~ t !5(
f
E DSiE DSi8^Si urs~ t0!uSi8&

3E
Si

Sf
DS1E

Sf

Si8DS2expF i ~SWZ@S1#2SWZ@S2# !

1 iH zE
t0

t

dt8@S1,z~ t8!2S2,z~ t8!#

2 i E
t0

t

dt8S 1

2
A@S1,x

2 ~ t8!2S2,x
2 ~ t8!#

1
1

2
B@S1,y

2 ~ t8!2S2,y
2 ~ t8!# D GW~S1 ,S2!. ~71!

In the following we are interested only in calculating th
fluctuations in the magnetization around equilibrium. Hen
nonlinear terms inD will be neglected. Moreover, we sha
not study the short time behavior of the system, hence in
conditions are irrelevant. It will therefore be assumed that
initial density matrix element is nonzero only for one sta
the initial equilibrium state. We also take the limitt0→2`
and t→`. Since, we will be calculating correlation func
tions, we define the following effective action function
G@S1 ,S2# which is needed in finding averages,

iG@S1 ,S2#52~SWZ@S1#2SWZ@S2# !2HzE
t0

t

dt8@S1,z~ t8!

2S2,z~ t8!#1E
t0

t

dt8S 1

2
A@S1,x

2 ~ t8!2S2,x
2 ~ t8!#

1
1

2
B@S1,y

2 ~ t8!2S2,y
2 ~ t8!# D1 i lnW~S1 ,S2!.

~72!

The minimization of this action gives the equations of m
tion for the magnetizationS and the corresponding fluctua
tions D,

dS

dt
5S3~H1T(S)1T(D)2S̄!, ~73!

dD

dt
5D3~H1T(S)1T(D)2D̄!. ~74!
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The vectorsT(S) and T(D) have the same definitions a
above, Eqs.~52! and ~53!, and account for the dissipatio
and the fluctuations, respectively. The remaining vectorS̄
and D̄ are due to the specific coupling considered in t
section among the spin components due to anisotropy. T
have the following definitions:

S̄5~ASx , BSy, 0!, ~75!

D̄5~ADx , BDy, 0!. ~76!

Note that for small fluctuations, the magnetization is const
in magnitude within this approximation.

Next we calculate the correlation functions of the magn
tization vectorS. This is done more effectively through th
method of virtual external sources.32,33 This functional
method is an extension of similar methods applied to
equilibrium case.34 First, we observe that the correlatio
function

^Sx~ t !Sx~0!&5Tr„Sx~ t !Sx~0!r… ~77!

can be derived by first coupling the transverse component
S and D to time-dependent external sourcesP and Q. The
effective action of the system becomes

Ge f f@S,D;P,Q#5G@S,D#1E dt@P•S1Q•D#. ~78!

G is the action of the spin system and the bath with
external sources set to zero. Next, we define the genera
functional

Z@P,Q#5E DSDD eiGe f f[S,D;P,Q] . ~79!

The correlation functions are then found by differentiati
this latter functional with respect to the external sources,

F d2lnZ

dPi~ t !dPj~ t8!
G

P5Q50

5^Si~ t !Sj~ t8!&,

t.t8, i , j 5x,y.
~80!

Since we are looking for small deviations from equilibrium
we have for the transverse components

^Si~ t !&50, ~81!

^Di~ t !&50, ~82!

^Di~ t !D j~0!&50, t.0 ~83!

in the absence of any external forces.
To calculate two-point correlation functions, we avera

the previous equations of motion forS andD in the presence
of the external sources and then differentiate with respec
P or Q, e.g.,
4-10
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FLUCTUATIONS AND DISSIPATION OF COHERENT . . . PHYSICAL REVIEW B 67, 104434 ~2003!
d^Si~ t !&

dPj~ t8!
5 i ^Si~ t !Sj~ t8!&,

t.t8. ~84!

To recover the correlation functions of the original syste
we set the fieldsP andQ to zero at the end of the calcula
tions. Hence these fields are assumed small but arbitrar
the rest of this calculation. This is equivalent to a line
response calculation in this particular system.

