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Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals
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Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional
integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a
magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization
of the Hamilton operator. An additional factor resulted from a global time transformation converting the
position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the
Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state repre-
sentation of path integrals can result in an accurate tunnel splitting is therefore resolved.
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I. INTRODUCTION

Quantum tunneling in mesoscopic systems called
macroscopic quantum tunneling~MQT! has attracted consid
erable attentions in recent years1–10 since the MQT may help
to establish a bridge between the quantum and class
realms in physics and might also be of significance for inf
mation storage in the future.2,9 Experimental realization o
the macroscopic quantum phenomena is extremely diffi
and up to now, magnetic molecular clusters have been
most promising candidates to observe the phenomenon
instance, the predicted macroscopic quantum cohere
~MQC! i.e., the coherent tunneling between degener
ground states in an octanuclear iron oxohydroxo cluster8
with a biaxial anisotropy10 which has subsequently triggere
active theoretical researches. However, most of
investigations7,11–13 are concentrated on the quantum pha
interference and little work has been done toward the ev
ation of the pre-exponential factor of the tunnel splitti
which gives rise to an accurate magnitude of the splitti
The tunnel splitting can be obtained from the transition a
plitude between degenerate vacua which has a Euclid
path-integral representation called the instanton method
the present paper we provide a systematic study of the fu
tional fluctuation of the Euclidean kernel for the quantu
tunneling in spin systems in the framework of spin-cohere
state path integral which to our knowledge has not b
given in literature. Theoretical results of the pre-exponen
factor of tunnel splitting are justified by comparing with th
numerical diagonalization of Hamilton operator of the sp
system considered.

Theoretically, tunnel splitting of the ground states is c
culated by the instanton method developed originally fo
particle moving in a double-well potential.14,15 Tunnel split-
ting in a spin system has been investigated in terms of
instanton method by either a straightforward application
spin-coherent-state path integrals7,8 to map the spin system
on to a classical Lagrangian of angle variables of spin ve
or other approaches3,11,13,17to map the spin system on to
particle ~actually a rigid rotor! in a potential field. In the
present paper, we show that, for tunnel splitting in the biax
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model, the spin-coherent-state path integral is equivalen
the traditional mapping technique3,11,13 up to the one loop
approximation except for a factor (2s11)/(2s) which can
be omitted in the large spin approximation.

The tunnel splitting in biaxial spin model was first studie
by Enz and Schilling17,18 in the large spin approximation fo
which a standard way in coherent-state representation of
integral is that the expectation value of the Hamilton ope
tor is replaced by a classical Hamiltonian~or Lagrangian!
regarding the spin as a classical vector. They, howe
‘‘demonstrated the failure of the coherent-state represe
tion of path integral for spin systems with a large spins’’ and
used a semiclassical Hamiltonian~or semiclassical Lagrang
ian! containing the first two leading terms of order-1/s to
obtain a better level splitting.17 A significant modification
from the semiclassical Hamiltonian is that a factors in the
classical action is replaced by the factorAs(s11).s11/2.
Although the application of the instanton method to sp
coherent-state path integral was reconsidered by Garg
Kim8 with much details, it was believed that spin-cohere
state path integral can only provide a qualitative descript
for the tunneling process, but cannot ‘‘yield answers that
correct beyond the leading exponential order.’’19 The bad
reputation of spin-coherent-state path integral in the appl
tion to calculate the magnitude of quantum tunneling in s
systems is obviously because of the observation that the
nel splitting resulted from the spin-coherent-state represe
tion of path integral by means of the classical Hamiltoni
‘‘strongly deviates from the exact one following from nu
merical diagonalization.’’17 We argue that the deviation i
actually due to the method used for evaluation of the p
exponential factor of tunnel splitting which is suitable on
for a Lagrangian of particle with a constant-mass,17,18,20

