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Field-theoretic renormalization-group methods are developed to describe in a unified fashion the critical
exponents of am-fold Lifshitz point at the two-loop order in the anisotropim# d) and isotropic (h=d
close to 8 situations. The general theory is illustrated for faector * model describing @-dimensional
system. A new regularization and renormalization procedure is presented for both types of Lifshitz behavior.
The anisotropic cases are formulated with two independent renormalization-group transformations. The de-
scription of the isotropic behavior requires only one type of renormalization-group transformation. We point
out the conceptual advantages implicit in this picture and show how this framework is related to other previous
renormalization-group treatments for the Lifshitz problem. The Feynman diagrams of arbitrary loop order can
be performed analytically provided these integrals are considered to be homogeneous functions of the external
momenta scales. The anisotropic universality cld$sd, m) reduces easily to the Ising-likeN( d) when
m=0. We show that the isotropic universality clads$, (m) whenm s close to 8 cannot be obtained from the
anisotropic one in the limitl—m near 8. The exponents for the uniaxial case3, N=m=1 are in good
agreement with recent Monte Carlo simulations for the axial next-nearest-neighbor Ising model.
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. INTRODUCTION shitz behavior which was obtained from theorefitat® as
well as experimentaf investigations.

Formulated in 1975 by Hornreich, Luban, and Shtrikman This model can be generalized by allowing the next-
in the context of magnetic systerh$,the Lifshitz critical ~ nearest-neighbor antiferromagnetic couplings alondirec-
behavior has encountered applications in many real physicdions, which represents a typicat-axial Lifshitz critical be-
systems. Some examples include high- super- havior. In casem#d, the system naturally admits two
conductors® ferroelectric liquid crystal§;® uniaxial independent correlation lengths, namély, associated to
ferroelectrics’ some types of polymer®; 1% and magnetic spatial directions perpendicular to the competing axes, and
materials'*~’In particular, the confluence of a disordered, aé 4 associated to directions parallel to thedimensional
uniformly ordered, and a modulated ordered phase charactegompetition subspace. At the Lifshitz point these two corre-
izes the special critical point associated with this critical bedation lengths become related. In the isotropic behawmor
havior, known as the Lifshitz point. The modulated phase=d close to 8, there is only one correlation length.
possesses a fixed equilibrium wave vector which vanishes The field-theoretical representation of this model can be
continuously as the Lifshitz point is approached. When theexpressed in terms of a modifiedg* theory containing
components of this wave vector spanratlimensional sub- higher derivative terms along the-competing directions. It
space, the system under consideration displays-éoid Lif- is given by the following bare Lagrangian density:
shitz critical behavior. When the order parameter Ra®m-
ponents, and the space dimension of the system, ithe 1 1
Lifshitz universality class is characterized by the set L= §|V§1¢0|2+§|V(d_m)¢0|2
(N, d, m). Whetherm#d, the system presents the aniso-
tropic Lifshitz critical behavior. Otherwise, the=d case 1 1 1
denotes the isotropic Lifshitz critical behavior. The isotropic + 50§|Vm¢0|2+ §t0¢§+ E)\Oqsé. (1)
casem=d near 8 can be treated, using similar theoretical '
tools, along the same lines of the anisotropic case. Thus we
shall focus our attention on these two types of critical behav- The field theory treatment turns out to be simpler at the
ior. Lifshitz point, whereT=T_ and §,=0. In particular, the

In magnetic systems, the uniaxiahE& 1) Lifshitz behav- functional-integral representation permits, at the Lifshitz
ior can be described by an axial next-nearest-neighbor Isingoint, the decoupling of the momentum integrals parallel and
(ANNNI) model*®!°® which consists of a spin-1/2 Ising perpendicular to the competing axes. It would be interesting
model on a cubic lattice with nearest-neighbor interactions a® find out whether this condition could make possible the
well as next-nearest-neighbor antiferromagnetic couplinggvaluation of Feynman diagrams to any desired order in a
along one single lattice axis, the competing axis. The comperturbative expansion. Then, the critical properties of the
petition between the ferro- and antiferromagnetic interacsystem, like critical exponents, amplitude ratios, and other
tions in this system provokes a different critical behavioruniversal amounts could be obtained analytically utilizing
when compared to the pure Ising-like behavior. The magthe renormalization-group analysis along wéhexpansion
netic compound MnP has been studied extensively in recemhethods. We shall consider this problem from a rather dif-
years, confirming the appearance of the uniaxiad=(1) Lif- ferent perspective, which allows a solution in perturbation
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theory, and which provides an analytic tool that may proveanisotropic situation without the need of introducing other
useful in order to figure out the Lifshitz critical behavior in dimensionful constants into the analysis.
its complete generality. Section Il contains the discussion of the different renor-
In this work we present a detailed construction of thismalization analysis for the anisotropic case in directions per-
renormalization-group description for the anisotropic andpendicular to the competition axes, as well as the different
isotropic cases. This approach was inspired by an earlier sugenormalization-group description along directions parallel
gestion made by Wilsdt in order to obtain the critical ex- to the competing subspace.
ponents corresponding to correlations parallel or perpendicu- The renormalization-group treatment for the isotropic
lar to the competing axes in a manifestly independentase is the subject of Sec. IV. The scaling laws are then
manner. This framework was set forth in a previous paper. obtained for this type of critical behavior. Since the scaling
We discuss the fundamental issues concerning thigelations are different from those appearing in the anisotropic
renormalization-grougRG) analysis leading to interesting behavior, we point out that the isotropic and anisotropic be-
scaling relations to the isotropic case, whereas in the anisdyaviors are independent and cannot be obtained from each
tropic case it is shown that these relations are equivalent tother.
previous scaling laws already derived. The evaluation of Feynman integrals is presented in Sec.
In the anisotropic behaviors, the existence of the correlaV. We perform the one-, two-, and three-loop integrals using
tion lengthsé, , and £, , induces two independent character- two different approximations. The first approximation intro-
istic external momenta scales which in turn are used to fixuced in Refs. 20 and 23 is suitable to perform two- and
the renormalized field theory in the infrared regime. Sincethree-loop integrals in order to obtain the critical exponents
the theory is massless in the Lifshitz critical temperafyre ~ perpendicular to the competing axes, since it preserves the
the renormalized vertex parts have to be defined at nonvaomogeneity of the Feynman integrals in the external mo-
ishing external momenta scales. We denotecpythe exter- menta perpendicular to the competing ake&n the other
nal momenta scale along the quadrationcompeting (d  hand, a different approximation is presented here which pre-
—m) directions, whereag, is the external momenta scale Serves the homogeneity of the Feynman diagrams not only in
along the quartic(competing m-dimensional subspace. the external momenta perpendicular to the competing axes,
These external momenta scales originate two independeRtit also in the external momenta parallel to the competing
renormalization-group flows in the parameter space. Thé&rdimensional subspace. Using a simple condition in the
renormalized coupling constants flow to two independentompeting subspace, we calculated these integrals for arbi-
fixed points, depending whether the renormalization grougrary external momenta.
transformation is ovek, or «,. At the loop order considered ~ In Sec. VI we calculate all the critical exponents for the
here they are shown to be the same, but it is suggested thahisotropic case using the scaling relations derived in Sec.
this feature is preserved when the analysis is carried out folll. It would be interesting to obtain the critical exponents
arbitrary loops. On the other hand, the isotropic case is chat!Sing more than one renormalization condition in order to
acterized solely by the correlation length,. It induces only ~ check their correctness. This is done in this section and in the

one characteristic external momenta scale, denoted here fgllowing one. We also discuss our results comparing with

k3 Which is used to fix the renormalized vertex parts. alternative field-theoretic treatments and different Monte
Moreover, we calculate all the critical exponents at leasCarlo simulations ind=3 in the context of the ANNNI

at O(€?) using a different technique of solving higher-loop model (m=1). _

Feynman diagrams inspired in this renormalization-group Section VII pr_esents_the calcul_a_ltl_on of all the critical ex-

program. Our analysis is performed entirely in momentumoone_”ts f_or the |sotro_p|c case utilizing the scaling relations

space, which is particularly suitable to tackle this problemoPtained in Sec. IV. Finally, the conclusions are presented in

The Feynman diagrams are carried out with the help of &€c. VIII and fur@her applications of the method described in

different approximation in the quartic momenta subspacethis work are pointed out.

which is the most general approximation consistent with ho-

mogeneity. We will show how a former two-loop approxima- | NORMALIZATION CONDITIONS FOR THE LIFSHITZ

tion presented garller in the calculatlo_n of the critical expo- CRITICAL BEHAVIOR

nents perpendicular to the competing &Xé3 can be

understood in terms of those calculated here using this more From the bare Lagrangian given in Ed) we can define

elaborate procedure. It is also shown that the relations amongnormalized quantities in terms of bare ones through the use

the correlation length exponents parallel and perpendicular tof renormalization constants, or renormalization functions.

the competing axes, namely ;= v, ,, and the anomalous Here we shall follow closely the standaxa* field-theoretic

dimensions of the fieldsy, ,= 37,4, are exact at the loop approach. The interested reader should consult, for example,

order considered in the present paper. This confirms thémit's book’® or the original work by Brein, Le Guillou,

strong anisotropic scale invariance predicted before for thiend Zinn-Justirt/ These renormalization functions are fixed

sort of systent? by the specification of the renormalization scheme used in

In Sec. Il we set the formalism by defining the normaliza-order to define the renormalized theory. The renormalization
tion conditions for them-axial Lifshitz critical behavior for ~ functions are defined in terms of the renormalized reduced
the anisotropic and isotropic criticalities. We show that twotemperature and order parametaragnetization in the con-
sets of normalization conditions can naturally describe theext of magnetic systemsas t=Z;21tO,M =Z;1’2¢>0, and
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will depend on Feynman integrals. If the theory is renormal- F(Rz’l)(ki ks k' 90)[sp=1, (3d)
ized at the critical temperature=€0), the infrared diver-

gences instruct us to renormalize the theory in nonvanishing 02k’ g,)|yr4— 4=0. (3¢
external momenta. Therefore the renormalization constants 2

at the critical temperatut&, will depend on the external Note that, in principle, these two systems of normalization

momenta scales involved in the renormalization program. conditions seem to provide two renormalized coupling con-

. We first consider the anisotropic behaviors. The Feynmariants which arise as a consequence of the two independent
integrals depend on two external momenta scales. We fing,\y in the renormalization momenta scales and k,. Ap-
convenient to define two sets of normalization CO”Q't'O”Sparently the whole description works with two coupling con-
appropriate to calculate the critical exponents associated Qs namelg; = u; («2) 2 [and\ ; = Ugy( ) /2] associ-

correlations either perpendicular to or along th? competingited to the flow in the momenta components perpendicular to
axes?” These external momenta scales were defined above e mdimensional axes. as well a5 = U,(x2) /2 [and A
, =Ual k3 2

be x; and «,, respectively. 4 . .
In order to make the calculation easier wherever more_ UgA 3) */2] associated 1o the flow in the momenta com-

than one momentum remains finite. we choose the momenﬁonems parallel to therdimensional axes. Nevertheless, as
at a symmetry point(SP. The no,rmalization conditions will be shown, the situation simplifies at the fixed point: both

which yield the critical exponents associated to correlation ou;:l)llngd§ V\f['.” ﬂ?r\:v ttf[)h.the sa;nge f'Xe.d IE)'OI:L lat two—:oolp
perpendicular to the competition axes are given by first set v Indicating that this must be so in higher-loop calcula-
ting all the external momenta along the competition axes tc}mns. The conceptual advantage is to treat independently the

zero (k,=0). Letp; be the external momenta perpendicular !?.W in the mqmetr;]ta al?ng and [?_erpendmtulatr tov\t/frl]et(r:]omtphe-
to the competition axes and associated to a generic Onél_l?]nbaxdesnusilrr:g e:ei ;N?]tcr?]u%n% icons an sr i er ;lrm'sé
particle irreduciblg1Pl) vertex part. Then, the external mo- can be done in a consiste anner s a separate probiem, to

T be tackled in Sec. VI.
menta along the quadratic directions are choserp;ap; o . . .
=(K§/4)(45”—1). This leads to Iﬁi+pj)2=f<i for i#]. The normalization conditions for the isotropic casa (

. A =d near 8 can be defined analogously as those parallel to
The momentum scale of the two-point function is fixed h o for th . . Th
through p?=x2=1. Thus we have the following set of t e.co.mpetmon axes for the an|§otrop|c case. The symmetry
renormalized iPI \}ertex arts: point is chosen as follows. Ik is the external momenta
parts. along the competition axes, the external momenta along the
r#0g;)=0, (28 quartic directions are chosen &s$-k/=(x3/4)(45;—1).
This implies that ((i’+kj’)2=/<§ for i#j. The momentum

ar'{(p,gy) scale of the two-point function is fixed througki*= 3

ap? , 2: L @) _ 1. Then we have the following conditions:
pi=«]
r(0gs)=0, (43
I'P(pi.91)sp=01, (209 R :
@)/
Fl(?z’l)(plap21p1gl)|57|3:11 (Zd) ﬂFR (k ’93) =1 (4b)
ak/4 !
FRA(p.g1)]p2=2=0. (29 k=g
Recall that the symmetry point implies that the insertion mo- @k’ _ 4c
mentum in Eq(2d) satisfiesp?=(p;+ p,)?= 3. R (K 13)lse=0s, (40
The suitable normalization conditions to dealing with ex- rey Kk k' —1 4
ponents along the competition axes are defined in a similar R(KLke K g3) o= 1, (“4d
fashion. First, one.sfets all the external_momenta, p.erpend|cu- F&O’Z)(k’,gg)Ikm:,ﬁ:O. (4¢)
lar to the competition axes to zera{=0). If ki is the 3

external momenta along the competition axes associated toNotice that we have not mentioned the quadratic momenta
generic 1PI vertex part, the external momenta along the quakcalex, in the discussion of the isotropic behavior, for it is
tic directions are chosen as -ki =(x5/4)(48;—1). This  absent in this situation due to the Lifshitz conditiég=0.
implies that ((i’+kj’)2=;<§ for i+ j. The momentum scale of We can write all the renormalization functions and bare
the two-point function is fixed througlk’2=K§=1. The coupling constants in terms of the dimensionless couplings.
analogous set of renormalized 1P| vertex parts is given by Let the labelr=1,2,3 refer to the different external momenta
scales involved in the general Lifshitz critical behavior, as

F(RZ)(O,gz) =0, (3@ discussed above for different normalization conditions in the
anisotropic and isotropic cases. By expanding the dimension-
ar@(k’,g,) . o less bare coupling constants,, and the renormalization
ok’ 4_ ' (30) functions Z ;) ,Z y2(=Z (1 Zp2(» I terms of the dimen-
k4= sionless renormalized couplings up to two-loop order as
l—‘(R4)(k|’ 192)|SP: J2., (SC) uOT:uT(l+alTuT+ aZTufzr)’ (sa)
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Z¢(T):1+ b27U72.+ bsTUi, (5b)

Z¢2(T)=1+Cl7.u7.+ CzTui (50)

along with dimensional regularization will be sufficient to
determine all the critical exponents.

