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Renormalization-group picture of the Lifshitz critical behavior
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Field-theoretic renormalization-group methods are developed to describe in a unified fashion the critical
exponents of anm-fold Lifshitz point at the two-loop order in the anisotropic (mÞd) and isotropic (m5d
close to 8! situations. The general theory is illustrated for theN-vectorf4 model describing ad-dimensional
system. A new regularization and renormalization procedure is presented for both types of Lifshitz behavior.
The anisotropic cases are formulated with two independent renormalization-group transformations. The de-
scription of the isotropic behavior requires only one type of renormalization-group transformation. We point
out the conceptual advantages implicit in this picture and show how this framework is related to other previous
renormalization-group treatments for the Lifshitz problem. The Feynman diagrams of arbitrary loop order can
be performed analytically provided these integrals are considered to be homogeneous functions of the external
momenta scales. The anisotropic universality class (N, d, m) reduces easily to the Ising-like (N, d) when
m50. We show that the isotropic universality class (N, m) whenm is close to 8 cannot be obtained from the
anisotropic one in the limitd→m near 8. The exponents for the uniaxial cased53, N5m51 are in good
agreement with recent Monte Carlo simulations for the axial next-nearest-neighbor Ising model.

DOI: 10.1103/PhysRevB.67.104415 PACS number~s!: 75.40.Cx, 64.60.Kw
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I. INTRODUCTION

Formulated in 1975 by Hornreich, Luban, and Shtrikm
in the context of magnetic systems,1,2 the Lifshitz critical
behavior has encountered applications in many real phys
systems. Some examples include high-Tc super-
conductors,3–5 ferroelectric liquid crystals,6–8 uniaxial
ferroelectrics,9 some types of polymers,10–13 and magnetic
materials.14–17In particular, the confluence of a disordered
uniformly ordered, and a modulated ordered phase chara
izes the special critical point associated with this critical b
havior, known as the Lifshitz point. The modulated pha
possesses a fixed equilibrium wave vector which vanis
continuously as the Lifshitz point is approached. When
components of this wave vector span anm-dimensional sub-
space, the system under consideration displays anm-fold Lif-
shitz critical behavior. When the order parameter hasN com-
ponents, and the space dimension of the system isd, the
Lifshitz universality class is characterized by the s
(N, d, m). WhethermÞd, the system presents the anis
tropic Lifshitz critical behavior. Otherwise, them5d case
denotes the isotropic Lifshitz critical behavior. The isotrop
casem5d near 8 can be treated, using similar theoreti
tools, along the same lines of the anisotropic case. Thus
shall focus our attention on these two types of critical beh
ior.

In magnetic systems, the uniaxial (m51) Lifshitz behav-
ior can be described by an axial next-nearest-neighbor I
~ANNNI ! model,18,19 which consists of a spin-1/2 Isin
model on a cubic lattice with nearest-neighbor interactions
well as next-nearest-neighbor antiferromagnetic coupli
along one single lattice axis, the competing axis. The co
petition between the ferro- and antiferromagnetic inter
tions in this system provokes a different critical behav
when compared to the pure Ising-like behavior. The m
netic compound MnP has been studied extensively in re
years, confirming the appearance of the uniaxial (m51) Lif-
0163-1829/2003/67~10!/104415~28!/$20.00 67 1044
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shitz behavior which was obtained from theoretical14–16 as
well as experimental17 investigations.

This model can be generalized by allowing the ne
nearest-neighbor antiferromagnetic couplings alongm direc-
tions, which represents a typicalm-axial Lifshitz critical be-
havior. In casemÞd, the system naturally admits tw
independent correlation lengths, namelyjL2 associated to
spatial directions perpendicular to the competing axes,
jL4 associated to directions parallel to them-dimensional
competition subspace. At the Lifshitz point these two cor
lation lengths become related. In the isotropic behaviorm
5d close to 8, there is only one correlation lengthjL4.

The field-theoretical representation of this model can
expressed in terms of a modifiedlf4 theory containing
higher derivative terms along them-competing directions. It
is given by the following bare Lagrangian density:20

L5
1

2
u¹m

2 f0u21
1

2
u¹(d2m)f0u2

1d0

1

2
u¹mf0u21

1

2
t0f0

21
1

4!
l0f0

4 . ~1!

The field theory treatment turns out to be simpler at
Lifshitz point, whereT5TL and d050. In particular, the
functional-integral representation permits, at the Lifsh
point, the decoupling of the momentum integrals parallel a
perpendicular to the competing axes. It would be interest
to find out whether this condition could make possible t
evaluation of Feynman diagrams to any desired order i
perturbative expansion. Then, the critical properties of
system, like critical exponents, amplitude ratios, and ot
universal amounts could be obtained analytically utilizi
the renormalization-group analysis along witheL-expansion
methods. We shall consider this problem from a rather d
ferent perspective, which allows a solution in perturbati
©2003 The American Physical Society15-1
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theory, and which provides an analytic tool that may pro
useful in order to figure out the Lifshitz critical behavior
its complete generality.

In this work we present a detailed construction of th
renormalization-group description for the anisotropic a
isotropic cases. This approach was inspired by an earlier
gestion made by Wilson21 in order to obtain the critical ex
ponents corresponding to correlations parallel or perpend
lar to the competing axes in a manifestly independ
manner. This framework was set forth in a previous pape22

We discuss the fundamental issues concerning
renormalization-group~RG! analysis leading to interestin
scaling relations to the isotropic case, whereas in the an
tropic case it is shown that these relations are equivalen
previous scaling laws already derived.

In the anisotropic behaviors, the existence of the corre
tion lengthsjL2 andjL4 induces two independent characte
istic external momenta scales which in turn are used to
the renormalized field theory in the infrared regime. Sin
the theory is massless in the Lifshitz critical temperatureTL ,
the renormalized vertex parts have to be defined at non
ishing external momenta scales. We denote byk1 the exter-
nal momenta scale along the quadratic~noncompeting! (d
2m) directions, whereask2 is the external momenta sca
along the quartic ~competing! m-dimensional subspace
These external momenta scales originate two indepen
renormalization-group flows in the parameter space. T
renormalized coupling constants flow to two independ
fixed points, depending whether the renormalization gro
transformation is overk1 or k2. At the loop order considered
here they are shown to be the same, but it is suggested
this feature is preserved when the analysis is carried ou
arbitrary loops. On the other hand, the isotropic case is c
acterized solely by the correlation lengthjL4. It induces only
one characteristic external momenta scale, denoted her
k3 which is used to fix the renormalized vertex parts.

Moreover, we calculate all the critical exponents at le
at O(eL

2) using a different technique of solving higher-loo
Feynman diagrams inspired in this renormalization-gro
program. Our analysis is performed entirely in moment
space, which is particularly suitable to tackle this proble
The Feynman diagrams are carried out with the help o
different approximation in the quartic momenta subspa
which is the most general approximation consistent with
mogeneity. We will show how a former two-loop approxim
tion presented earlier in the calculation of the critical exp
nents perpendicular to the competing axes20,23 can be
understood in terms of those calculated here using this m
elaborate procedure. It is also shown that the relations am
the correlation length exponents parallel and perpendicula
the competing axes, namelynL45 1

2 nL2, and the anomalous
dimensions of the fields,hL25 1

2 hL4, are exact at the loop
order considered in the present paper. This confirms
strong anisotropic scale invariance predicted before for
sort of system.24

In Sec. II we set the formalism by defining the normaliz
tion conditions for them-axial Lifshitz critical behavior for
the anisotropic and isotropic criticalities. We show that tw
sets of normalization conditions can naturally describe
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anisotropic situation without the need of introducing oth
dimensionful constants into the analysis.

Section III contains the discussion of the different ren
malization analysis for the anisotropic case in directions p
pendicular to the competition axes, as well as the differ
renormalization-group description along directions para
to the competing subspace.

The renormalization-group treatment for the isotrop
case is the subject of Sec. IV. The scaling laws are t
obtained for this type of critical behavior. Since the scali
relations are different from those appearing in the anisotro
behavior, we point out that the isotropic and anisotropic
haviors are independent and cannot be obtained from e
other.

The evaluation of Feynman integrals is presented in S
V. We perform the one-, two-, and three-loop integrals us
two different approximations. The first approximation intr
duced in Refs. 20 and 23 is suitable to perform two- a
three-loop integrals in order to obtain the critical expone
perpendicular to the competing axes, since it preserves
homogeneity of the Feynman integrals in the external m
menta perpendicular to the competing axes.25 On the other
hand, a different approximation is presented here which p
serves the homogeneity of the Feynman diagrams not on
the external momenta perpendicular to the competing a
but also in the external momenta parallel to the compet
m-dimensional subspace. Using a simple condition in
competing subspace, we calculated these integrals for a
trary external momenta.

In Sec. VI we calculate all the critical exponents for th
anisotropic case using the scaling relations derived in S
III. It would be interesting to obtain the critical exponen
using more than one renormalization condition in order
check their correctness. This is done in this section and in
following one. We also discuss our results comparing w
alternative field-theoretic treatments and different Mon
Carlo simulations ind53 in the context of the ANNNI
model (m51).

Section VII presents the calculation of all the critical e
ponents for the isotropic case utilizing the scaling relatio
obtained in Sec. IV. Finally, the conclusions are presente
Sec. VIII and further applications of the method described
this work are pointed out.

II. NORMALIZATION CONDITIONS FOR THE LIFSHITZ
CRITICAL BEHAVIOR

From the bare Lagrangian given in Eq.~1! we can define
renormalized quantities in terms of bare ones through the
of renormalization constants, or renormalization functio
Here we shall follow closely the standardlf4 field-theoretic
approach. The interested reader should consult, for exam
Amit’s book26 or the original work by Bre´zin, Le Guillou,
and Zinn-Justin.27 These renormalization functions are fixe
by the specification of the renormalization scheme used
order to define the renormalized theory. The renormalizat
functions are defined in terms of the renormalized redu
temperature and order parameter~magnetization in the con
text of magnetic systems! as t5Zf2

21t0 ,M5Zf
21/2f0, and
5-2
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will depend on Feynman integrals. If the theory is renorm
ized at the critical temperature (t50), the infrared diver-
gences instruct us to renormalize the theory in nonvanish
external momenta. Therefore the renormalization const
at the critical temperatuteTL will depend on the externa
momenta scales involved in the renormalization program

We first consider the anisotropic behaviors. The Feynm
integrals depend on two external momenta scales. We
convenient to define two sets of normalization conditio
appropriate to calculate the critical exponents associate
correlations either perpendicular to or along the compe
axes.22 These external momenta scales were defined abov
be k1 andk2, respectively.

In order to make the calculation easier wherever m
than one momentum remains finite, we choose the mom
at a symmetry point~SP!. The normalization conditions
which yield the critical exponents associated to correlati
perpendicular to the competition axes are given by first
ting all the external momenta along the competition axes
zero (k250). Let pi be the external momenta perpendicu
to the competition axes and associated to a generic
particle irreducible~1PI! vertex part. Then, the external mo
menta along the quadratic directions are chosen aspi•pj

5(k1
2/4)(4d i j 21). This leads to (pi1pj )

25k1
2 for iÞ j .

The momentum scale of the two-point function is fix
through p25k1

251. Thus we have the following set o
renormalized 1PI vertex parts:

GR
(2)~0,g1!50, ~2a!

]GR
(2)~p,g1!

]p2 U
p25k

1
2

51, ~2b!

GR
(4)~pi ,g1!uSP5g1 , ~2c!

GR
(2,1)~p1 ,p2 ,p,g1!uSP̄51, ~2d!

GR
(0,2)~p,g1!up25k

1
250. ~2e!

Recall that the symmetry point implies that the insertion m
mentum in Eq.~2d! satisfiesp25(p11p2)25k1

2.
The suitable normalization conditions to dealing with e

ponents along the competition axes are defined in a sim
fashion. First, one sets all the external momenta perpend
lar to the competition axes to zero (k150). If ki8 is the
external momenta along the competition axes associated
generic 1PI vertex part, the external momenta along the q
tic directions are chosen aski8•kj85(k2

2/4)(4d i j 21). This
implies that (ki81kj8)

25k2
2 for iÞ j . The momentum scale o

the two-point function is fixed throughk825k2
251. The

analogous set of renormalized 1PI vertex parts is given

GR
(2)~0,g2!50, ~3a!

]GR
(2)~k8,g2!

]k84 U
k845k

2
4

51, ~3b!

GR
(4)~ki8 ,g2!uSP5g2 , ~3c!
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GR
(2,1)~k18 ,k28 ,k8,g2!uSP̄51, ~3d!

GR
(0,2)~k8,g2!uk845k

2
450. ~3e!

Note that, in principle, these two systems of normalizat
conditions seem to provide two renormalized coupling co
stants, which arise as a consequence of the two indepen
flow in the renormalization momenta scalesk1 andk2. Ap-
parently the whole description works with two coupling co
stants, namelyg15u1(k1

2)eL/2 @andl15u01(k1
2)eL/2] associ-

ated to the flow in the momenta components perpendicula
the m-dimensional axes, as well asg25u2(k2

4)eL/2 @and l2

5u02(k2
4)eL/2] associated to the flow in the momenta com

ponents parallel to them-dimensional axes. Nevertheless,
will be shown, the situation simplifies at the fixed point: bo
couplings will flow to the same fixed point, at two-loo
level, indicating that this must be so in higher-loop calcu
tions. The conceptual advantage is to treat independently
flow in the momenta along and perpendicular to the com
tition axes using these two coupling constants. Whether
can be done in a consistent manner is a separate proble
be tackled in Sec. VI.

The normalization conditions for the isotropic case (m
5d near 8! can be defined analogously as those paralle
the competition axes for the anisotropic case. The symm
point is chosen as follows. Ifki8 is the external momenta
along the competition axes, the external momenta along
quartic directions are chosen aski8•kj85(k3

2/4)(4d i j 21).
This implies that (ki81kj8)

25k3
2 for iÞ j . The momentum

scale of the two-point function is fixed throughk845k3
4

51. Then we have the following conditions:

GR
(2)~0,g3!50, ~4a!

]GR
(2)~k8,g3!

]k84 U
k845k

3
4

51, ~4b!

GR
(4)~ki8 ,g3!uSP5g3 , ~4c!

GR
(2,1)~k18 ,k28 ,k8,g3!uSP̄51, ~4d!

GR
(0,2)~k8,g3!uk845k

3
450. ~4e!

Notice that we have not mentioned the quadratic mome
scalek1 in the discussion of the isotropic behavior, for it
absent in this situation due to the Lifshitz conditiond050.

We can write all the renormalization functions and ba
coupling constants in terms of the dimensionless couplin
Let the labelt51,2,3 refer to the different external momen
scales involved in the general Lifshitz critical behavior,
discussed above for different normalization conditions in
anisotropic and isotropic cases. By expanding the dimens
less bare coupling constantsuot and the renormalization
functionsZf(t) ,Z̄f2(t)5Zf(t)Zf2(t) in terms of the dimen-
sionless renormalized couplingsut up to two-loop order as

uot5ut~11a1tut1a2tut
2!, ~5a!
5-3



to

on
ex
al-

ly
T
on

iz
a

ci-

t

nt
th
a
e.
nd

th

th

f

eous
on.
ter

ti-
ou-
the
ich

cal-
y

pec-
ic
he-
ta

-
rms
t of

i-

om-
nd

po-

e of

MARCELO M. LEITE PHYSICAL REVIEW B 67, 104415 ~2003!
Zf(t)511b2tut
21b3tut

3 , ~5b!