however, is not adequate to the mapped particle in term
the spin-coherent-state path integral which has a posit
dependent mass.11 An accurate magnitude of tunnel splittin
can be obtained if fluctuation functional integrals are ca
fully manipulated taking the position-dependent mass i
account while using the classical Hamiltonian as in the st
dard way. We demonstrate our formalism, which results i
satisfactory magnitude of level splitting beyond the lead
©2003 The American Physical Society20-1
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exponential approximation as well as the level space in c
parison with the numerical result by diagonalization of t
Hamilton operator, for the case of large spin approximat
in which the classical Hamiltonian works well. The organ
zation of the paper is as follows. In Sec. II, we present a b
review on the instanton method for tunnel splitting in biax
spin model in the framework of spin-coherent-state path
tegrals. Calculations of the fluctuation functional integral
the tunneling kernel with a great detail are presented in S
III. A conclusion is given in Sec. IV.

II. GENERAL FORMULATION OF INSTANTON METHOD
FOR TUNNEL SPLITTING

For evaluation of the transition amplitude induced
quantum tunneling in spin systems, a customary procedu
to evaluate the imaginary time Feynman kernel from an
tial state un1& to a final stateun2& with the help of spin-
coherent-state path integrals5–7

K5^n2ue2Ĥt/\un1&5E @dn#e2(1/\)Se[n] , ~1!

whereSe@n#5*2T/2
T/2 Le@n#dt, un& denotes the spin-coheren

state which is the eigenstate of spin operatorŜ•n such that
Ŝ•nun&5sun&, n5(sinu cosf, sinu sinf, cosu) is an arbi-
trary unit vector with a polar angleu and an azimuthal angle
f ands is the total spin of the system.Le is the Euclidean
Lagrangian given by

Le@n#5 i\~12cosu!ḟ~t!1H~u,f!, ~2!

whereH(u,f)5^nzĤun&, andĤ is the Hamilton operator o
the spin system. In the semiclassical approximation,3,8 the
spin is treated as a classical vector, thus theH(u,f) is re-
placed with the classical anisotropy energyE(u,f). In the
following, we shall evaluate the Feynman kernel Eq.~1! in
the large spin approximation.11 For the sake of simplicity, we
set\51 from now on.

The dominant contribution to the Feynman kernel Eq.~1!
is from the classical path which is governed by the dynam
equation3,7,8

2 is sinuu̇5
]E~u,f!

]f
[Ef~u,f!, ~3a!

is sinuḟ5
]E~u,f!

]u
[Eu~u,f!. ~3b!

The solutions of the above equation@uc(t),fc(t)# could be
instanton,7 bounce,16 or periodic instanton21 depending on
the boundary condition of the problem. Substituti
@uc(t),fc(t)# back into the Lagrangian~2!, one can find the
classical action

Scl5E
2T/2

T/2

@ is~cosuc21!ḟc2E~uc ,fc!#dt. ~4!

As a matter of fact, the dynamic equation~3! implies the
energy conservation along the classical path
10442
-

n

f
l
-
f
c.

is
i-

c

d

dt
E~u,f!5Ef~u,f!ḟ1Eu~u,f!u̇50, ~5!

namely, E(uc ,fc)5E0 with E0 denoting the energy con
stant. Hence the classical action can be calculated from
energy conservation Eq.~5! with cosu expressed as a func
tion of the anglef. To explain the procedure explicitly we
consider the well studied biaxial spin model with a fie
applied along the hard axis which results in the effect
quantum phase interference of tunneling paths.

The Hamilton operator of the spin system is given by7,13

Ĥ5K1Ŝz
21K2Ŝy

22aŜz , ~6!

whereK1.K2.0, a5gmBh, h is the magnitude of the ap
plied field along the hard axis, andK1 , K2 are the anisotropy
constants.mB is the Bohr magneton andg is the spin g factor
which is taken to be 2 here. Up to a constant, we obtain
classical energy seen to be

E~u,f!5K1s2~cosu2u!21K2s2 sin2f sin2u, ~7!

where u5a/(2K1s). This implies two degenerate groun
states located at (u5u0 ,f50) and (u5u0 ,f5p) with u0
5cos21u. The dynamic equation which gives rise to the cla
sical path is now given by

i ḟ522K1s~12l sin2f!cosu12K1su, ~8a!