IIl. RENORMALIZATION-GROUP ANALYSIS
FOR THE ANISOTROPIC CASE

Given one bare theory, described by the Lagrandign

PHYSICAL REVIEW B 67, 104415(2003

N 0 -
BT(gT’KT):(KT g ) ! (ga)
oK, A A
(9an¢(7)
y¢(7)(ngK7)_(KTT . A! (9b)
(7an¢,2(,.)
7¢2(T)(971K7)_<K7 &KT R (90)

are functions ofy, and . only, though they are functions of

different versions of the renormalized vertices can be conA , implicitly. Notice thatI'"?) is different from all other
structed out of the original bare vertex parts. We shall exvertices since the RG equation presents an inhomogeneous

plore now the freedom left in the definition of the renormal-
ization momenta scaleg; and «, in the critical theory
explained in the last section for the anisotropic case.

term on the left-hand side due to its additive renormalization.
We shall treat this additively renormalized vertex part later
on. The above expressions correspond to the liknit- oo,

We start by considering the renormalization-group analyWhich are naturally finite, even X, Z,, andZ ., di-
sis along directions perpendicular to the competing axes. Therge at this limit. It is worth expressing all of these quanti-
renormalized theory is defined with only one quadratic nonlies in terms of dimensionless bare and renormalized cou-

vanishing external momenta scatg. Let A, be the associ-
ated cutoff corresponding to this subspace. The renormaliz
vertex parts for this case are defined in terms of the normal
ization constants and the bare vertices as

I‘(R'\(‘;'I)_)(pi(T) ,Qi(r) 197, K7)
_ SN2 L NL
_Z¢>(r)z¢2(r)[r( )(pi(f) Qi N A L)

— 0O A5 Q) Qe A Az -2l (®)

e

pling constants. We now turn our attention to discuss the
(aentral issue of the new dimensional considerations which
will be useful for the subsequent dimensional analysis.
Consider the volume element in momentum space for cal-
culating an arbitrary Feynman integral. It is given by
d?~Mqd™k, whereq represents ad— m)-dimensional vec-
tor perpendicular to the competing axes andienotes an
m-dimensional vector along the competing subspace, respec-
tively. The Lifshitz conditiond,=0 suppresses the quadratic
part of the momentum along the competition axes. Neverthe-
less, there is still a contribution from the quartic momenta

wherep;; (i=1,... N) are the external momenta associ- contained in the inverse criticalt£0) free propagator

ated to the vertex functionEQ(‘;P with N external legs and  G{?~*(qg,k) = (k?)?+g>. In order to be dimensionally con-

Qi(n (i=1,...L) are the external momenta associated tosistent, the canonical dimension in mass units of both terms

the L insertions of¢? operators. We emphasize that,) (i

in the propagator should be equal. There are two ways out of

=1,... N) refers to the external momenta componentsthis outstanding situation.

along the @l —m)-dimensional subspace perpendicular to the

competition axes, wheregg,) are the external momenta
components along therdimensional competing subspace.
From our normalization conditions, it should be kept in mind
that all quantities presenting a subscript 1(2) arecalcu-
lated at zero external momenta components pargidksipen-

diculan to the competing axes and are characterized by thf:I

momenta scaléc,(«,). From the last sectionjo,, Zy,
and Z,2 are represented as power seriesun. The

The former idea, inspired in Ref. 1, is to introduce a di-
mensionful constant- in front of the first term in the La-
grangian(1), along with its renormalization functiod,,, as
was done by Mergulfmand Carneiré® This idea implies
that the momenta scales parallel or perpendicular to the com-
petition directions play the same role in this discussion and
there is only one coupling constant. Denoting the compo-
ents of the quartic external momenta with a subseriphd
the quadratic components with a subscriit they set the
following renormalization conditions:

renormalization-group invariance of the bare vertex with the

momenta scal& . implies that

J
7 —N25—L T (NL)_ (N,L)y1—
(KTaKT L [Z4(7"Z g2 (Tr(n’ — On00L 2L (7)) 1=0.
(7
This in turn yields the following RG equations:
J —0 1
KT&_’(T_I_[)’T&_QT— §N7¢(T)(971KT)+L7¢2(T)(971KT)
XTR (P 1 Qig) N i f) = B08 ol 2) LB,
€S

0,2)

(- and

whereB,, is a constant used to renormalik

ar@(k,—k,o,9,x)

=1
2 7
z?kﬁ kfg:Kz
ar2k,—k,o,9,x)
2 =0,
aka ok = k2

F(R4)(kivoigvK)|SPa:gi (10)

Fg'l)(kl,kz,p,U,g,K) SPaz 1!

F&O’Z)(pi_ pYO-’QVK)|0'pi=K2:0’

where the SP meanso/%; k;,= [ (45, —1)/4] and was
chosen at zero quadratic external momenta. This choice of
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renormalization points makes the renormalization constants As usual, the exponent d¥ in the above relations is

o independent as claimed by those autt@idowever,o is  called the canonical dimension of the quantity. If the physical
still a relevant lengtlimomentum scale and this fact should quantityO has canonical dimensidiO]= M2, then under a

be reflected on its dependence in some normalization corransformation of the length scale associatedvite> oM it
stants. Therefore starting with a dimensiontalparameter  implies thatO=«*O. Therefore all dimensionfull param-
and making it dimensionless in the end of the calculation agters are transformed under a transformation in the lengths
they chose does not seem to be consistent, since the quarfigr external momenja Hence it is useful to describe the

and quadratic momenta scales play the same role and haygqry in terms of dimensionless parameters. As the coupling
the same canonical dimensions in this approach. Notice that, «onts are associated B5@. we can write 9
! T

the last four of these equations together with the critical_ 2my e /2 _ 2m e /2 _
theory condition on the renormalized two-point vertex part:uT(KrT) , and N =Uo(k7)V%, where e =4+m/2
naturally defines an independent set of normalization condi- ~* . . : '

tions along the competing axes. In fact, if the quartic mo- In terms of the dimensionless couplings defined above,

menta is redefined througfkizk,’;‘ such thatr is absorbed  the renormalization-group equation can be rewritten as

in the new quartic momenta, this implies that/%k; k;, P s 1
=ki{ K, = k'?[ (45— 1)/4] with k' # k. Then, one has five e(KT B0~ 3NVan(UD) +Lyge(n(us) gy
normalization conditions along the quartic subspace as d oK, u-

scribed in the last section. B ome 2
On the other hand, the first of these equations is calcu- = Ono0L ok, T BAU,), (11)

lated atcrki:O. Intuitively it should be Complemented with and from now on we can forget about the CUtQﬁ$, bear-

four more normalization conditions with nonvanishing exter-ing in mind, however, that they should be kept fixed in all

nal quadratic momenta perpendicular to the competing substages of the analysis. The functions

space. This is what was done in the last section for directions

perpendicular to the competing axes. Thus if we have two au,

different momenta scales and«’ and setting them equal is Br= KTaKT ' (123
equivalent to have Mergullbaand Carneiro’s renormaliza-

tion conditions, with five more normalization conditions IINZ 4

along the quadratic directions. Thus if one tradedy an Yo (Un) =B (12b
independent external quartic momenta scale it still re- T

tains the five extra normalization conditions which in their 9INZ

approach are undefined. Nevertheless, they recovered the y¢z(f)(u,)=—ﬁf—¢(7) (129

former anisotropic scaling relatichsising this reasoning. o,

They used their symmetry point in order to treat the casegre calculated at fixed bare coupling. The 3. functions

— i i 9 . . . .
m=2,6 in the context of am_expansiorf’ can be cast in a more useful form in terms of dimensionless
There is an alternative based in a recently propose@uantities, namely,

method which does not use the dimensional constahtt
allows the realization of a dimensional redefinition of the (alnu07>‘1

momenta components along the quartic competing B:=—Te (13

subspacé? This later view inspires the subsequent discus-

sion and shall be used throughout this paper.[ﬁ@h M be Note that the beta function corresponding_ to the flowcin .
the mass dimension of the quadratic momenta. The consi§ias & factor of 2 compared to that associated to the flow in
tency of the Lagrangian densitg) on dimensional grounds X1- As usual, they are power seriesun, with coefficients

requires thafk]=M™2 This is equivalent to performing a which depend ore, . Let us analyze the simplest cake

dimensional redefinition of the momenta along the compet-zo' The solution can be expressed in terms of characteris-

. Lo S . tics. The characteristic equation is given by two independent
INg axes, as Iong as the cond|t|cﬁ@—9mls iausﬂed. The flows in the coupling constants induced by the flows in the
volume element in momentum spadé Mqd™k has mass

dimension [d® Mqd™k]=MY"™2, The dimension of the momenta scale; and, i.e.,

field is obtained by requiring that the volume integral of the du.(p,)

Lagrangian densityl) is dimensionless in mass units. It fol- pr————=Blu,(p,)], (14)
lows that[ ¢]= M (2@~ (m2)-1, dp-

The N-point Green function can be expressed dimensionwith the initial conditionu.(p,=1)=u.. Using the charac-
ally as[GM(xy, ... xn)]=[¢]N=MN2@"M2"N The as- teristic equation fou, we can change variables from a vari-
sociated one particle irreducible (1Pl)  vertex ablex. to u,, through the relation
parts have dimension in mass unit§TMN(x))]
=[GN(x)[V] NG (x,)] N=MmN2d=m2+N " |n mo- pr dx, [uden) f(u,)
mentum space, the Fourier transform is obtained by integrat- Jl f(uT(xT))X—T = Ju B.(u,)
ing over each one of the coordinates. Removing the momen- T
tum conserving & function, we have [T™N(k)]  Thus small values ok, in the left-hand side correspond to
= MNF(d=m2)=N(d=m/2)/2 the neighborhood of the zeros @ in the right-hand side.

(15
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For the anisotropic case, the solution to the renormalization- It is interesting to analyze the vertex functions at the in-
group equation reflects the two-parameter group of invarifrared fixed points, since this will determine the scaling laws

ance, and can be expressed in the form and the critical exponents associated to correlations perpen-
dicular and parallel to then-dimensional competing sub-
N (s dx s Th lysi b ied out b ing that th
(N) (L. _ N T pace. The analysis can be carried out by assuming that there
Tr(n (ki Uz 1c7) exp( ZL Yo(lUs(ps)] X, are two independent fixed points, defined By(u*)=0.

) The renormalization-group equation leads to a simple scaling
XT kK Ups),kp;).  (16)  property at the fixed points. It implies the following solution
) ) ) ) ) ~to the vertex functions:
From our dimensional analysis, the dimensional redefini-

tion of the momenta along the competing axes results in anr(N) %\ 1IN+ (d—m/2)=N(d—m/2)/2] - (N/2)y 4y (u¥)
effective space dimension for the anisotropic case, ick., ( R (P U7 KD =P,

—m/2). Thus we find the following behavior for the 1PI <TMN (Koo U* LK) 20
vertex partd’ &) under flows in the external momenta: ROV e 2 Br)

For N=2, we have
F(RI\(J)T)(kai(T) U, k)= pTINT(d=m2)-N(d-m2)12]
27—y pn(UF
N (oo dx. P& (p ke U k) =p27 U@ (ke u% k).
xexp(—g fl Yalu-p)1 ) @)
,

™) The quantityy,,(uy) can be interpreted in the following
XLy Kir) Un(pr) K2p7)- 17 way. If the field theory is free, a change in the external mo-
. ) . men le will pr hange in the free veit&¥®
It is helpful to present the explicit expressions for vertex enta scale produce a change in the free eﬂé}‘;

: : hich scales with the canonical dimension of the vertex, that
parts calculated either at zero quartic external momenta or i’l
vanishing quadratic external momenta. The renormalize

vertex parts calculated at zero quartic external momenta is d—m/2)—N(d—m/2)/

; bp d FE’;‘))O(Prki(r))IP:[NH m2)mNd=m2) Z]Fgl;‘))(ki(‘r))-
given by (22
qu’\(')l)(mki(l) Up,kp)=py (A7 mA N m2)/2 We then define the dimension of the figfdas

N (r1 dx N _ 2[(d=m2)=Ndy ] (N
Xex%_gjl 7¢(1)[u1(p1)]x_11) FEl))(ka|(T))_pT ‘/’()I‘El))(k|), (23)

N) such that in the free theo@{)b=(d—m/2)/2—1 is the naive
XTryKiy U(p1),k1p1)- - (18 dimension of the field. At the fixed point, the naive dimen-
ion is modified due to the presence of interactions, such that

The dependence of the renormalized vertex parts is quadra o _ .
%Je nontrivial effect is the appearance of the anomalous di-

in the external momenta perpendicular to the competin
axes. Therefore the analysis is completely similar to the pur
\ ¢* theory, with the replacemert — e. From this analysis,
we can identify the labet=1 with the subscript.2. Then,

ension, i.e.dy;=(d—m/2)/2—1+ »,/27. WhenN=2,
this identifies the anomalous dimensions of the field in the
anisotropic situation, namely that associated to the change in
we could have writteny ,1)= 7.2 and ¥21y=Y42(L2) - the external momenta scale perpendicular to the competing

—_ _ * H
On the other hand, the renormalized vertex parts at zer¥€S71= 7.2= Y4(1)(U1) as well as the other corresponding
quadratic external momenta can be expressed as to the change in the external momenta parallel to the com-

petition subspacey,= 7,4= "y 4(2)(U3).
F(R’\(‘)z)(szi(z) ,uz,Kz):pg[N+(d—m/2>—N(d—m/2)/2] This can be easily generalized to includensertions of
¢? operators in quite an analogous way, such that the RG