In the following we will be interested in studying the ca
where the bath is chosen such that

J~ t2t8!5 ia
d

dt
d~ t2t8!. ~85!

This corresponds to the LLG case, which is equivalent
assuming the following form for the bath parameters:

l~v!ug~v!u25
av

p
, ~86!

where, as before,l(v) is the density of states of the bath an
a is a constant that we will consider to be small here.

The damping termT(S) becomes after an integration b
parts,

Ti
S~ t !52a

d

dt
Si~ t !, i 5x,y. ~87!

The fluctuation term is simply

Ti
D~ t !5 i E

0

`

dt8G~ t2t8!Di~ t8!, i 5x,y, ~88!

whereG(t2t8) is in the high-temperature limit,

G~ t2t8!5akBTd~ t2t8!1 i
akBT

p
PS 1

t2t8
D . ~89!

The imaginary part ofG is absorbed in the definition of th
coefficientsA andB. The equations of motion for theS field
in the presence of the external sources then take the form
those of a damped harmonic oscillator with source terms
are functions of the external sourceQ and the fluctuationsD,

E dt8GS
21~ t,t8!Sx~ t8!

5A@Tx
D~ t !1Qx~ t !#1

d

dt
@Ty

D~ t !1Qy~ t !#,

~90!

E dt8GS
21~ t,t8!Sy~ t8!

5B@Ty
D~ t !1Qy~ t !#2

d

dt
@Tx

D~ t !1Qx~ t !#,

~91!
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whereGS is the ‘‘free’’ propagator of theS field

GS
21~ t,t8!5S d2

dt2
1v0

21a~A1B!
d

dtD d~ t2t8!, ~92!

and v0
25AB is the renormalized ferromagnetic resonan

frequency. Similarly, theD field has the equations of motio

E dt8GD
21~ t,t8!Sx~ t8!5APx~ t !1

d

dt
Py~ t !, ~93!

E dt8GD
21~ t,t8!Sy~ t8!5BPy~ t !2

d

dt
Px~ t !, ~94!

whereGD
21 is the propagator associated with theD field and

is equal toGS
21.

It is interesting to note that within this approximation th
external sourceP does not appear in the equations of moti
of S and hence accounts only for nonlinear terms in the eq
tion of motion. For theS field equations, theD field appears
on the right-hand side of Eqs.~90! and~91! as a source term
while the D field equations are sourceless, which is cons
tent with having random forces acting on the magnetizat
with no back reaction. Even though these equations are s
lar to those of a damped harmonic oscillator, the equation
motion forS has additional terms on the right-hand side th
depend on the derivative of the fluctuations.

To get the two-point correlation functions of the magn
tization, we average the equations of motion forS and D
with respect to the reduced density matrix of the spin syst
Since these equations are linear, the average values
similar equations of motion. To get the equation of moti
for ^Sx(t)Sx(t8)&, we differentiate^Sx(t)& with respect to
P(t8). The other equations of motion are obtained in t
same way. These equations are easily solved in the Fou
space. However, in this particular linear case, these corr
tion functions can also be derived by a simpler method
first deriving the classical equation of motion for the avera
magnetization and then applying the FDT to get the aver
of any anticommutator of two operators.27 In the equation of
motion forS, Eq. ~73!, quantum effects are included throug
the fluctuationsD, and hence the classical equation of m
tion is found by setting the fieldD to zero and invoke the
Ehrenfest theorem to write the equations of motion for
average magnetization:

E dt8GS
21~ t,t8!^Sx~ t8!&5AQx~ t !1

d

dt
Qy~ t !, ~95!

E dt8GS
21~ t,t8!^Sy~ t8!&5BQy~ t !2

d

dt
Qx~ t !. ~96!

We observe that in this case the derivative of the magnet
tion S with respect toQ is the response function:

d^Si~ t !&
d^Qj~0!&

5x i j ~ t !, t.0. ~97!

Now a straightforward application of the FDT gives the ma
netization correlation functions
4-11
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Si j ~ t !5 1
2 ^Si~ t !Sj~0!1Sj~0!Si~ t !&. ~98!