2 i u̇52K2s sinf cosf sinu, ~8b!

wherel5K2 /K1. For instanton solution dominating the tun
neling at the ground state we can setE050 and obtain the
following relation from Eq.~7!:

cosuc5
u6 il1/2sinfc~12u22l sin2fc!

1/2

12l sin2fc

, ~9!

where the subscript ‘‘c’’ denotes the classical solution, i.e
the instanton configuration. Using the above relation~9! the
classical action is found to be

Scl
65 isE

0

6p

~cosuc21!dfc5Sc7 ius , ~10!

where

Sc52s arctanhA l

12u2

22sA u2

12l
arctanhA u2l

~12u2!~12l!
, ~11!

and

us5sp2
ap

2K1A12l
. ~12!

Substituting Eq.~9! back to Eq.~8a!, the explicit instanton
trajectory is obtained as
0-2
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fc56cos21
A12lh tanh~vht!

A12lh tanh2~vht!
, ~13!

where

vh52sAK1K2~12u2!, lh5
l

12u2
. ~14!

The sign 6 represents two symmetric tunneling paths
opposite windings~i.e., instanton and anti-instanton!.7 The
Feynman kernel then can be found by summing up the m
instanton contributions according to Refs. 5,14

K.e2«0T (
m,l .0

m1 lodd
~BT! l 1m

m! l !
eius(m2 l )e2Sc(m1 l )

5e2«0T sinh~2Be2Sc cosusT!, ~15!

where B comes from fluctuation around the classical pa
ande05v/2 is the zero-point energy. From Eq.~15!, one can
read off the tunnel splitting5,14

DE54Be2Scucosusu. ~16!

The factor ucosusu indicates the well known effect of th
quantum phase interference induced by the magnetic
along the hard axis of the biaxial model.7,10,11,13The destruc-
tive interference~wheneverus52np1p/2) between two
symmetric tunneling paths of opposite windings leads to
quenching of tunnel splitting which is not related to Kram
ers’ degeneracy7 since the external magnetic field breaks t
time reversal symmetry of the spin system. The effect
quantum phase interference has been well studied. Howe
little attention has been paid to the prefactorB which gives
rise to a quantitative magnitude of level splitting. The ma
goal of the present paper is to study the prefactorB for which
a systematic formulation is still lacking.

III. EVALUATION OF THE PREFACTOR B

The prefactorB is resulted from the fluctuation integra
around the classical path characterized byuc and fc . We
begin with evaluation of the fluctuation functional integra

A. Fluctuation integral

We consider small fluctuations (h1 ,h2) around the clas-
sical path

u5uc1h1 , f5fc1h2 , ~17!

with fixed end points such that

h1~6T/2!5h2~6T/2!50. ~18!

Up to one loop approximation, the one-instanton contrib
tion to imaginary time transition-amplitude is given by

K15Ie2Scl, ~19!

whereI denotes the fluctuation functional integral
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I 5NE dh1dh2e2(1/2)*2T/2
T/2 h i M i j h j dt, ~20!

N is a normalization factor to match the integral meas
d@h#,8

N5
2s11

4p
lim
n→`

)
k51

n

sinu~tk!.
2s11

4p
lim
n→`

)
k51

n

sinuc~tk!

~21!

and

h iM i j h j5@h1 h2#FM11 M12

M21 M22
GFh1

h2
G . ~22!

A general expression of the matrix elementMi j can be found
by taking the second order functional derivatives ofLe with
respect to (u,f),

Mi j 5S ]Le

]xi
2

d

dt

]Le

] ẋi
D S ]Le

]xj
2

]Le

] ẋ j

d

dt D , ~23!

wherex1,25(u,f). With the help of Eq.~3!, we can write it
out explicitly

M115Euu~uc ,fc!2cotucEu~uc ,fc!, M125m121 l 12

d

dt
,

M215m211 l 21

d

dt
, M225Eff~uc ,fc!, ~24!

where

m125Euf~uc ,fc!, l 1252 l 215 is sinuc ,

m215Efu~uc ,fc!2cotucEf~uc ,fc!. ~25!