N dx, equations at the fixed point lead to the solutipfN,L)
X ex;{ - §J’1 7¢(2)[U2(P2)]X—2 #(0,2)]
(N) IS (pk; Pi(n U k)
XTriz)(Ki2),U2(p2), k2p2). (19 R(7) \PKi(n) PPi(r) 1 Hr 2 K7
The difference is that the canonical dimension is twice as big = TN+ (d=m2)=N(d=m/2)/2=2L] =Ny 12+ Ly o
as the canonical dimension of the vertex parts calculated at 4
zero quartic momenta. Then, we can make the identifications XF(R’?'TIE)(ki(T) i) Us K. (24)

Y(2)= Yo(La) ANAY42(2)= Y42(L4) - The last equations imply _ _ _ .

that a change in the external momenta scale is equivalent fbhus if we write at the fixed point

the multiplication of the vertex function by that scale to the L

power of the canonical dimension of the function, followed T(R(’T))(pki(T) PPi(r) UY k)

by a modified coupling constant, which flows with the char- A(d—mi2)—Nd] +Ld e (N.L

acteristic equation, and an additional factor. =P v 1ﬂ(R('f))(ki(f) Pi(n) U7 k7). (29
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the anomalous dimensions of the insertionsgéfoperators ~ According to our conventions, these equations are equivalent
are given byd o= —27+ y 2., (uy) and will be related to to the following scaling relations:
the critical exponents;=v, andv,=v 4, as we shall see in

a moment. V=2 Yoy (329
In order to find the scaling relations we must go away
from the Lifshitz critical temperaturet¢0) staying, how- v[41=4—y’;2(2). (32b
ever, at the critical regiod,=0.>> Above the Lifshitz criti-
cal temperature, the renormalized vertex partstt60 can As a matter of convenience, we could have defined alter-

be expanded as a power serie$ amound those renormalized natively the function
vertices att=0, providedN= 0. We can now apply the dif-

ferential operators — IN(Z y2()Z 4(7)
P D (39
1 d 7
Or=r,5 =+ B:o ~ 5NV (U + vgzm(Ut— In that case we would have found the equivalent formulas
T T (26) ) B
v =2— 1o~ Ye2(1)(UD), (34a

to T'§ (ki(») such that we find

71_ T4
{L ( 9 J VL4 =4 M= Vi) (34b)

(N) . * _
O Ry (Ki(n) 1,7 k7)) = ZO L! Bfau Hence at the fixed point all correlation functiofisot in-

cluding composite operatgrscale atT>T, , since they
_+ are functions ofk; &, only. For N=2 we choosep,
ZNW’(T)(UT)H'%Z(T)) =Kk(,, the external momenta. Thed'§) (k,.t,x,)
=k27" 7k (K(»&,). The critical situation is characterized
(N,L) * (7)ST
X i i .
TRy (Kin i Uz c2) when&,— o andk,—0 such thaf (k,&,)— const. Defin-
27 ing f,=(kpéN) ”ff(k(T)gT) we have

The result is that each term in the sum vanishes because of

27— Ny 7
the RG equation fol”§5 (ki) .Pi(» .U% ,&,). Hence we P& (ke ter) = (k) w1 (Kmér). (39

obtain The susceptlblllty is proportional to~ 7 ask(,—0. Thus
0 1 P sincel'§), = x(,;, We can identify the susceptibility critical
) — exponents
KT&KT+B7(9UT 5NV (U + ¥g2n (Ut p
= 27— )
XFI(:Q’\(IE')(kI(T) 1t|u: ,KT):O. (28) Y- VT( T 777_) (36)

These relations are equivalent to the relations
The solution is a homogeneous function of the product of d

ki(») (to some powerandt solely at the fixed pointi} . As Yio=v2(2= 7). (37)
the value ofu, is fixed atu*, we shall omit it from the

T

notation of this section from now on. It is given by Yia=via(d—104). (39
N * 12 _ * i . .
Fg?)f)(kim tKk)= Krm(f) th‘))(ki(r) A Vg, The specific-heat ((aggonents can be obtained by analyzing

(299  the RG equation fol'g 7y aboveT, at the fixed point, i.e.,

If we define .= — y’;zm, and using dimensional analysis,

we find K, o?K +’y¢2(7_ 2+t FI(?O(E)):(K;ZT)EL/ZBT(U:C),
F(R’\(‘)T)(ki(f) ty) (39
o
7N+ (d=m2) ~ (N12) (A~ mi2)] = (N12) 7 (NI2), whereB.(u7) is given by
- - =274\ — —27\¢ |/ _ 0,2
XFN (o7 ki) (0~ ) (p~21) "M, (30 (k;2)B(UF) =25k oK, F( )
i — 27\1/(0,+ 27 :
By choosingp,= «,(t/k>7)¥(¢="27 and replacing back X(Q(n;—Qy :)\r)|Q(27):K§- (40)

in EQ. (29), the vertex function depends only on the combi-
nationk; &, apart from a power of. Since the correlation It is an inhomogeneous part which has no dependence in the
lengths¢ . are proportional ta~ -, we can identify the criti-  reduced temperatute The bare vertex functioli{%? is cal-
cal exponents’, as culated as before in the limit ,— o0, with a fixed bare cou-
. . pling constant, which renderB_(u*) finite in this limit
=27 07 =27 Y2 - 3D when d—m/2)=4. This renormalized vertex part consists
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of the addition of the homogeneo(smperature-dependent Therefore the temperature-dependent homogeneous part

and inhomogeneous pieces. The general discussion given far F(Rf’(f))yh will scale at the fixed point as

far for the vertex parf‘(R’\(';')') will be useful to determine the

homogeneous part of the solution. Indeed, at the fixed point

the obvious generalization of the solution fog” is given T3 n(Qu .~ Qry tuk,)

by o .

. =x_TFOFOQy, — Qpy kit Vo). (42)

(N.L) _(UNyS Ly, T

Lry’ (Pis) Qi k) = & AL
1 This will be identified with the specific heat at zero external

XFMY(Pi) Qigry et ™ 620, momentum insertiorQ,,=0. Usr?ng the results of our di-

(42 mensional analysis

r[(d—m/2)—4]+2y;

T

FEINQe .~ Qi tik)=p OTRE AP Q=P Qi 0, Ttup, k), (43)
and replacing this into the solution at the fixed point, we find

T[(d—m/2)—4]+27’;

T

_2 * _ _ _ _ _ *
T3 nQm, — Qe tik)=p A TR p Qe —p; Qe 07 tepr ) T m). (44)

Again we choosg, =« (t/k27)¥(¥=+27)_Supstituting this in  where the zero-momentum limit must be taken after realizing
last equation, taking the limiQ,,—0, and identifying the the summation. The magnetic field satisfies the following RG

power oft with the specific-heat exponent., we find equation:
m J + i N N+ M J + ta
a/T—Z—T d_E V. (45) KTO"_KT BT&_LIT E Y o(7) m Ye2(7) E
Let us analyze the inhomogeneous part. First, teke XH(t,M,u,,x,)=0. (50

=0. Second, choose a particular solution of the form . . .
P At the fixed point we have the following form for the equa-

Cp(UT)Z(KiT)_EL/ZEp(uT)_ (46) tion of state:

Replace this into the RG equation 3 at the fixed point. Hin(t,M, k1) = k7"%hy (k MZ77, it~ V70%0). (B1)

Then, it is easy to obtain . _ . . .
Once again, we use dimensional analysis arguments to obtain

the following expression under a flow in the momenta:

T

Cp(ut ) Z(Kzr)feL/Z

14
- *
(d m) 2BT<uT>. 47) t y
v, A= 5~ _a(d—m2)/2+1] L Kr
2 H(f)(taM,Kf)—PT Her o r’p27{(d—m/2)/2—1]’pT :
Collecting both terms we have the following general solution T (52)
at the fixed point:
We choosep . to be a power oM such that
0.2)_ (. —27)e12 _ ' o * 2K 7[(d—m/2)—2]+ 7}
FR(T) (KT T) CT o + m B’T(UT) . (48) iy M (53)
T v, d—E -2 Pr=Kz L 72(d-m2)=2] '

Let us describe the situation far<T, . It can be illus- @nd from th? scah?/g form of the equation of state
trated for the case of magnetic systems. The renormalizell(»(t,;M)=M°f(t/M“"7), we obtain the remaining scaling
equation of state relates the renormaliz&81 one-point ver- 1aws after the identificationd, = 62,81 = BL2, 62= 6.4, 82
tex par} magnetic field with the renormalized vertex parts =BLa:
for t<0 via a power series in the magnetizatign One has

e}

1
H(T)(t,M,UT,KT)=NE:1mMNFle—T’)\I(ki(T):O; t,u,,x,), 00= m
(49 -3

: (543
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choicey? =0, Eq.(58) in Ref. 28 is just the same as the one
-2+ 77L2}1 (54D optained here fop, , and Eq.(60) in Ref. 28 is equal to that
obtained here foB, . Equations(46)—(51) in their paper
m taken together withy* =0 yields trivially v ,=3v_, and
2{d= 7| T4 M nLa=27.,. Last but not least, if one takes the barg di-
m ) (540 mensionless, as was done by those authors, the whole argu-
2(01— —) —4+ 7, ment is invalidated since itdimensionfulnessvas assured
2 from the beginning of the discussion in the regulation of the
m free critical propagator. Introducing is consistent provided
Z(d— > , (54d) it is considered as a dimensionful ammount in all stages of
the calculation. In other words; is not required at all, since
which imply the Widomy, ;= B 2(5,—1) and Rushbrook the flow in ¢ can be absorbed in the quartic momenta scale

a+2B12+ y1,=2 relations for directions perpendicular to ysing our dimensional redefinition.
the competition axes. These relations are also valid for direc-

tions along the competing axes. So far, the effect of consid-
ering this different dimensional role played by the momenta
scale along the competing quartic subspace, together with the
definitions of the critical theories either at vanishing quartic  The procedure to analyze the isotropic case is quite analo
or quadratic external momenta have induced two indepengous. Some care must be taken. Whenevappears as a
dent set of scaling relations for the critical exponents. Nevsubscript, like in a quantitp ., one sets=3 in order to be
ertheless, when performing the diagramatic perturbative exeonsistent with the notation employed so far. The dimen-
pansion, we shall find out that some of these exponents arsgional analysis is a bit different. The volume element in mo-
not independent. mentum space is agaid® "qd™k. Wheneverd=m, the
There is one curious fact relating these scaling relationgolume element is nowl™k. As before[k]=M2 Accord-
and those obtained by Hornrei@t al* If v 4,=3v, and ingly, the volume element has dimensitai™k]=M™2. The
7.4=2m., to all orders in perturbation theory, the hyper- dimension of the field in mass units[igs]=M™*~1. When
scaling(Josephsonrelations are the same in either formula- the conservings function is removed the 1Pl vertex parts
tion. In the formulation presented here this feature will behave dimensiongT'N)(k;)]=MN*™2=N(W4) " Then make
found in Sec. VI from the perturbative analysis up to the loopthe continuatiorm=8—¢, . The coupling constant has di-
order considered in this paper. In addition, one obtains mensionAz=M©E"M2=Me2 |n terms of dimensionless

quantities, one has the renormalizpg= u3(;<‘3‘)fu4 and bare

m
BLZZE vl | d— >

OLa=

ﬂL4:§VL4 4+ 7y

IV. RENORMALIZATION-GROUP FOR THE ISOTROPIC
BEHAVIOR

YLa= YiL2= Y (553 2 . _ .
N3=Uq3z(k3) L4 coupling constants, respectively. Again, the
BLa=PBL2=PL, (55b)  functions
OLa=62= 6L, (550 - ( (9u3) i
A p= A 2= O . (55d) ﬁ3_ K3(9K3 ' ( a)
In that case, there is a complete equivalence among the scal- Jnz
ing relations in both formulations. It is worthwhile to empha- Yo(3)(Us) =,83—¢(3), (56b)
size that the advantage of the approach presented in this sec- dug
tion is the splitting of the scaling laws into independent
renormalization-group flows parallel and perpendicular to B dINZ 42(3)
the competition axes. Then, instead of claiming that the two Yo2(3)(Us) =~ B3 AU (560

momenta scales corresponding to the components perpen-
dicular and parallel to the competing axes are ejuae  are calculated, as before, at fixed bare coupkggThe beta
most important conclusion in our approach with two cou-function can be expressed in terms of dimensionless quanti-
pling constants is that they will flow to the same fixed pointties asBs= — €, (dlnugz/duz) L. One should notice that the
in the critical regime as will be shown later. beta function for the isotropic case does not possess the over-
We can make a comparison among our scaling relationall factor of 2 present in the anisotropic beta functi@p
below T, with the ones obtained by Merguihaand Car- obtained from renormalization-group transformations over
neiro. In their work, they defined the space dimension of theéhe quartic momenta scale,. This feature is a strong non-
Lifshitz systemD=d,/2+d;, whered,=m and ds=d perturbative suggestion that the isotropic critical observables
—m [see Eq(25) in Ref. 28. ThereforeD=(d—m/2), the  cannot be obtained from the anisotropic ones and vice versa.
same effective space dimension as ours. Under a flow in the quartic momenta, from our dimen-
The trouble is in the introduction af. The normalization sional analysis, the dimensional redefinition of the momenta
conditions defined through Eq&R0)—(24) of Ref. 28 mixoc  along the competing axes results in an effective space dimen-
with the two external momenta scales in a nontrivial way.sion for the isotropic case, i.e.m{2). Thus we find the
They recognized, however, that the normalization conditiongollowing behavior for the 1PI vertex pariﬁg& under a
they defined arendependentf o. Thus if one makes the flow in the external momenta:
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F(Rh(%)(Pski ,us,Ks):pglN+m/2—N(m/4ﬂ The solution is a homogeneous function of the produdt; of
(to some powerandt only at the fixed poinuj . The solu-
Xexp[ 3 ﬂj%y g )]% tion reads
2/, #(3)LU3P3 X3

N) (k. £ )= NBEPEN (K eat— Yrerar
><1ﬂg\(‘)s)(ki U3(p3), k3pa). (57 FR(3)(k,(3),t,u3 ) *a F(S)(kl et S8
Notice that we put aside the notatié.,, etc., used in the All the exponents gene.rated by the renormalization-group
anisotropic analysis in favor &, etc., since there is only flow along_ the scalexs _W'" be de*noted by a correqundlng
one quartic momenta scale in the isotropic case. At the fixe$4 Subscript. If we defin@;=— v, , one can use dimen-
point, we also have a simple scaling property for the vertesional analysis to obtain

artsT M) namel ~ -
p R(3) y Pk ,t,Ks):pg[N+m/2 (N12)(m/2)] (N/2)77L4K(3N/2)77|_4

(N) - _ 2[N+m/2—N(m/4)] — (N/2) ¥ 4(3)(U3 )
PRy (paki U5 a)=pg XF (03 ki (p3 k) (p3 DY) (69)
(N) *
X - . o
Trg(ki,uz . x3) (58) One can choosps= k3(t/k3) (%4, and replacing it in

