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Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals
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Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional
integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a
magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization
of the Hamilton operator. An additional factor resulted from a global time transformation converting the
position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the
Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state repre-
sentation of path integrals can result in an accurate tunnel splitting is therefore resolved.
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[. INTRODUCTION model, the spin-coherent-state path integral is equivalent to
the traditional mapping technigti&*3 up to the one loop
Quantum tunneling in mesoscopic systems called theapproximation except for a factor $2-1)/(2s) which can
macroscopic quantum tunnelifilQT) has attracted consid- be omitted in the large spin approximation.
erable attentions in recent yehr¥ since the MQT may help The tunnel splitting in biaxial spin model was first studied
to establish a bridge between the quantum and classiclly Enz and Schilling”*8in the large spin approximation for
realms in physics and might also be of significance for infor-which a standard way in coherent-state representation of path
mation storage in the futufe’ Experimental realization of integral is that the expectation value of the Hamilton opera-
the macroscopic quantum phenomena is extremely difficultor is replaced by a classical Hamiltonigor Lagrangian
and up to now, magnetic molecular clusters have been theegarding the spin as a classical vector. They, however,
most promising candidates to observe the phenomenon, fédemonstrated the failure of the coherent-state representa-
instance, the predicted macroscopic quantum coherend®n of path integral for spin systems with a large sgiand
(MQC) i.e., the coherent tunneling between degenerateised a semiclassical Hamiltoniéor semiclassical Lagrang-
ground states in an octanuclear iron oxohydroxo clustgr Feian) containing the first two leading terms of ordes b
with a biaxial anisotrop’ which has subsequently triggered obtain a better level splittin§. A significant modification
active theoretical researches. However, most of thdrom the semiclassical Hamiltonian is that a facton the
investigation''*2are concentrated on the quantum phaseclassical action is replaced by the fact@s(s+1)=s+1/2.
interference and little work has been done toward the evaluAlthough the application of the instanton method to spin-
ation of the pre-exponential factor of the tunnel splitting coherent-state path integral was reconsidered by Garg and
which gives rise to an accurate magnitude of the splittingKim® with much details, it was believed that spin-coherent-
The tunnel splitting can be obtained from the transition am-state path integral can only provide a qualitative description
plitude between degenerate vacua which has a Euclidedor the tunneling process, but cannot “yield answers that are
path-integral representation called the instanton method. Inorrect beyond the leading exponential ord&t.The bad
the present paper we provide a systematic study of the fungeputation of spin-coherent-state path integral in the applica-
tional fluctuation of the Euclidean kernel for the quantumtion to calculate the magnitude of quantum tunneling in spin
tunneling in spin systems in the framework of spin-coherentsystems is obviously because of the observation that the tun-
state path integral which to our knowledge has not beemel splitting resulted from the spin-coherent-state representa-
given in literature. Theoretical results of the pre-exponentiation of path integral by means of the classical Hamiltonian
factor of tunnel splitting are justified by comparing with the “strongly deviates from the exact one following from nu-
numerical diagonalization of Hamilton operator of the spinmerical diagonalization}’ We argue that the deviation is
system considered. actually due to the method used for evaluation of the pre-
Theoretically, tunnel splitting of the ground states is cal-exponential factor of tunnel splitting which is suitable only
culated by the instanton method developed originally for aor a Lagrangian of particle with a constant-mas&%°
particle moving in a double-well potenti&!® Tunnel split-  however, is not adequate to the mapped particle in terms of
ting in a spin system has been investigated in terms of théhe spin-coherent-state path integral which has a position-
instanton method by either a straightforward application ofdependent mass.An accurate magnitude of tunnel splitting
spin-coherent-state path integrdldo map the spin system can be obtained if fluctuation functional integrals are care-
on to a classical Lagrangian of angle variables of spin vectofully manipulated taking the position-dependent mass into
or other approach&s'*31’to map the spin system on to a account while using the classical Hamiltonian as in the stan-
particle (actually a rigid rotoy in a potential field. In the dard way. We demonstrate our formalism, which results in a
present paper, we show that, for tunnel splitting in the biaxiakatisfactory magnitude of level splitting beyond the leading
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exponential approximation as well as the level space in com- d . _
parison with the numerical result by diagonalization of the g, E(0:9)=Ey(6,8)d+E(0,¢)6=0, (5)
Hamilton operator, for the case of large spin approximation
in which the classical Hamiltonian works well. The organi- namely, E(6.,®.)=E, with E, denoting the energy con-
zation of the paper is as follows. In Sec. I, we present a brieStant. Hence the classical action can be calculated from the
review on the instanton method for tunnel splitting in biaxial energy conservation E@5) with cosf expressed as a func-
spin model in the framework of spin-coherent-state path intion of the angle¢. To explain the procedure explicitly we
tegrals. Calculations of the fluctuation functional integral ofconsider the well studied biaxial spin model with a field
the tunneling kernel with a great detail are presented in Se@pplied along the hard axis which results in the effect of
[ll. A conclusion is given in Sec. IV. quantum phase interference of tunneling paths.
The Hamilton operator of the spin system is giverdby