Z̄f2(t)511c1tut1c2tut
2 ~5c!

along with dimensional regularization will be sufficient
determine all the critical exponents.

III. RENORMALIZATION-GROUP ANALYSIS
FOR THE ANISOTROPIC CASE

Given one bare theory, described by the Lagrangian~1!,
different versions of the renormalized vertices can be c
structed out of the original bare vertex parts. We shall
plore now the freedom left in the definition of the renorm
ization momenta scalesk1 and k2 in the critical theory
explained in the last section for the anisotropic case.

We start by considering the renormalization-group ana
sis along directions perpendicular to the competing axes.
renormalized theory is defined with only one quadratic n
vanishing external momenta scalek1. Let L1 be the associ-
ated cutoff corresponding to this subspace. The renormal
vertex parts for this case are defined in terms of the norm
ization constants and the bare vertices as

GR(t)
(N,L)~pi (t) ,Qi (t) ,gt ,kt!

5Zf(t)
N/2 Zf2(t)

L
@G (N,L)~pi (t) ,Qi (t) ,lt ,Lt!

2dN,0dL,2G (t)
(0,2)~Q(t) ,Q(t) ,lt ,Lt!uQ

(t)
2 5k

t
2], ~6!

wherepi (t) ( i 51, . . . ,N) are the external momenta asso
ated to the vertex functionsGR(t)

(N,L) with N external legs and
Qi (t) ( i 51, . . . ,L) are the external momenta associated
the L insertions off2 operators. We emphasize thatpi (1) ( i
51, . . . ,N) refers to the external momenta compone
along the (d2m)-dimensional subspace perpendicular to
competition axes, whereaspi (2) are the external moment
components along them-dimensional competing subspac
From our normalization conditions, it should be kept in mi
that all quantities presenting a subscriptt51(2) arecalcu-
lated at zero external momenta components parallel~perpen-
dicular! to the competing axes and are characterized by
momenta scalek1(k2). From the last section,u0t , Zf(t) ,
and Zf2(t) are represented as power series inut . The
renormalization-group invariance of the bare vertex with
momenta scalekt implies that

S kt

]

]kt
D

lt ,Lt

@Zf(t)
2N/2Zf2(t)

2L
~GR(t)

(N,L)2dN,0dL,2G (t)
(N,L)!#50.

~7!

This in turn yields the following RG equations:

S kt

]

]kt
1bt̄

]

]gt
2

1

2
Ngf(t)~gt ,kt!1Lgf2(t)~gt ,kt! D

3GR(t)
(N,L)~pi (t) ,Qi (t) ,lt ,Lt!5dN,0dL,2~kt

22t!eL/2Bt ,

~8!

whereBt is a constant used to renormalizeGR(t)
(0,2) and
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b̄t~gt ,kt!5S kt

]gt

]kt
D

lt ,Lt

, ~9a!

gf(t)~gt ,kt!5S kt

] lnZf(t)

]kt
D

lt ,Lt

, ~9b!

gf2(t)~gt ,kt!5S kt

] lnZf2(t)

]kt
D

lt ,Lt

~9c!

are functions ofgt andkt only, though they are functions o
Lt implicitly. Notice that GR

(0,2) is different from all other
vertices since the RG equation presents an inhomogen
term on the left-hand side due to its additive renormalizati
We shall treat this additively renormalized vertex part la
on. The above expressions correspond to the limitLt→`,
which are naturally finite, even iflt , Zf(t) , andZf2(t) di-
verge at this limit. It is worth expressing all of these quan
ties in terms of dimensionless bare and renormalized c
pling constants. We now turn our attention to discuss
central issue of the new dimensional considerations wh
will be useful for the subsequent dimensional analysis.

Consider the volume element in momentum space for
culating an arbitrary Feynman integral. It is given b
dd2mqdmk, whereqW represents a (d2m)-dimensional vec-
tor perpendicular to the competing axes andkW denotes an
m-dimensional vector along the competing subspace, res
tively. The Lifshitz conditiond050 suppresses the quadrat
part of the momentum along the competition axes. Nevert
less, there is still a contribution from the quartic momen
contained in the inverse critical (t50) free propagator
G0

(2)21(q,k)5(k2)21q2. In order to be dimensionally con
sistent, the canonical dimension in mass units of both te
in the propagator should be equal. There are two ways ou
this outstanding situation.

The former idea, inspired in Ref. 1, is to introduce a d
mensionful constants in front of the first term in the La-
grangian~1!, along with its renormalization functionZs , as
was done by Mergulha˜o and Carneiro.28 This idea implies
that the momenta scales parallel or perpendicular to the c
petition directions play the same role in this discussion a
there is only one coupling constant. Denoting the com
nents of the quartic external momenta with a subscripta and
the quadratic components with a subscriptb, they set the
following renormalization conditions:

]GR
(2)~k,2k,s,g,k!

]kb
2 U

k
b
25k2

51,

]GR
~2!~k,2k,s,g,k!

]ka
4 U

sk
a
45k2

5s,

GR
(4)~ki ,s,g,k!uSPa

5g, ~10!

GR
(2,1)~k1 ,k2 ,p,s,g,k!uSPa

5̄1,

GR
(0,2)~p,2p,s,g,k!usp

a
45k250,

where the SPa meanss1/2kiakj a5k@(4d i j 21)/4# and was
chosen at zero quadratic external momenta. This choic
5-4
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renormalization points makes the renormalization consta
s independent as claimed by those authors.29 However,s is
still a relevant length~momentum! scale and this fact shoul
be reflected on its dependence in some normalization c
stants. Therefore starting with a dimensionfuls parameter
and making it dimensionless in the end of the calculation
they chose does not seem to be consistent, since the qu
and quadratic momenta scales play the same role and
the same canonical dimensions in this approach. Notice
the last four of these equations together with the criti
theory condition on the renormalized two-point vertex p
naturally defines an independent set of normalization co
tions along the competing axes. In fact, if the quartic m
menta is redefined throughska

4[ka8
4 such thats is absorbed

in the new quartic momenta, this implies thats1/2kiakj a

5kia8 kj a8 5k82@(4d i j 21)/4# with k8Þk. Then, one has five
normalization conditions along the quartic subspace as
scribed in the last section.

On the other hand, the first of these equations is ca
lated atska

450. Intuitively it should be complemented wit
four more normalization conditions with nonvanishing ext
nal quadratic momenta perpendicular to the competing s
space. This is what was done in the last section for directi
perpendicular to the competing axes. Thus if we have
different momenta scalesk andk8 and setting them equal i
equivalent to have Mergulha˜o and Carneiro’s renormaliza
tion conditions, with five more normalization condition
along the quadratic directions. Thus if one tradess by an
independent external quartic momenta scalek8, it still re-
tains the five extra normalization conditions which in th
approach are undefined. Nevertheless, they recovered
former anisotropic scaling relations1 using this reasoning
They used their symmetry point in order to treat the ca
m52,6 in the context of aneL expansion.29

There is an alternative based in a recently propo
method which does not use the dimensional constants but
allows the realization of a dimensional redefinition of t
momenta components along the quartic compet
subspace.22 This later view inspires the subsequent disc
sion and shall be used throughout this paper. Let@qW #5M be
the mass dimension of the quadratic momenta. The con
tency of the Lagrangian density~1! on dimensional grounds
requires that@kW #5M1/2. This is equivalent to performing a
dimensional redefinition of the momenta along the comp
ing axes, as long as the conditiond050 is satisfied. The
volume element in momentum spacedd2mqdmk has mass
dimension @dd2mqdmk#5Md2m/2. The dimension of the
field is obtained by requiring that the volume integral of t
Lagrangian density~1! is dimensionless in mass units. It fo
lows that@f#5M (1/2)(d2(m/2)21.

The N-point Green function can be expressed dimensi
ally as @G(N)(x1 , . . . ,xN)#5@f#N5MN/2(d2m/2)2N. The as-
sociated one particle irreducible ~1PI! vertex
parts have dimension in mass units@G (N)(xi)#
5@G(N)(xi)#@V#2N@G(2)(xi)#2N5MN/2(d2m/2)1N. In mo-
mentum space, the Fourier transform is obtained by integ
ing over each one of the coordinates. Removing the mom
tum conserving d function, we have @G (N)(ki)#
5MN1(d2m/2)2N(d2m/2)/2.
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As usual, the exponent ofM in the above relations is
called the canonical dimension of the quantity. If the physi
quantityO has canonical dimension@O#5MD, then under a
transformation of the length scale associated toM→aM it
implies thatO5aDO. Therefore all dimensionfull param
eters are transformed under a transformation in the len
~or external momenta!. Hence it is useful to describe th
theory in terms of dimensionless parameters. As the coup
constants are associated toG (4), we can write gt

5ut(kt
2t)eL/2, and lt5u0t(kt

2t)eL/2, where eL541m/2
2d.

In terms of the dimensionless couplings defined abo
the renormalization-group equation can be rewritten as

S kt

]

]kt
1bt

]

]ut
2

1

2
Ngf(t)~ut!1Lgf2(t)~ut! DGR(t)

(N,L)

5dN,0dL,2~kt
22t!eL/2Bt~ut!, ~11!

and from now on we can forget about the cutoffsLt , bear-
ing in mind, however, that they should be kept fixed in
stages of the analysis. The functions

bt5S kt

]ut

]kt
D , ~12a!

gf(t)~ut!5bt

] lnZf(t)

]ut
, ~12b!

gf2(t)~ut!52bt

] lnZf2(t)

]ut
~12c!

are calculated at fixed bare couplinglt . The bt functions
can be cast in a more useful form in terms of dimensionl
quantities, namely,

bt52teLS ] lnu0t

]ut
D 21

. ~13!

Note that the beta function corresponding to the flow ink2
has a factor of 2 compared to that associated to the flow
k1. As usual, they are power series inut , with coefficients
which depend oneL . Let us analyze the simplest caseL
50. The solution can be expressed in terms of characte
tics. The characteristic equation is given by two independ
flows in the coupling constants induced by the flows in t
momenta scalek1 andk2, i.e.,

rt

dut~rt!

drt
5b@ut~rt!#, ~14!

with the initial conditionut(rt51)5ut . Using the charac-
teristic equation forut we can change variables from a var
ablext to ut , through the relation

E
1

rt
f „ut~xt!…

dxt

xt
5E

ut

ut(rt) f ~ut!

bt~ut!
. ~15!

Thus small values ofxt in the left-hand side correspond t
the neighborhood of the zeros ofbt in the right-hand side.
5-5
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For the anisotropic case, the solution to the renormalizat
group equation reflects the two-parameter group of inv
ance, and can be expressed in the form

GR(t)
(N) ~ki (t) ,ut ,kt!5expS 2

N

2E1

rt
gf(t)@ut~rt!#

dxt

xt
D

3GR(t)
(N)

„ki (t) ,ut~rt!,ktrt…. ~16!

From our dimensional analysis, the dimensional redefi
tion of the momenta along the competing axes results in
effective space dimension for the anisotropic case, i.e.,d
2m/2). Thus we find the following behavior for the 1P
vertex partsGR(t)

(N) under flows in the external momenta:

GR(t)
(N) ~rtki (t) ,ut ,kt!5rt

t[N1(d2m/2)2N(d2m/2)/2]

3expS 2
N

2E1

rt
gf(t)@ut~rt!#

dxt

xt
D

3GR(t)
(N)

„ki (t) ,ut~rt!,ktrt…. ~17!

It is helpful to present the explicit expressions for vert
parts calculated either at zero quartic external momenta o
vanishing quadratic external momenta. The renormali
vertex parts calculated at zero quartic external moment
given by

GR(1)
(N) ~r1ki (1) ,u1 ,k1!5r1

N1(d2m/2)2N(d2m/2)/2

3expS 2
N

2E1

r1
gf(1)@u1~r1!#

dx1

x1
D

3GR(1)
(N)

„ki (1) ,u1~r1!,k1r1…. ~18!

The dependence of the renormalized vertex parts is quad
in the external momenta perpendicular to the compe
axes. Therefore the analysis is completely similar to the p
lf4 theory, with the replacementeL→e. From this analysis,
we can identify the labelt51 with the subscriptL2. Then,
we could have writtengf(1)[gf(L2) andgf2(1)[gf2(L2) .

On the other hand, the renormalized vertex parts at z
quadratic external momenta can be expressed as

GR(2)
(N) ~r2ki (2) ,u2 ,k2!5r2

2[N1(d2m/2)2N(d2m/2)/2]

3expS 2
N

2E1

r2
gf(2)@u2~r2!#

dx2

x2
D

3GR(2)
(N)

„ki (2) ,u2~r2!,k2r2…. ~19!

The difference is that the canonical dimension is twice as
as the canonical dimension of the vertex parts calculate
zero quartic momenta. Then, we can make the identificat
gf(2)[gf(L4) andgf2(2)[gf2(L4) . The last equations imply
that a change in the external momenta scale is equivale
the multiplication of the vertex function by that scale to t
power of the canonical dimension of the function, follow
by a modified coupling constant, which flows with the ch
acteristic equation, and an additional factor.
10441
n-
i-

i-
n

at
d
is

tic
g
re

ro

ig
at
s

to

-

It is interesting to analyze the vertex functions at the
frared fixed points, since this will determine the scaling la
and the critical exponents associated to correlations per
dicular and parallel to them-dimensional competing sub
space. The analysis can be carried out by assuming that t
are two independent fixed points, defined bybt(ut* )50.
The renormalization-group equation leads to a simple sca
property at the fixed points. It implies the following solutio
to the vertex functions:

GR(t)
(N) ~rtki(t),ut* ,kt!5r

t

t[N1(d2m/2)2N(d2m/2)/2]2(N/2)gf(t)(ut* )

3GR(t)
(N) ~ki (t) ,ut* ,kt!. ~20!

For N52, we have

GR(t)
(2) ~rtk(t) ,ut* ,kt!5r

t

2t2gf(t)(ut* )
GR(t)

(2) ~k(t) ,ut* ,kt!.
~21!

The quantitygf(t)(ut* ) can be interpreted in the following
way. If the field theory is free, a change in the external m
menta scale will produce a change in the free vertexG (t)

(N)0

which scales with the canonical dimension of the vertex, t
is

G (t)
(N)0~rtki (t)!5rt

t[N1(d2m/2)2N(d2m/2)/2]G (t)
(N)~ki (t)!.

~22!

We then define the dimension of the fieldf as

G (1)
(N)~rtki (t)!5rt

t[(d2m/2)2Ndf(t)]G (1)
(N)~ki !, ~23!

such that in the free theorydf
0 5(d2m/2)/221 is the naive

dimension of the field. At the fixed point, the naive dime
sion is modified due to the presence of interactions, such
the nontrivial effect is the appearance of the anomalous
mension, i.e.,df(t)5(d2m/2)/2211ht/2t. When N52,
this identifies the anomalous dimensions of the field in
anisotropic situation, namely that associated to the chang
the external momenta scale perpendicular to the compe
axesh1[hL25gf(1)(u1* ) as well as the other correspondin
to the change in the external momenta parallel to the co
petition subspaceh2[hL45gf(2)(u2* ).

This can be easily generalized to includeL insertions of
f2 operators in quite an analogous way, such that the
equations at the fixed point lead to the solution@(N,L)
Þ(0,2)#

GR(t)
(N,L)~rki (t) ,rpi (t) ,ut* ,kt!