For N=2, we have Eq. (64), the vertex function depends only on the combina-
tion k¢, 4, apart from a power of. As & 4 is proportional to

4_7"’(3>(”3)1“(R2()3)(k,u’§ ,k3). (59)  t "4 the critical exponeni;= v, can be identified as

F(Rz()a)(PakyU§ ,K3)2P3
We can now identif_yrmE 73= y¢(3)(u§) as the anomalous Vf41: 4+ 0% =4— 722(3)_ (66)
dimension for the isotropic case. This is the analog of the
analysis we performed for the anisotropic case. In the free Again it is convenient to define the function
theory d%=(m/2)/2—1 is the naive dimension of the field.
At the isotropic fixed point, the naive dimension is modified — _ AIN(Z y2(3)Z 4(3)) 6
due to the presence of interactions, such that(m/2)/2 Y2(3)(U3) =~ B3 Aug : (67)
— 14 7, 4/4. The generalization to includeinsertions of¢? o ) o
operators is quite straightforward and can be written at thd Nen. one can easily find the following relation:
fixed point ag (N,L) #(0,2)] _ —

via=4— 4 Yo2(3)(U3). (68)

At the fixed point all correlation functiongnot including
composite operatoysscale atT>T,, since they are func-

1“(R'\(‘éL))(Pski ,P3Pi U3 ,K3)

2[N+m/2—N(m/2)/2-2L] ~ Ny} 5)/2+ Lyzz(s)

—P3 tions ofk; & 4 only. ForN=2 we choosg;=Kk, the external
N . momenta. The two-point vertex part can be written in the
XTRey (Ki,pisUz K3). (60 form @y (k,t, kg) =k*~ Mar]4F (kéL). The main point is
Thus if we write at the fixed point that whené, ,—~ andk—0, simultaneously, thefi(ké& ,)
_ . ini = 4= maf(ké ,), we have
(NLY e o i o M2-Na L2 (NL) —const.  Defining f3= (k& 4) (kéLa),
FR(S) (p3Ki,paPi U3 ,k3) P3 FR(B) (ki i, U3 ,KS)(,61) quz()g)(k;tst):(kgL4)47 7]|_4K;7L4f3(k§|_4)_ The susceptibil-

ity is proportional tot~ "4 ask;—0. Sincel'®=y 1, the

the anomalous dimension of the insertions/Sfoperators is susceptibility critical exponent is given by

given byd 2= —4+ vy 2(3)(u3).

Above the Lifshitz critical temperature, the renormalized Yia=via(4— 7L4). (69)
vertex parts fot#0 can be expanded as a power seriet in
around those renormalized vertices tat0, provided N The scaling relation for the specific-heat exponent can be
#0. We can now apply the differential operators, found from the RG equation fd]’(RO('g)) aboveT, at the fixed

point, namely

d d _
K3(9_K3+'Y:;2(3)(2+tﬁ F%()(YS?)):(K3 Z)GLIZBS(ug)y
to T§4(ki ,t,u} , x3). The mechanism is similar to that dis- (70)
cussed in the anisotropic cases. This vertex part is a POW§{- 3qwhere
series ont, with each individual coefficient vanishing by

Jd 1 J
O3= K3(9_K3+ ﬁ3ﬁ_u3_ EN Yo(3)(Us) + 7¢2(3)(U3)t51 (62

making use of the RGE foF {37 (ki ,p; ,u3 ,k3). Then, we B P
find (k34" By(uf) = —212(3)K3ﬁ—ﬁr§232>(@; —Q\3), (7))
d Jg 1 d is the inhomogeneous part which does not depent &e-
3 s +B3ﬁ_u3 ~ 5 NY4(3)(Us) + 743Uzt o call that the bare vertex functidi{3;” is calculated as before

") . in the limit A;—o, with a fixed bare coupling constant,
XTRey(ki t,uz,k3)=0. (63)  which rendersB;(u3%) finite in this limit whenm=8. This
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renormalized vertex part is made out of the addition of theThe temperature-dependent homogeneous partl“ﬁ}f))’h
homogeneoustemperature-dependgrand inhomogeneous scales at the fixed point, i.e.,

pieces. The general discussion given so far for the vertex part

rg};)) is helpful to obtain the homogeneous part of the solu- o .
tion. At the fixed point we have the following generalization F(Feo('sg)),h(Q:—Q,t,Ks)Z Ky "#@FP(Q, - Q, kst~ Yexm).

of the solution forl" {3} : (73

NDep O
Treey (P Qistis) This vertex function is to be identified with the specific heat

_ (1/2)Nyj,(3)—|_7*2 (NL)/n A _ut at zero external momentum inserti@@=0. Using our di-
~ K3 PORST(PQivkst T e%@). (72 ensional analysis one finds
|
F(Ro('s?)),h(Qa — Q’tv":%):Pz(mlz_4)+27¢2(3>F(p<0(’§)),h(p3_1Q, —p31Q,p5 %, p3 L), (74)

Substitution of this equation into the solution at the fixed point yields

(0.2) 2(M2-8)+ 2725 ~2¥52030(0,2) ~1 “1A -1 —a.\— 14",
FR(S),h(QI_Q1t1K3):p3 ¢ K3 ¢ F3 (p3 Q!_pS QIPS K3(p3 t) d’(?’)) (75)

We make the choices= k(t/x3)¥(%™4). Replacing this The equation of state at the fixed point reads
into the last equation, taking the lim@— 0 and identifying P " N
the power oft with the specific-heat exponent 4, we find Hs)(t, M, k3) = k3= h3(kgM 74, ket~ 170%@) . (82)
QL a=2—Myy,. (76) Dimensional analysis arguments lead to the following ex-
The description of the inhomogeneous part is as followsPression under a flow in the external momenta:
First, takeQ=0. Then, choose a particular solution of the
form
Ha)(t, M, kg) =p3™* PH,
Cp(Ug)=(x3)~"Tp(us). (77)
Now replace this into the RG equation B3] at the fixed
point. Therefore one gets to

t M K3 (83)
A s

The flow parameteps is chosen to be a power &fl such
ha

2I(m—4+ 7 4)

, (84)

M
K(3m/2—2)

Vg
mBa(Ug ). (78) pP3=K3

The general solution at the fixed point is just the sum of the . .
two pieces, and is given by and from the scaling form of the equation of state

Hs)(t,M)=M?uaf (t/MTALa)), we obtain the following

Cp(u3)=(x3)

~ t) o Via scaling laws:
TQR=(k3H M Cy 2 mBs(U’é) . (79
K3 L4 5 m-+ 4_ 77|_4 (856)
We now turn our attention to analyze the scaling relations “m—at gy,
when the system is below the Lifshitz critical temperature
T<T,. The renormalized magnetic field is related to the 1 B
renormalized vertex parts farx0 and the magnetizatiol ,6'L4—§11L4(m 44 104), (85b)
through
g which imply the Widomy, ,= 8,4(5,.4—1) and Rushbrook
1 a at+2B 4+ yLa=2 relations.
H(3)(t,M,u3,K3):N21 mMNF%{?g’;'(kizo;t,ug,@), (80) The scaling relations for the anisotropic case H44a

and(12) in Ref. 1 ford=m are consistent with the isotropic

where the zero momentum limit must be taken after realizing@se. Note, however, that this cannot be given a rigorous

the summation. The magnetic field satisfies the RG equatioff€aning, for the appearancef, and 7, ; in the equality in
Eqg. (11b) of Ref. 1 invalidates the argument for the isotropic

d Jd 1 d d case as these exponents are no longer meaningful. Notice
K35 —FBaz -~ 5Nvg)(Us)| N+ Mo 4yt — that the impossibility of finding scaling relations for the iso-
3 3 . . .. .
tropic case in the original framewdrks due to the lack of
X \M,uq,k4)=0. e independent flow in the external momenta sealalon
H)(t,M )=0 (81)  the independent flow in th t I ta sealalong
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the quartic subspace. In the early treatneiie quartic mo-  certain condition among the quartic momenta is fulfilled.
menta was not independent to be varied freely, but was fixe@Vith this technique all the critical exponents in the aniso-
from the variation of the quadratic scale. Without its freetropic cases are obtained. This picture can be considered the
variation, which is possible since this quartic term in themain result of the present work.
propagator does not have the same canonical dimension as The isotropic behavior can be developed along the same
the quadratic one, no renormalization-group flows along thdines of the latter approach to the anisotropic case. The con-
competing directions can be defined whatsoever. Thus thidition among the quartic momenta is also required in order to
renormalization-group method permits to go further in deterguarantee homogeneity of the Feynman integrals in the quar-
mining the Lifshitz critical universal properties of the systemtic external momenta scale. The new approximation is suffi-
for arbitrarym. cient to complete the unified analytical description of the
Lifshitz critical behavior in its full generality, at least at the
loop order considered here as will be shown in this section.
V. EVALUATION OF FEYNMAN INTEGRALS In order to verify the renormalization scheme indepen-
In order to calculate universal quantities like critical ex- dence of the critical exponents, it would be interesting to
ponents, we must calculate some Feynman integrals. THePtain the critical exponents using more than one renormal-
perturbative loop expansion shall be our starting point withization procedure. In fact, as will be proven later, the use of
the e, =4+ m/2—d being the perturbation parameter for the N0rmalization conditions or minimal subtraction of dimen-
anisotropic situation. For the isotropic case, the perturbatioiona! poles yield the same critical exponents. Thus we shall
parameter iss, =8—m. present the results in the most appropriate form for calculat-
We have to express the solution of the Feynman diagram@9 the critical exponents in these two renormalization pre-
in terms ofe, , resulting in thee, expansion for the univer- SCrptions.
sal critical amounts. Again, there is also a very important
difference among the anisotropic and isotropic behaviors. A. Anisotropic
From a technical viewpoint, the anisotropic behaviors | order to calculate universal quantities like critical ex-
present two types of integration along the two momenta subsonents, we must calculate some Feynman integrals. We start
spaces, whereas in the isotropic situation there is only ongy |isting all the relevant integrals which are necessary to
sutbfpace to be integrated over. We shall treat them sepfing out the critical exponents. These integrals are
rately.
The anisotropic behavior is described using two different
approximations. We shall briefly discuss the first analytical _f d?"Mqd™k
approx_|mat|on dev_eloped for evalugtmg hlgher-orQer Feyn- 2 [(k+K")22+(q+P)2[ (K?)2+g?] '
man diagrams which are needed in the calculation of the
crltlcallexpon.entg pgrpendmu_lar to thg competing axes .fo{/vherelz is the one-loop integral contributing to the four-
the anisotropic Lifshitz behavior. It points out the necessity . t function
of some sort of condition among the quartic loop momenta irPO'" '
different subdiagrams, leading to the homogeneity of the in-

(86)

tegrals in the quadratic external momenta scales. We emplo d?~™Mg,d4 Ma,d™k,dk,
the set of normalization conditions with vanishing quartic BZJ' 2 277 2 2 2 n272y’
external momenta as described in Sec. Il. This piece of work [a+ (D2 + (1) (e + Qo+ P+ (koK) %8}7)

was done in collaboration with L. C. de Albuquerque and the
details can be found in Refs. 20 and 23. . ; ” . .
. I .. is the two-loop “sunset” Feynman diagram of the two-point
Nevertheless, with the renormalization-group descr|pt|or} .
. L - unction,
presented here, this approximation is not sufficient to de-
scribe the critical exponents along the competing axes. It

d—m d-m m m
does not yield the solution of the integrals as a homogeneoug, — d” Mad” MaodTk,dTko

function of both quadratic and quartic external momenta [92+ (KD (P—qp)?+[(K' —k1)22 a5+ (k3)?]
scales yet. The former approximation described above is then
generalized to obtain the solution of the integrals doli- 1

trary quadratic and quartic external momenta scales. Using X(ql—q2+ p3)2+[(k1—k2+k§)2]2' (88)

the different interpretation for the momenta scale along the
quartic direction given in the last two sections, the calculais one of the two-loop graphs which will contribute to the
tion of these integrals is not a complicated task, provided dixed point, and

| f d9Mq,d4 Mg,d9" Mg,d™k,d™k,d ™k 1
5: ! !
[a2+ (k3)2I[a3+ (k)21 a3+ (k3)21{(as+ da— p) 2+ [ (Ky+ Ko —k")Z]?} (a1+as— p)2+ [ (K +ks—k')?]?

(89
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is the three-loop diagram contributing to the two-point vertexUsing Eqgs.(90) and(92), |, reads
function. Now we proceed to calculate these integrals using

two different approximation schemes. The philosophy to be 1 1 d—m m
adopted is to simplify the calculation by making use of the |2:_Sdm(_3“)r(_>r(_)
homogeneity hypothesis, as shall become clear in the follow- 2 4 4
ing subsections.

o] o] 2
alaZP

1. “Dissipative” approximation XJ f daidea, ex;{ -
0 0 Cl’l+ Ay

As this approximation is only suited to calculate the inte-
gral as a function of the quadratic external momenta, we set
the external momenta at the quartic directions equal to zero,

e, k'=k;j=k;=k;=0, andK’'=k;+k;. We shall use di- The remaining parametric integrals can be solved by a
mensional regularization for the calculation of the Feynmarchange of variables followed by a rescalffigihe integral is
diagrams. proportional to P2) 2. Now we can seP?=«?=1. Us-

Let us find out the one-loop integry). With our choice ing the identity
of the symmetry point, and introducing two Schwinger’s pa-
rameters, we obtain fdr,

X (g + ap) (@274 (93

I'(a+bx)=T(a)[1+bx y(a)+0O(x?)], (94)

f d9~Mqd™k

[(K2)2+ (q+ P)2][ (K?)2+ o] where (z)=(d/d2z)InI’(2), one is able to perform the,

expansion when the Gamma functions have noninteger argu-
ments. Altogether, the final result fbs is

= fmfwdaldaz( f dmk eXF[—(al-i- az)(k2)2]>
0Jo
1 m m\|1l ]
I2=[ZSdeml“(2— Z)F(Z)}E_L(l_l—[lﬂmel'), (95)
X f dd_mq eX[{—(al-i- az)q2—2a2q' P—aZPZ].

where [i,] =1+ 3[ #(1)— ¢(2—m/4)]. The factor inside
(90)  the brackets in Eq(94) is absorbed in a redefinition of the

Theﬁ integral can be performed to give coupling constant. Then the redefined integral is

f dd_mq eX[.'[—(a1+ az)qz—Zazq' P—aZPZ]

1 .
|2:E_L(1+[|2]mEL)- (96)
— 2
I i VR o VS . Lo . . - .
27dmm 2 1T artay) Note that this expression involves no approximation. This
©1) simple result is a consequence of the absence of the zero

quartic external momenta. Had we considered it from the
For thek integral we perform the change of variables ~ beginning, we would have obtained an intermediate integral
=k2+...+kZ. Now takez=r*. The integral turns out to that could not be integrated analytically. We shall discuss this
be issue later in the next subsections.