Il. GENERAL FORMULATION OF INSTANTON METHOD R R R R

FOR TUNNEL SPLITTING H=K,S+K,S~aS§,, (6)

For evaluation of the transition amplitude induced bywhereK;>K,>0, a=gugh, his the magnitude of the ap-
quantum tunneling in spin systems, a customary procedure @lied field along the hard axis, ahd , K, are the anisotropy
to evaluate the imaginary time Feynman kernel from an ini-constantsug is the Bohr magneton arglis the spin g factor
tial state|n,) to a final state/n,) with the help of spin- Which is taken to be 2 here. Up to a constant, we obtain the

coherent-state path integraiié classical energy seen to be

. E(0,$)=K,;5%(cosd—u)2+K,s?sirf¢ sirtd,  (7)
K=(nge #tiny = [ [ame M, (1 S,

where u= «/(2K;s). This implies two degenerate ground
T/2

whereS[n]=/T2_Ln]dr, |n) denotes the spin-coherent Stateﬁlocated ato= 6o, ¢=0) and = 6o, »=m) with 6,
state which is the eigenstate of spin opera&en such that =cos " The dynamic equation which gives rise to the clas-

N _ _ _ _ i sical path is now given by
S-n|ny=s|n), n=(sinfcosg, sindsin ¢, cosd) is an arbi-

trary unit vector with a polar anglé and an azimuthal angle i p=—2K,S(1— \ sirf¢)cosd+ 2K, su, (83

¢ ands is the total spin of the systenh, is the Euclidean

Lagrangian given by —i6=2K,ssin¢ cosg sin 6, (8b)
Ln]=i%(1—cosd)¢(7)+H(6,¢), (20  wherex=K,/K;. For instanton solution dominating the tun-

N . _ neling at the ground state we can &gf=0 and obtain the
whereH (6, #)=(n[H|n), andH is the Hamilton operator of following relation from Eq.(7):

the spin system. In the semiclassical approximatidhe

spin is treated as a classical vector, thus k@, ¢) is re- u=iNY2singpo(1— u2— N\ sirfe,) M2
placed with the classical anisotropy enelgé, ¢). In the cosf.= :
following, we shall evaluate the Feynman kernel EB. in 1=\ sif e,

the large spin approximatiori.For the sake of simplicity, we \yhere the subscript¢” denotes the classical solution, i.e.,

seti=1 from now on. the instanton configuration. Using the above relati@nthe
The dominant contribution to the Feynman kernel Bd.  ¢|assical action is found to be

is from the classical path which is governed by the dynamic

)

