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Monte Carlo study of the critical temperature for the planar rotator model
with nonmagnetic impurities
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We performed Monte Carlo simulations to calculate the Berezinskii-Kosterlitz-Tho{B&SE) temperature
Tgk7 for the two-dimensional planar rotator model in the presence of nonmagnetic impurity concenisgtion (
As expected, our calculation shows that the BKT temperature decreases as the spin vacancies increase. There
is a critical dilutionp,~0.3 at whichTzxt=0. The effective interaction between a vortex-antivortex pair and
a static nonmagnetic impurity is studied analytically. A simple phenomenological argument based on the
pair-impurity interaction is proposed to justify the simulations.
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[. INTRODUCTION solitons near a nonmagnetic impurity in 2D antiferromagnets
cause observable effects in electron paramagnetic resonance
The planar rotatofPR) model in two dimension§2D) is  (EPR) experiments:? In this scenario it would be important
a prototype for several physical systems such as, for exto study the effects of the presence of nonmagnetic sites
ample, high-temperature superconductors and granular sdiluted in magnetic materials. In a recent work; IVereira,
perconductors. The PR model supports topological excitaand Pire3 have studied the interaction between a static spin
tions, and although there is no long-range order at any finit¢acancy and a planar vortex, and they have shown that the
temperature, it undergoes a Berezinskii-Kosterlitz-Thouleseffective potential experienced between the two defects is
(BKT) phase transition driven by the unbinding of vortex- repulsive. It indicates that the presence of spinless atoms on
antivortex pairs. In short the BKT picture of the phase tran-the magnetic plane may affect the BKT critical temperature.
sition is as follows. At low temperature spin waves are theThe main goal in this paper is to consider the effect of mag-
relevant excitations of the system. Spin-spin correlatiometic dilution to the BKT temperature by using numerical
functions fall off slowly with distance; free vortices do not and analytical methods. To take into account the presence of
exist but pairs strongly binded. Vortices pairs cannot disordenonmagnetic impurities in our modgEq. (1)] we can re-
the system significantly since they affect only close spins. Aplace some spin vectd® by a S=0 creating a vacancy at
the temperature is raised, the distance between vortexhat lattice site. First we consider that the spin vacancies are
ativortex pairs grows untilgcr. Then free vortices exist, uniformly distributed on the sites of the lattice. The case in
the system is disordered, and the spin-spin correlation funavhich the spin vacancies are grouped into a cluster will also
tion falls off exponentially. The Hamiltonian describing the be analyzed in order to compare with the random case.
model is The paper is organized as follows: in Sec. I, we describe
the model and the Monte Car[MC) method. In Sec. Il we
R present the MC results. In Sec. IV, the continuum theory is
H=-> 3,55, (1) used to study the vortex-pair-impurity interaction and a
W simple heuristic argument to justify the MC results is pre-

. . . . . . sented, and Sec. V contains a summary and final comments.
wherei andj enumerate sites in a square lattidg; is an y

exchange coupling, an§={S*,S’}=|S/{cos4 ,sind} is a
two-dimensional spin vector. Of course, Hamiltonidn de-
scribes an ideal system, in which each site of a regular square We consider in this work a quenched site-diluted PR
lattice is Occupied by a Spin vecté However, impurities model. In order to introduce dilution we define a Variable
and/or defects are present in any material sample. In fact, th&ith the following properties: It is 1 if sitéis magnetic and
effect of impurities on superconductors has been of theoref otherwise. To accommodate this change we have to modify
ical and experimental interest in its own right for a long time.Ed. (1) as

Particularly, the interaction of topological excitations with

spatial inhomogeneities is_ of considerabl_e importance from H= —JE O_ig o, gj: —JE gio;cod6,—6). (2

both theoretical and applied points of view. For example, i )

II. BACKGROUND
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FIG. 1. Helicity modulusY as a function of temperature for FIG. 2. Helicity modulusY as a function of temperature for
lattices with sizes 3830, 60x 60, and 880 and with 5% of lattices size 6860 with 0%, 5%, 10%, 15%), 20%, 25%), 27%,
nonmagnetic impurities randomly distributed. The solid line is the28%, 29%, and 30% of nonmagnetic impurities randomly distrib-
curve (24/7)T and the dashed lines are only guides to the eyes. uted. The solid line is the line (2) T and dashed curves are guides

to the eye.