However, when we go on to calculate higher loop inte-

m 22 grals, some sort of approximation is required, since these
d™k expl — (g + ap)(K)7] integrals are complicated by the fact that even with zero
L external quartic momenta, the quartic loop momenta mix up
m N ) ) -
(2 m Cmia in different subdiagrams in a extremely nontrivial form. As
(48’“)F< 4 (artaz) T ®2 an example, we discuds. It is given by

dd_mqldd_qudmkldmkz
Lo+ (K2)2I[ a3+ (K3)2{ (ay+ G+ P)2+ [ (Ky+ kot K22

SettingK’ =0, the integral can be evaluated as outlined in Ref. 20. Before making our approximation, one can choose to
integrate first either over the loop momentg (k;) or over (@,,k,). The loop integrals to be integrated first are referred to as
the internal bubbles. By solving the integral owprfirst, we obtain

|3<P,K'>=f (@7
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1 d—m
|3(p,0)=53de(T) ls=—g—m o | 11| [ladmt — | e|, (10D
43
d?""Mq,d™ky [ (=

) i@ Jo ), dadez

qi+(kp< Jo Jo | 1 1 142

(=————— | 1+2| [iy]m+ :
><(a1+a2)_(d‘m)/2 5 . Z_T ef [i2]m Z_T €L
4 4
a1 i (kD)2

xex;{ — al+a2(q1+ p)? fdmkze 1(k3) (102

212 Note that the leading singularities fby,l, are the same
x g~ adllkatko) ], (98  as their analogous integrals in the pus& theory. However,

I; andl do not have the same leading singularities for they

Now we can consider the approximation. In order to inte-include a factor of 1/(2m/4). We then introduce a weight
grate overk,, we have to expand the argument of the lastiactor forlz andlis, namely (1-m/8), so that they have the
exponential. This will produce a complicated function Same leading singularities as in the peretheory. The main
of @y, a, Ky, andk, which cannot be integrated analyti- drawback of this approximation is the failure to treat the
cally. Considering the remaining terms as a dampingSOtropic case. Furthermore, the introduction of weight fac-
factor to the integrand, the maximum of the integrand will bet0rs to0 the two- and three-loop diagrams is rather undesir-
either atk,=0 or atk,=—2k,. The most general choice able. Moreover, the constraint among the quartic loop mo-
k,=—ak, vyields a hypergeometric function. The choice menta dqes not allow qup momentum conservation along
k,= — 2k, implies thatk, varies in the internal bubble, but the guartic subspace in higher loop diagrams. It is then ap-
not arbitrarily. Its variation, however, is dominated iy ~ Propriate to name this approximation “the dissipative ap-
through this constraint, which eliminates the dependence oRroximation. , L
k, in the internal bubble. At these valueslof, the integra- It is obvious that some important detail is missing. A

tion overk, produces a simple factor to the parametric inte-PrOPer solution of the Feynman integrals should be ex-
gral proportional to &; + a,) ™4 This allows one to per- pressed as a homogeneous function of both external mo-

form the remaining parametric integrals in a simple Way‘menta scales. We proceed to discuss the interesting approxi-

After performing these integrals, they produce the factorn@tion which presents this property.
[(g,+ P)?] 2. Note that the diagrams and!s contribut-
ing to the two-point function receive the factor 1/42n/4)
after integrating over the quadratic momenta in the external Before considering the integrals to be performed, let us
bubble. This factor will not be present in the isotropic casederive some useful formulas which relate Gamma functions
since there is no integration over quadratic momenta to bwith certain intermediate parametric integrals. They will al-

done in this case. The resulting solutionltgP,0) is a ho- low us to define a different analytic dimensional regulariza-
mogeneous function of the external momeRtagiven by tion procedure in the competing subspace.

The simple integral

2. Orthogonal approximation

PR P ° i - Lt
3= —(P9) 8—m e + ['2]m+4 mrl)e Jo exp(—ax”)dx=a*1/“;l“ — (103
2

(999  can be generalized to tmesphere. We shall analyze the case
w=2n. Taker?=x3+ - - - +x2,. After that takez=r?". Thus

tegrals proceeds analogously. The constraint turns all thes
integrals into homogeneous functions of the external qua? —~
dratic momenta scale. One can then choose the symmetry 1 [
point as P2=Kf=1, for example, in order to define the =—f
renormalized vertices via normalization conditions. 2n

Using this constraint we can easily find the following re-
sults at the symmetry poiit:

The implementation of this constraint on higher loop in- .,
f dx;- - -dxpexd —a(x3+ - - - +x2)"]

. dzexp(—az)z™ 1 f dQ,. (104

The angular integral will produce the area of the
m-dimensional sphere, yielding

l i - 2 .« .. 2
la= 2(1+3 [i2]meL). (100 ledxl' - dxm exd a(xi+ +Xm)n]
2e;
=—T m afmIZnSm. (105)
The integrald ; and | are given by T
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One can write this identity in a different way. After choosing [« 5 20 5 5
r?=xi+- .- +xZ takey=r2 and as the integral is given by | €XH—a(xj+ - +xp) =b(xqt - +xp)Jdxg - - - dXy
the expression above, we obtain the intermediate result
b2
=exr{4—a

B L " SmJ exq_ay/Z)yrmIZ—ldy/
f dyy""z‘lexp(—ay”)=—a‘m’znl“(%). (106 °

0 n b2\ 1 m
=ex;{£ ZSmF Z a M4, (lll)
Hereafter we shall keep=2. The following step is to cal-
culate the integral: We now focus our attention in the integral
- 4 FATPA 4 2 * dx;- - -dXpy
exp —ax’—bx%)dx=2 | exp—ax*—bx7)dx. )
e 0 —o [OG+ - +Xx5)2+2a(xi+ -+ xa) +m?]A
(107 (112

The exact answer is given in terms of a Bessel function of &aker?=x3+ - - - +x2,. Make the change of variables in the
certain combination o& andb. We wish to pick out only the radial coordinatez=r2. After that takez' =z+a. We then
piece which yields the correct homogenous functionapf obtain

i.e., only one term of the series. This can be achieved as

follows. Choosey=x2. One obtains d™x

‘f [(Xi'f'"'+X§])2+2a(xi+...+Xr2n)+m2]ﬁ

- A g2
J’iwexp( ax*—bx?)dx 1 (fx (2/ —a)™2 14z’

b2 % - 0 (Z/2+m/2)ﬁ
=exr{— f exr{—a
4al Jo

2 2
We then choosg’ =y +b/2a implying that

y~ Ydy. (108

y+£

a r_ m/2—1 ’
_ f (z—a)™ "dz’ dz) (113

0 (Z'?+m'?)B

where m’?2=m?+a?. Taking z’=z'2, expanding the nu-

o 5 merator in the first integral, i.e., keeping only the leading
fﬁwexr(—ax“—bx )dx term and getting rid of the infinite terms to be subtracted
from the second integral, one can write this integral in the
P21 (= ol —lz ’ approximated form
=exX 1a fo exp—ay'”) ~%a dy
f d™x
bi2a Y [(X5+ - +x2)2+2a(x3+ - - +x3)+m?])#
—f exp—ay'?)|y' —=—| dy'. (109
0 2a r m r m)
: : . : 1 2 2 -prma_\ 4 4
Since we are dealing with convergent integrals, we can per- = 7 Sy(m"—a%) G (114
form the approximation y(’ —b/2a) 2=y’ ~2+ ... and

the remaining terms will be subtracted from the last integraIWe have all ingredients to perform Feynman integra|s for
which is a sort of error function. The original integral is then arbitrarym. We start by considering the simplest integral, the

approximated by its leading contribution one-loop integral contributing to the coupling constant, that
is,
f exp(—ax*—bx?)dx 9~ mgdmk
o = .1
? J {[(k+K")?]2+(q+P)?[(k*)?+0°] 19

b2
.

f eXF( _ ay/Z)y/ —1/2dy/

0 We can use two Schwinger parameters and integrate over the
quadratic momenta. Using the formula derived above,

—exd L) as 110
=exX E E Z a . ( ) 1 d
f exq—pz)ddqzzsdl“ 5] (116
It can be shown in a straightforward way that for tire
sphere this result generalizes to we obtain
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1 (d—m) o o aja,P? 11 ( m (m) €L ( m)
|2—§Sd,mr T j() JO daldazeX%_ a |2_§ Zs(dfm)smr Z_Z)F Z 1_7¢ Z_Z
€ 1 _
X(a1+cq)*“d*WQ“J.dmkexmf—aﬂkﬁz xr‘3;)J;dvaml—wn{P2+[<K'F]ﬂ> a2 (122
—ay[(k+K")?]%}. (117

This is a homogeneous functigwith the same homogeneity

We can now expand the argument of the last exponentiaﬂegreé in (P.K") just as advertised. But this is not the an-

This integral cannot be performed analytically. We are inter-SWer yet. The factof 3 Sq-m Sl (2—m/4)T' (m/4)] can
ested in the solution of this integral in a form that preservede absorbed in a redefinition of the coupling constant. Hence
homogeneity in both external momenta. Some simplifyinge shall absorb exactly this factor after performing each loop
condition should be tried to achieve this goal. integral. Furthermore, the last integral can be expanded as

The most general approximation to calculate this type of
integral which is homogeneous in the external momenta L

; ; €

scales can be understood as follows. In the first place, if we do(v(1—v){P2+[(K")2J2) - /2=1— ?LL(P,K’),

setk-K’'=0 inside the integral, that has the virtue of elimi- 0
nating odd powers of the quartic external momenta. Thus the (123
integral becomes
where
f d™k exp{ — a1(k?)?— a,[ (k+K")?]%}
1
" — _ 2 1\212
:J A"k expl — (a1 + ay) (K2)2— 2, k(K )2 L(P,K") fo doin(v(1-v){P*+[(K")]7}). (124
—a,[(K')?]%. (118  Thus we find the following result for this integral:
Using Eq.(111), we have for the last quartic momenta inte-
ral 1 . €L ,

g I,(P,K ):E_L 1+([|2]m—1)eL—?L(P,K ) |- (129

fdmkexp[—al(kz)z—az[(k+K’)2]2}
This is the form suitable for renormalizing using minimal

1 /'m » aja,[(K')?]? subtraction. On the other hand, for normalization conditions
= - J— —m - -
Sm4r( 7| (a1t az) exp( 2t a, ) one has
(119
1 .
We can then express the integral in the following form: IZSPl:|ZSPZ:E_L(1+[|2]mEL)| (126
1 d—m m\ (= (=
l2=5Su-mSml'| —— || 7 fo fo da,da, since L(SP,=SP,)=—2, with SR=(P?=1K’=0) and

SP=(P=0,(K')?=1). When we calculated,(P,K’=0)
in the last subsection, the orthogonality conditiorkK’ =0
(ap+ ap)~ (@M, between the loop momenta and the external momenta along
the quartic subspace was trivial. In the calculation of
(120 1,(P,K"), the orthogonality condition allowed the solution
to this integral with the correct homogeneous properties in
Take x=ay[P?+(K'?)?] and y=a,[P?+(K'?)?]. After  poth external momenta scales.
that, definev =x/(x+y). Thus, the parametric integrals can  We can now turn our attention to the higher loop integrals.
be done easily by this change of variables. Then, use thghe simplifying conditiork- K’ =0 for the one-loop integral
identity can be easily generalized to the higher loop integrals by stat-
ing thatthe loop momenta in a given bubble (subdiagram) is
I'(a+bx)=T(a)[1+bxy(a)+0O(x?)], (121 orthogonal to all loop momenta not belonging to that bubble
Let us see how this works in the calculation of the “sunset”
where (z)=(d/dz)In'(2). This will result in the following  two-loop integrall ; contributing to the two-point function,
expression foi : given by the following expression:

2 1212
Xw%_amﬂP+HK)H

a1+ ay
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d? Mg, d% Mg,dMk,dk,
[qf+(kD)?ILa3+ (K3)21{(as+ ap+ P)2+ [ (K + kot K')ZJ2H

|3<P,K'>=f (127)

We can choose to integrate first over the loop momeqiak(;) or over (d,,k,). The loop integrals to be integrated first are
referred to as the internal bubbles. By solving the integral oydfirst, we obtain

d—m)f dd- mqldmkl

—(d—m)/2

1
|3(P,K’): ESdml—‘(

o2

We defineK”=k;+ K" into the argument of the last exponential, and integrate kyersing the conditiork,-K”"=0. Make
the change of vanablelsé p and integrate ovek, (or p). Using Eq.(111) we find

: czv (qy+P)? f dMk, e @1k 2 azl(ka etk )2, (128

m

5PK1= g oot T () |

o -

The parametric integrals can be solved as before and we have

13(P,K')= —s r(d_m)r(m)f 4 "a,d" (130
~gmn [0+ (KD2H{(ar+P)?+[ (kg + K22/

dd=mq,dmk, (= [
%j f daday(as+ az)_[(d—m)/2+m/4]
ql+ 0JoO

1ajz{(q1+ P)2+[(k1+K')2]2}). (129

We can now use Eq94) and absorbing the angular geometric factor for the first loop integral we obtain

dd—mqldmkl
[aZ+(K9)?1{(a;+ P)?+[(ky+K')Z2pe/2

Letis(P,K’) be the last integral above. In the remainder, we employ a Feynman parameter. The ig{égital) can be
expressed in the following form:

1 .
|3(P!K’):6_L(1+[|2]mEL)f (131

r

g

After that, take the orthogonality conditidq - K’ =0. In order to solve the integral over the quadratic momeptwe shall
make use of the relation

1+

d4~mg,d™k
f dxxe2—1 f e ¥ . (132

is(P,K')=
3l ) {q2+2xP- g1+ xP?+ (1—x)(k3)?+ X[ (ky + K')2]2} 1 Feur

F((d—m))r( a_(d—zm)>(m2_k2)(dm)/2_a,

j dqu - & S (133
(Qi+2k-q+m?)* 2 I(a) o
Thus we obtain
2 I'l—-1 m

is(P,K") d—m _Z+EL - +Z+€L f do? 1f dmkl

| s = X .