Noting the equalityEuf(uc ,fc)5Efu(uc ,fc) and employ-
ing the condition~18! of the fixed end point, one can easi
verify the following relation:

E
2T/2

T/2

h1M12h2dt5E
2T/2

T/2

h2M21h1dt, ~26!

which implies that matrixM is Hermitian for a given energy
function E(u,f).

On the other hand, taking time derivative of Eq.~3!, one
can find

FM11 M12

M21 M22
GF u̇c

ḟc
G50, ~27!

which shows that the matrixM has a zero mode (u̇c , ḟc)
due to the time translation invariance since the Lagrang
does not depend on timet explicitly.14–16To obtain the fluc-
tuation integralI in Eq. ~20! we, first of all, have to carry ou
the integration of one variable which is seen to
Gaussian.14–16

Using the hermiticity ofM we can reexpress the fluctua
tion integrationI as
0-3
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I 5NE dh1dh2e2(1/2)*2T/2
T/2 [ M11h1

2
12h1(M12h2)1M22h2

2]dt

5NE dh1dh2e2(1/2)*2T/2
T/2 [ M11h1

2
12h2(M21h1)1M22h2

2]dt.

~28!

Since the classical path (uc ,fc) is a saddle point,14–16 we
have the following condition:

M11.0 or M22.0, ~29!

which implies that eitherh1 ~if M11.0) or h2 ~if M22.0)
would be a Gaussian integration and thus can be carried

For the biaxial spin model of large spin s with the clas
cal energyE(u,f) given by Eq.~7!, we have

M1152K1s2~12l sin2fc!sin2uc.0. ~30!

We could perform the Gaussian integration overh1 as shown
in Ref. 8. Here we shall do the integration in an alternat
way. The fluctuation integralI can also be expressed as~i.e.,
the Van Vleck determinant!14–16

I 5N1

1

AdetM
, ~31!

whereN15(2p)1/2N. On the other hand, since

FM11 M12

M21 M22
G5FM11 0

M21 1GF1 M11
21M12

0 M222M21M11
21M12

G ,

~32!

andM11 is a positivec number, we have

I 5N1

1

AdetM11det~M222M21M11
21M12!

5N2

1

Adet~M222M21M11
21M12!

. ~33!

From Eqs.~24!,~25!, we obtain

M222M21M11
21M1252

d

dt
A@uc~t!,fc~t!#

d

dt

1C@uc~t!,fc~t!#, ~34!

where

A@uc~t!,fc~t!#52
l 12
2

M11
5

s2 sin2uc

M11
.0 ~35!

sinceM11.0,

C@uc~t!,fc~t!#5S d

dt

m12l 12

M11
D1M222

m12
2

M11

5
Euf

2

Euu2cotucEu
1 is

d

dt

sinucEfu

Euu2cotucEu
,

~36!
10442
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N2.
2s11

2s
lim
n→`

)
k51

n S A@uc~tk!,fc~tk!#

tk2tk21
D 1/2

. ~37!

It is interesting to see the difference between our fluct
tion integrationI and that of traditional approach in terms
the first order Euclidean Lagrangian11

Le
eff~f,ḟ !5

1

2
m~f!ḟ21V~f!2 iQ~f!ḟ, ~38!

which is obtained from the spin-coherent-state path integ
Eq. ~1! by regardingf andp5s cosu as a pair of conjugate
canonical variables and working out the momentu
integration,11 whereQ5s2a/m(f) and

m~f!51/@2K1~12l sin2f!#,

V~f!5K2s2 sin2f2
a2l sin2f

4K1~12l sin2f!
~39!

denote position-dependent mass of the mapped particle
the potential, respectively. The fluctuation functional integ
directly obtained from the effective Lagrangian~38! is seen
to be

I eff5N
1

AdetF2
d

dt
m~fc!

d

dt
1V9~fc!G

, ~40!

where

N5 lim
n→`

)
k51

n Fm@fc~tk!#

tk2tk21
G1/2

,

and it can also be verified that

A@uc~t!,fc~t!#5m@fc~tk!#. ~41!