5r
t

t[N1(d2m/2)2N(d2m/2)/222L] 2Ngf(t)* /21Lg
f2(t)
*

3GR(t)
(N,L)~ki (t) ,pi (t) ,ut* ,kt!. ~24!

Thus if we write at the fixed point

GR(t)
(N,L)~rki (t) ,rpi (t) ,ut* ,kt!

5rt
t[(d2m/2)2Ndf] 1Ldf2

GR(t)
(N,L)~ki (t) ,pi (t) ,ut* ,kt!, ~25!
5-6



ay

d

e

o

s,

bi

lent

ter-

s

d

l

zing

the

ts

RENORMALIZATION-GROUP PICTURE OF THE . . . PHYSICAL REVIEW B 67, 104415 ~2003!
the anomalous dimensions of the insertions off2 operators
are given bydf2522t1gf2(t)(ut* ) and will be related to
the critical exponentsn1[nL2 andn2[nL4 as we shall see in
a moment.

In order to find the scaling relations we must go aw
from the Lifshitz critical temperature (tÞ0) staying, how-
ever, at the critical regiond050.35 Above the Lifshitz criti-
cal temperature, the renormalized vertex parts fortÞ0 can
be expanded as a power series int around those renormalize
vertices att50, providedNÞ0. We can now apply the dif-
ferential operators

Ot5kt

]

]kt
1bt

]

]ut
2

1

2
Ngf(t)~ut!1gf2(t)~ut!t

]

]t
~26!

to GR(t)
(N) (ki (t)) such that we find

OtGR(t)
(N) ~ki (t) ,t,ut* ,kt!5 (

L50

`
tL

L! S kt

]

]kt
1bt

]

]ut

2
1

2
Ngf(t)~ut!1Lgf2(t)D

3GR(t)
(N,L)~ki (t) ,pi (t) ,ut* ,kt!.

~27!

The result is that each term in the sum vanishes becaus
the RG equation forGR(t)

(N,L)(ki (t) ,pi (t) ,ut* ,kt). Hence we
obtain

S kt

]

]kt
1bt

]

]ut
2

1

2
Ngf(t)~ut!1gf2(t)~ut!t

]

]t D
3GR(t)

(N) ~ki (t) ,t,ut* ,kt!50. ~28!

The solution is a homogeneous function of the product
ki (t) ~to some power! and t solely at the fixed pointut* . As
the value ofut is fixed at ut* , we shall omit it from the
notation of this section from now on. It is given by

GR(t)
(N) ~ki (t) ,t,kt!5k

t

Ngf(t)* /2
F (t)

(N)~ki (t) ,ktt
21/g

f2(t)
*

!.
~29!

If we defineut52gf2(t)
* , and using dimensional analysi

we find

GR(t)
(N) ~ki (t) ,t,kt!

5rt
t[N1(d2m/2)2(N/2)(d2m/2)]2(N/2)htkt

(N/2)ht

3F (t)
(N)

„rt
21ki (1) ,~r21kt!~r22tt !21/ut

…. ~30!

By choosingrt5kt(t/kt
2t)1/(ut12t), and replacing back

in Eq. ~29!, the vertex function depends only on the com
nationki (t)jt apart from a power oft. Since the correlation
lengthsjt are proportional tot2nt, we can identify the criti-
cal exponentsnt as

nt
2152t1ut* 52t2gf2(t)

* . ~31!
10441
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According to our conventions, these equations are equiva
to the following scaling relations:

nL2
21522gf2(1)

* , ~32a!

nL4
21542gf2(2)

* . ~32b!

As a matter of convenience, we could have defined al
natively the function

ḡf2(t)~ut!52bt

] ln~Zf2(t)Zf(t)!

]ut
. ~33!

In that case we would have found the equivalent formula

nL2
21522hL22ḡf2(1)~u1* !, ~34a!

nL4
21542hL42ḡf2(2)

* . ~34b!

Hence at the fixed point all correlation functions~not in-
cluding composite operators! scale atT.TL , since they
are functions ofki (t)jt only. For N52 we choosert

5k(t) , the external momenta. ThenGR(t)
(2) (k(t) ,t,kt)

5k2t2htkt
ht f (k(t)jt). The critical situation is characterize

whenjt→` andk(t)→0 such thatf (k(t)jt)→const. Defin-
ing f t5(k(t)jt)

2t2ht f (k(t)jt), we have

GR(t)
(2) ~k(t) ,t,kt!5~k(t)jt!

2t2htkt
ht f t~k(t)jt!. ~35!

The susceptibility is proportional tot2gt as k(t)→0. Thus
sinceGR(t)

(2) 5x (t)
21 , we can identify the susceptibility critica

exponents

gt5nt~2t2ht!. ~36!

These relations are equivalent to the relations

gL25nL2~22hL2!, ~37!

gL45nL4~42hL4!. ~38!

The specific-heat exponents can be obtained by analy
the RG equation forGR(t)

(0,2) aboveTL at the fixed point, i.e.,

Fkt

]

]kt
1gf2~t!

* S 21t
]

]t D GGR(t)
(0,2)5~kt

22t!eL/2Bt~ut* !,

~39!

whereBt(ut* ) is given by

~kt
22t!eL/2Bt~ut* !52Zf2(t)

2 kt

]

]kt
G (t)

(0,2)

3~Q(t) ;2Q(t) ,lt!uQ
(t)
2 5k

t
2. ~40!

It is an inhomogeneous part which has no dependence in
reduced temperaturet. The bare vertex functionG (t)

(0,2) is cal-
culated as before in the limitLt→`, with a fixed bare cou-
pling constant, which rendersBt(ut* ) finite in this limit
when (d2m/2)54. This renormalized vertex part consis
5-7
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of the addition of the homogeneous~temperature-dependen!
and inhomogeneous pieces. The general discussion give
far for the vertex partGR(t)

(N,L) will be useful to determine the
homogeneous part of the solution. Indeed, at the fixed p
the obvious generalization of the solution forGR(t)

(N,L) is given
by

GR(t)
(N,L)~pi (t) ,Qi (t) ,t,kt!5k

t

(1/2)Ngf~t!
* 2Lg

f2(t)
*

3Ft
(N,L)~pi (t) ,Qi (t) ,ktt

21/g
f2(t)
*

!.

~41!
ion

iz

rts

10441
so

nt

Therefore the temperature-dependent homogeneous
for GR(t),h

(0,2) will scale at the fixed point as

GR(t),h
(0,2) ~Q(t) ,2Q(t) ,t,kt!

5k
t

22g
f2(t)
*

Ft
(0,2)~Q(t) ,2Q(t) ,ktt

21/g
f2(t)
*

!. ~42!

This will be identified with the specific heat at zero extern
momentum insertionQ(t)50. Using the results of our di-
mensional analysis
GR(t),h
(0,2) )~Q(t) ,2Q(t) ,t,kt!5r

t

t[(d2m/2)24]12g
f2(t)
*

GR(t),h
(0,2) ~rt

21Q(t) ,2rt
21Q(t) ,rt

22tt,rt
21kt!, ~43!

and replacing this into the solution at the fixed point, we find

GR(t),h
(0,2) ~Q(t) ,2Q(t) ,t,kt!5r

t

t[(d2m/2)24]12g
f2(t)
*

k
t

22g
f2(t)
*

Ft
(0,2)~rt

21Q(t) ,2rt
21Q(t) ,rt

21kt~rt
22tt !21/g

f2(t)
*

!. ~44!
ing
G

a-

tain

te
g

Again we choosert5kt(t/kt
2t)1/(ut12t). Substituting this in

last equation, taking the limitQ(t)→0, and identifying the
power of t with the specific-heat exponentat , we find

at522tS d2
m

2 D nt . ~45!

Let us analyze the inhomogeneous part. First, takeQ(t)
50. Second, choose a particular solution of the form

Cp~ut!5~kt
2t!2eL/2C̃p~ut!. ~46!

Replace this into the RG equation forGR(t)
(0,2) at the fixed point.

Then, it is easy to obtain

Cp~ut* !5~kt
2t!2eL/2

nt

nttS d2
m

2 D22

Bt~ut* !. ~47!

Collecting both terms we have the following general solut
at the fixed point:

GR(t)
(0,2)5~kt

22t!eL/2FCtS t

kt
2tD2at

1
nt

nttSd2
m

2D22

Bt~ut* !G. ~48!

Let us describe the situation forT,TL . It can be illus-
trated for the case of magnetic systems. The renormal
equation of state relates the renormalized~1PI one-point ver-
tex part! magnetic field with the renormalized vertex pa
for t,0 via a power series in the magnetizationM. One has

H (t)~ t,M ,ut ,kt!5 (
N51

`
1

N!
MNGR(t)

11N~ki (t)50; t,ut ,kt!,

~49!
ed

where the zero-momentum limit must be taken after realiz
the summation. The magnetic field satisfies the following R
equation:

Fkt

]

]kt
1bt

]

]ut
2

1

2
Ngf(t)S N1M

]

]M D1gf2(t)t
]

]t G
3H (t)~ t,M ,ut ,kt!50. ~50!

At the fixed point we have the following form for the equ
tion of state:

H (t)~ t,M ,k1!5kt
ht/2h1t~ktM

2/ht,ktt
21/gf2(t)!. ~51!

Once again, we use dimensional analysis arguments to ob
the following expression under a flow in the momenta:

H (t)~ t,M ,kt!5rt
t[(d2m/2)/211]H (t)S t

rt
2t

,
M

rt
2t[(d2m/2)/221]

,
kt

rt
D .

~52!

We choosert to be a power ofM such that

rt5ktS M

kt
t/2[(d2m/2)22]D 2/$t[(d2m/2)22]1ht%

, ~53!

and from the scaling form of the equation of sta
H (t)(t,M )5M dt f (t/M1/bt), we obtain the remaining scalin
laws after the identificationsd15dL2 ,b15bL2 ,d25dL4 ,b2
5bL4:

dL25

S d2
m

2 D122hL2

S d2
m

2 D221hL2

, ~54a!
5-8
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bL25
1

2
nL2F S d2

m

2 D221hL2G , ~54b!

dL45

2S d2
m

2 D142hL4

2S d2
m

2 D241hL4

, ~54c!

bL45
1

2
nL4F2S d2

m

2 D241hL4G , ~54d!

which imply the WidomgL25bL2(dL221) and Rushbrook
aL212bL21gL252 relations for directions perpendicular
the competition axes. These relations are also valid for di
tions along the competing axes. So far, the effect of con
ering this different dimensional role played by the mome
scale along the competing quartic subspace, together with
definitions of the critical theories either at vanishing quar
or quadratic external momenta have induced two indep
dent set of scaling relations for the critical exponents. N
ertheless, when performing the diagramatic perturbative
pansion, we shall find out that some of these exponents
not independent.

There is one curious fact relating these scaling relati
and those obtained by Hornreichet al.1 If nL45 1

2 nL2 and
hL452hL2 to all orders in perturbation theory, the hype
scaling~Josephson! relations are the same in either formul
tion. In the formulation presented here this feature will
found in Sec. VI from the perturbative analysis up to the lo
order considered in this paper. In addition, one obtains

gL45gL25gL , ~55a!

bL45bL25bL , ~55b!

dL45dL25dL , ~55c!

aL45aL25aL . ~55d!

In that case, there is a complete equivalence among the
ing relations in both formulations. It is worthwhile to emph
size that the advantage of the approach presented in this
tion is the splitting of the scaling laws into independe
renormalization-group flows parallel and perpendicular
the competition axes. Then, instead of claiming that the
momenta scales corresponding to the components per
dicular and parallel to the competing axes are equal,1 the
most important conclusion in our approach with two co
pling constants is that they will flow to the same fixed po
in the critical regime as will be shown later.

We can make a comparison among our scaling relati
below TL with the ones obtained by Mergulha˜o and Car-
neiro. In their work, they defined the space dimension of
Lifshitz system D[da/21db , where da5m and db5d
2m @see Eq.~25! in Ref. 28#. ThereforeD5(d2m/2), the
same effective space dimension as ours.

The trouble is in the introduction ofs. The normalization
conditions defined through Eqs.~20!–~24! of Ref. 28 mixs
with the two external momenta scales in a nontrivial w
They recognized, however, that the normalization conditi
they defined areindependentof s. Thus if one makes the
10441
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choicegs* 50, Eq.~58! in Ref. 28 is just the same as the on
obtained here fordL , and Eq.~60! in Ref. 28 is equal to that
obtained here forbL . Equations~46!–~51! in their paper
taken together withgs* 50 yields trivially nL45 1

2 nL2 and
hL452hL2. Last but not least, if one takes the bares0 di-
mensionless, as was done by those authors, the whole a
ment is invalidated since itsdimensionfulnesswas assured
from the beginning of the discussion in the regulation of t
free critical propagator. Introducings is consistent provided
it is considered as a dimensionful ammount in all stages
the calculation. In other words,s is not required at all, since
the flow in s can be absorbed in the quartic momenta sc
using our dimensional redefinition.

IV. RENORMALIZATION-GROUP FOR THE ISOTROPIC
BEHAVIOR

The procedure to analyze the isotropic case is quite an
gous. Some care must be taken. Whenevert appears as a
subscript, like in a quantityAt , one setst53 in order to be
consistent with the notation employed so far. The dime
sional analysis is a bit different. The volume element in m
mentum space is againdd2mqdmk. Wheneverd5m, the
volume element is nowdmk. As before,@k#5M1/2. Accord-
ingly, the volume element has dimension@dmk#5Mm/2. The
dimension of the field in mass units is@f#5Mm/421. When
the conservingd function is removed the 1PI vertex par
have dimensions@G (N)(ki)#5MN1m/22N(m/4). Then, make
the continuationm582eL . The coupling constant has d
mensionl35M (82m)/25M eL/2. In terms of dimensionless
quantities, one has the renormalizedg35u3(k3

4)eL/4 and bare
l35u03(k3

4)eL/4 coupling constants, respectively. Again, th
functions

b35S k3

]u3

]k3
D , ~56a!

gf(3)~u3!5b3

] lnZf(3)

]u3
, ~56b!

gf2(3)~u3!52b3

] lnZf2(3)

]u3
~56c!

are calculated, as before, at fixed bare couplingl3. The beta
function can be expressed in terms of dimensionless qua
ties asb352eL(] lnu03/]u3)

21. One should notice that the
beta function for the isotropic case does not possess the o
all factor of 2 present in the anisotropic beta functionb2
obtained from renormalization-group transformations o
the quartic momenta scalek2. This feature is a strong non
perturbative suggestion that the isotropic critical observab
cannot be obtained from the anisotropic ones and vice ve

Under a flow in the quartic momenta, from our dime
sional analysis, the dimensional redefinition of the mome
along the competing axes results in an effective space dim
sion for the isotropic case, i.e., (m/2). Thus we find the
following behavior for the 1PI vertex partsGR(3)

(N) under a
flow in the external momenta:
5-9
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GR(3)
(N) ~r3ki ,u3 ,k3!5r3

2[N1m/22N(m/4)]

3expH 2
N

2E1

r3
gf(3)@u3~r3!#

dx3

x3
J

3GR(3)
(N)

„ki ,u3~r3!,k3r3…. ~57!