3 2 F(ﬂ) 0 {(k§)2+ PZX(l_X)_’_X[ZkiK/2+(K72)2]}7l+m/4+e|_

2

(134
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Now, using Eq(114), we can integrate over the quartic mo- where
mentak, obtaining

1
e\ [m L3(P,K’)=J' dx(1—x)In{[P%+(K'?)2]x(1—x)}.
N2——+—=—T'|+|T'(-1+¢) 0
: ;v Sd-mSm 4 2) 14 (137
i3(P,K")= 8 p
F(?L At the symmetry points SPor SB, it can be rewritten as
1 - ) 5
Xf dxxt2 X (1—x)[P?+ (K'2)2]} 1 <L, ISSP1=|3SP2=8_€L 1+2[i5]meL + 2 (138
0

(135 From the above equation we can derive the expressions

Expanding the resulting functions and absorbing the geo-
metric angular factor discussed above, we find C| <9|3sa> - ( A
q R\ gp2 3R\ gk
I3(P,K")=[P?+(K'?)?]o—
8E|_

-1 ) 1
3 8_6L 1+2[|2]m6|_+ ZEL) . (139)
T €L—2€ L3(P,K") [,

X
4

l+2[i2]m€|__

Let us now proceed to discuss the other required loop
(136 integrals. Consider

d9-mg, d4-mg,d9 " Mgad™k,dk,d ks 1

I = )
° f [q%+<ki>2][q§+<k§>2][q§+<k§>2]{<q1+qz—P>2+[<k1+k2—K'>2]2}<q1+q3—P>2+[<k1+k3—K'>21§ 0
14

which is the three-loop diagram contributing to the two-point vertex function. This integral is symmetric under a change in the
dummy loop momenta,— g3 and k,—Kks. Let us analyze the integrations ovgs,k,, andqs,k;. We use the condition
k,-(k;—K’")=0 when integrating ovek, as well asks- (k;—K’)=0 when performing the integral ov&g. The two internal
bubbles, which are represented by the integrals ogerk,) and (@s,ks), respectively, give actually the same result, namely
I,((g;—P),(k;—K")). Next takeP— —P,K’— —K'. Therefore we obtain the following expression:

1 , d9~ Mg, d™k,
Is(P,K")=—(1+2[is]meL)

. 141
€ f [a3+ (kD2{(ar+ P)2+[ (kg +K")?]Z e (ab

We employ a Feynman parameter in analogy to what was We are left with the task of calculating one of the two-
done in the calculation df; and working out the details we loop diagrams contributing to the four-point function
find

_ | f d'""q;d"" "q,d"k,d"k,
1y — 2 r2\27_ 4= ,
's(P KO =PI [+ (KDZH(P— a0+ [(K' —ky)*} a3+ (Kk3)*]
X{1+3[is]meL — e —3€e L3(P,K")}, (142 y : 1 — (144
At the symmetry points SPSP, we find (91— 02+ P3)“+[(ky—ky+k3)“]
l5sp, dl5sp, Notice that P=p;+p,,p; (i=1,...,3) areexternal mo-
5sp| = 7| 5sp,| = P menta perpendicular to the competing axes whel€ask;
J J +k5, andk{ (i=1,...,3) are theexternal momenta along

-1 1 the competition directions. We can integrate first over the
_2(1+3[i2]mq+ Eé")' (143 bubble @,,k,). Using Schwinger parameters, and absorbing
BeL the geometric angular factor for the first bubble, we obtain
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L= 1+ Tiglne) [ A "g,d", ! (145
AT I21me€L ’ ’ €2’
€L " [a2+ (kD)2 (P—a1) >+ [(K' —Kk)212H { (a1 + pa) 2+ [ (kg + kj)2]%} 2
Using a Feynman parameter one can write this in the form
1,=f (€) f " f A ayd "y ! (146)
= VA ’
e o (G2 —22P- gy + 2P+ (kK3)2+ 2L (K'2)2+ 2K ACT2{ (0 + pa) 2+ [(Ky + Kj) 212} L2

where we defined the quantityf.,(e)=(1/e )(1  theory present ire (m=0). Second, we have an expression
+[i,]meL), which is the one-loop subdiagram with the an-in terms of arbitrary external momenta, which permits the
gular factor already absorbed. Using another Feynman paomputation of all the critical exponents in a completely in-
rameter to fold the two denominators in the last expressiondependent manner using renormalization-group transforma-
integrating overp,,k; (recalling the orthogonality condition tions either perpendicular or parallel to the competition axes.

already statexl the integral turns out to be Third, this can be easily adapted to the isotropic behavior.
The three weak points of the dissipative approximation have
m m e i imati
T(e)T| 1| 2- 2= €L been overcome in the orthogonal approximation.
| f e) 4 4 2
=3 €
4Tg mtL F(ﬂ) B. Isotropic
2 The new orthogonal approximation can now be used to
1 1 obtain the solutions to the Feynman integrals in the isotropic
Xf dyy (1—y)(1’2)5L71J' dz(yz(1-yz)[P? case. At the Lifshitz point,=0 all the quadratic momenta
0 0 disappear and only quartic momenta are defined.
(K22 +y(1-y){p3+[ (k)21 +2yz(1-y)[p;- P Considerthe integral
+(ka)*(K)?D) ™Sy mSm- (147 dmk
The integral ovey is singular aty=1 whene, =0. We only '2:f [(k+K')2]A(k2)2 (150

need to replace the value=1 inside the integral ovez,?®
and integrate ovey afterwards, obtaining after the absorp-

tion of the geometric factor It is the isotropic counterpart of the one-loop integral con-

tributing to the four-point function. Using two Schwinger

3 parameters and the orthogonality conditianK’=0, we
|4:_2 1+2[i2]m€|__EEL_GLL(P,K,)). (148) flnd
€L
This is the most appropriate form to carry out the renor- IZ(K/)ZJ dmkfmjxdaldaze‘(“ﬁ“z)(kg)z
malization using minimal subtraction. In terms of normaliza- oJo

tion conditions, we find the value of this integral at the sym- oo 1on
metry points discussed before: X @ 202K K gmap(KT9)7 (152)

Now performing the transformatiok?=p the volume ele-
ment transforms tod™k=2p™? ldpdQ,,=d™?p. The
former quartic integral turns into a quadratic integral oper
Thus we have successfully devised a different regularizatiopfter neglecting the infinite terms which change the measure
procedure to calculate Feynman integrals whose propagatog¥?k under the translatioy’ =y+b/2a, only the leading
have quartic powers of momenta. It is tempting to define theontribution is sorted out and we have
measure of then-dimensional sphere in terms of a half inte-
ger measure. In fact, taking=p?", one hasd™k=d™?"p
=(1/2n)p™2~1dpdQ,,. Hence the approximation am- f dmke—a(kz)z—bkzzf d™2pe=ap’—bp
mounts to take the new “measure@™?"p invariant under
translationsp’ = p+a. , 1 (m

Note that this approximation is much better than the =g M4eb ’43—1“(—) S,. (152
former dissipative approximation for the following reasons. 414
First, we do not have to introduce any diagram factor, since
after absorbing the geometric angular factor the leading sin- Replacing this result into the expressionlg{K’), one
gularities ine, are the same as those in the standatdield  finds

) 1
I4SP:L:|4SPZ:2_EE l+2[|2]m6|_+ EEL). (149)
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1 m o (o —m dm/2q
lo(K)=2T|—+ SmJ f daiday(ay+ay) ™™ f
4 14 o Jo (g%+2k-q+m?)®
ajay(K'?)2 m m
XEX[{—W . (153 1 F(Z>F<a_ Z)(mZ_kZ)mM ag
Now, use a change of variables and a rescaling to realize the 4 I'(a) ' (160

remaining parametric integrals analogously to what was dongne can expresk. as
in the anisotropic case. Making the continuatiom=8 pressy
—€_, the integral can be expressed in the following interme-

. . ( 6L> €L
diate step: _Smr e L €
1 € € 1 |3_ € 1+Z
IZ(K,):ZF(Z_Z)F Z SmJ'O dv[v(l—v) 4ELF(—)

w(K'2)2] €4 1
(K ) ] ’ (154) Xf dx[(Kr2)2x(1_X)]l—eL/ZX—l+eL/4_ (161)
and the integration over produces the result 0
S, c We can rewrite this expression in terms of the integral
I(K')= _( 1— ZL[1+ L(K’Z)]>. (155 L3(K’?) defined in the last section in the form
€L
We absorb the factor d§,, in this integral through a redefi- SmF( 2 ‘L Tl -1+ ‘L
nition of the coupling constant. Hereafter we shall absorb _ 4 2

. : . . 3=
this factor when calculating each loop integral in analogy to 3

€L
the discussion for the anisotropic behavior. Note that this 4ELF(Z)
absorption factor is different from the one appearing for the
anisotropic case in the limil—m=8—¢ . In the aniso- e\(1 3e € )2
tropic case the geometric angular factor becomes singular in 1+ a4/l27 16 7L3(K ). (162
the above isotropic limit indicating the failure of this attempt
of extrapolating from one case to another. This is a more Expanding the Gamma functions and absoriig it is
compelling technical reason for the statement that the isotroeasy to show that
pic and anisotropic cases are completely distinct. Therefore

X

(K/Z)Z 1 '
1 €L ISZ_W 1+e. g—Lg(K ). (163
Iz(K’)=—<1—Z[1+L(K’2)]). (156) L
‘L At the symmetry point, this can be expressed as
In terms of a symmetry point(’?)?=1 convenient when-
ever normalization conditions are used, we obtain __1 9
l3= 1+se€ |, (1649
. 16¢, 8
€
I,(K')=—|1+ 1. (157) leading to
€L 4
_ We can go on to evz_;\Iua_lte the other required highe_r loop dls — 1= 1 1+ EEL (165
integrals. The systematics is the same: solve the subdiagrams I(K'?)? . 16¢. 8
using the intermediate step Ed.54) and then use Feynman 3
parameters to solve the parametric integrals left over. We can carry out the calculation of the other integrals using
Let us calculate the same reasoning. The three-loop inte@gak given by
B f d™k,dMk, (158 | f d™k,d"k,dks
3™ ’ ? = l
[(kytko+ K2 (KD)?(K5)? ) (kg kot KPP (kg ke K ZR(IR(KR)(R)2
(166

the two-loop sunset Feynman diagram of the two-point func-
tion in the isotropic case. Integrate first over. TakeK”  where we took for convenienckk’— —K'. The integrals

=k, +K' and use the conditiok,-K"=0 to obtain overk, andks are identical. Hence
P (1+ e f a7k (159 - (1+ ‘L f a7k (167)
el Al L)) Tl 2l i) 2B

Now using a Feynman parameter, integrating dygrtaking  Employing the same techniques as in the calculatidn, efe
m=8—¢_, and employing the formula obtain
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(K'?)? 3 5 as in the standarg* field theory. This will lead to a different
5= o 1+ GL(Z—ELs(K' )” (168  fixed point for the isotropic behavior, as will shown in a
€L moment.
At the symmetry point, the derivative of with respect to
the external momenta is given by VI. CRITICAL EXPONENTS FOR THE ANISOTROPIC
BEHAVIORS
_&l 5 = é= _ L(1+ €). (169 A. Dissipative approximation
I(K'2)2 - 2¢2

The critical exponents were first calculated using this ap-
proximation for the uniaxial case and the generalization was
soon presented for the-axial case. Details can be found in
Refs. 20 and 23. Here we shall simply quote the results.

The two-loop graph contributing to the four-point function in
the isotropic situation is

d™k,d"k, The fixed point at two-loop order is given by
4= f , —5 (70
KDZL(K —ky) 21K (kg — kot k)21 .6 { 4(5N+22) )[_ :
- € A A
whereK’ =k;+kj. It can be integrated using the orthogonal 8+N L (8+N)2 =
approximation following the same steps of the calculation of
the anisotropic counterpart. We simply quote the result _ (2+N)

(8+N)2 ] (174

1
I (K’Z)— (1— —[1+2L(K'2)]) (171) It can be used to obtain the critical exponents and v ,:
E

At the symmetry point it is given by 7]L2:E62 2+N e 3 (2+N) 4(5N+22)_l> iyl
275 (8+N)2 T8N\ (8rN)2  2)T A
12 36"
I4(K )— l+T (172 1 2+N
6|_ _— 17
8—m (8+N)? (175

It is worthwhile to point out that the integrals and|g
have not the same leading singularities as in the ugdal 1 1 2+N 1 (2+N)
Therefore any attempt to use the counterterms of the usual vi2=5+ z7eé.g7 T g {2(14N+40)[|2]m
¢* theory would lead to erroneous results for the critical (8+N

exponents in the isotropic case. —2(2+N)+(8+N)(3+ N)}fL ) (176
A recent calculation of the critical exponenys, and v, 4

for the isotropic case was presented by Diehl and Shpot who Using the scaling lawy, = v, ,(2— 7.,), the exponent,
fixed all the leading singularities equal to those appearing ing
the standardp” theory>° Moreover, they “choose” the fol-

lowing angular factor: 1 1 2+N 1(2+ ) 104 8N+ N2
9N /g M= o AgINT 2 gy (2TONT
r(5-= rz(——z)
E L —pl-d_—d2 ( 2> 2 173 +4[i2]m(20+7N)}€E- (177
¢ T(d—4)