We now show the relation betweenI eff andI. From Eq.~27!,
one can find (M222M21M11

21M12)ḟc50, namely,

S 2
d

dt
A@uc~t!,fc~t!#

d

dt
1C@uc~t!,fc~t!# D ḟc50.

~42!

Since the zero-mode wave functionḟc also satisfies13,14

S 2
d

dt
m@fc~t!#

d

dt
1V9@fc~t!# D ḟc50, ~43!

seen from the expression ofI eff , we have

$C@uc~t!,fc~t!#2V9@fc~t!#%ḟc50. ~44!

From Eq.~13!, it is seen that

ḟc~t!Þ0, unless t→6`, ~45!

and
0-4
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lim
t→6`

V9@fc~t!#5 lim
t→6`

C@uc~t!,fc~t!#5m* vh
2 ,

~46!

where m* 5m@fc(t56`)#51/(2K1) and vh is given in
Eq. ~14!. We therefore conclude

C@uc~t!,fc~t!#5V9@fc~t!# ~47!

and

I 5
2s11

2s
I eff.I eff , ~48!

namely,I and I eff are essentially the same in the large sp
approximation. The above derivation shows that tunnel sp
ting by the spin-coherent-state path integral is equivalen
that by starting from traditional mapping technique3,11,17,18in
the large spin approximation up to the second order fluc
tion.

For other spin systems which may have the condit
M22.0, Eq. ~33! then can be rewritten as

I 5N1

1

AdetM22det~M112M12M22
21M21!

5N28
1

Adet~M112M12M22
21M21!

. ~49!

From Eqs.~24!, ~25!, we obtain

M112M12M22
21M2152

d

dt
A8@uc~t!,fc~t!#

d

dt

1C8@uc~t!,fc~t!#, ~50!

where

A8@uc~t!,fc~t!#52
l 21
2

M22
5

s2 sin2uc

M22
.0, ~51!

C8@uc~t!,fc~t!#5S d

dt

m21l 21

M22
D1M112

m21
2

M22

5Euu2cotucEu2
~Euf2cotucEf!2

Eff

2 is
d

dt

sinucEfu2cosucEf

Eff
. ~52!

This case is irrelevant to our tunneling model Eq.~6! and we
will not give further discussion.

B. Position-dependent mass

To obtain the explicit tunneling kernelK, a convenient
way is that the position-dependent-mass may be converte
a constant one so that we can adapt the standard proce
given in literature to evaluate the fluctuation determinant.
this end, we make a global time transformation in Eqs.~31!–
~34! by defining a ‘‘new’’ timej:
10442
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5

m*

A@uc~t!,fc~t!#
, ~53!

with which the fluctuation functional integral becomes

I 5N2

1

AdetFm*

A S 2m*
d2

dj2
1

AC

m*
D G

5N3

1

AdetS 2m*
d2

dj2
1

AC

m*
D

, ~54!

where

N35
2s11

2s
lim
n→`

)
k51

n S m*

tk2tk21
D 1/2

and we omit the arguments ofA@uc(t),fc(t)# and
C@uc(t),fc(t)# for clarity. From Eqs.~34!, ~35!, and ~42!,
one can verify thatḟc is the zero mode wave function
namely,

S 2m*
d2

dj2
1

AC

m*
D ḟc~j!50, ~55!

whereḟc5(d/dt)fc .
Now the fluctuation integralI can be evaluated from th

fluctuation determinant for a particle with constant massm* .
It is worthwhile to remark that the time transformation
remove the position dependence of the mass is the key p
of our formulation which, We will see, results in a bett
tunnel splitting equivalent to that obtained from semiclas
cal correction of the Lagrangian.17,18,22–24The fluctuation in-
tegral Eq.~33! is ill defined because of the zero modeḟc
seen from Eq.~43! which leads to divergence of the integra
However the divergence problem can be cured by mean
the Faddeev-Popov procedure14–16 from which the fluctua-
tion integral is found to beI 5ASc /m* TĨ , where

Sc

m*
5E

2T/2

T/2

ḟc
2~t!dt ~56!

and

Ĩ 5DF det8S 2m*
d2

dj2
1

AC

m*
D

detS 2m*
d2

dj2
1m* vh

2D G
21/2

. ~57!