equatiori’® R .
Sa=|sf (cosf,—1)dp.=S;Fibs, (10
< singpe EOD _ L 3 °
Is singo=—_—= o(0,8), (B8 here
. JE(0,¢9) A
issinfp=————=E,(0,¢). (3b) S.=2sarctanh
a0 1—u?
The solutions of the above equatipé.(7), ¢.(7)] could be >
instanton’. bouncet® or periodic instantoft depending on _ u uA
. o 2s arctanh , (11
the boundary condition of the problem. Substituting 11—\ (1-u?)(1-))
[0:(7),¢:(7)] back into the Lagrangiaf®), one can find the
classical action an
T2 . T (12)
Szf is(cosf.—1)p.—E(6,, dr. 4 Os=ST— —— .
cl 7T/2[ ( c )b (0c,¢c)]dT (4) s 2K1\/m
As a matter of fact, the dynamic equatigd) implies the  Substituting Eq.(9) back to Eq.(8a), the explicit instanton
energy conservation along the classical path trajectory is obtained as
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bo=*cos y Y17 Aptanh(en) (13 I=/\/j dnldnze‘(l’z)fy%z’li""ijﬂjdf, (20
\/1 )\htanl’?(th)
where N is a normalization factor to match the integral measure
d[7],°
A
_ KK (1—12) _ 2s+1 2s+
wn=25VK;Ko(1-u%), )\h_l—uz' (14) N= 7 I|mH S|n0(rk)~4—I|mH sin 6(7)
T n%ock— HHOO
The sign = represents two symmetric tunneling paths of (21

opposite windingg(i.e., instanton and anti-instantohThe  and
Feynman kernel then can be found by summing up the multi-
instanton contributions according to Refs. 5,14

M1 Myo|| 71

M=l 7l (22)
m+lodd I+m 21 22
—gqT (BT) |0(m—|) —Sc(m+1) . .
0 |2>0 “min € e - A general expression of the matrix elemafy can be found
" by taking the second order functional derivatived_gfwith
=e ®0" sinh(2Be™ % cosh,T), (15)  respect to ¢,¢),
where B comes from fluctuation around the classical path e d dLg\[dL. dL. d
andey= w/2 is the zero-point energy. From EJ5), one can i=\ o g e T a (23
read off the tunnel splittirfy* M d7ogx [\ 0% ox; d7
wherex; ,= (6, ¢). With the help of Eq(3), we can write it

AE=4Be %|cosdy. 16 oyt explicitly

The factor|coséy indicates the well known effect of the q
quantum phase interference induced by the magnetic fieldy ,—g, (g — COtH.E(6 M 1= Mot | 40—
along the hard axis of the biaxial modef®1***The destruc- ool bc &) Bl e dc). Miz=Miztlazg
tive interference(whenever 6,=2n7+ 7/2) between two

symmetric tunneling paths of opposite windings leads to the _ a _

guenching of tunnel splitting which is not related to Kram- M2, = m21+|21d¢’ M2=E (e o), (24)
ers’ degeneradysince the external magnetic field breaks the

time reversal symmetry of the spin system. The effect ofvhere
guantum phase interference has been well studied. However,

little attention has been paid to the prefacBwhich gives Miz=Boy(0c.be),  l12=~la=issind;,
rise to a quantitative magnitude of level splitting. The main _ _
goal of the present paper is to study the prefaBtéor which M21=E ol O, de) —COWE (O, bo)- (29
a systematic formulation is still lacking. Noting the equalityE s4( . , éc) = E 4o( e, bc) and employ-
ing the condition(18) of the fixed end point, one can easily
Il. EVALUATION OF THE PREFACTOR B verify the following relation:

The prefactoB is resulted from the fluctuation integrals T2 T2
around the classical path characterized dhyand ¢.. We f 7M 12772def 72Mag7,d7, (26)
. . . . . . -T2 -T/2
begin with evaluation of the fluctuation functional integral.
which implies that matrixM is Hermitian for a given energy

A. Fluctuation integral function E(6, ¢). o o
We consider small fluctuationsy{ , 7,) around the clas- car?lzi]nt(;]e other hand, taking time derivative of &), one
sical path
My Myo| 6,
6=06ct 71, b=det M2, (17 [M“ Mﬂ 1 0, 27)
with fixed end points such that 21 Maf| g
which shows that the matrik has a zero modeé, ¢.)
7(FT12)= (£ T/2)=0. (18 due to the time translation invariance since the Lagrangian

does not depend on timeexplicitly.*4~*6To obtain the fluc-
tuation integral in Eq. (20) we, first of all, have to carry out
the integration of one variable which is seen to be