Notice that we put aside the notationki (t) , etc., used in the
anisotropic analysis in favor ofki , etc., since there is only
one quartic momenta scale in the isotropic case. At the fi
point, we also have a simple scaling property for the ver
partsGR(3)

(N) , namely

GR(3)
(N) ~r3ki ,u3* ,k3!5r

3
2[N1m/22N(m/4)]2(N/2)gf(3)(u3* )

3GR(3)
(N) ~ki ,u3* ,k3!. ~58!

For N52, we have

GR(3)
(2) ~r3k,u3* ,k3!5r

3
42gf(3)(u3* )

GR(3)
(2) ~k,u3* ,k3!. ~59!

We can now identifyhL4[h35gf(3)(u3* ) as the anomalous
dimension for the isotropic case. This is the analog of
analysis we performed for the anisotropic case. In the f
theory df

0 5(m/2)/221 is the naive dimension of the field
At the isotropic fixed point, the naive dimension is modifi
due to the presence of interactions, such thatdf5(m/2)/2
211hL4/4. The generalization to includeL insertions off2

operators is quite straightforward and can be written at
fixed point as@(N,L)Þ(0,2)#

GR(3)
(N,L)~r3ki ,r3pi ,u3* ,k3!

5r
3

2[N1m/22N(m/2)/222L] 2Ngf(3)* /21Lg
f2(3)
*

3GR(3)
(N,L)~ki ,pi ,u3* ,k3!. ~60!

Thus if we write at the fixed point

GR(3)
(N,L)~r3ki ,r3pi ,u3* ,k3!5r3

m/22Ndf1Ldf2
GR(3)

(N,L)~ki ,pi ,u3* ,k3!,
~61!

the anomalous dimension of the insertions off2 operators is
given bydf25241gf2(3)(u3* ).

Above the Lifshitz critical temperature, the renormaliz
vertex parts fortÞ0 can be expanded as a power seriest
around those renormalized vertices att50, provided N
Þ0. We can now apply the differential operators,

O35k3

]

]k3
1b3

]

]u3
2

1

2
Ngf(3)~u3!1gf2(3)~u3!t

]

]t
, ~62!

to GR(3)
(N) (ki ,t,u3* ,k3). The mechanism is similar to that dis

cussed in the anisotropic cases. This vertex part is a po
series ont, with each individual coefficient vanishing b
making use of the RGE forGR(3)

(N,L)(ki ,pi ,u3* ,k3). Then, we
find

S k3

]

]k3
1b3

]

]u3
2

1

2
Ngf(3)~u3!1gf2(3)~u3!t

]

]t D
3GR(3)

(N) ~ki ,t,u3* ,k3!50. ~63!
10441
d
x

e
e

e

er

The solution is a homogeneous function of the product oki

~to some power! and t only at the fixed pointu3* . The solu-
tion reads

GR(3)
(N) ~ki (3),t,u3* ,k3!5k

3
Ngf(3)* /2

F (3)
(N)~ki ,k3t21/gf2(3)* !. ~64!

All the exponents generated by the renormalization-gro
flow along the scalek3 will be denoted by a correspondin
L4 subscript. If we defineu352gf2(3)

* , one can use dimen
sional analysis to obtain

GR(3)
(N) ~ki ,t,k3!5r3

2[N1m/22(N/2)(m/2)]2(N/2)hL4k3
(N/2)hL4

3F (3)
(N)

„r3
21ki ,~r3

21k3!~r3
24t !1/u3

…. ~65!

One can chooser35k3(t/k3
4)1/(u314), and replacing it in

Eq. ~64!, the vertex function depends only on the combin
tion kijL4 apart from a power oft. As jL4 is proportional to
t2nL4 the critical exponentn35nL4 can be identified as

nL4
21541u3* 542gf2(3)

* . ~66!

Again it is convenient to define the function

ḡf2(3)~u3!52b3

] ln~Zf2(3)Zf(3)!

]u3
. ~67!

Then, one can easily find the following relation:

nL4
21542hL42ḡf2(3)~u3* !. ~68!

At the fixed point all correlation functions~not including
composite operators! scale atT.TL , since they are func-
tions ofkijL4 only. ForN52 we chooser35k, the external
momenta. The two-point vertex part can be written in t
form GR(3)

(2) (k,t,k3)5k42hL4k3
hL4f (kjL4). The main point is

that whenjL4→` and k→0, simultaneously, thenf (kjL4)
→const. Defining f 35(kjL4)42hL4f (kjL4), we have
GR(3)

(2) (k,t,k3)5(kjL4)42hL4k3
hL4f 3(kjL4). The susceptibil-

ity is proportional tot2gL4 as ki→0. SinceGR
(2)5x21, the

susceptibility critical exponent is given by

gL45nL4~42hL4!. ~69!

The scaling relation for the specific-heat exponent can
found from the RG equation forGR(3)

(0,2) aboveTL at the fixed
point, namely

Fk3

]

]k3
1gf2~3!

* S 21t
]

]t D GGR(3)
(0,2)5~k3

22!eL/2B3~u3* !,

~70!

l1;-3qwhere

~k3
24!eL/4B3~u3* !52Zf2(3)

2 k3

]

]k3
G (3)

(0,2)~Q;2Q,l3!, ~71!

is the inhomogeneous part which does not depend ont. Re-
call that the bare vertex functionG (3)

(0,2) is calculated as before
in the limit L3→`, with a fixed bare coupling constan
which rendersB3(u3* ) finite in this limit whenm58. This
5-10
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renormalized vertex part is made out of the addition of
homogeneous~temperature-dependent! and inhomogeneou
pieces. The general discussion given so far for the vertex
GR(3)

(N,L) is helpful to obtain the homogeneous part of the so
tion. At the fixed point we have the following generalizatio
of the solution forGR(3)

(N,L) :

GR(3)
(N,L)~pi ,Qi ,t,k3!

5k
3

(1/2)Ngf(3)* 2Lg
f2(3)
*

F3
(N,L)~pi ,Qi ,k3t21/g

f2(3)
*

!. ~72!
ws
e

th
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he

in
tio

10441
e

rt
-

The temperature-dependent homogeneous part forGR(3),h
(0,2)

scales at the fixed point, i.e.,

GR(3),h
(0,2) ~Q,2Q,t,k3!5k

3

22g
f2(3)
*

F3
(0,2)~Q,2Q,k3t21/g

f2(3)
*

!.
~73!

This vertex function is to be identified with the specific he
at zero external momentum insertionQ50. Using our di-
mensional analysis one finds
GR(3),h
(0,2) ~Q,2Q,t,k3!5r2(m/224)12g

f2(3)
*

GR(3),h
(0,2) ~r3

21Q,2r3
21Q,r3

24t,r3
21k3!. ~74!

Substitution of this equation into the solution at the fixed point yields

GR(3),h
(0,2) ~Q,2Q,t,k3!5r

3

2(m/224)12g
f2(3)
*

k
3

22g
f2(3)
*

F3
(0,2)

„r3
21Q,2r3

21Q,r3
21k3~r3

24t !21/g
f2(3)
*

…. ~75!
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te
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We make the choicer35k3(t/k3
4)1/(u314). Replacing this

into the last equation, taking the limitQ→0 and identifying
the power oft with the specific-heat exponentaL4, we find

aL4522mnL4 . ~76!

The description of the inhomogeneous part is as follo
First, takeQ50. Then, choose a particular solution of th
form

Cp~u3!5~k3
4!2eL/4C̃p~u3!. ~77!

Now replace this into the RG equation forGR(3)
(0,2) at the fixed

point. Therefore one gets to

Cp~u3* !5~k3
4!2eL/4

nL4

nL4m22
B3~u3* !. ~78!

The general solution at the fixed point is just the sum of
two pieces, and is given by

GR(3)
(0,2)5~k3

24!eL/4FC3S t

k3
4D 2aL4

1
nL4

nL4m22
B3~u3* !G . ~79!

We now turn our attention to analyze the scaling relatio
when the system is below the Lifshitz critical temperatu
T,TL . The renormalized magnetic field is related to t
renormalized vertex parts fort,0 and the magnetizationM
through

H (3)~ t,M ,u3 ,k3!5 (
N51

`
1

N!
MNGR(3)

11N~ki50;t,u3 ,k3!, ~80!

where the zero momentum limit must be taken after realiz
the summation. The magnetic field satisfies the RG equa

Fk3

]

]k3
1b3

]

]u3
2

1

2
Ngf(3)~u3!S N1M

]

]M D1gf2(3)t
]

]t G
3H (3)~ t,M ,u1 ,k1!50. ~81!
.

e

s

g
n

The equation of state at the fixed point reads

H (3)~ t,M ,k3!5k3
hL4/2h3~k3M2/hL4,k1t21/gf2(3)!. ~82!

Dimensional analysis arguments lead to the following e
pression under a flow in the external momenta:

H (3)~ t,M ,k3!5r3
2(m/411)H3S t

r3
4

,
M

r3
2(m/421)

,
k3

r3
D . ~83!

The flow parameterr3 is chosen to be a power ofM such
that

r35k3S M

k3
(m/222)D 2/(m241hL4)

, ~84!

and from the scaling form of the equation of sta
H (3)(t,M )5M dL4f „t/M (1/bL4)

…, we obtain the following
scaling laws:

dL45
m142hL4

m241hL4
, ~85a!

bL45
1

2
nL4~m241hL4!, ~85b!

which imply the WidomgL45bL4(dL421) and Rushbrook
aL412bL41gL452 relations.

The scaling relations for the anisotropic case Eqs.~11a!
and~12! in Ref. 1 ford5m are consistent with the isotropi
case. Note, however, that this cannot be given a rigor
meaning, for the appearance ofnL2 andhL2 in the equality in
Eq. ~11b! of Ref. 1 invalidates the argument for the isotrop
case as these exponents are no longer meaningful. No
that the impossibility of finding scaling relations for the is
tropic case in the original framework1 is due to the lack of
the independent flow in the external momenta scalek3 along
5-11
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MARCELO M. LEITE PHYSICAL REVIEW B 67, 104415 ~2003!
the quartic subspace. In the early treatment,1 the quartic mo-
menta was not independent to be varied freely, but was fi
from the variation of the quadratic scale. Without its fr
variation, which is possible since this quartic term in t
propagator does not have the same canonical dimensio
the quadratic one, no renormalization-group flows along
competing directions can be defined whatsoever. Thus
renormalization-group method permits to go further in det
mining the Lifshitz critical universal properties of the syste
for arbitrarym.

V. EVALUATION OF FEYNMAN INTEGRALS

In order to calculate universal quantities like critical e
ponents, we must calculate some Feynman integrals.
perturbative loop expansion shall be our starting point w
the eL541m/22d being the perturbation parameter for th
anisotropic situation. For the isotropic case, the perturba
parameter iseL582m.

We have to express the solution of the Feynman diagr
in terms ofeL , resulting in theeL expansion for the univer
sal critical amounts. Again, there is also a very import
difference among the anisotropic and isotropic behavio
From a technical viewpoint, the anisotropic behavio
present two types of integration along the two momenta s
spaces, whereas in the isotropic situation there is only
subspace to be integrated over. We shall treat them s
rately.

The anisotropic behavior is described using two differ
approximations. We shall briefly discuss the first analyti
approximation developed for evaluating higher-order Fe
man diagrams which are needed in the calculation of
critical exponents perpendicular to the competing axes
the anisotropic Lifshitz behavior. It points out the necess
of some sort of condition among the quartic loop momenta
different subdiagrams, leading to the homogeneity of the
tegrals in the quadratic external momenta scales. We em
the set of normalization conditions with vanishing quar
external momenta as described in Sec. II. This piece of w
was done in collaboration with L. C. de Albuquerque and
details can be found in Refs. 20 and 23.

Nevertheless, with the renormalization-group descript
presented here, this approximation is not sufficient to
scribe the critical exponents along the competing axes
does not yield the solution of the integrals as a homogene
function of both quadratic and quartic external momen
scales yet. The former approximation described above is
generalized to obtain the solution of the integrals forarbi-
trary quadratic and quartic external momenta scales. Us
the different interpretation for the momenta scale along
quartic direction given in the last two sections, the calcu
tion of these integrals is not a complicated task, provide
10441
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certain condition among the quartic momenta is fulfille
With this technique all the critical exponents in the anis
tropic cases are obtained. This picture can be considered
main result of the present work.

The isotropic behavior can be developed along the sa
lines of the latter approach to the anisotropic case. The c
dition among the quartic momenta is also required in orde
guarantee homogeneity of the Feynman integrals in the q
tic external momenta scale. The new approximation is su
cient to complete the unified analytical description of t
Lifshitz critical behavior in its full generality, at least at th
loop order considered here as will be shown in this secti

In order to verify the renormalization scheme indepe
dence of the critical exponents, it would be interesting
obtain the critical exponents using more than one renorm
ization procedure. In fact, as will be proven later, the use
normalization conditions or minimal subtraction of dime
sional poles yield the same critical exponents. Thus we s
present the results in the most appropriate form for calcu
ing the critical exponents in these two renormalization p
scriptions.

A. Anisotropic

In order to calculate universal quantities like critical e
ponents, we must calculate some Feynman integrals. We
by listing all the relevant integrals which are necessary
find out the critical exponents. These integrals are

I 25E dd2mqdmk

$@~k1K8!2#21~q1P!2%@~k2!21q2#
, ~86!

where I 2 is the one-loop integral contributing to the fou
point function,

I35E dd2mq1d
d2mq2d

mk1d
mk2

@q1
21~k1

2!2#@q2
21~k2

2!2#$~q11q21P!21@~k11k21K8!2#2%
,

~87!

is the two-loop ‘‘sunset’’ Feynman diagram of the two-poi
function,

I 45E dd2mq1dd2mq2dmk1dmk2

@q1
21~k1

2!2#$~P2q1!21@~K82k1!2#2%@q2
21~k2

2!2#

3
1

~q12q21p3!21@~k12k21k38!2#2
. ~88!

is one of the two-loop graphs which will contribute to th
fixed point, and
I 55E dd2mq1dd2mq2dd2mq3dmk1dmk2dmk3

@q1
21~k1

2!2#@q2
21~k2

2!2#@q3
21~k3

2!2#$~q11q22p!21@~k11k22k8!2#2%

1

~q11q32p!21@~k11k32k8!2#2
~89!
5-12
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is the three-loop diagram contributing to the two-point ver
function. Now we proceed to calculate these integrals us
two different approximation schemes. The philosophy to
adopted is to simplify the calculation by making use of t
homogeneity hypothesis, as shall become clear in the foll
ing subsections.

1. ‘‘Dissipative’’ approximation

As this approximation is only suited to calculate the in
gral as a function of the quadratic external momenta, we
the external momenta at the quartic directions equal to z
i.e., k85k185k285k3850, andK85k181k28 . We shall use di-
mensional regularization for the calculation of the Feynm
diagrams.

Let us find out the one-loop integralI 2. With our choice
of the symmetry point, and introducing two Schwinger’s p
rameters, we obtain forI 2

E dd2mqdmk

@~k2!21~q1P!2#@~k2!21q2#

5E
0

`E
0

`

da1da2S E dmk exp@2~a11a2!~k2!2# D
3E dd2mq exp@2~a11a2!q222a2q•P2a2P2#.

~90!

The qW integral can be performed to give

E dd2mq exp@2~a11a2!q222a2q•P2a2P2#

5
1

2
Sd2mGS d2m

2 D ~a11a2!2(d2m)/2 expS 2
a1a2P2

a11a2
D .