The evaluation of Feynman diagrams used to obtain these
If one setsd=8— ¢, whenever the Feynman integral under results have some inconveniences as discussed before: the
consideration presents a double poleein this angular fac- introduction of diagram factors for the integral§ and I,
tor will give contribution to the simple poles ie_ . This  (which are divergent whem=8) is the main trouble.
happens for example in the two-loop integrafsand I,. The RG analysis by Mergullbaand Carneiro has been
Then, their calculation of these critical exponents cannot bgsed in a attempt to extend the calculation forrallUsing
trusted, since furthe¢, * terms were not taken into account the fact that the quartic momenta scale includingnd the
in the evaluation of those integrals. It seems that this factoguadratic external momenta scales are equal Diehl and Shpot
was used to reproduce the original critical exponeptsand  considered the anisotropic problem for genemaf*=? In
v, 4 from the seminal papér. their first work® they worked directly in position space.
Here the geometric angular factor is determined simply byAfter that, using a hybrid approach, going to coordinate or
requiring that onlyl, has the same leading singularity as in momentum space using the free propagdsmaling func-
the standardy® theory. In that case, it is simply given by the tion) in coordinate space to make the transition according to
area of them-dimensional sphere. the necessity, they calculated the critical exponents using a
We can now discuss the fixed points and critical expo-minimal subtraction procedure which sets the external quar-
nents for arbitraryn-axial behavior. Note that in the isotro- tic momenta scales to zero. However, there is a small dis-
pic case, onlyl, andl, have the same leading singularities crepancy among their results for the critical exponents in the
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casesm=2,6 when compared with Mergulbaand Car- ing on the symmetry point, we can calculate critical expo-
neiro’s results using normalization conditiotfsFor the an-  nents corresponding to correlations perpendicular or parallel
isotropic casesn#d, the exponents are given in terms of to the competingn-dimensional subspace.

integrals to be performed numerically. These numerical inte- The beta functions and renormalization constants can be
grals are meaningful solely if one separates the integratiorewritten in terms of the constants defined above in the fol-
limits on the variablev=ooxx, using the scaling and re- lowing form:

lated functions in the coordinate space representation in the

integrand up to the maximum value of| at |vo_| =9.3, and B.=— 1 u1—ay,u,+2(a.—a,,)u?], (1793
replacing the asymptotic value of these functions for greater
values ofv. Note that as the quartic and quadratic external _ B 2
momenta are not independentcannotbe taken dimension- 7 4(0 ™ 7€ U,[2by,u,+(3bg,— 2bpa; )uz], (179D
less as done by these authors following the invalid argument__

by Mergulha a_nd Ca_rneiro. Thus they erroneously con- _y¢z(f)=TeLuT[clTJr(2c27—cfr—alfclf)u7]. (17909
cluded that the isotropic case could be encompassed in their

expressions for the critical exponents in the lichit-m close It is easy to obtain the coefficients above as functions of

to 8. ] . ) ) the integrals calculated at the symmetry points. They are
Furthermore, this alternative semianalytical method hagjyen py

some drawbacks. First, setting the quadratic momenta scale
to zero makes impossible the transition from the anisotropic N4+ 8
to the isotropic case, since the quadratic momenta scale is a;,=——(1+[i]meL), (180a
absent in this case and renormalization-group transforma- Ge

tions are defined only through the variation of the quartic

momenta scale. Second, unfortunately the expression of the N+8\2 [(N+8)? (3N+14)\ 1
critical exponents for the anisotropic case are rather cumber-  82:= 6e, ( 18 I2lm— 24 E_L
some, given in terms of integrals to be performed numeri- (180b
cally. Clearly the most convenient answer should present
analytical coefficients for each order ép, in analogy to the

usual standar@* theory describing the Ising model. —-— (N+2) 1+ 2[i ]+ 1 € (1800
. . . . i 27 1446 2im 4 L|»
The calculation of the critical exponents using the dissi L
pative approximation presented here has been criticized by
Diehl and Shpdt because of the constraint introduced in the (N+2)(N+8) (N+2)(N+8) 1 1
quartic loop momenta in higher loop Feynman integrals. DeP3,= — > 108 - Z[IZ]m+ 28]’
; ‘e pitin ; At i 1296 L
spite of this criticism, this approximation is in good agree- L
ment with recent high-precision numerical data based in (1800
Monte Carlo simulations for the ANNNI modé&i:3*
c :(N+2)(1+[i TmeL) (180e
B. Orthogonal approximation 17 6e. 2imEL/
We turn now our attention to the most general approxima-
tion for calculating all the critical exponents. In order to _(N+2)(N+5) (N+2)[(N+5) =~ 1
check the results, we must calculate the critical exponents Cor= 36¢2 3e, 3 12]m a4l
using two different renormalization schemes, namely the - (180

normalization conditions and minimal subtraction of dimen-

sional poIeS. It will be shown now that the critical indices areThis is enough to obtain the fixed points@(ef)_ They are
the same irrespective of the use of either renormalizatiopefineq byS,(u*)=0. All the integrals calculated at the
prescription. symmetry pointsSP; andSP, look the same. The factor of
7=1,2 drops out at the fixed points, implying that the
renormalization-group transformations performed either over
We defined the bare coupling constants and renormalizax, or «, will flow to the same fixed point given byuf

1. Normalization conditions and critical exponents

tion functions as =uj=u*)
—u(1+ +a,ud), 178
Uor ur( a U, aZTuT) ( a . 1+ ( [ ] n (9N+42) (181)
u* =—— €L €L - |2 —_—(— .
Z 4= 1+ by u2+ by u?, (178b 8+N " (8+N)?

The surprising feature of this approximation is that the criti-
cal exponents do not depend pR],,, as the ones obtained
where the constanta;,,b;,,c;, depend on Feynman inte- Uusing the dissipative approximation. The functiong, and
grals calculated at the convenient symmetry points. Dependy ;) can be written as

Z 4205y =1+ Cy,U,+Cp U2, (1789
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(N+2) 1],
Yoy~ 75 | 1H| 2lialmt 7€ |ur
(N+2)(N+8) ,
T~ 8ea U (182
_ (N+2) , 1
7¢2(1):TU1 1+[|2]m6L_§ul . (183)

PHYSICAL REVIEW B 67, 104415(2003

nents, it is convenient to calculate them in another renormal-
ization procedure, as we shall see next.

2. Minimal subtraction and critical exponents

Usually, in the minimal subtraction renormalization scale,
one can have more than one coupling, but just one momenta
scale, called in most textbools,3® and namedk here. The
dimensional redefinition performed for the quartic external
momenta, allows the description of the anisotropic case with

Replacing the value of the fixed point inside these equationgwo independent momenta scales. The coupling constant has
using the relation among these functions and the critical exyyo independent flows, induced by and «».

ponentsy, , and v, ,, we find

1, N+2 6(3N+14) 1 18
=—€6 —— egl———-=11,
T2 N+t Tl (N+s)2 4
1 (N+2) 1 (N+2)(N2+23N+60)
Vp=ot e + = .
2 4(N+8) 8 (N+8)3
(189

Notice that the coefficient of each powergfis the same as

If we want to calculate the critical exponents along the
competition axes, we set the quadratic external momenta per-
pendicular to the competing subspace to zero. Thus one can
introduce the quartic momenta scadg in order to compute
the normalization functions for arbitrary quartic external mo-
menta and demanding that the dimensional pdlegarith-
mic divergences in the momenthe minimally subtracted.

On the other hand, the calculation of critical exponents per-
pendicular to the competing axes can be performed by set-
ting the quartic external momenta to zero, introducing

in the pureg” describing the Ising-like behavior. The reduc- calculating the normalization functions for arbitrary qua-
tion to them=0 case is even simpler using this approxima-dratic external momenta and requiring minimal subtraction.

tion than the reduction to the=0 case using the dissipative

approximation. Since the functiong ,;)=2v4) and
Ye2(2)= 2Y42(1) @S @ consequence B5=24;, we immedi-
ately conclude that

In this section, we are not going to calculate explicitly the
critical exponents. Instead, we are going to calculate the
fixed point as well as the functiong,,) and y,z, at the
fixed point. As these functions at the fixed point are univer-
sal, they should be equal to the ones obtained using normal-

, (N+2) 6(3N+14) 1 ization conditions, leading to the same exponents in either
ML4= €L (N18)? U nrez 4| (186  renormalization scheme.
The dimensionless bare couplings and the renormalization
1 N (N+2) N 1 (N+2)(N2+ 23N+ 60) , functions are defined in minimal subtraction by
"4T2 T g(N+8) T 16 (N+8)3 L - -
(187) Uo,= U\ 1+ 2, i (€U, (1923
Thus, atO(€}), the relationy ,=27,, is valid. At O(€?), )
the relationv ,=3v, is fulfilled. Thus the strong aniso- ;
tropic scale invarian@ is exactto the perturbative order Z¢(T):1+i21 bi (e )u;, (192h
considered here. The other exponents can be read from the
scaling relations. As discussed before, they ate,€ a4 o
=a_, eftc) Z¢2(T)=l+; ci.(e)u’. (1929
1+ (N+2) (N+2)(N*+2N+52) , The renormalized vertices
= € €,
TN 4(N+8)? L
(188 LR (Keotp i) =Zy T, Uor k), (1933
— 2
a = (4 N) €L~ (N+2)(N +3a\l+56) 65, (189) F(R4()’T)(k|T’U’T’KT):Zé(T)FEi))(kITIUOT’KT)I (193tj
2(N+8) 4(N+8)3
Fl(qz(’%)(le’kZT’pT;uT’KT)
1 3 (N+2)(2N+1) , _ (2.0
’BL_E_ 2(N+8) EL+ 2(N+8)3 €L (190) :ZQSZ(T)F(Tj (le’kZT’pT!UOTlKT)i (193d
are finite whene_ —0, order by order iru.. Note that the
S =3+ e+ (N?+14N+60) 2 (191) external momenta into the bare vertices are mutiplied by
———¢( .

2(N+8)?

K:l. Recall thatk;;=p; are the external momenta perpen-
dicular to the competing axes, wherdas=k; are the exter-

Note that all these exponents reduce to the Ising-like caseal momenta parallel to therdimensional subspace. The
whenm=0. In order to check the correctness of these expoeoefficientsa; (¢ ), bi,(e), andc;, (e ) are obtained by
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requiring that the poles ir, be minimally subtracted. The appearingin,, 13, 14, andlg cancel each other. The result

bare vertices can now be expressed as

is that the normalization functions and coupling constants

can be expressed in the form

I‘EE))( kT yUors KT) = qu-T( 1- BZTU(2)7-+ BSTugr)v (194&}

ol (N+8) . (N+8)% (3N+14)) ,
P{3)(Kir Uor i) = k7Uo [ 1= Ag o, + (A + AR UG ], T e T e 28 |
(194b (1963
1—‘gi)’l)(kl'rikzrip'r;uOT!K'r)::I-_C::I.TUOT—‘r_(C:(Z:]’-r)—+_C:(Zz'r))L'I(z)'r' 7 1 N+2 2+< (N+2)(N+8)
T, = - —uT T a2
_ _ | _ (1949 Y07 144e 129662
Notice thatB,. is proportional to the integrdl; andBj., is
proportional tol 5. Note that ifr=1, all the integrals should (N+2)(N+8)| ,
be replaced by their values at zero quartic external momenta. 5184, Uz, (196b
In caser=2, those integrals are calculated at zero quadratic
external momenta.
Explicitly, the coefficients are given by the following in- Z¢2(T):1+ N+2u7+ (N+2)(N+5) _ (N+2) U2
tegrals: e 36€” 24e. | 7
(1960
(N+8) kl7'+ kZT . . . .
T 2 - From the renormalization functions one can obtain
N+2) (N+2)(N+8)
Ky, + ks, Ky, + ks, _ ! 2 3
| = 3)+|2( : 3” (1953 Yoy =T T 728 ) (197
_ (N+2) 1
A(l):(N2+6N+20) |2 k17.+k27- ’)/¢,2(T):’T—6 UT 1_§UT . (198)
27 108 2k,
ke +K ko 4k The fixed points are defined hg.(uX)=0. Then, it is
+|§( ir 3’)+|§( 27 37”, (195h  found that the fixed points generated by renormalization-
T T group transformations over eithey or k, are the same and
is given by
(2)_(5N+22) ki, )
Asr=—g5|la Pa +5 permutationy (1959 . . (9N+42) 109
Ur=giN € lte BEN? (199
_(N+2) [k,
Ba,= 18 la| ] (195d Substitution of this result into the renormalization con-
stants will give at the fixed poinyy, = 7., where, are
(N+2)(N+8) [k, given by Eqs(184) and(186). In addition, we have
=1o0g 5| %" (1950
- — (N+2) ( 6(N+3) ) (200
Y $2()= T ov €L ——€_|.
o NT2[ (kictka (ke k27+k37” PTT(N+8) (N+8)2
718 |2 r 2 r 2 K, ’ This leads to the same exponemtsgiven in Eqs.(185 and
(195f)  (187), obtained there via normalization conditions. Therefore
5 we have proven the consistency of this picture for the aniso-
C(l)_(N+2) o K-t Ko, 2 Ki,+Ka, tropic Lifshitz critical behavior, since the critical indices are
27108 |2 ; 2 k., independent of the renormalization procedure.
Ky, +Ks, . :
" I%( 2 3 ” (1959 3. Discussion
T The exponenty , obtained here agrees with the calcula-
N+2l [k tion performed independently by MukantéINevertheless,
(2)_ Rir . the exponentsn , presented here is at variance with
Cir 36 |4< K, s permutaﬂon}s (195h Mukamel's” and, therefore with the result obtained by Horn-

reich and Bruc® since both works agree with each other.

This is sufficient to determine the normalization constants From the numerical viewpoint, there is no sensitive dif-
to the loop order desired. Requiring minimal subtraction ofference among the results presented either using the dissipa-
dimensional poles for the renormalized vertex parts quotetive approximation or the orthogonal approximation for the
above, all the logarithmic integrals in the external momentecritical exponents perpendicular to the competition axes.
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Within the two significative algorisms precision the expo- Lifshitz points3* Those authors assume that the anisotropy
nents using either approximation are givenfqy=0.04 and  exponent given by)= v /v, is very close to the valug.
v ,=0.73. This fact has been corroboratexkactly in our two-loop
The deviations start in the calculation gf,=y, . Inthe ~ analysis as explicited in the present paper. For large systems

dissipative approximation thes, expansion yieldsy,  In a lattice of the formNXNxL with 20<N=<240 and 10
=1.45. A numerical interpretation has been proposed re=<N=100, the problem was considered taking into account
cently in order to improve the results obtained via e the special finite-size effects originating from the anisotropic
expansion when the perturbative parameteis greater than scaling at the Lifshitz point. The location of. the 'L'ifshitz
122 There it was argued that the neglec®@e’) could be point was found to be ak, =0.270+0.004 (with critical

. L : temperaturél| =3.7475-0.0005). The following values for
relevant to the calculation of, say, . The basic idea is to

| th ical val ¢ and directly into th the critical exponents were obtained independenty:
replace the numerical values of, andz, , AIrectly INto IN€ = _y 35, 5 93 4, =0.18+0.02, and B, =0.238+0.005. In

sgaling laws in ord-er to obtain the other critical exponents. Irbarticular, the Rushbrook relation is valid up to an error of
this way one obtainy, = 1.43, a; =0.18, anq,BLZO.ZO. 0.8% which is rather impressive.