Up to one loop approximation, the one-instanton contribu-
tion to imaginary time transition-amplitude is given by

Ky=le S, (19 Gaussiart?~1°
Using the hermiticity oVl we can reexpress the fluctua-
wherel denotes the fluctuation functional integral tion integrationl as
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|=NJ d#.d 772e_um)ﬂg/i"”lw?2771(M12772)+Mzzv%ldf

=NJ d»n.d nze_(llz)fT—/i/z[M 1175 +272(Ma171) + Mpaldr
(28)

Since the classical pathd{,¢.) is a saddle point}~®we
have the following condition:
M:>0 or My>0, (29

which implies that eithem, (if M1,>0) or 7, (if M,,>0)

PHYSICAL REVIEW B57, 104420 (2003

and

2s+1

lim
2s nok=1

ﬁ AL 0c(7), be( 7] 1’2_

Tk— Tk-1

NZ:

(37

It is interesting to see the difference between our fluctua-
tion integrationl and that of traditional approach in terms of
the first order Euclidean Lagrangian

. 1 . .
L (¢, )= 5m($)$7+V($)—=iO(h) b, (39)

would be a Gaussian integration and thus can be carried oyf/ich is obtained from the spin-coherent-state path integral
For the biaxial spin model of large spin s with the classi-Ed- (1) by regardingg andp=scosé as a pair of conjugate

cal energyE( 6, ¢) given by Eq.(7), we have
M;=2K;5%(1— \ sirf¢,)sir?6.>0. (30)

We could perform the Gaussian integration oygras shown
in Ref. 8. Here we shall do the integration in an alternative

way. The fluctuation integrdlcan also be expressed @.,
the Van Vleck determinajt'—*¢

1
=N|—, 31
N (31
where ;= (27)Y2N. On the other hand, since
{Mn Mlz_{Mn 0} 1 MM,
Mo My [My 1|0 Myp—MyMif My,
(32)
andM , is a positivec number, we have
1
| :Nl =1
VdetM 1, det(M o~ MM 11'M 1)
N ! (33
=N, _ _
Vdet(M o~ MyM ;' M)
From Egs.(24),(25), we obtain
_1 d d
Moo= MM ;M o= — E_A[GC(T),fl"c(T)]d—T
+C[0(7),dc(7)], (34)
where
RUTCREI i i
T), T)|=——F=
¢ ¢ Mll Mll
sinceM >0,
d myalgy ms,
C[9c(7),¢c(7)]—<d—7 Mo 2" ML
_ = Isi SiNO.E 4
Egg_cotacEa dT E‘ga_cotecEg,
(36)

canonical variables and working out the momentum
integration'! where® =s— a/m(¢) and

m($)=1[2K,(1- N sir¢)],

a®\ sirf¢
V(¢)=K,s?sirnP¢— (39
s s (LN sird)
denote position-dependent mass of the mapped particle and
the potential, respectively. The fluctuation functional integral
directly obtained from the effective LagrangiéBB) is seen
to be

Ieff:N

(40)

\/ d d ’
de —d—Tm(¢c)d—T+V (d¢)

n

N=lim []

n~>ook:1

where
1/2

M (7o) ]

Tk~ Tk-1

and it can also be verified that

ALOc(7),pc(T) =ML (T ] (41
We now show the relation betweég; andl. From Eq.(27),
one can find 1 ,,— M »M 1M 15) $.=0, namely,

d d .
( — EA[GC(T)l(ﬁC(T)]E_+C[0C(T)’¢C(T)]> ¢:=0.
(42

Since the zero-mode wave functigh, also satisfies4

d d .
( ~ gL be( D I+ V el T)]) =0, (43
seen from the expression bf;, we have

{CLOc(7), pe(T)]=V"[ e(7) ]} =0. (44)
From Eq.(13), it is seen that

q.bc( 7)#0, unless 7— * o, (45)

and
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lim V'[¢c(7)]= lim C[Oc(7),be(7)]=m* wp,