~91!

For the kW integral we perform the change of variablesr 2

5k1
21•••1km

2 . Now takez5r 4. The integral turns out to
be

E dmk exp@2~a11a2!~k2!2#

5S 1

4
SmDGS m

4 D ~a11a2!2m/4. ~92!
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Using Eqs.~90! and ~91!, I 2 reads

I 25
1

2
Sd2mS 1

4
SmDGS d2m

2 DGS m

4 D
3E

0

`E
0

`

da1da2 expS 2
a1a2P2

a11a2
D

3~a11a2!2(d/22m/4). ~93!

The remaining parametric integrals can be solved by
change of variables followed by a rescaling.23 The integral is
proportional to (P2)2eL/2. Now we can setP25k251. Us-
ing the identity

G~a1bx!5G~a!@11bx c~a!1O~x2!#, ~94!

where c(z)5(d/dz)lnG(z), one is able to perform theeL
expansion when the Gamma functions have noninteger a
ments. Altogether, the final result forI 2 is

I 25F1

4
SmSd2mGS 22

m

4 DGS m

4 D G 1

eL
~11@ i 2#meL!, ~95!

where @ i 2#m511 1
2 @c(1)2c(22m/4)#. The factor inside

the brackets in Eq.~94! is absorbed in a redefinition of th
coupling constant. Then the redefined integral is

I 25
1

eL
~11@ i 2#meL!. ~96!

Note that this expression involves no approximation. T
simple result is a consequence of the absence of the
quartic external momenta. Had we considered it from
beginning, we would have obtained an intermediate integ
that could not be integrated analytically. We shall discuss
issue later in the next subsections.

However, when we go on to calculate higher loop in
grals, some sort of approximation is required, since th
integrals are complicated by the fact that even with z
external quartic momenta, the quartic loop momenta mix
in different subdiagrams in a extremely nontrivial form. A
an example, we discussI 3. It is given by
oose to
as
I 3~P,K8!5E dd2mq1dd2mq2dmk1dmk2

@q1
21~k1

2!2#@q2
21~k2

2!2#$~q11q21P!21@~k11k21K8!2#2%
. ~97!

SettingK850, the integral can be evaluated as outlined in Ref. 20. Before making our approximation, one can ch
integrate first either over the loop momenta (q1 ,k1) or over (q2 ,k2). The loop integrals to be integrated first are referred to
the internal bubbles. By solving the integral overq2 first, we obtain
5-13



te
s
n

i-
in
be
e
e
t

o

te

ay
to

rn
se

b

in-
e
ua
e
e

e-

ey
t

he
c-
sir-
o-
ng
ap-
p-

A
ex-
mo-
roxi-

us
ns
l-
a-

se

e

MARCELO M. LEITE PHYSICAL REVIEW B 67, 104415 ~2003!
I 3~p,0!5
1

2
Sd2mGS d2m

2 D
3E dd2mq1dmk1

q1
21~k1

2!2 E
0

`E
0

`

da1da2

3~a11a2!2(d2m)/2

3expS 2
a1a2

a11a2
~q11p!2D E dmk2e2a1(k2

2)2

3e2a2[(k11k2)2] 2
. ~98!

Now we can consider the approximation. In order to in
grate overk2, we have to expand the argument of the la
exponential. This will produce a complicated functio
of a1 , a2 k1, and k2 which cannot be integrated analyt
cally. Considering the remaining terms as a damp
factor to the integrand, the maximum of the integrand will
either atk150 or at k1522k2. The most general choic
k152ak2 yields a hypergeometric function. The choic
k1522k2 implies thatk1 varies in the internal bubble, bu
not arbitrarily. Its variation, however, is dominated byk2
through this constraint, which eliminates the dependence
k1 in the internal bubble. At these values ofk1, the integra-
tion overk2 produces a simple factor to the parametric in
gral proportional to (a11a2)2m/4. This allows one to per-
form the remaining parametric integrals in a simple w
After performing these integrals, they produce the fac
@(q11P)2#2eL/2. Note that the diagramsI 3 andI 5 contribut-
ing to the two-point function receive the factor 1/(22m/4)
after integrating over the quadratic momenta in the exte
bubble. This factor will not be present in the isotropic ca
since there is no integration over quadratic momenta to
done in this case. The resulting solution toI 3(P,0) is a ho-
mogeneous function of the external momentaP, given by

I 352~P2!12eL
1

82m

1

eL F 11S @ i 2#m1
3

42
m

2

11D eLG .

~99!

The implementation of this constraint on higher loop
tegrals proceeds analogously. The constraint turns all th
integrals into homogeneous functions of the external q
dratic momenta scale. One can then choose the symm
point as P25k1

251, for example, in order to define th
renormalized vertices via normalization conditions.

Using this constraint we can easily find the following r
sults at the symmetry point:20

I 45
1

2eL
2 ~113 @ i 2#meL!. ~100!

The integralsI 38 and I 58 are given by
10441
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I 3852
1

82m

1

eL F 11S @ i 2#m1
3

42
m

2
D eLG , ~101!

I 5852
1

3S 22
m

4 D
1

eL
2 F 112S @ i 2#m1

1

22
m

4
D eLG .

~102!

Note that the leading singularities forI 2 ,I 4 are the same
as their analogous integrals in the puref4 theory. However,
I 38 andI 58 do not have the same leading singularities for th
include a factor of 1/(22m/4). We then introduce a weigh
factor for I 38 andI 58 , namely (12m/8), so that they have the
same leading singularities as in the puref4 theory. The main
drawback of this approximation is the failure to treat t
isotropic case. Furthermore, the introduction of weight fa
tors to the two- and three-loop diagrams is rather unde
able. Moreover, the constraint among the quartic loop m
menta does not allow loop momentum conservation alo
the quartic subspace in higher loop diagrams. It is then
propriate to name this approximation ‘‘the dissipative a
proximation.’’

It is obvious that some important detail is missing.
proper solution of the Feynman integrals should be
pressed as a homogeneous function of both external
menta scales. We proceed to discuss the interesting app
mation which presents this property.

2. Orthogonal approximation

Before considering the integrals to be performed, let
derive some useful formulas which relate Gamma functio
with certain intermediate parametric integrals. They will a
low us to define a different analytic dimensional regulariz
tion procedure in the competing subspace.

The simple integral

E
0

`

exp~2axm!dx5a21/m
1

m
GS 1

m D ~103!

can be generalized to them sphere. We shall analyze the ca
m52n. Taker 25x1

21•••1xm
2 . After that takez5r 2n. Thus

E
2`

`

dx1•••dxm exp@2a~x1
21•••1xm

2 !n#

5
1

2nE0

`

dzexp~2az!zm/2n21E dVm . ~104!

The angular integral will produce the area of th
m-dimensional sphere, yielding

E
2`

`

dx1•••dxm exp@2a~x1
21•••1xm

2 !n#

5
1

2n
GS m

2nDa2m/2nSm . ~105!
5-14
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One can write this identity in a different way. After choosin
r 25x1

21•••1xm
2 takey5r 2 and as the integral is given b

the expression above, we obtain the intermediate result

E
0

`

dyym/221 exp~2ayn!5
1

n
a2m/2nGS m

2nD . ~106!

Hereafter we shall keepn52. The following step is to cal-
culate the integral:

E
2`

`

exp~2ax42bx2!dx52E
0

`

exp~2ax42bx2!dx.

~107!

The exact answer is given in terms of a Bessel function o
certain combination ofa andb. We wish to pick out only the
piece which yields the correct homogenous function ofa,
i.e., only one term of the series. This can be achieved
follows. Choosey5x2. One obtains

E
2`

`

exp~2ax42bx2!dx

5expS b2

4aD E
0

`

expF2aS y1
b

2aD 2Gy21/2dy. ~108!

We then choosey85y1b/2a implying that

E
2`

`

exp~2ax42bx2!dx

5expF b2

4aGF E
0

`

exp~2ay82!S y82
b

2aD 21/2

dy8

2E
0

b/2a

exp~2ay82!S y82
b

2aD 21/2

dy8. ~109!

Since we are dealing with convergent integrals, we can
form the approximation (y82b/2a)21/25y821/21•••, and
the remaining terms will be subtracted from the last integ
which is a sort of error function. The original integral is the
approximated by its leading contribution

E
2`

`

exp~2ax42bx2!dx

>expS b2

4aD E
0

`

exp~2ay82!y821/2dy8

5expS b2

4aD 1

2
GS 1

4Da21/4. ~110!

It can be shown in a straightforward way that for them
sphere this result generalizes to
10441
a

s

r-

l,

E
2`

`

exp@2a~x1
21•••1xm

2 !22b~x1
21•••1xm

2 !#dx1•••dxm

>expS b2

4aDSmE
0

`

exp~2ay82!y8m/221dy8

5expS b2

4aD 1

4
SmGS m

4 Da2m/4. ~111!

We now focus our attention in the integral

E
2`

` dx1•••dxm

@~x1
21•••1xm

2 !212a~x1
21•••1xm

2 !1m2#b
.

~112!

Taker 25x1
21•••1xm

2 . Make the change of variables in th
radial coordinatez5r 2. After that takez85z1a. We then
obtain

E dmx

@~x1
21•••1xm

2 !212a~x1
21•••1xm

2 !1m2#b

5
1

2
SmS E

0

` ~z82a!m/221dz8

~z821m82!b

2E
0

a ~z82a!m/221dz8

~z821m82!b D , ~113!

where m825m21a2. Taking z95z82, expanding the nu-
merator in the first integral, i.e., keeping only the leadi
term and getting rid of the infinite terms to be subtract
from the second integral, one can write this integral in t
approximated form

E dmx

@~x1
21•••1xm

2 !212a~x1
21•••1xm

2 !1m2#b

>
1

4
Sm~m22a2!2b1m/4

GS m

4 DGS b2
m

4 D
G~b!

. ~114!

We have all ingredients to perform Feynman integrals
arbitrarym. We start by considering the simplest integral, t
one-loop integral contributing to the coupling constant, th
is,

I 25E dd2mqdmk

$@~k1K8!2#21~q1P!2%@~k2!21q2#
. ~115!

We can use two Schwinger parameters and integrate ove
quadratic momenta. Using the formula derived above,

E exp~2p2!ddq5
1

2
SdGS d

2D , ~116!

we obtain
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I 25
1

2
Sd2mGS d2m

2 D E
0

`E
0

`

da1da2 expS 2
a1a2P2

a11a2
D

3~a11a2!2[(d2m)/2]]E dmk exp$2a1~k2!2

2a2@~k1K8!2#2%. ~117!

We can now expand the argument of the last exponen
This integral cannot be performed analytically. We are int
ested in the solution of this integral in a form that preser
homogeneity in both external momenta. Some simplify
condition should be tried to achieve this goal.

The most general approximation to calculate this type
integral which is homogeneous in the external mome
scales can be understood as follows. In the first place, if
setk•K850 inside the integral, that has the virtue of elim
nating odd powers of the quartic external momenta. Thus
integral becomes

E dmk exp$2a1~k2!22a2@~k1K8!2#2%

5E dmk exp$2~a11a2!~k2!222a2k2~K8!2

2a2@~K8!2#2%. ~118!

Using Eq.~111!, we have for the last quartic momenta int
gral

E dmk exp$2a1~k2!22a2@~k1K8!2#2%

5Sm

1

4
GS m

4 D ~a11a2!2m/4 expS 2
a1a2@~K8!2#2

a11a2
D .

~119!

We can then express the integral in the following form:

I 25
1

8
Sd2mSmGS d2m

2 DGS m

4 D E
0

`E
0

`

da1da2

3expS 2
a1a2$P21@~K8!2#2%

a11a2
D ~a11a2!2(d/22m/4).

~120!

Take x5a1@P21(K82)2# and y5a2@P21(K82)2#. After
that, definev5x/(x1y). Thus, the parametric integrals ca
be done easily by this change of variables. Then, use
identity

G~a1bx!5G~a!@11bxc~a!1O~x2!#, ~121!

wherec(z)5(d/dz)lnG(z). This will result in the following
expression forI 2:
10441
l.
-
s
g

f
a
e

e

e

I 25
1

2 F1

4
S(d2m)SmGS 22

m

4 DGS m

4 D GF12
eL

2
cS 22

m

4 D G
3GS eL

2 D E
0

1

dv„v~12v !$P21@~K8!2#2%…2eL/2. ~122!

This is a homogeneous function~with the same homogeneit
degree! in (P,K8) just as advertised. But this is not the a

swer yet. The factor@ 1
4 S(d2m)Sm/2G(22m/4)G(m/4)# can

be absorbed in a redefinition of the coupling constant. He
we shall absorb exactly this factor after performing each lo
integral. Furthermore, the last integral can be expanded

E
0

1

dv„v~12v !$P21@~K8!2#2%…2eL/2512
eL

2
L~P,K8!,

~123!

where

L~P,K8!5E
0

1

dv ln„v~12v !$P21@~K8!2#2%…. ~124!

Thus we find the following result for this integral:

I 2~P,K8!5
1

eL
S 11~@ i 2#m21!eL2

eL

2
L~P,K8! D . ~125!

This is the form suitable for renormalizing using minim
subtraction. On the other hand, for normalization conditio
one has

I 2SP1
5I 2SP2

5
1

eL
~11@ i 2#meL!, ~126!

since L(SP15SP2)522, with SP1[(P251,K850) and
SP2[„P50,(K8)251…. When we calculatedI 2(P,K850)
in the last subsection, the orthogonality conditionk•K850
between the loop momenta and the external momenta a
the quartic subspace was trivial. In the calculation
I 2(P,K8), the orthogonality condition allowed the solutio
to this integral with the correct homogeneous properties
both external momenta scales.

We can now turn our attention to the higher loop integra
The simplifying conditionk•K850 for the one-loop integra
can be easily generalized to the higher loop integrals by s
ing thatthe loop momenta in a given bubble (subdiagram)
orthogonal to all loop momenta not belonging to that bubb.
Let us see how this works in the calculation of the ‘‘sunse
two-loop integralI 3 contributing to the two-point function
given by the following expression:
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I 3~P,K8!5E dd2mq1dd2mq2dmk1dmk2

@q1
21~k1

2!2#@q2
21~k2

2!2#$~q11q21P!21@~k11k21K8!2#2%
. ~127!

We can choose to integrate first over the loop momenta (q1 ,k1) or over (q2 ,k2). The loop integrals to be integrated first a
referred to as the internal bubbles. By solving the integral overq2 first, we obtain

I 3~P,K8!5
1

2
Sd2mGS d2m

2 D E dd2mq1dmk1

q1
21~k1

2!2 E
0

`E
0

`

da1da2~a11a2!2(d2m)/2

3expS 2
a1a2

a11a2
~q11P!2D E dmk2e2a1(k2

2)2
e2a2[(k11k21K8)2] 2

. ~128!

We defineK95k11K8 into the argument of the last exponential, and integrate overk2 using the conditionk2•K950. Make
the change of variablesk2

25p and integrate overk2 ~or p). Using Eq.~111! we find

I 3~P,K8!5
1

8
Sd2mSmGS d2m

2 DGS m

4 D E dd2mq1dmk1

q1
21~k1

2!2 E
0

`E
0

`

da1da2~a11a2!2[(d2m)/21m/4]

3expS 2
a1a2

a11a2
$~q11P!21@~k11K8!2#2% D . ~129!