The precise determination of the BKT temperature is a dif-

ficult task due to the absence of sharp peaks in the thermspin 3.6<10* times for theL =60 lattice. The temperature
dynamic quantities. One way to extralit was suggested was varied in steps of sizdAT=0.1 K. Each point in our
by Weber and Minnhagéri by calculating the helicity —simulations is the result of the average ovet 20° indepen-

modulus defined as dent configurations. In the figures showing the results of our
simulations, when not indicated, the error bars are smaller
9°F than the symbols.
= @ ©) Figure 1 shows the results from MC simulationsYoffor

lattices with 5% of impurities and sizés= 30, 60, and 80.
whereF is the free energy and is a small twist across the The straight line represents ¢&/T. The crossing point be-
system in one direction. Using ER) we get tween this line and’ gives an estimate of the BKT tempera-
ture. Of course, this estimate becomes more accurate as the
lattice size increases. However, as we can see in Fig. 1, the

Y=—-—(H i i i
2(N—n) (H) lattice of sizeL =60 already gives a good result adequate for
1 RERIE: our purpfoses. F_rom now on WE Us(g-::_l The symboll gkt
_ka(N—n)< % 108N 6,— 0;)& ;- X > A is used forT.(p=0), i.e., Tgk=T(p=0).
where N is the volume of the systenm is the number of Il MONTE CARLO RESULTS
nonmagnetic sitesg; ; is the vector pointing from sitg to In this section we present the results obtained by MC

sitei, andX is a unit vector pointing along the direction.  simulations. First, we distribute the nonmagnetic impurities
The Kosterlitz renormalization-group equatibiisad to the  at random in the lattice sites. Figure 2 contains the helicity
prediction thatY' jumps from the value (2/)T. to zero at  modulus as a function of the temperature considering several

the critical temperature, values of the impurity concentratiorp). The straight line
representing the function ()T is also shown. As noted
; i _ E earlier, the intersection of this line with the value of eath
lim . (5 ; > . .
TﬂTcka ™ gives T, for the corresponding impurity concentration. We

observe thafT.(p) decreases with increasing Since the

Although Eq.(3) was obtained for the nondiluted mode, helicity modulus is a measurement of the phase correlations
its extension to diluted cases is expected to be straightfoif the system, it is not surprising that these correlations are
ward. Arguments based on the self-consistent harmonic agstrongly affected by the dilution. It can be understood as
proximation show that the helicity modulus 8tk should  follows: if we remove a spin from the lattice, the nearest
be independent of the nonmagnetic impurity concentrdtion.neighbors of that spin will have coordination number of 3,
To calculate the quantity we use a MC approach using a one less than in the bulk. The spins in the boundary have
standard Metropolis algorithm with periodic bondary larger fluctuations than the spins in the bulk lowering the
conditions® We used 108 L X L Monte Carlo steps per site spin correlations. We should expect that the fluctuation be-
for equilibration, which means, for example, we moved eactcomes appreciable, disordering the system for large enough
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FIG. 3. The BKT transition temperature behavior as a function FIG. 4. Helicity modulusY as a function of temperature, for

qf nonmagnetic |mpu_r|ty goncentratlon, based on the MC S_'mUIa1attices with 20% and 30% of nonmagnetic impurities grouped in a

tions results shown in Fig. 2. The dashed curves are guides t(Q,Iuster, compared with the helicity modulus results for lattice with

the eye. 20% of nonmagnetic impurities randomly distributed and lattice
without impurities. The solid line is the line (2) T and dashed

. . . curves are guides to the eye.
nonmagnetic concentrations up to a critical value where the

BKT temperature goes down to zero. In Fig. 3 we show the

BKT temperature as a function of the nonmagnetic impurity

concentration. Ea_ch point i.n our plot is the result of_an av- H':(llz)‘JJ (V 6)2V(F)d?x, @)
erage over four different distributions of nonmagnetic sites

for the same concentratiop. Note the abrupt fall of the

c.ritic]allt_temgeratl:]ure fOFP.c~0H3-h\:\r/le also perfotr.mgd M'Ct' whereV(r) is a localized potential given by(r)=1 if |r
simulations for the case in which the nonmagnetic impurities - WP ;
are clustered fop=0.2 and 0.3see Fig. 4 Note that in this _r0|.>a andV(r)=0 if [r—ro| <a. Here, _the nonmagnetic
case the critical temperature practically does not depend off€ IS Placed at, anda stands for the lattice constant. This
the impurity concentratiofiT(0.2)=T.(0.3)]. In fact this is lack of magnetic |nteract|9n inside the circle of radias
an expected result. Since the nonmagnetic cluster is confindgeans that a spin locatedratwas removed from the lattice.
to a region of sizeyx L2 and the boundary grows gs<L,  The equation of motion obtained from EQ) is

spins are still strongly correlated, driving the BKT transition
even for large values gb. A comparison between the two
cases is shown in Fig. 4. Note the considerable difference
between them. Due to the short range of the spin interac- R .
tions, only the spins near the boundary of the cluster willln polar coordinates, the vectors and r, are written as
become influenced by the vacancies and hence the correlé-, ¢) and (o,¢o), respectively. Then, the gradient of the
tions of the rest of the system will have a behavior almosfpotential is

independent of the vacancies. It must not affect considerably

the vortices that are formed far way from the cluster and the

phase transition occurs normally. VV(r)=a[r cofa—|d— ¢o|)+ ¢ sina—|d— dg|)]