7— £ 00 T—

(46)
where m* =m[ ¢ (7= =»)]=1/(2K;) and wy, is given in
Eq. (14). We therefore conclude

ClO(7),pc(T)]=V"[bc(7)] (47)
and
2s+1
= ?Ieﬁzleﬁv (48)

namely,| and | are essentially the same in the large spin
approximation. The above derivation shows that tunnel split-
ting by the spin-coherent-state path integral is equivalent to

that by starting from traditional mapping technidde!”*8in

PHYSICAL REVIEW B 67, 104420 (2003

d____ m
dr~ AL6(7) be( )]’

with which the fluctuation functional integral becomes

(53

| =N2

:Ng ,

d?> AC
def —m*—+ —
d&? m*

(54)

the large spin approximation up to the second order fluctua¥here

tion.

For other spin systems which may have the condition

M,»>0, Eqg.(33) then can be rewritten as

1
|:N1 =1
VdetM o, det(M 11— M 1,M 55 M o)

1
=N — . (49)
2 \/de(Mll_ M oM 221M 21)
From Egs.(24), (25), we obtain
-1 d ’ d
M11=M My Moo= — E_A [0c(7), el T)]a_
+C'[0(7),0c(7)], (50)
where
13, s?sirf6,
A,[BC(T)-d’c(T)]:_M_ZZ: M, >0, (51)
d myl ma
C'[ec(r>,¢c<r>]=(d—T ,5,1221) 0

(E g~ COtO.E 4)?
By
d sin6.E,y—coso.E,

dT E¢¢

= Egg_ COtaCEa_

(52

This case is irrelevant to our tunneling model Eg).and we
will not give further discussion.

B. Position-dependent mass

To obtain the explicit tunneling kernél, a convenient
way is that the position-dependent-mass may be converted to
a constant one so that we can adapt the standard procedure

3= I|m
2s noowk=1

25+1 n ( m* ) 1/2

Tk~ Tk—1

and we omit the arguments OoRA[6.(7),¢.(7)] and
C[60.(7),¢p.(7)] for clarity. From Eqgs.(34), (35), and (42),
one can verify thatg. is the zero mode wave function,
namely,

d> AC).
—m*—+ — 1 $(§) =0, (55
m

dé&?

where ¢.= (d/d7) ¢ .

Now the fluctuation integral can be evaluated from the
fluctuation determinant for a particle with constant mass
It is worthwhile to remark that the time transformation to
remove the position dependence of the mass is the key point
of our formulation which, We will see, results in a better
tunnel splitting equivalent to that obtained from semiclassi-
cal correction of the Lagrangidi#1®2?2=2*The fluctuation in-

tegral Eq.(33) is ill defined because of the zero mode
seen from Eq(43) which leads to divergence of the integral.
However the divergence problem can be cured by means of
the Faddeev-Popov procedtfte!® from which the fluctua-

tion integral is found to bé=\/S./m*T1, where

S T2

o R 50
and
d2 AC —-1/2
det| —-m*—+ —
~ de? m*
=D (57)

d2
def —m* — +m* w?
dé?

given in literature to evaluate the fluctuation determinant. To

this end, we make a global time transformation in E§4)—
(34) by defining a “new” time &:

HereD is the fluctuation determinant of the harmonic oscil-
lator with masan*,
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2 T2 e PNEL:
D=N3| def —m* d—§2+m*wﬁ Z( - ) e~ onll’2 0.350
(58)
andIT denotes the time period in new time scaleBy a
standard proceduré;*®we can find o 0:345- 6210, 3,
*wh 1/2 .
=D ) LT, L=Ilim ¢.(&)e“nd. (59
T oo
0.3401
Then the prefactor is seen to be
2s+1/m* w,\? 00 02 04 06 08 10
=0 - L. (60) (@) h(T)
Using the instanton solution given in E@.3), Egs.(41) and 136.5 1
(53) lead to the time period 136.04
135.51 =10, A=k,
f df:f dT_)\f Siﬂ2¢cd7' 5 135.0. without factor Q
2
f Lo JI— U2+ X tanH w, ) - 5 %40
= 7——==In . 2 134,01
2s " \/1-u?— |\ tanh wp,7) = vsas
If we ignore the second term on the right hand side of the . ]
above equation which is seen to be of éfder, namely if we '
take the approximation such that B T s oa  os o8 1o
lim $e(£)evné= lim do(r)er =T, 6 hm
E—o» T— 0
we then find the following prefactor: 4877
- 2s+1[mfe,\ Y (mfo,\Y |
B= h) LZ( h) L, (63) 5 46.6
2s T T e
where 2 4651 S?tLOf’ *T”o o
© with factor
~ _ =
L=2wh(l—u2)1/2(l—u2—)\) 1/2- (64) 46.4
B is exactly the prefactor used by Enz and Schillisge
Egs. (8b) and (8d) in Ref. 17 and Eqgs(13b) and (13d) in 463 : : : : ,
Ref. 18 and also Kouet al!® This result shows explicitly 0.0 0.2 0.4 0.6 0.8 10
that, in the previous calculation$!”'%a term[i.e., the sec-  (©) h(T)

ond term on the right hand side of E&1)] of (1/s) order is - -
omitted in the global time transformation in the evaluation of FIG. 1. Field dependence @ (a) and prefactors B (b), 4QB
the prefactor. We show that it is the omitted term which lead<®) for s=10 andK,=0.321 K;K;=0.229 K.

to an extra factor contributing to the magnitude of tunnel

splitting significantly. whereQ is the extra factor
We now find this extra factor. Setting an arbitrary constant .
of integration to zero, Eq61) leads to Q—( Ji—uZ—\ 67
V1-u?+ '
ot s JI—u?2— I\ taniwy7) | € Ty
er=e 11—+ N tanlw,7)] (65) Substituting the result back to E¢0), we can find
wherec= 1A (1-U?). It follows that B=QB. 69)

L= lim ¢(&)eré= lim ¢p.e®n”

E—o T— 00

J1-u?— M tanhwy7) | Therefore, the ground state tunnel splitting in biaxial spin
1— w2+ tanH wp,7) model is expressed as

=QL, (66) AE=4QBe >|cosby. (69)
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7.5+ s=10 A=1.2) ; "
_ ~ B 0 (N}
] s=10 7»—0.87»0 , 2.5 : ::
------- : numerical result / i h
| . AY
6.0 - with factor Q ! sod T : numerical result / | i H
1 ----:without factor Q . / ' — with factor Q ' \ " t
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c ) ] '
& ' ] '
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) '
D
(a)
124
$=10 A=, s=3 1=1.2, i
‘ i
104 I | 204 b
| ;o T : numerical result !
_______ . ; \
.. : numerical result o : ——— with factor Q !
. . ] .
- _— w!th factor Q ' Vo < { ----:without factor Q !
P 1 ----: without factor Q ! Vol @ |
o 6 ' [ © !
= At "
w
4 . ;
] v !
! Vo !
i (] !
| 1t !
] [ !
I 1" !
[ Al 4 !
I¥a 11 !
1,

FIG. 2. Field dependence of tunnel splitting at ground statesfel0, 3 and various\=K,/K,;, AE'=4Be S°cosé, (dash ling,
AE=4Q~Be’S°coséPS (solid ling), and numerical result of diagonalizatidiotted ling. (a) s=10, K;=0.321 K; K,=0.8x0.229 K, (b) s
=10, K;=0.321 K; K,=0.229 K, (c) s=10, K;=0.321 K; K,=1.2x0.229 K, (d) s=3, K;=0.321 K; K,=1.2x0.229 K.