In the Fourier space they are related to the dissipative pa
the response functionx,

Si j ~v!5coth~bv/2!x i j9 ~v!, ~99!

wherex9 is the imaginary part of the susceptibility tensor35

It is not difficult now to show that the different two-poin
correlation functions of the magnetization vectorS are

Sxx~v!52akBTF v21B2

~v0
22v2!21~aLLGv!2G , ~100!

Syy~v!52akBTF v21A2

~v0
22v2!21~aLLGv!2G , ~101!

Sxy~v!5Syx~2v!52iaLLGkBTF v

~v0
22v2!21~aLLGv!2G ,

~102!

where

aLLG5a~A1B!. ~103!

Similar correlation functions have been derived from clas
cal LLG by Smith.8 These results can also be derived fro
the Heisenberg equations of motion by assuming from
start that the commutation relations ofŜ1 andŜ2 are similar
to those of a harmonic oscillator.36,18 This shows again tha
LLGB is very reasonable within the assumptions stated
the last section. Finally, we would like to mention that h
we not setD to zero, then differentiation of the average ofD
with respect toP will give the average of the two-point cor
relation functions of the fluctuations or the average of
commutator of the magnetization due to quantum effects

VI. CONCLUSION

Using coherent states and a simple quantum mechan
model for a single large spin particle, we have shown tha
generalized form of the Landau-Lifshitz equation can be
covered in the semiclassical limit. We have also shown h
fluctuations give rise to two different contributions to th
magnetization. One contribution is magnitude conserv
and the other is not. We derived generalized equations for
magnetization that include nonlocal effects in the dissipat
term and go beyond the simple linear-response approach
immediate result of this work is the dependence of fluct
tions on the anisotropy of the system, especially if the fl
tuations are large. In this latter case, the fluctuations can
be treated by a simple isotropic thermal field. The LLG
equation, i.e., Gaussian white noise thermal field, is clea
inadequate in this respect. However, these deficiencies
be corrected by using the right correlation functions for
fluctuations. Changing the damping to a tensor quantity
the LLG equation10 to account for noise is then not nece
sary; however, it cannot be ruled out either based on
work presented here.18 Only experiment can decide whic
model is best suited to explain its results. The LLGB eq
10443
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tion is clearly a consistent theory within the assumptio
stated in the text. But the assumption, Eq.~65!, on the bath to
reproduce it is highly idealized and cannot be taken s
ously. In the last section, we have shown how the class
results of LLGB can be recovered from this quantum mod
More complicated couplings, other than the linear coupl
considered here, naturally induce a tensor character for
relaxation. Most of these conclusions are true even in
purely classical treatment. Garcia-Palacios treated sim
questions at the classical level and our results agree with
results in that limit.37 Future work will address question
beyond which LLGB is not valid.
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APPENDIX

Here we briefly address some questions related to
boundary conditions on the path integrals in the density m
trix representation. The path integrals in Eq.~31! are time-
ordered expressions along the pathC5C(2)øC(0)øC(1),
Fig. 1. For the trace only diagonal elements of the den
matrix are needed; hence we apply periodic boundary co
tions at the end points of the path similar to the equilibriu
case.

The density matrix element at timet of a stateS can be
expressed as an integral along a single path in the com
time plane,

r~S,t !5^S,turuS,t& ~A1!

5^Sur~ t !uS&5^SuTe2 i Ĥtr~0!T 21ei ĤtuS&,
~A2!

whereT is the time-ordering operator. Assuming the syste
is initially at equilibrium, we have

r~0!5e2bĤ. ~A3!

Hence, if we make use of the trace property, TrÂB̂5TrB̂Â,
the trace of the density matrix can be written in the followi
form:

FIG. 1. Complex time path for the trace of the density matr
Eq. ~31!.
4-12
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Trr5E DŜ SuT Ce2 i *CĤdt8uS&. ~A4!