V(N V20=—-VV(r)-Ve. (8)

IV. VORTEX-ANTIVORTEX-IMPURITY INTERACTION X o(r—ro—a), 9

In this section we discuss the effect O.f nonmagnetic Slte?/vhereﬁ is the Dirac delta function and is the angle that the
on the vortex-antivortex structure. The interaction between S o ol i
the topological excitation and a single nonmagnetic impurity/€ctora, with origin at the point o and end at a point on the
below the critical temperature may help us to understand igircumference of the potentiald] =a) makes with the vec-
more detail the phase transition mechanism. In the contor FO_ In the limita—0, we write

tinuum limit, Hamiltonian(1) can be written as

H.=(1/2)] J (¥ 6)2d%. © VV(F)~alf coga)+ dsina)]6(F—Fs),  (10)

Following Ref. 3, to take into account the absence of oneavhere cosf) and sing) are anisotropic coupling constants.
spin in the lattice site we modifid. as A vortex-antivortex pair solution with “center of mass” at
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the origin is given by 6,,=arctafi(y—P)/x]—arctafi(y  write 0= 05,7+ 0. Rew_riting 0, in polar cqordinates and
+P)/x], where R=2P is the distance between the vortex substitutingd= 6,,+ 6, into Eq.(8), we obtain
centers. The energy of a pair B,,=72J+27JIn(R/a).

Note that the energi,, increases with increasing,imply- B |F—F |
ing an attractive force between vortices of opposite sign. 6;=— —In _0), (11)
Suppposingd, is the deformation introduced in the vortex- m a
antivortex structure by the absence of a spirf@lwe can where
|
Pa[rricod2¢o— ¢)+rP2cosp—r3cospo— P?rocospq] 1

IF —rol[P*+rg+2P2racog2¢g)]

The configuration of this deformed vortex-antivortex pair iswhereV.;;=Ep,—E,,, andd is the lattice size. SincE is
shown in Fig. 5. As the vortexor antivortey center ap- the distance between the vort@r antivortey center and the
proaches the nonmagnetic impurity, the pair structure bespin vacancy, this expression is very much like the effective
comes more and more deformed, indicating that there is fotential obtained in Ref. 3, between a single vortex and a
repulsive interaction potential between each vortex core anﬁonmagnetic impurity. Note that the effective interaction po-
the spin vacancy. This phenomenon is in agreement with thgntial increases with decreasify=2P, implying a repul-
results of Ref. 3, where the calculations took in consideratiorsjye force between vortices and impurities. In fact, the spin
a single vortex. In order to understand how the eﬁeCtive\/acancy force obtained from E¢L3) acts as a “repulsive
interaction potential is between the two defects, we substitutporce’” weakening the coupling strength between the bound
0= 05,+ 6, into Eq. (7) to calculate the energy of the pair- \,tices and becomes stronger Rsdecreases. Here, the

e e, ey on TONMAGTEL. mpurty st epel simutancotsly he e
y y 9 purity p 'vortices in a pair, affecting the spin field for large distances

but in the special case of the spin vacancy being located at : . . . )
the center of mass we can solve it exactly. Using the domii?see Fig. 3 For a lattice of sizel, the effective potential3)

nant terms, the effective potential is given by is @ minimum only ifP—d/2(R—d), showing the tendency
of a complete separation of the vortices in a pair due to the

presence of the vacancy. We conclude that static spin vacan-
cies repel vortices, independently if they are free or bound
into pairs. Based on the above results, we propose a phenom-
enological model to explain the behavior of the BKT tem-
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perature as a function of the impurity concentration. As dis-
cussed above, a nonmagnetic site can induce a repulsive
potential between a pair vortex-antivortex in such a way that
we can have the two scenarios. If the nonmagnetic impurity
is in between the pair vortex-antivortex, the effective repul-
sive potential created tends to unbind the pair. On the other
hand, if the impurity is not in between the pair, the force in
the nearest vortex will be stronger than in the other and the
tendency is to increase the vortex-antivortex attraction, lead-
ing to the annihilation of the pair. Then, impurities may in-
duce either the vortex-antivortex unbinding process or pair
annihilation. In a system containing a random distribution of
impurities one can expect a lower density of vortices at any
temperature than in a pure system due to the annihilation of
pairs. Beside that, the unbinding of vortices and antivortices
should occur at lower temperature, inducing the BKT
transition.