The parametric integrals can be solved as before and we have

I 3~P,K8!5
1

8
Sd2mSmGS d2m

2 DGS m

4 D E dd2mq1dmk1

@q1
21~k1

2!2#$~q11P!21@~k11K8!2#2%eL/2
. ~130!

We can now use Eq.~94! and absorbing the angular geometric factor for the first loop integral we obtain

I 3~P,K8!5
1

eL
~11@ i 2#meL!E dd2mq1dmk1

@q1
21~k1

2!2#$~q11P!21@~k11K8!2#2%eL/2
. ~131!

Let i 3(P,K8) be the last integral above. In the remainder, we employ a Feynman parameter. The integrali 3(P,K8) can be
expressed in the following form:

i 3~P,K8!5

GS 11
eL

2 D
GS eL

2 D E
0

1

dxxeL221E dd2mq1dmk1

$q1
212xP•q11xP21~12x!~k1

2!21x@~k11K8!2#2%11eL/2
. ~132!

After that, take the orthogonality conditionk1•K850. In order to solve the integral over the quadratic momentaq1 we shall
make use of the relation

E dd2mq1

~q1
212k•q11m2!a

5
1

2

GS ~d2m!

2 DGS a2
~d2m!

2 D ~m22k2!(d2m)/22a

G~a!
Sd2m . ~133!

Thus we obtain

i 3~P,K8!5
Sd2m

2

GS 22
m

4
1eLDGS 211

m

4
1eLD

GS eL

2 D E
0

1

dxxeL/221E dmk1

$~k1
2!21P2x~12x!1x@2k1

2K821~K82!2#%211m/41eL
.

~134!
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Now, using Eq.~114!, we can integrate over the quartic m
mentak1 obtaining

i 3~P,K8!5
Sd2mSm

8

GS 22
m

4
1

eL

2 DGS m

4 DG~211eL!

GS eL

2 D
3E

0

1

dxxeL/221$x~12x!@P21~K82!2#%12eL.

~135!

Expanding the resultingG functions and absorbing the geo
metric angular factor discussed above, we find

I 3~P,K8!5@P21~K82!2#
21

8eL

3S 112@ i 2#meL2
3

4
eL22eLL3~P,K8! D ,

~136!
a

10441
where

L3~P,K8!5E
0

1

dx~12x!ln$@P21~K82!2#x~12x!%.

~137!

At the symmetry points SP1 or SP2, it can be rewritten as

I 3SP1
5I 3SP2

5
21

8eL
S 112@ i 2#meL1

5

4
eLD . ~138!

From the above equation we can derive the expressions

I 3SP1
8 S [

]I 3SP1

]P2 D 5I 3SP2
8 S [

]I 3SP2

]K84 D
5

21

8eL
S 112@ i 2#meL1

1

4
eLD . ~139!

Let us now proceed to discuss the other required lo
integrals. Consider
e in the

ely
I 55E dd2mq1dd2mq2dd2mq3dmk1dmk2dmk3

@q1
21~k1

2!2#@q2
21~k2

2!2#@q3
21~k3

2!2#$~q11q22P!21@~k11k22K8!2#2%

1

~q11q32P!21@~k11k32K8!2#2
,

~140!

which is the three-loop diagram contributing to the two-point vertex function. This integral is symmetric under a chang
dummy loop momentaq2→q3 and k2→k3. Let us analyze the integrations overq2 ,k2, and q3 ,k3. We use the condition
k2•(k12K8)50 when integrating overk2 as well ask3•(k12K8)50 when performing the integral overk3. The two internal
bubbles, which are represented by the integrals over (q2 ,k2) and (q3 ,k3), respectively, give actually the same result, nam
I 2„(q12P),(k12K8)…. Next takeP→2P,K8→2K8. Therefore we obtain the following expression:

I 5~P,K8!5
1

eL
2 ~112@ i 2#meL!E dd2mq1dmk1

@q1
21~k1

2!2#$~q11P!21@~k11K8!2#2%eL
. ~141!
o-

the
ing
in
We employ a Feynman parameter in analogy to what w
done in the calculation ofI 3 and working out the details we
find

I 5~P,K8!5@P21~K82!2#
21

6eL
2

3$113@ i 2#meL2eL23eLL3~P,K8!%, ~142!

At the symmetry points SP1 ,SP2 we find

I 5SP1
8 S [

]I 5SP1

]P2 D 5I 5SP2
8 S [

]I 5SP2

]K84 D
5

21

6eL
2 S 113@ i 2#meL1

1

2
eLD . ~143!
s We are left with the task of calculating one of the tw
loop diagrams contributing to the four-point function

I 45E dd2mq1dd2mq2dmk1dmk2

@q1
21~k1

2!2#$~P2q1!21@~K82k1!2#2%@q2
21~k2

2!2#

3
1

~q12q21p3!21@~k12k21k38!2#2
. ~144!

Notice that P5p11p2 ,pi ( i 51, . . . ,3) areexternal mo-
menta perpendicular to the competing axes whereasK85k18
1k28 , andki8 ( i 51, . . . ,3) are theexternal momenta along
the competition directions. We can integrate first over
bubble (q2 ,k2). Using Schwinger parameters, and absorb
the geometric angular factor for the first bubble, we obta
5-18
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I 45
1

eL
~11@ i 2#meL!E dd2mq1dmk1

@q1
21~k1

2!2#$~P2q1!21@~K82k1!2#2%

1

$~q11p3!21@~k11k38!2#2%eL/2
. ~145!

Using a Feynman parameter one can write this in the form

I 45 f m~eL! E
0

1

dz E dd2mq1dmk1

$q1
222zP•q11zP21~k1

2!21z@~K82!212K82k1
2#%2

1

$~q11p3!21@~k11k38!2#2%eL/2
, ~146!
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where we defined the quantity f m(eL)5(1/eL)(1
1@ i 2#meL), which is the one-loop subdiagram with the a
gular factor already absorbed. Using another Feynman
rameter to fold the two denominators in the last express
integrating overp1 ,k1 ~recalling the orthogonality condition
already stated!, the integral turns out to be

I 45
1

8
f m~eL!

G~eL!GS m

4 DGS 22
m

4
2

eL

2 D
GS eL

2 D
3E

0

1

dyy ~12y!(1/2)eL21E
0

1

dz„yz~12yz!@P2

1~K82!2#1y~12y!$p3
21@~k38!2#2%12yz~12y!@p3•P

1~k38!2~K8!2#…2eLSd2mSm . ~147!

The integral overy is singular aty51 wheneL50. We only
need to replace the valuey51 inside the integral overz,26

and integrate overy afterwards, obtaining after the absor
tion of the geometric factor

I 45
1

2eL
2 S 112@ i 2#meL2

3

2
eL2eLL~P,K8! D . ~148!

This is the most appropriate form to carry out the ren
malization using minimal subtraction. In terms of normaliz
tion conditions, we find the value of this integral at the sy
metry points discussed before:

I 4SP1
5I 4SP2

5
1

2eL
2 S 112@ i 2#meL1

1

2
eLD . ~149!

Thus we have successfully devised a different regulariza
procedure to calculate Feynman integrals whose propaga
have quartic powers of momenta. It is tempting to define
measure of them-dimensional sphere in terms of a half int
ger measure. In fact, takingk5p2n, one hasdmk[dm/2np
5(1/2n)pm/2n21dpdVm . Hence the approximation am
mounts to take the new ‘‘measure’’dm/2np invariant under
translationsp85p1a.

Note that this approximation is much better than t
former dissipative approximation for the following reason
First, we do not have to introduce any diagram factor, si
after absorbing the geometric angular factor the leading
gularities ineL are the same as those in the standardf4 field
10441
a-
n,

-
-
-

n
ors
e

.
e
n-

theory present ine (m50). Second, we have an expressi
in terms of arbitrary external momenta, which permits t
computation of all the critical exponents in a completely
dependent manner using renormalization-group transfor
tions either perpendicular or parallel to the competition ax
Third, this can be easily adapted to the isotropic behav
The three weak points of the dissipative approximation h
been overcome in the orthogonal approximation.

B. Isotropic

The new orthogonal approximation can now be used
obtain the solutions to the Feynman integrals in the isotro
case. At the Lifshitz pointd050 all the quadratic momenta
disappear and only quartic momenta are defined.

Consider the integral

I 25E dmk

@~k1K8!2#2~k2!2
. ~150!

It is the isotropic counterpart of the one-loop integral co
tributing to the four-point function. Using two Schwinge
parameters and the orthogonality conditionk•K850, we
find

I 2~K8!5E dmkE
0

`E
0

`

da1da2e2(a11a2)(k2
2)2

3e22a2K82k2
e2a2(K82)2

. ~151!

Now performing the transformationk25p the volume ele-
ment transforms todmk5 1

2 pm/221dpdVm[dm/2p. The
former quartic integral turns into a quadratic integral overp.
After neglecting the infinite terms which change the meas
dm/2k under the translationy85y1b/2a, only the leading
contribution is sorted out and we have

E dmke2a(k2)22bk2
5E dm/2pe2ap22bp

>a2m/4eb2/4a
1

4
GS m

4 DSm . ~152!

Replacing this result into the expression ofI 2(K8), one
finds
5-19
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I 2~K8!5
1

4
GS m

4 DSmE
0

`E
0

`

da1da2~a11a2!2m/4

3expS 2
a1a2~K82!2

a11a2
D . ~153!

Now, use a change of variables and a rescaling to realize
remaining parametric integrals analogously to what was d
in the anisotropic case. Making the continuationm58
2eL , the integral can be expressed in the following interm
diate step:

I 2~K8!5
1

4
GS 22

eL

4 DGS eL

4 DSmE
0

1

dv@v~12v !

3~K82!2#2eL/4, ~154!

and the integration overv produces the result

I 2~K8!5
Sm

eL
S 12

eL

4
@11L~K82!# D . ~155!

We absorb the factor ofSm in this integral through a redefi
nition of the coupling constant. Hereafter we shall abs
this factor when calculating each loop integral in analogy
the discussion for the anisotropic behavior. Note that t
absorption factor is different from the one appearing for
anisotropic case in the limitd→m582eL . In the aniso-
tropic case the geometric angular factor becomes singula
the above isotropic limit indicating the failure of this attem
of extrapolating from one case to another. This is a m
compelling technical reason for the statement that the iso
pic and anisotropic cases are completely distinct. Theref

I 2~K8!5
1

eL
S 12

eL

4
@11L~K82!# D . ~156!

In terms of a symmetry point (K82)251 convenient when-
ever normalization conditions are used, we obtain

I 2~K8!5
1

eL
S 11

eL

4 D . ~157!

We can go on to evaluate the other required higher lo
integrals. The systematics is the same: solve the subdiag
using the intermediate step Eq.~154! and then use Feynma
parameters to solve the parametric integrals left over.

Let us calculate

I 35E dmk1dmk2

@~k11k21K8!2#2~k1
2!2~k2

2!2
, ~158!

the two-loop sunset Feynman diagram of the two-point fu
tion in the isotropic case. Integrate first overk2. Take K9
5k11K8 and use the conditionk2•K950 to obtain

I 35
1

eL
S 11

eL

4 D E dmk1

$@~k11K8!2#2%eL/4~k1
2!2

. ~159!

Now using a Feynman parameter, integrating overk1, taking
m582eL , and employing the formula
10441
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E dm/2q

~q212k•q1m2!a

>
1

4

GS m

4 DGS a2
m

4 D ~m22k2!m/42aSm

G~a!
, ~160!

one can expressI 3 as

I 35

SmGS 22
eL

4 DGS 211
eL

2 D
4eLGS eL

4 D S 11
eL

4 D

3E
0

1

dx@~K82!2x~12x!#12eL/2x211eL/4. ~161!

We can rewrite this expression in terms of the integ
L3(K82) defined in the last section in the form

I 35

SmGS 22
eL

4 DGS 211
eL

2 D
4eLGS eL

4 D
3S 11

eL

4 D S 1

2
2

3eL

16
2

eL

2
L3~K82! D . ~162!

Expanding the Gamma functions and absorbingSm , it is
easy to show that

I 352
~K82!2

16eL
F11eLS 1

8
2L3~K82! D G . ~163!

At the symmetry point, this can be expressed as

I 352
1

16eL
S 11

9

8
eLD , ~164!

leading to

]I 3

]~K82!2U
SP3

5I 3852
1

16eL
S 11

5

8
eLD . ~165!

We can carry out the calculation of the other integrals us
the same reasoning. The three-loop integralI 5 is given by

I55E dmk1d
mk2d

mk3

@~k11k21K8!2#2@~k11k31K8!2#2~k1
2!2~k2

2!2~k3
2!2

,

~166!

where we took for convenienceK8→2K8. The integrals
over k2 andk3 are identical. Hence

I 55
1

eL
2 S 11

eL

2 D E dmk1

$@~k11K8!2#2%eL/2~k1
2!2

. ~167!

Employing the same techniques as in the calculation ofI 3 we
obtain
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I 552
~K82!2

12eL
2 F11eLS 1

4
2

3

2
L3~K82! D G . ~168!

At the symmetry point, the derivative ofI 5 with respect to
the external momenta is given by

]I 5

]~K82!2U
SP3

5I 5852
1

12eL
2 ~11eL!. ~169!

The two-loop graph contributing to the four-point function
the isotropic situation is

I 45E dmk1dmk2

~k1
2!2@~K82k1!2#2~k2

2!@~k12k21k38!2#2
, ~170!

whereK85k181k28 . It can be integrated using the orthogon
approximation following the same steps of the calculation
the anisotropic counterpart. We simply quote the result

I 4~K82!5
1

2eL
2 S 12

eL

4
@112L~K82!# D . ~171!

At the symmetry point it is given by

I 4~K82!5
1

2eL
2 S 11

3eL

4 D . ~172!

It is worthwhile to point out that the integralsI 3 and I 5
have not the same leading singularities as in the usualf4.
Therefore any attempt to use the counterterms of the u
f4 theory would lead to erroneous results for the critic
exponents in the isotropic case.

A recent calculation of the critical exponentshL4 andnL4
for the isotropic case was presented by Diehl and Shpot
fixed all the leading singularities equal to those appearing
the standardf4 theory.30 Moreover, they ‘‘choose’’ the fol-
lowing angular factor:

Fd5212dp2d/2

GS 52
d

2DG2S d

2
22D

G~d24!
. ~173!

If one setsd582eL , whenever the Feynman integral und
consideration presents a double pole ineL , this angular fac-
tor will give contribution to the simple poles ineL . This
happens for example in the two-loop integralsI 2

2 and I 4.
Then, their calculation of these critical exponents cannot
trusted, since furthereL

21 terms were not taken into accou
in the evaluation of those integrals. It seems that this fac
was used to reproduce the original critical exponentshL4 and
nL4 from the seminal paper.1

Here the geometric angular factor is determined simply
requiring that onlyI 2 has the same leading singularity as
the standardf4 theory. In that case, it is simply given by th
area of them-dimensional sphere.

We can now discuss the fixed points and critical exp
nents for arbitrarym-axial behavior. Note that in the isotro
pic case, onlyI 2 and I 4 have the same leading singularitie
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as in the standardf4 field theory. This will lead to a different
fixed point for the isotropic behavior, as will shown in
moment.

VI. CRITICAL EXPONENTS FOR THE ANISOTROPIC
BEHAVIORS

A. Dissipative approximation

The critical exponents were first calculated using this
proximation for the uniaxial case and the generalization w
soon presented for them-axial case. Details can be found i
Refs. 20 and 23. Here we shall simply quote the results.