The pre-exponential factor of the level splitting E9) is  spin system was used in Refs. 17,24 to obtain a better mag-
different from that in literaturé” by a factorQ which is  nitude of the tunnel splitting. However, when the fad@is
missing in the standard procedure for evaluation of the flucincluded, the analytical splitting69) agrees quantitatively
tuation integral suitable only to the model with a constantwith numerical result for spin number as low &s 3 with
masst® To see the effect of the fact@, we present here a A=0.856. Our result shows that spin-coherent-state path in-
numerical estimation of external field dependenceo#B  t€9ral representation which gives rise to the classical energy
Eq. (7) results in an accurate energy splitting of the ground

and 4QB. Making the use of the anisotropy constants in Ref.giate “provided that the fluctuation determinant for the spin

10 such thak;=0.321 K, K,=0.229 K, field dependence mqdel with a position-dependent mass is evaluated more ex-
actly. It is worthwhile to remark that the instanton method is,

of Q, 4B and the prefactor @B are shown in Fig. 1 fos
strictly speaking, valid in the weak coupling region where

=10. One can see that the factQrlowers the energy split-
ting by about 3 times, and a more important effect is fQat the barrier should be high enough. The applied magnetic

modifies the behavior of field dependence of the prefactorfield lowers the barrier height seen from Eg9), therefore,

namely, & increases with the applied field, while)B de- increases the coupling. The theoretical tunnel splitting evalu-

creases with the field. Analytical value of energy splitting@€d by instanton method becomes worse with increasing

with and without the correction fact® is shown in Fig. 2, magnetic field. Our method is valid until a critical value of

together with numerical result by performing a diagonaliza-magnetic field

tion of the Hamilton operator given in E(). As we can see _
: : SO 2s(1—\)

from Fig. 2, if the factorQ is missing in the prefactor, the h,=———VK1K5/\

analytical splitting strongly deviates from numerical result 9us

especially in high field regionsee Fig. 2 dot-and-dash line  obtained from the condition that”(#/2)=0. Beyond the

confirming the observation of Enz and Schilliigand this is  critical magnetic field the top of potential barrier becomes

the reason why the so-called semiclassical Lagrangian for theoncave.
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TABLE |. Energy levels E,—E,) by quantization rule in Eq.70) and by numerical diagonalization of
the Hamilton operator. The unit of energy is K aBg= —29.7995.

n 0 1 2 3 4 5
Numerical result 0.0 5.14164 9.72755 13.7499 17.1886 19.9547
Quantization rule 0.0 5.14708 9.74084 13.77567 17.2403 20.10912

To show the validity of our method, we present two moretransformation which is seen to be equivalent to the correc-
numerical results in the absence of external magnetic field tion of 1/ order in Lagrangian first proposed by Enz and
show that the classical energy E@) is good for the semi- Schilling'” and subsequently used by Liamgal?* in the
classical description of the biaxial spin model in the pathcase of absence of magnetic field. It is interesting to see how
integral formulation. The quantized low-lying levels for a the apparently very different viewpoints lead to the same
double-well potential can be found by Bohr-Sommerfeldcorrection of level splitting. To this end we rewrite the tunnel
rule®~?" j.e., $pdx=n27 numerically. With the help of splitting of Enz and Schillingsee Eqs(8b)—(9b) in Ref. 17]
classical Hamiltonian Ed7) for zero-field case regarding  for the case of vanishing external field=€0) with the ap-
and p=scosé as a pair of conjugate canonical variablesproximation+/s(s+1)=s+ 1/2 by factorizing out the classi-
which becomes cal actionS, such that®

p2
H=omie) T Kos®sir ¢, AEgs=4QeBe %, (72)

the quantized levels are determined by where the factor

1/2
én > Qes= ﬂ (73
2f¢n\/2m(¢)(En—Kzs sifg)dp=n2m, (70) BT\ 1 N
where ¢, is the turing point given by ¢,  With subscript “ES” denoting the factor of Enz and Schilling
=sin"}E, /K, andn=0,1,2 . . .. Using the parameters resulted from the correction ofd.brder in the Lagrangian is