Hence, we may expect a critical nonmagnetic impurity

FIG. 5. A vortex pair configuration with “center of mass” lo- C€oncentration in which vortex pairs are not more formed and

cated at the origin and siZ@=6a and a spin vacancy located at the BKT critical temperature goes to zero. The situation is

(1,3. The pair configuration is deformed for large distance if vortexdifferent for the case in which the nonmagnetic impurities
centers are near the impurity, increasing considerably the systere clustered. In this case, vortex pairs will be excited far
energy. way from the cluster in order to minimize their energies and
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the cluster would have only a small influence on the vortexperconducting grains forming a complex Josephson-junction
antivortex unbinding. The critical temperature should not benetwork. However, the actual situation is not so ideal as the
much affected. The results presented in Fig. 4 confirm thiperfect array since grains with different sizes and orienta-
conjecture. tions are arranged almost randomly. This makes the model
with vacancies more realistic than the usual perfect array.
V. SUMMARY The results can also be extrapolated to models with three
) ) _ spin components such as easy-plane 2Znd magnets. In
We have performed Monte Carlo simulations for the di-these cases, the problem with impurities could be still more
luted planar rotator model in a square lattice. We have founanteresting since they have a true dynamics. In fact, it can
that the BKT temperature decreases with increasing impuritgned some light on the important question of the origin of the
concentration and that there is a critical impurity concentragentral peak in the dynamical spin-spin correlation function
tion p.=0.3 at which the transition temperature goes to zerojy the two-dimensional anisotropic Heisenberg mddét.

The interaction between a vortex pair and a static spin Vagjowever, much work has to be done in order to understand
cancy was studied in the continuum approximation. By contnose effects.

sidering the decoupling of vortex pairs induced by impurities
we argued that the BKT critical temperature should decrease,
justifying the MC simulations. Our results may also have
applications for granular superconducting films such as ce- This work was partially supported by CNPqg and
ramic highT. materials. These systems could be modeled aBAPEMIG (Brazilian agencigs Numerical work was done at
2D Josephson-junction arrays because such films contathe Laboratdo de Computg@ e Simulaéo do Departa-
large number of Josephson boundaries between the small smento de Fica da UFJF.

ACKNOWLEDGMENTS

1K. Subbaraman, C.E. Zaspel, and K. Drumheller, Phys. Rev. Lett. Binder (Springer, New York, 1979

80, 2201(1998. 9F.G. Mertens, A.R. Bishop, G.M. Wysin, and C. Kawabata, Phys.
2C.E. Zaspel, K. Drumheller, and K. Subbaraman, Phys. Status Rev. Lett.59, 117 (1987; Phys. Rev. B39, 591 (1989.

Solidi A 189 1029(2002. 10A R. Pereira, A.S.T. Pires, M.E. Golaeand B.V. Costa, Z. Phys.
SL.A.S. Mdl, A.R. Pereira, and A.S.T. Pires, Phys. Rev.6B, B: Condens. Matte89, 109 (1992.

052415(2002. HAR. Pereira and J.E.R. Costa, J. Magn. Magn. Matég, 219
4H. Weber and P. Minnhagen, Phys. Rev3R 5986(1988. (1996.
5p. Minnhagen, Rev. Mod. Phy§9, 1001(1987. 124 G. Evertz and D.P. Landau, fbomputer Simulation Studies in
63.M. Kosterlitz, J. Phys. @, 1046 (1974). Condensed Matter Physics Vlledited by D.P. Landau, K.K.
7L.M. Castro, A.S.T. Pires, and J.A. Plascak, J. Magn. Magn. Mon, and H.B. SchuettelgSpringer, Berlin, 1995 p. 175.

Mater. 248 62 (2002. 13J.E.R. Costa and B.V. Costa, Phys. Re\58 994 (1996.
8N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, *B.V. Costa, J.E.R. Costa, and D.P. Landau, J. Appl. PBys.

and E. Teller, J. Chem. Phy21, 1087(1953; for a review, see, 5746(1997).

e.g.,Monte Carlo Methods in Statistical Physjasdited by K. °D.A. Dimitrov and G.M. Wysin, Phys. Rev. B3, 8539(1996.

104426-5