HereD is the fluctuation determinant of the harmonic osc
lator with massm* ,
0-5
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D5N3FdetS 2m*
d2

dj2
1m* vh

2D G21/2

5S m* vh

p D 1/2

e2vhP/2,

~58!

and P denotes the time period in new time scalej. By a
standard procedure,14–16 we can find

I 5DS m* vh

p D 1/2

LT, L5 lim
j→`

ḟc~j!evhj. ~59!

Then the prefactor is seen to be

B5
2s11

2s S m* vh

p D 1/2

L. ~60!

Using the instanton solution given in Eq.~13!, Eqs.~41! and
~53! lead to the time period

E dj5E dt2lE sin2fcdt

5E dt2
m*

2s
ln

A12u21Al tanh~vht!

A12u22Al tanh~vht!
. ~61!

If we ignore the second term on the right hand side of
above equation which is seen to be of 1/s order, namely if we
take the approximation such that

lim
j→`

ḟc~j!evhj. lim
t→`

ḟc~t!evht5L̃, ~62!

we then find the following prefactor:

B̃5
2s11

2s S m* vh

p D 1/2

L̃.S m* vh

p D 1/2

L̃, ~63!

where

L̃52vh~12u2!1/2~12u22l!21/2. ~64!

B̃ is exactly the prefactor used by Enz and Schilling@see
Eqs. ~8b! and ~8d! in Ref. 17 and Eqs.~13b! and ~13d! in
Ref. 18# and also Kouet al.13 This result shows explicitly
that, in the previous calculations,13,17,18a term@i.e., the sec-
ond term on the right hand side of Eq.~61!# of (1/s) order is
omitted in the global time transformation in the evaluation
the prefactor. We show that it is the omitted term which lea
to an extra factor contributing to the magnitude of tunn
splitting significantly.

We now find this extra factor. Setting an arbitrary const
of integration to zero, Eq.~61! leads to

evhj5evhtS A12u22Al tanh~vht!

A12u21Al tanh~vht!
D c

, ~65!

wherec5 1
2 Al(12u2). It follows that

L5 lim
j→`

ḟc~j!evhj5 lim
t→`

ḟce
vhtS A12u22Al tanh~vht!

A12u21Al tanh~vht!
D c

5QL̃, ~66!
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whereQ is the extra factor

Q5S A12u22Al

A12u21Al
D c

. ~67!

Substituting the result back to Eq.~60!, we can find

B5QB̃. ~68!

Therefore, the ground state tunnel splitting in biaxial sp
model is expressed as

DE54QB̃e2Scucosusu. ~69!

FIG. 1. Field dependence ofQ ~a! and prefactors 4B̃ ~b!, 4QB̃
~c! for s510 andK150.321 K; K250.229 K.
0-6



TUNNEL SPLITTING IN BIAXIAL SPIN MODELS . . . PHYSICAL REVIEW B 67, 104420 ~2003!
FIG. 2. Field dependence of tunnel splitting at ground state fors510, 3 and variousl5K2 /K1 , DE854B̃e2Sccosus ~dash line!,

DE54QB̃e2Sccosus ~solid line!, and numerical result of diagonalization~dotted line!. ~a! s510, K150.321 K; K250.830.229 K, ~b! s
510, K150.321 K; K250.229 K, ~c! s510, K150.321 K; K251.230.229 K, ~d! s53, K150.321 K; K251.230.229 K.
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The pre-exponential factor of the level splitting Eq.~69! is
different from that in literature13,17 by a factorQ which is
missing in the standard procedure for evaluation of the fl
tuation integral suitable only to the model with a consta
mass.19 To see the effect of the factorQ, we present here a
numerical estimation of external field dependence ofQ, 4B̃