in Ref. 10 for Fg system, the first five levels obtained from Similar to our factorQ in Eq. (69) which in the case of
Eq. (70) are shown in Table I, together with the exact energyvanishing field reduces to
levels E,, determined by numerical diagonalization of the
Hamilton operator. We can see from the table that the energy 1-n
levels obtained with the classical energy are in good agree- Q(h=0)= 1+ I\
ment with the exact ones. This implies that the representation
of the spin-coherent-state path integral provides a reasonabilehe level splitting Eq(72) is given exactly in Ref. 24 for the
description for determining the energy levels as well as thease of absence of magnetic field. The fac@gs has been
level splitting in semiclassical approximation. On the otherobtained from a completely different approach by Liang,
hand, thes-dependence of zero-field action given by Eq.Mdller-Kirsten and Rarfd and our findings, therefore, re-
(11), namely, ceive a verifying support from the results in Ref. 29. The
numerical magnitudes of tunnel splitting evaluated from for-
1+ \/X mulas(72) and (69) are compared in Table Il fs=2 to 7
Sc(h=0)=sln——, (71
BN 5
which is seen to be the same as that given in Ref. 3, can b ]~ 7 F(5)=-2.20935%s+1.8133
easily verified by numerical calculation. To this end, we .
present a semi-log-plot of the zero-field tunnel splittig -5 g,
in the ground state for integer s in Fig. 3 obtained in terms of _« 1
the numerical diagonalization. It is seen that, Xor 0.7134 |
in Fe; molecular cluster, the curve of kE as a function of
spin numbers (intege) is fitted best byF(s)=—-2.3s
+1.18133(dotted line in Fig. 3 Neglecting thes depen-
dence of the prefactofwhich is of order Irs)® numerical )
result agrees with the above expression &) since In(1 ) e
+\) /(1= \)=2.474. 30
In this paper we show that the failure of coherent state
representation of path integral in computation of tunnel split-
ting in spin systems can be cured by more exactly dealing
with the position-dependent mass in terms of a global time FIG. 3. Semi-log plot of IME vs s.

VNI2

(74)

—+— Numerical result

Log[AE] or -S
I
1

S

104420-8



TUNNEL SPLITTING IN BIAXIAL SPIN MODELS ... PHYSICAL REVIEW B 67, 104420 (2003

TABLE Il. Ground state tunnel splitting of Eq469) and AEgg in comparison with the numerical result
AE, by diagonalization of the Hamilton operator for some typical values ¢fFhe unit of the energy is K

(& N=\y=0.7134

s 2 3 4 5 6 7

AE, 2.261x10°2  3.604x10° % 4.737x10°% 5618<10° 6.251x10 °® 6.658<10 '

AE 2.865<10 2 458910 % 5951104 7.005x10°° 7.756x10 ® 8.232x10 7

AEgs 37581072  5.134x10°° 6.219x10°4 7.011x10°° 7.535<10°% 7.825<10° 7
(b) A\=1.15\,

s 2 3 4 5 6 7

AE, 8.47x 108 7.88<10°4  6.067x10°° 4.221x10 % 2.756x10 7 1.723x10°®

AE 1.044<10°2  9.488<10 4 7.223x10°° 4.992x10 ® 3.245<10 7 2.022x10°®

AEgg 143102  1.13810°® 8.059x10 ° 5.319x10® 3.35x10 7  2.04x10°8
(©) A\=0.85\¢

s 2 3 4 5 6 7

AE, 4452102 1.056x10°2 2.058<10° % 3.611x10°% 5939x10°° 9.349x10 ©
AE 6.172<1072  1.411x10°2 2.702<10°% 4.698<10°% 7.683x10°° 1.205<10°°
AEgs  7.3809X10°2 1.498<10°2 2.688<10°° 4.485<10° % 7.129<10°° 1.205<10°°

and variouK,, K, with the result of numerical diagonaliza- sition dependence of the mass and obtain a additional factor

tion of the Hamilton operatafl = K ;52 + K[Sﬁ in the matrix @ in the prefactor of tunnel splitting which leads to the ac-
epresentaton i terms of igensttes of cperbout the £UT15 MROTILIE of e <plng as el e e evel pace
usual computational programATHEMATICA . It is obviously P 9

that our formula is accurate same as Ezg) and better for the_ Hamilton operator. We_conclude _that th_e representation of
small spins. spin-coherent-state path integrals is sufficiently good for

evaluation of tunneling amplitude.

IV. CONCLUSION
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