The fixed point at two-loop order is given by

u* 5
6

81N
eLH 11eLF S 4~5N122!

~81N!2
21D @ i 2#m

2
~21N!

~81N!2G J . ~174!

It can be used to obtain the critical exponentshL2 andnL2:

hL25
1

2
eL

2 21N

~81N!2
1eL

3 ~21N!

~81N!2 F S 4~5N122!

~81N!2
2

1

2D @ i 2#m

1
1

82m
2

21N

~81N!2G , ~175!

nL25
1

2
1

1

4
eL

21N

81N
1

1

8

~21N!

~81N!3
$2~14N140!@ i 2#m

22~21N!1~81N!~31N!%eL
2 . ~176!

Using the scaling lawgL5nL2(22hL2), the exponentgL
is

gL511
1

2
eL

21N

81N
1

1

4

~21N!

~81N!3
$1218N1N2

14@ i 2#m~2017N!%eL
2 . ~177!

The evaluation of Feynman diagrams used to obtain th
results have some inconveniences as discussed before
introduction of diagram factors for the integralsI 38 and I 58
~which are divergent whenm58) is the main trouble.

The RG analysis by Mergulha˜o and Carneiro has bee
used in a attempt to extend the calculation for allm. Using
the fact that the quartic momenta scale includings and the
quadratic external momenta scales are equal Diehl and S
considered the anisotropic problem for generalm.31,32 In
their first work,31 they worked directly in position space
After that, using a hybrid approach, going to coordinate
momentum space using the free propagator~scaling func-
tion! in coordinate space to make the transition according
the necessity, they calculated the critical exponents usin
minimal subtraction procedure which sets the external qu
tic momenta scales to zero. However, there is a small
crepancy among their results for the critical exponents in
5-21
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casesm52,6 when compared with Mergulha˜o and Car-
neiro’s results using normalization conditions.32 For the an-
isotropic casesmÞd, the exponents are given in terms
integrals to be performed numerically. These numerical in
grals are meaningful solely if one separates the integra
limits on the variablev5s0xix' using the scaling and re
lated functions in the coordinate space representation in
integrand up to the maximum value ofuvu at uv0u59.3, and
replacing the asymptotic value of these functions for grea
values ofv. Note that as the quartic and quadratic exter
momenta are not independent,s cannotbe taken dimension
less as done by these authors following the invalid argum
by Mergulhão and Carneiro. Thus they erroneously co
cluded that the isotropic case could be encompassed in
expressions for the critical exponents in the limitd→m close
to 8.

Furthermore, this alternative semianalytical method
some drawbacks. First, setting the quadratic momenta s
to zero makes impossible the transition from the anisotro
to the isotropic case, since the quadratic momenta sca
absent in this case and renormalization-group transfor
tions are defined only through the variation of the qua
momenta scale. Second, unfortunately the expression o
critical exponents for the anisotropic case are rather cum
some, given in terms of integrals to be performed num
cally. Clearly the most convenient answer should pres
analytical coefficients for each order ineL , in analogy to the
usual standardf4 theory describing the Ising model.

The calculation of the critical exponents using the dis
pative approximation presented here has been criticized
Diehl and Shpot33 because of the constraint introduced in t
quartic loop momenta in higher loop Feynman integrals. D
spite of this criticism, this approximation is in good agre
ment with recent high-precision numerical data based
Monte Carlo simulations for the ANNNI model.22,34

B. Orthogonal approximation

We turn now our attention to the most general approxim
tion for calculating all the critical exponents. In order
check the results, we must calculate the critical expone
using two different renormalization schemes, namely
normalization conditions and minimal subtraction of dime
sional poles. It will be shown now that the critical indices a
the same irrespective of the use of either renormaliza
prescription.

1. Normalization conditions and critical exponents

We defined the bare coupling constants and renorma
tion functions as

uot5ut~11a1tut1a2tut
2!, ~178a!

Zf(t)511b2tut
21b3tut

3 , ~178b!

Z̄f2(t)511c1tut1c2tut
2 , ~178c!

where the constantsai t ,bi t ,ci t depend on Feynman inte
grals calculated at the convenient symmetry points. Depe
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ing on the symmetry point, we can calculate critical exp
nents corresponding to correlations perpendicular or para
to the competingm-dimensional subspace.

The beta functions and renormalization constants can
rewritten in terms of the constants defined above in the
lowing form:

bt52teLut@12a1tut12~a1t
2 2a2t!ut

2#, ~179a!

gf(t)52teLut@2b2tut1~3b3t22b2ta1t!ut
2#, ~179b!

ḡf2(t)5teLut@c1t1~2c2t2c1t
2 2a1tc1t!ut#. ~179c!

It is easy to obtain the coefficients above as functions
the integrals calculated at the symmetry points. They
given by

a1t5
N18

6eL
~11@ i 2#meL!, ~180a!

a2t5S N18

6eL
D 2

1S ~N18!2

18
@ i 2#m2

~3N114!

24 D 1

eL
,

~180b!

b2t52
~N12!

144eL
F11S 2@ i 2#m1

1

4D eLG , ~180c!

b3t52
~N12!~N18!

1296eL
2

1
~N12!~N18!

108eL
S 2

1

4
@ i 2#m1

1

48D ,

~180d!

c1t5
~N12!

6eL
~11@ i 2#meL!, ~180e!

c2t5
~N12!~N15!

36eL
2

1
~N12!

3eL
S ~N15!

3
@ i 2#m2

1

4D .

~180f!

This is enough to obtain the fixed points atO(eL
2). They are

defined bybt(ut* )50. All the integrals calculated at th
symmetry pointsSP1 andSP2 look the same. The factor o
t51,2 drops out at the fixed points, implying that th
renormalization-group transformations performed either o
k1 or k2 will flow to the same fixed point given by (u1*
5u2* [u* )

u* 5
6

81N
eLF11eL S 2@ i 2#m1

~9N142!

~81N!2 D G . ~181!

The surprising feature of this approximation is that the cr
cal exponents do not depend on@ i 2#m , as the ones obtaine
using the dissipative approximation. The functionsgf(1) and
ḡf2(1) can be written as
5-22



n
e

c-
a
e

-
r

a
po

al-

le,
enta

al
ith
has

he
per-
can

o-

er-
set-

a-
n.

he
the

er-
al-

her

tion

by
n-

e

RENORMALIZATION-GROUP PICTURE OF THE . . . PHYSICAL REVIEW B 67, 104415 ~2003!
gf(1)5
~N12!

72 F11S 2@ i 2#m1
1

4D eLGu1
2

2
~N12!~N18!

864
u1

3 , ~182!

ḡf2(1)5
~N12!

6
u1S 11@ i 2#meL2

1

2
u1D . ~183!

Replacing the value of the fixed point inside these equatio
using the relation among these functions and the critical
ponentshL2 andnL2, we find

hL25
1

2
eL

2 N12

~N18!2 F11eLS 6~3N114!

~N18!2
2

1

4D G , ~184!

nL25
1

2
1

~N12!

4~N18!
eL1

1

8

~N12!~N2123N160!

~N18!3
eL

2 .

~185!

Notice that the coefficient of each power ofeL is the same as
in the puref4 describing the Ising-like behavior. The redu
tion to them50 case is even simpler using this approxim
tion than the reduction to them50 case using the dissipativ
approximation. Since the functionsgf(2)52gf(1) and
ḡf2(2)52ḡf2(1) as a consequence ofb252b1, we immedi-
ately conclude that

hL45eL
2 ~N12!

~N18!2 F11eLS 6~3N114!

~N18!2
2

1

4D G , ~186!

nL45
1

4
1

~N12!

8~N18!
eL1

1

16

~N12!~N2123N160!

~N18!3
eL

2 .

~187!

Thus, atO(eL
3), the relationhL452hL2 is valid. At O(eL

2),
the relationnL45 1

2 nL2 is fulfilled. Thus the strong aniso
tropic scale invariance24 is exact to the perturbative orde
considered here. The other exponents can be read from
scaling relations. As discussed before, they are (aL25aL4
5aL , etc.!

gL511
~N12!

2~N18!
eL1

~N12!~N2122N152!

4~N18!3
eL

2 ,

~188!

aL5
~42N!

2~N18!
eL2

~N12!~N2130N156!

4~N18!3
eL

2 , ~189!

bL5
1

2
2

3

2~N18!
eL1

~N12!~2N11!

2~N18!3
eL

2 , ~190!

dL531eL1
~N2114N160!

2~N18!2
eL

2 . ~191!

Note that all these exponents reduce to the Ising-like c
whenm50. In order to check the correctness of these ex
10441
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nents, it is convenient to calculate them in another renorm
ization procedure, as we shall see next.

2. Minimal subtraction and critical exponents

Usually, in the minimal subtraction renormalization sca
one can have more than one coupling, but just one mom
scale, called in most textbooksm,36 and namedk here. The
dimensional redefinition performed for the quartic extern
momenta, allows the description of the anisotropic case w
two independent momenta scales. The coupling constant
two independent flows, induced byk1 andk2.

If we want to calculate the critical exponents along t
competition axes, we set the quadratic external momenta
pendicular to the competing subspace to zero. Thus one
introduce the quartic momenta scalek2 in order to compute
the normalization functions for arbitrary quartic external m
menta and demanding that the dimensional poles~logarith-
mic divergences in the momenta! be minimally subtracted.
On the other hand, the calculation of critical exponents p
pendicular to the competing axes can be performed by
ting the quartic external momenta to zero, introducingk1,
calculating the normalization functions for arbitrary qu
dratic external momenta and requiring minimal subtractio

In this section, we are not going to calculate explicitly t
critical exponents. Instead, we are going to calculate
fixed point as well as the functionsgf(t) and ḡf2(t) at the
fixed point. As these functions at the fixed point are univ
sal, they should be equal to the ones obtained using norm
ization conditions, leading to the same exponents in eit
renormalization scheme.

The dimensionless bare couplings and the renormaliza
functions are defined in minimal subtraction by

u0t5utS 11(
i 51

`

ai t~eL!ut
i D , ~192a!

Zf(t)511(
i 51

`

bi t~eL!ut
i , ~192b!

Z̄f2(t)511(
i 51

`

ci t~eL!ut
i . ~192c!

The renormalized vertices

GR(t)
(2) ~kt ,ut ,kt!5Zf(t)G (t)

(2)~kt ,u0t ,kt!, ~193a!

GR(t)
(4) ~ki t ,ut ,kt!5Zf(t)

2 G (t)
(4)~ki t ,u0t ,kt!, ~193b!

GR(t)
(2,1)~k1t ,k2t ,pt ;ut ,kt!

5Z̄f2(t)G (t)
(2,1)~k1t ,k2t ,pt ,u0t ,kt!, ~193c!

are finite wheneL→0, order by order inut . Note that the
external momenta into the bare vertices are mutiplied
kt

21 . Recall thatki15pi are the external momenta perpe
dicular to the competing axes, whereaski25ki8 are the exter-
nal momenta parallel to them-dimensional subspace. Th
coefficientsai t(eL), bi t(eL), and ci t(eL) are obtained by
5-23
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requiring that the poles ineL be minimally subtracted. The
bare vertices can now be expressed as

G (t)
(2)~kt ,u0t ,kt!5kt

2t~12B2tu0t
2 1B3tu0t

3 !, ~194a!

G (t)
(4)~ki t ,u0t ,kt!5kt

teu0t@12A2tu0t1~A2t
(1)1A2t

(2)!u0t
2 #,

~194b!

G (t)
(2,1)~k1t ,k2t ,pt ;u0t ,kt!512C1tu0t1~C2t

(1)1C2t
(2)!u0t

2 .

~194c!

Notice thatB2t is proportional to the integralI 3 andB3t is
proportional toI 5. Note that ift51, all the integrals should
be replaced by their values at zero quartic external mome
In caset52, those integrals are calculated at zero quadr
external momenta.

Explicitly, the coefficients are given by the following in
tegrals:

A1t5
~N18!

18 F I 2S k1t1k2t

kt
D

1I 2S k1t1k3t

kt
D1I 2S k2t1k3t

kt
D G , ~195a!

A2t
(1)5

~N216N120!

108 F I 2
2S k1t1k2t

kt
D

1I 2
2S k1t1k3t

kt
D1I 2

2S k2t1k3t

kt
D G , ~195b!

A2t
(2)5

~5N122!

54 F I 4S ki t

kt
D15 permutationsG , ~195c!

B2t5
~N12!

18
I 3S kt

kt
D , ~195d!

B3t5
~N12!~N18!

108
I 5S kt

kt
D , ~195e!

C1t5
N12

18 F I 2S k1t1k2t

kt
D1I 2S k1t1k3t

kt
D1I 2S k2t1k3t

kt
D G ,

~195f!

C2t
(1)5

~N12!2

108 F I 2
2S k1t1k2t

kt
D1I 2

2S k1t1k3t

kt
D

1I 2
2S k2t1k3t

kt
D G , ~195g!

C2t
(2)5

N12

36 F I 4S ki t

kt
D15 permutationsG . ~195h!

This is sufficient to determine the normalization consta
to the loop order desired. Requiring minimal subtraction
dimensional poles for the renormalized vertex parts quo
above, all the logarithmic integrals in the external mome
10441
ta.
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s
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appearing inI 2 , I 3 , I 4, andI 5 cancel each other. The resu
is that the normalization functions and coupling consta
can be expressed in the form

u0t5utF11
~N18!

6eL
ut1S ~N18!2

36eL
2

2
~3N114!

24eL
D ut

2G ,

~196a!

Zf(t)512
N12

144eL
ut

21S 2
~N12!~N18!

1296eL
2

1
~N12!~N18!

5184eL
D ut

3 , ~196b!

Z̄f2(t)511
N12

6eL
ut1S ~N12!~N15!

36eL
2

2
~N12!

24eL
D ut

2 .

~196c!

From the renormalization functions one can obtain

gf(t)5tS ~N12!

72
ut

22
~N12!~N18!

1728
ut

3D , ~197!

ḡf2(t)5t
~N12!

6
utS 12

1

2
utD . ~198!

The fixed points are defined bybt(ut* )50. Then, it is
found that the fixed points generated by renormalizati
group transformations over eitherk1 or k2 are the same and
is given by

ut* 5
6

81N
eLF11eL S ~9N142!

~81N!2 D G . ~199!

Substitution of this result into the renormalization co
stants will give at the fixed pointgf(t)* 5ht , whereht are
given by Eqs.~184! and ~186!. In addition, we have

ḡ* f2(t)5t
~N12!

~N18!
eLS 11

6~N13!

~N18!2
eLD . ~200!

This leads to the same exponentsnt given in Eqs.~185! and
~187!, obtained there via normalization conditions. Therefo
we have proven the consistency of this picture for the an
tropic Lifshitz critical behavior, since the critical indices a
independent of the renormalization procedure.

3. Discussion

The exponenthL2 obtained here agrees with the calcul
tion performed independently by Mukamel.37 Nevertheless,
the exponent hL4 presented here is at variance wi
Mukamel’s37 and, therefore with the result obtained by Hor
reich and Bruce38 since both works agree with each other.

From the numerical viewpoint, there is no sensitive d
ference among the results presented either using the dis
tive approximation or the orthogonal approximation for t
critical exponents perpendicular to the competition ax
5-24
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Within the two significative algorisms precision the exp
nents using either approximation are given byhL250.04 and
nL250.73.