and 4QB̃. Making the use of the anisotropy constants in R
10 such thatK150.321 K, K250.229 K, field dependenc
of Q, 4B̃ and the prefactor 4QB̃ are shown in Fig. 1 fors
510. One can see that the factorQ lowers the energy split-
ting by about 3 times, and a more important effect is thaQ
modifies the behavior of field dependence of the prefac
namely, 4B̃ increases with the applied field, while 4QB̃ de-
creases with the field. Analytical value of energy splitti
with and without the correction factorQ is shown in Fig. 2,
together with numerical result by performing a diagonaliz
tion of the Hamilton operator given in Eq.~6!. As we can see
from Fig. 2, if the factorQ is missing in the prefactor, the
analytical splitting strongly deviates from numerical res
especially in high field regions~see Fig. 2 dot-and-dash line!,
confirming the observation of Enz and Schilling,17 and this is
the reason why the so-called semiclassical Lagrangian for
10442
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spin system was used in Refs. 17,24 to obtain a better m
nitude of the tunnel splitting. However, when the factorQ is
included, the analytical splitting~69! agrees quantitatively
with numerical result for spin number as low ass53 with
l.0.856. Our result shows that spin-coherent-state path
tegral representation which gives rise to the classical ene
Eq. ~7! results in an accurate energy splitting of the grou
state, provided that the fluctuation determinant for the s
model with a position-dependent mass is evaluated more
actly. It is worthwhile to remark that the instanton method
strictly speaking, valid in the weak coupling region whe
the barrier should be high enough. The applied magn
field lowers the barrier height seen from Eq.~39!, therefore,
increases the coupling. The theoretical tunnel splitting eva
ated by instanton method becomes worse with increas
magnetic field. Our method is valid until a critical value
magnetic field

hc5
2s~12l!

gmB
AK1K2 /l

obtained from the condition thatV9(p/2)50. Beyond the
critical magnetic field the top of potential barrier becom
concave.
0-7
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TABLE I. Energy levels (En2E0) by quantization rule in Eq.~70! and by numerical diagonalization o
the Hamilton operator. The unit of energy is K andE05229.7995.

n 0 1 2 3 4 5

Numerical result 0.0 5.14164 9.72755 13.7499 17.1886 19.954
Quantization rule 0.0 5.14708 9.74084 13.77567 17.2403 20.1091
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To show the validity of our method, we present two mo
numerical results in the absence of external magnetic fiel
show that the classical energy Eq.~7! is good for the semi-
classical description of the biaxial spin model in the pa
integral formulation. The quantized low-lying levels for
double-well potential can be found by Bohr-Sommerfe
rule,25–27 i.e., rpdx5n2p numerically. With the help of
classical Hamiltonian Eq.~7! for zero-field case regardingf
and p5s cosu as a pair of conjugate canonical variabl
which becomes

H5
p2

2m~f!
1K2s2 sin2f,

the quantized levels are determined by

2E
2fn

fn A2m~f!~En2K2s2 sin2f!df5n2p, ~70!

where fn is the turning point given by fn
5sin21(En /K2s

2)1/2, andn50,1,2, . . . . Using the parameter
in Ref. 10 for Fe8 system, the first five levels obtained fro
Eq. ~70! are shown in Table I, together with the exact ene
levels En determined by numerical diagonalization of th
Hamilton operator. We can see from the table that the ene
levels obtained with the classical energy are in good ag
ment with the exact ones. This implies that the representa
of the spin-coherent-state path integral provides a reason
description for determining the energy levels as well as
level splitting in semiclassical approximation. On the oth
hand, thes-dependence of zero-field action given by E
~11!, namely,

Sc~h50!5s ln
11Al

12Al
, ~71!

which is seen to be the same as that given in Ref. 3, ca
easily verified by numerical calculation. To this end, w
present a semi-log-plot of the zero-field tunnel splittingDE
in the ground state for integer s in Fig. 3 obtained in terms
the numerical diagonalization. It is seen that, forl50.7134
in Fe8 molecular cluster, the curve of lnDE as a function of
spin number s ~integer! is fitted best by F(s)522.3s
11.18133~dotted line in Fig. 3!. Neglecting thes depen-
dence of the prefactor~which is of order lns),8 numerical
result agrees with the above expression Eq.~71! since ln(1
1Al)/(12Al).2.474.