TC is now a time-ordering operator along the pathC, Fig. 1.
It can be shown that if timet is taken to be very large or th
initial time is taken to be2`, the initial conditions will be
irrelevant and the contribution of the pathC(0) is factored
out.18 This is the case of interest in the main text. The d
cretization of the path integral in the general case of arbitr
t is carried out exactly as in the equilibrium case,29 except
that here we have three branches for the comp
time path rather than one as in the equilibrium ca
First, we divide the path into 3N subintervals each o
length Dt5(2t1b)/3N, t050, t15Dt, . . . , tN5t,tN11
5t2Dt, . . . , t2N50, t2N1152 ib/N, . . . ,t3N1152 ib.
Hence, the integral operators can be written in the follow
discrete form:

e2 i *dt8Ĥ5e2 i(
i 51

3N

Ĥ(t i )Dt. ~A5!

At each pointt i , we insert a resolution of the identity oper
tor, Eq. ~19!,

^S3Nue2 i *ĤdtuS0&5 )
i 51

3N21 E
C
dm~Si !^Si ue2 i Ĥ(t i )DtuSi 21&.

~A6!

From Eq.~20!, we have

^Si uSi 21&5ei j Area(Si ,Si 21 ,z)S 11Si•Si 21

2 D j

, ~A7!

where Area(Si ,Si 21 ,z) is the area on the sphere of the t
angle with verticesSi ,Si 21, andz. The path-integral repre
sentation of a diagonal element of the density matrix alo
the pathC is then given by

r5E
C

)
i 51

3N21

dm~Si !expH i j SWZ@S#

1
j Dt

4 E
C
dt8„] t8S~ t8!…22 i E

C
dt8H@S#J , ~A8!

where the Wess-Zumino termSWZ@S# is given as in the equi-
librium case by the following integral formula:

SWZ@S#5E
0

1

dtE
C
dtS~ t,t!•„] tS~ t,t!3]tS~ t,t!…

~A9!

with the boundary conditions

S~ t,0!5S~ t !,

S~ t,1!5z,

S05S~ t0 ,t!5S~ t3N ,t!5S3N . ~A10!
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The expressions used in the propagators in the main text,
~34!, follow by writing SWZ@S# as a sum of three contribu
tions from the different branches of the complex time pat

SWZ@S#5SWZ
(1)@S#1SWZ

(2)@S#1SWZ
(0) @S#, ~A11!

whereSWZ
(1)@S# is the contribution coming fromSPC(1) and

so on. Hence, it is permissible to use the Wess-Zumino
mula for a segment of a closed path, as long as we are
culating properties that depend solely on closed paths, s
as the trace of the density matrix and the correlation fu
tions of the magnetization. An alternate expression for
WZ term in terms of the components of the vectorS is also
possible. We first observe that the overlap of two nearest
vectorssn(un ,fn) andsn11(un11 ,fn11) on the pathC,

^sn11usn .&5S cos
un11

2
cos

un

2

1sin
un11

2
sin

un

2
e2 i (fn112fn)D 2 j

, ~A12!

can be written, to first order inDun5un112un and Dfn
5fn112fn , as a phase

^sn11usn &5exp@2 i j ~12cosun!Dfn#. ~A13!

Recalling that on a unit sphere with tangent vectors (eu ,ef),
we have

Dsn•ef5sinunDfn . ~A14!

Then we can define a vector potentialA(s) as

A~s!5
12cosu

sinu
ef ~A15!

and write the overlap between the two nearest neighbors

^sn11usn &5exp$2 i j A~sn!•Dsn%. ~A16!

Hence, the Wess-Zumino term for the whole pathC becomes

)
n51

3N

^sn11usn &5expF2 i j (
n

A~sn!•DsnG
5expF i j E

C
dt~cosu21!ḟG . ~A17!

Finally, it can be shown that the WZ term can be writte
within a constant, in terms of the components of the s
vectorS,

SWZ@S#5E
C
dt

Sz

Sx
21Sy

2 ~SxṠy2ṠxSy!. ~A18!

Such an expression for the WZ term could have been u
from the start; however, it is very cumbersome due to
first term in the integrand and hence the holomorphic rep
sentation does seem to be the natural representation fo
spin systems, especially in the problems where the calc
tion of transition rates is needed.18
4-13
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