The deviations start in the calculation ofgL25gL . In the
dissipative approximation theeL expansion yieldsgL

51.45. A numerical interpretation has been proposed
cently in order to improve the results obtained via theeL

expansion when the perturbative parametereL is greater than
1.22 There it was argued that the neglectedO(eL

3) could be
relevant to the calculation of, say,gL . The basic idea is to
replace the numerical values ofnL2 andhL2 directly into the
scaling laws in order to obtain the other critical exponents
this way one obtainsgL51.43,aL50.18, andbL50.20.

On the other hand, using theeL-expansion results fo
gL , aL , andbL obtained via the orthogonal approximatio
one findsgL51.42,aL50.05, andbL50.26. The numerica
‘‘ansatz’’ described above gives againgL51.43,aL50.18,
and bL50.20, sincehL2 and nL2 have the same numerica
values in either approximation.

It is worthy to compare our results with those obtained
the ANNNI model in three-dimensional space (eL51.5) rep-
resenting the uniaxial (m51) case using Monte Carlo
simulations.34,39

Monte Carlo renormalization-group simulations ha
been used to estimate critical exponents numerically for
uniaxial Lifshitz critical behavior for the ANNNI model
First, the cubic lattice studied hadN3N3N sites with fer-
romagnetic interactions,J1.0 between each spin at sit
(x,y,z) and its nearest neighbors, and next-nearest la
competing interactions along thez axis with couplingJ2
,0. Since there are two correlation lengths which gov
the critical regime around the Lifshitz point with differen
critical exponents, cubic cells with periodic boundary con
tions are not appropriate for the treatment of this anisotro
situation. Therefore the lattices are chosen to be of the f
N3N3L.

Kaski and Selke39 estimated some critical exponents f
N524, L54 when finite-size effects are neglected. T
quantity k52J2 /J1 measures the degree of competitio
The counterpart of the field-theoretic valued050 character-
izing the location of the Lifshitz critical point in this lattic
model corresponds to the valuekL50.27060.005.39 At the
value kL50.265 in units wherekB /J151 (kB is the Boltz-
mann constant! the critical temperature was determined
TL53.7760.02. At the valuekL50.265 the correlation
length critical exponent parallel to thez axis was found to be
nL450.3360.03. Since a small deviation in the critical tem
perature provokes a considerable deviation in the value
nL4, the determination of this critical exponent in this fas
ion is rather scarce in the Monte Carlo literature correspo
ing to the Lifshitz behavior. Nevertheless, this value is
good agreement with that obtained independently using
perturbative field-theoretical approach via the orthogonal
proximation at two-loop order, namelynL450.36. In addi-
tion, the Monte Carlo resultsbL50.1960.02 andgL51.40
60.06 were estimated independently.

Furthermore, a recent Monte Carlo simulation propo
makes use of the idea of generalized conformal invarianc
10441
-

n

r

e

rs

n

-
ic
m

.

of
-
-

ur
-

l
at

Lifshitz points.34 Those authors assume that the anisotro
exponent given byu5nL4 /nL2 is very close to the value12 .
This fact has been corroboratedexactly in our two-loop
analysis as explicited in the present paper. For large syst
in a lattice of the formN3N3L with 20<N<240 and 10
<N<100, the problem was considered taking into acco
the special finite-size effects originating from the anisotro
scaling at the Lifshitz point. The location of the Lifshit
point was found to be atkL50.27060.004 ~with critical
temperatureTL53.747560.0005). The following values for
the critical exponents were obtained independently:gL
51.3660.03,aL50.1860.02, and bL50.23860.005. In
particular, the Rushbrook relation is valid up to an error
0.8% which is rather impressive.

In some circumstances it is more accurate to estimate
dependently the critical exponents of interest than to us
scaling law. In spite of this, we can make a simple estim
of the exponentnL4 from our scaling laws using this high
precision Monte Carlo study. Neglecting the error bar in t
aL exponent it can be easily found from our hyperscali
law along the competing axis thatnL450.36. The exponents
hL2 andhL4 could also be simply estimated from the Mon
Carlo renormalization-group simulations above by using
scaling laws. Since they involve the exponentsnL2 andnL4
directly, this can cause further error propagation. Using
numerical value ofbL from the simulation along with the
value ofnL4 determined above we findhL450.31, which is
not good in comparison with oureL-expansion valuehL4
50.08.

This discussion shows that the results displayed here
consistent with the best numerical values available for
ANNNI model. Either the direct computation via theeL ex-
pansion using the orthogonal approximation or the numer
ansatz yield a rather good agreement with these Monte C
results, as shown for the exponentsaL andbL , whereas the
value for the exponentgL is not as good as in the Mont
Carlo simulations but still acceptable. Moreover, the agr
ment of the exponentnL4 with either Monte Carlo extrapo
lations is remarkable. Therefore our renormalization-gro
analysis together with the field-theoretical tools develop
here can be considered a reliable method to estimate cri
exponents for real physical systems.

VII. CRITICAL EXPONENTS FOR THE ISOTROPIC
SYSTEMS

As the isotropic behavior presents just one external m
menta scale, its analysis is simpler than the one used to
scribe the anisotropic behavior, where two external mome
scales are present. Besides, the only manner to attack
problem is to use the orthogonal approximation, for the d
sipative approximation does not work as it was discus
before.

A. Critical exponents in normalization conditions

The bare coupling constants and renormalization fu
tions are defined as
5-25
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u035u3~11a13u31a23u3
2!, ~201a!

Zf(3)511b23u3
21b33u3

3 , ~201b!

Z̄f2(3)511c13u31c23u3
2 , ~201c!

where the constantsai3 ,bi3 ,ci3 depend on Feynman inte
grals calculated at the symmetry point named hereafterSP3.
Only the external momenta scalek3 parallel to the compet-
ing m-dimensional subspace arises in this isotropic case

The beta function and renormalization constants are w
ten in terms of the constants defined above in the follow
manner:

b352eLu3@12a13u312~a13
2 2a23!u3

2#, ~202a!

gf(3)52eLu3@2b23u31~3b3322b23a13!u3
2#, ~202b!

ḡf2(3)5eLu3@c131~2c232c13
2 2a13c13!u3#. ~202c!

The coefficients above are obtained as functions of
integrals calculated at the symmetry point. They read

a135
N18

6eL
S 11

1

4
eLD , ~203a!

a235S N18

6eL
D 2

1S 2N2123N186

144eL
D , ~203b!

b2352
~N12!

288eL
S 11

5

8
eLD , ~203c!

b3352
~N12!~N18!

2592eL
2

2
~N12!~N18!

20736eL
, ~203d!

c135
~N12!

6eL
S 11

1

4
eLD , ~203e!

c235
~N12!~N15!

36eL
2

1
~N12!~2N17!

144eL
. ~203f!

The fixed point is defined byb3(u3* )50. Therefore it is
given by

u3* 5
6

81N
eLF11eL

1

2 S 2
1

2
1

~9N142!

~81N!2 D G . ~204!

Note that this fixed point is different from that appearing
the anisotropic behavior and cannot be obtained from it i
smooth way. The functionsgf(3) and ḡf2(3) can be written
as

gf(3)5
~N12!

144 S 11
5

8
eLDu3

22
~N12!~N18!

3456
u3

3 ,

~205!

ḡf2(3)5
~N12!

6
u3S 11

1

4
eL2

1

4
u3D . ~206!
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Replacing the value of the fixed point inside these equatio
using the relation among these functions and the critical
ponentshL4 andnL4, we find

hL45
1

4
eL

2 N12

~N18!2 F11eLS 3~3N114!

~N18!2
2

1

8D G , ~207!

nL45
1

4
1

~N12!

16~N18!
eL1

1

256

~N12!~N2123N160!

~N18!3
eL

2 .

~208!

These exponents are different from those originally obtain
in Ref. 1. The coefficient of theeL

2 term in the exponenthL4

is positive, consistent with its counterpart in the anisotro
cases as well as in the Ising-like case. One learns that
the quartic momenta is not sufficient to induce its change
sign. The exponentnL4 agrees atO(eL) with that presented
in Ref. 1 but naturally disagrees atO(eL

2), since it depends
on the value ofhL4 at O(eL

2). Besides, the critical indexhL4

is obtained atO(eL
3) here.

Now using the scaling relations derived for the isotrop
case we obtain immediately

gL4511
~N12!

4~N18!
eL1

~N12!~N2119N128!

64~N18!3
eL

2 , ~209!

aL45
~42N!

4~N18!
eL1

~N12!~N219N168!

32~N18!3
eL

2 , ~210!

bL45
1

2
2

3

4~N18!
eL2

~N12!~N21N1108!

64~N18!3
eL

2 , ~211!

dL4531
1

2
eL1

~N2114N160!

8~N18!2
eL

2 . ~212!

These exponents are obtained here atO(eL
2). Formerly the

lack of a set of scaling laws for the isotropic case did n
allow these findings. In order to check these results, let
analyze the situation using the minimal subtraction schem

B. Critical exponents in minimal subtraction

We proceed analogously as in the isotropic case. We
replace the subscriptt53 and keep in mind that the Feyn
man integrals are calculated in the isotropic cased5m close
to 8. Minimal subtraction of dimensional poles in the reno
malized vertexGR(3)

(4) implies that the bare dimensionles
coupling constant can be expressed in the form

u035u3F11
~N18!

6eL
u31S ~N18!2

36eL
2

2
~3N114!

48eL
D u3

2G .

~213!

The fixed point can be easily found to be

u3* 5
6

~N18!
eL1

9~3N114!

~N18!3
eL

2 . ~214!
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The normalization constants are given by

Zf(3)512
~N12!

288eL
u3

2

1S 2
~N12!~N18!

2592eL
2

1
~N12!~N18!

20736eL
D u3

3 , ~215!

Z̄f2(3)511
~N12!

6eL
u31S ~N12!~N15!

36eL
2

2
~N12!

48eL
D u3

2 .

~216!

The functionsgf(3) andḡf2(3) are given by the following
expressions:

gf(3)5
~N12!

144
u3

22
~N12!~N18!

6912
u3

3 , ~217a!

gf2(3)5
~N12!

6 S u32
1

4
u3

2D . ~217b!

Using these results the functiongf(3)* at the fixed point
yields the value ofhL4 as obtained in Eq.~207!, whereas the
function ḡf2(3)

* at the fixed point reads

ḡf2(3)
* 5

~N12!

~N18!
eLS 11

3~N13!

~N18!2
eLD , ~218!

which is the same as that obtained in the fixed point us
normalization conditions and leads to the same critical ex
nent nL4 from Eq. ~208! as the reader is invited to chec
Therefore the complete equivalence between the two re
malization schemes is assured.

Notice that the critical exponenthL4 for the isotropic case
is different from the original result of Ref. 1. Since we ha
checked our results using two distinct renormalizat
schemes as shown above, the critical indices presente
those authors should be checked using more than one re
malization procedure in order to clarify this discrepancy.

Unfortunately, there is no numerical work in the literatu
either using high-temperature series expansion or Mo
Carlo renormalization-group simulations to compare w
our findings whenm5d close to 8. The most recent Mont
Carlo results34 were devised to treat only anisotropic sy
tems. It would be convenient to perform a Monte Ca
analysis for this isotropic situation as long as a good al
rithm can be devised for this case. Assuming that suc
good algorithm can be defined, a possibility is to construc
seven-dimensional isotropic lattice in order to obtain the
ponents and to compare with our perturbative analysis w
eL51. This situation would be the analog to that in whi
the simulations for the Ising model exponents in a thr
dimensional lattice can be compared with perturbative fi
theory results whene51. Of course, other alternatives ca
be imagined, but this one would be particularly worthwhi
10441
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a
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VIII. CONCLUSIONS AND PERSPECTIVES

All the critical exponents for them-axial Lifshitz critical
behavior for the anisotropic (1<m<d21) and the isotropic
(d5m close to 8! cases are explicitly derived atO(eL

2). We
have shown that up to the loop order considered in this w
strong anisotropic scaling theory holds since the relati
nL45 1

2 nL2 andhL452hL2 are exact. The exponents asso
ated to critical correlations perpendicular to the compet
axes easily reduces to the Ising-like exponents whenm50,
the only difference being the perturbation parametereL re-
placing the usuale in noncompeting systems. These relatio
imply that the scaling laws obtained here using two indep
dent renormalization-group transformations reduce to
ones previously found by Hornreich, Luban, and Shtrikma1

Moreover, we show that all the exponents for the isotro
behavior are obtained explicitly through the use of the sc
ing relations presented.22 Besides, they are shown explicitl
not to be recoverable from the anisotropic situation in
limit d→m. The structure of the Feynman integrals in t
isotropic case indicates that it deserves a special treatm
when compared with the anisotropic situation as clarified
this paper.

The results for the calculation of arbitrary loop Feynm
integrals are obtained by demanding that they are homo
neous functions of arbitrary external momenta. Even thou
the calculations are carried out in a given order in pertur
tion theory, the author is convinced, however, that the c
clusions hold to all orders. This is indicated by the followin
fact. The Feynman integrals possess the same homoge
degree in the external quadratic momentap and quartic mo-
mentak8 through the combination (p21k84) as well as the
same coefficient even for the three-loop integralI 5. One just
has to show that higher loop contributions for the renorm
ized vertex partGR

(4) present the same property. In this cas
the coefficients of the power series of the bare couplingsu0t
in terms of the renormalized onesut will be the same. Con-
sequently, the global factor of 2 in the beta functionb2 char-
acterizing the criticality along the competing axes will a
ways drop out at the fixed point yieldingu2* 5u1* . The
definite answer has to wait until these higher loop contrib
tions are calculated.

The simple analytical expressions for each coefficient
the eL expansion of the critical indices are rather encour
ing to proceed the evaluation of other universal amounts,
critical amplitudes.35 It would be interesting to compar
some experimental results available for MnP like t
specific-heat critical amplitude ratio17 with theoretical calcu-
lations within the context of aneL expansion using the tech
niques described in the present work. In addition, a thoro
RG analysis to prove that all amplitude ratios are inde
universal for the Lifshitz critical behavior was not done ye
Actually, the idea presented in this work might be suitable
demonstrate the universal character of the above-mentio
critical ratios and calculate all of them.

Other problems can be pursued using the present met
The treatment of finite-size effects for the Lifshitz behav
can be devised in analogy to the noncompeting situation.40,41

The systems may be finite~or semi-infinite! along one~or
5-27
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several! of their dimensions, but they are of infinite extent
the remaining directions. Examples include systems wh
are finite in all directions, such as a~hyper! cube of sizeL,
and systems which are of infinite size ind85d21 dimen-
sions but are either of finite thicknessL along the remaining
direction (d-dimensional layered geometry! or of a semi-
infinite extension. The presence of geometrical restricti
on the domain of systems also requires the introduction
boundary conditions~periodic, antiperiodic, Dirichlet, and
Neumann! satisfied by the order parameter on the surfac
In particular, the validity limits of theeL expansion for these
systems and the approach to bulk criticality in a layered
ometry can be studied.42

Recently, typical surface phenomena in noncompet
systems were generalized to competing systems using M
Carlo simulations for the ANNNI model.43 However, as far
as the Lifshitz behavior is concerned, a theoretical desc
tion of these systems is still lacking. The field-theoretic
framework just presented might be useful to address
problem.

The quest towards a generalization of the Lifshitz univ
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