In this paper we show that the failure of coherent st
representation of path integral in computation of tunnel sp
ting in spin systems can be cured by more exactly dea
with the position-dependent mass in terms of a global ti
10442
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transformation which is seen to be equivalent to the corr
tion of 1/s order in Lagrangian first proposed by Enz a
Schilling17 and subsequently used by Lianget al.24 in the
case of absence of magnetic field. It is interesting to see h
the apparently very different viewpoints lead to the sa
correction of level splitting. To this end we rewrite the tunn
splitting of Enz and Schilling@see Eqs.~8b!–~9b! in Ref. 17#
for the case of vanishing external field (h50) with the ap-
proximationAs(s11).s11/2 by factorizing out the classi
cal actionSc such that28

DEES54QESB̃e2Sc, ~72!

where the factor

QES5S 12Al

11Al
D 1/2

~73!

with subscript ‘‘ES’’ denoting the factor of Enz and Schillin
resulted from the correction of 1/s order in the Lagrangian is
similar to our factorQ in Eq. ~69! which in the case of
vanishing field reduces to

Q~h50!5S 12Al

11Al
D Al/2

. ~74!

The level splitting Eq.~72! is given exactly in Ref. 24 for the
case of absence of magnetic field. The factorQES has been
obtained from a completely different approach by Lian
Müller-Kirsten and Rana29 and our findings, therefore, re
ceive a verifying support from the results in Ref. 29. T
numerical magnitudes of tunnel splitting evaluated from f
mulas~72! and ~69! are compared in Table II fors52 to 7

FIG. 3. Semi-log plot of lnDE vs s.
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TABLE II. Ground state tunnel splitting of Eq.~69! andDEES in comparison with the numerical resu
DE0 by diagonalization of the Hamilton operator for some typical values ofl ~The unit of the energy is K!.

~a! l5l050.7134
s 2 3 4 5 6 7

DE0 2.26131022 3.60431023 4.73731024 5.61831025 6.25131026 6.65831027

DE 2.86531022 4.58931023 5.95131024 7.00531025 7.75631026 8.23231027

DEES 3.75831022 5.13431023 6.21931024 7.01131025 7.53531026 7.82531027

~b! l51.15l0

s 2 3 4 5 6 7

DE0 8.4731023 7.8831024 6.06731025 4.22131026 2.75631027 1.72331028

DE 1.04431022 9.48831024 7.22331025 4.99231026 3.24531027 2.02231028

DEES 1.4331022 1.13831023 8.05931025 5.31931026 3.3531027 2.0431028

~c! l50.85l0

s 2 3 4 5 6 7

DE0 4.45231022 1.05631022 2.05831023 3.61131024 5.93931025 9.34931026

DE 6.17231022 1.41131022 2.70231023 4.69831024 7.68331025 1.20531025

DEES 7.380931022 1.49831022 2.68831023 4.48531024 7.12931025 1.20531025
-

on
ly
b
pe
p

ctor
c-
ace
of
n of
for

ci-
ech-
der
and variousK1 , K2 with the result of numerical diagonaliza
tion of the Hamilton operatorĤ5K1Ŝz

21K2Ŝy
2 in the matrix

representation in terms of eigenstates of operatorŜz with the
usual computational programMATHEMATICA . It is obviously
that our formula is accurate same as Eq.~72! and better for
small spins.

IV. CONCLUSION

The existing instanton method in literature for evaluati
of fluctuation determinant of tunneling kernel is valid on
for a particle of constant mass, and is therefore not suita
to the spin model at hand which possesses a position de
dent mass. We use a time transformation to remove the
A.

,

10442
le
n-

o-

sition dependence of the mass and obtain a additional fa
Q in the prefactor of tunnel splitting which leads to the a
curate magnitude of tunnel splitting as well as the level sp
in comparison with the numerical result of diagonalization
the Hamilton operator. We conclude that the representatio
spin-coherent-state path integrals is sufficiently good
evaluation of tunneling amplitude.
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