On the other hand, using the -expansion results for |5 some circumstances it is more accurate to estimate in-
YL, @, and B, obtained via the orthogonal approximation gependently the critical exponents of interest than to use a
one findsy, =1.42, «; =0.05, and3_ =0.26. The numerical scaling law. In spite of this, we can make a simple estimate
‘ansatz” described above gives again =1.43,.=0.18,  of the exponent_, from our scaling laws using this high-
and 8. =0.20, sincen , and v , have the same numerical precision Monte Carlo study. Neglecting the error bar in the
values in either approximation. a, exponent it can be easily found from our hyperscaling

It is worthy to compare our results with those obtained forlaw along the competing axis that ,=0.36. The exponents
the ANNNI model in three-dimensional spacg € 1.5) rep- 5, , and 5,4 could also be simply estimated from the Monte
resenting the uniaxial nj=1) case using Monte Carlo Carlo renormalization-group simulations above by using our
simulations>*3° scaling laws. Since they involve the exponents and v, 4

Monte Carlo renormalization-group simulations havedirectly, this can cause further error propagation. Using the
been used to estimate critical exponents numerically for th@umerical value of3, from the simulation along with the
uniaxial Lifshitz critical behavior for the ANNNI model. value of v, , determined above we fing, ,=0.31, which is
First, the cubic lattice studied had X NX N sites with fer-  pot good in comparison with oug_-expansion valuery, 4
romagnetic interactions);>0 between each spin at site =0.08.

(x,y,2) and its nearest neighbors, and next-nearest layers This discussion shows that the results displayed here are
competing interactions along the axis with couplingJ,  consistent with the best numerical values available for the
<0. Since there are two correlation lengths which governANNNI model. Either the direct computation via tleg ex-

the critical regime around the Lifshitz point with different pansion using the orthogonal approximation or the numerical
critical exponents, cubic cells with periodic boundary condi-ansatz yield a rather good agreement with these Monte Carlo
tions are not appropriate for the treatment of this anisotropigesults, as shown for the exponeants and 3, , whereas the
situation. Therefore the lattices are chosen to be of the formalue for the exponeny, is not as good as in the Monte
NXNXL. Carlo simulations but still acceptable. Moreover, the agree-

Kaski and Selk® estimated some critical exponents for ment of the exponent, , with either Monte Carlo extrapo-
N=24, L=4 when finite-size effects are neglected. Thelations is remarkable. Therefore our renormalization-group
quantity k=—J,/J; measures the degree of competition. analysis together with the field-theoretical tools developed
The counterpart of the field-theoretic valdg=0 character- here can be considered a reliable method to estimate critical
izing the location of the Lifshitz critical point in this lattice exponents for real physical systems.
model corresponds to the valug =0.270+ 0.0053° At the
value k, =0.265 in units wherégz/J;=1 (kg is the Boltz-
mann constantthe critical temperature was determined as  v||. CRITICAL EXPONENTS FOR THE ISOTROPIC
T. =3.77x0.02. At the valuex =0.265 the correlation SYSTEMS
length critical exponent parallel to tlzeaxis was found to be ) ) ) )
v.4=0.33+0.03. Since a small deviation in the critical tem-  AS the isotropic behavior presents just one external mo-
perature provokes a considerable deviation in the value dihenta scale, its analysis is simpler than the one used to de-
V.4, the determination of this critical exponent in this fash- Scribe the anisotropic behawor, where two external momenta
ion is rather scarce in the Monte Carlo literature correspondSc@les are present. Besides, the only manner to attack this
ing to the Lifshitz behavior. Nevertheless, this value is inProblem is to use the orthogonal approximation, for the dis-
good agreement with that obtained independently using oufiPative approximation does not work as it was discussed
perturbative field-theoretical approach via the orthogonal apPefore.
proximation at two-loop order, namely, ,=0.36. In addi-
tion, the Monte Carlo result®, =0.19+0.02 andy, =1.40
+0.06 were estimated independently.

Furthermore, a recent Monte Carlo simulation proposal The bare coupling constants and renormalization func-
makes use of the idea of generalized conformal invariance atons are defined as

A. Critical exponents in normalization conditions
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Upa=Us(1+ay3Us+a,3u3), (2019
Z 4(3= 1+ bagU3+ bsali3, (201b
Zﬁz(?»): 1+ Cy3Us+ Coali3, (2010

where the constants;s,b;3,ci; depend on Feynman inte-

grals calculated at the symmetry point named here&fy

Only the external momenta scadg parallel to the compet-
ing m-dimensional subspace arises in this isotropic case.
The beta function and renormalization constants are writ-

PHYSICAL REVIEW B 67, 104415(2003

Replacing the value of the fixed point inside these equations,
using the relation among these functions and the critical ex-
ponentsy, 4, and v 4, we find

1, N+2 - 3(3N+14) 1) 207
=—€ —— el———3=| |,
TATE (Nre2 T T (Nve2 8
1 (N+2) 1 (N+2)(N*+23N+60) ,
4 16(N+8) 256 (N+8)3
(208)

ten in terms of the constants defined above in the followingrpese exponents are different from those originally obtained

manner:

Bs=— e Us[1—ajaus+2(aZ;—az)u3], (2023
Yg(3)= — €LU3[2by3uz+ (3b33— 2byza;3)U5], (202b
;¢2(3): € U3[C13t(2C3— Ci3_a13013)u3]- (2029

in Ref. 1. The coefficient of thef term in the exponenyy

is positive, consistent with its counterpart in the anisotropic

cases as well as in the Ising-like case. One learns that only
the quartic momenta is not sufficient to induce its change of

sign. The exponent, , agrees aD(e ) with that presented

in Ref. 1 but naturally disagrees @I(ef), since it depends

on the value ofy 4 atO(ef). Besides, the critical index, 4

The coefficients above are obtained as functions of thés obtained aD(e?) here.

integrals calculated at the symmetry point. They read

N+8 1
a13—6_ l+ ZEL y (2033
N+8\2 [2N2+23N+86 203
4237 | TG 14e, , (203
_ (N+2) 5 203
257~ 288, +tge (2030
N+2)(N+8 N+2)(N+8
33:_( )( i ) )( )1 (2034
2592¢ 20736
_(N+2) 1 203
C13_6—6L +Zf|_, (2039
N+2)(N+5 N+2)(2N+7
C23:( )(2 ) ( )( ) (2030
36¢7 144¢,

The fixed point is defined by3s(u%)=0. Therefore it is
given by

- 6
"~ 8+N

U3

. (209

€L

I S CLE)
e 2| o2, ONT2
"2l 20 (8+N)?

Note that this fixed point is different from that appearing in
the anisotropic behavior and cannot be obtained from it in

smooth way. The functiong s, and;qsz(s) can be written
as

(N+2)[ 5 | , (N+2)(N+8)
Yo~ 1ag |1 g U g U
(209
_ (N+2) 1 1
’)/¢2(3)=TU3 +ZEL_ZU3 . (206)

Now using the scaling relations derived for the isotropic
case we obtain immediately
(N+2)

. +(N+2)(N2+19N+28) 5
[ TINE R

sanier o P

(4—N) (N+2)(N?+9N+68) ,
WTANTe T T aanrep o A0
1 3 (N+2)(N*+N+108) , 011
BL4_§_4(N+8) €~ 64(N+8)3 €L, ( )
5 3+1 +(N2+14N+60) ) (212
= SELt————— €.
L4 2 €L 8(N+8)2 L

These exponents are obtained her@é&f). Formerly the

lack of a set of scaling laws for the isotropic case did not
allow these findings. In order to check these results, let us
analyze the situation using the minimal subtraction scheme.

B. Critical exponents in minimal subtraction

We proceed analogously as in the isotropic case. We just
replace the subscript=3 and keep in mind that the Feyn-
man integrals are calculated in the isotropic cdsem close
to 8. Minimal subtraction of dimensional poles in the renor-
malized vertexI'{ys, implies that the bare dimensionless

&oupling constant can be expressed in the form

2

1 (N+8) (N+8)? (3N+14)
(213
The fixed point can be easily found to be
6 9(3N+14)
ui = €.+ €. 214
PUIN+8) T (N+g)® t 19
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The normalization constants are given by VIIl. CONCLUSIONS AND PERSPECTIVES

All the critical exponents for then-axial Lifshitz critical
u3 behavior for the anisotropic &m=<d—1) and the isotropic
(d=m close to 8 cases are explicitly derived &( ef). We
have shown that up to the loop order considered in this work
ug, (215 strong anisotropic scaling theory holds since the relations
v 4=3v., and 5 4,=27,, are exact. The exponents associ-
ated to critical correlations perpendicular to the competing
axes easily reduces to the Ising-like exponents wine0,
u%. the only difference being the perturbation parametere-
placing the usua¢ in noncompeting systems. These relations
(218 imply that the scaling laws obtained here using two indepen-
o dent renormalization-group transformations reduce to the
The functionsy 43y and y42(3) are given by the following  ones previously found by Hornreich, Luban, and Shtrikrhan.

(N+2)
261" 88,

(N+2)(N+8) (N+2)(N+8)
T T om0z 20736,

3662 48¢,

— N+2 N+2)(N+5 N+2
7 =t O >u3+(< +2)(N+5) (N+2)

GEL

expressions: Moreover, we show that all the exponents for the isotropic
behavior are obtained explicitly through the use of the scal-

(N+2) , (N+2)(N+8) , ing relations presented.Besides, they are shown explicitly
Y6(3)”T 124 uz— 6912 usz, (2179 not to be recoverable from the anisotropic situation in the

limit d—m. The structure of the Feynman integrals in the
isotropic case indicates that it deserves a special treatment
_ (217b when compared with the anisotropic situation as clarified in
this paper.
The results for the calculation of arbitrary loop Feynman
Using these results the functiof; 5 at the fixed point integrals are obtained by demanding that they are homoge-

yields the value ofy, , as obtained in E¢(207), whereas the Nneous functions of arbitrary external momenta. Even though
LT . ; the calculations are carried out in a given order in perturba-
function v} 5 at the fixed point reads 9 P

tion theory, the author is convinced, however, that the con-
clusions hold to all orders. This is indicated by the following

. (218 fact. Th_e Feynman integrals possess the same hqmogeneity
(N+8)2 L) degree in the external quadratic momeptand quartic mo-
mentak’ through the combinationp?+k’#) as well as the

which is the same as that obtained in the fixed point usingame coefficient even for the three-loop intedealOne just
normalization conditions and leads to the same critical expobias to show that higher loop contributions for the renormal-
nent v, from Eq. (208 as the reader is invited to check. ized vertex parl’§ present the same property. In this case,
Therefore the complete equivalence between the two renothe coefficients of the power series of the bare couplings
malization schemes is assured. in terms of the renormalized ones will be the same. Con-
Notice that the critical exponent, , for the isotropic case sequently, the global factor of 2 in the beta functignchar-
is different from the original result of Ref. 1. Since we haveacterizing the criticality along the competing axes will al-
checked our results using two distinct renormalizationways drop out at the fixed point yieldingd =u} . The
schemes as shown above, the critical indices presented lalefinite answer has to wait until these higher loop contribu-
those authors should be checked using more than one rendiens are calculated.
malization procedure in order to clarify this discrepancy. The simple analytical expressions for each coefficient in
Unfortunately, there is no numerical work in the literature the ¢, expansion of the critical indices are rather encourag-
either using high-temperature series expansion or Monteng to proceed the evaluation of other universal amounts, like
Carlo renormalization-group simulations to compare withcritical amplitudes® It would be interesting to compare
our findings wherm=d close to 8. The most recent Monte some experimental results available for MnP like the
Carlo resultd* were devised to treat only anisotropic sys- specific-heat critical amplitude ratiowith theoretical calcu-
tems. It would be convenient to perform a Monte Carlolations within the context of as, expansion using the tech-
analysis for this isotropic situation as long as a good algoniques described in the present work. In addition, a thorough
rithm can be devised for this case. Assuming that such &G analysis to prove that all amplitude ratios are indeed
good algorithm can be defined, a possibility is to construct ainiversal for the Lifshitz critical behavior was not done yet.
seven-dimensional isotropic lattice in order to obtain the exActually, the idea presented in this work might be suitable to
ponents and to compare with our perturbative analysis whedemonstrate the universal character of the above-mentioned
e, =1. This situation would be the analog to that in which critical ratios and calculate all of them.
the simulations for the Ising model exponents in a three- Other problems can be pursued using the present method.
dimensional lattice can be compared with perturbative fieldThe treatment of finite-size effects for the Lifshitz behavior
theory results wher=1. Of course, other alternatives can can be devised in analogy to the noncompeting situdfiéh.
be imagined, but this one would be particularly worthwhile. The systems may be finit@r semi-infinit¢ along one(or

1
U3_ZU§

(N+2)
Ye3)T T g

*

_ (N+2) 3(N+3)
Ye23)™ (NTg)éL
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severa) of their dimensions, but they are of infinite extent in sality classes whenever arbitrary momenta powers arise in
the remaining directions. Examples include systems whiclhe Lagrangian(l) as the effect of further competition is
are finite in all directions, such as(aypey cube of sizel,  quite a fascinating issué.It is expected that it can be solved
and systems which are of infinite size ii=d—1 dimen-  along the same lines described in this wtk.

sions but are either of finite thickneksalong the remaining In summary, we have described the Lifshitz critical be-
direction (d-dimensional layered geomejrpr of a semi-  havior in its complete generality in what concerns its critical
infinite extension. The presence of geometrical restrictiongxponents. We have presented field theory renormalization-
on the domain of systems also requires the introduction ofroup methods which resulted in interesting analytical ex-
boundary conditiongperiodic, antiperiodic, Dirichlet, and pressions for all the critical indices in the isotropic as well as
Neumann satisfied by the order parameter on the surfacesin the anisotropic cases at IeastQa(teE). We hope our find-

In particular, the validity limits of thes, expansion for these ings will be useful to unveil further issues related to the
systems and the approach to bulk criticality in a layered gephysics of competing systems.

ometry can be studieff.

Recently, typical surface phenomena in noncompeting
systems were generalized to competing systems using Monte
Carlo simulations for the ANNNI modé&P However, as far
as the Lifshitz behavior is concerned, a theoretical descrip- The author acknowledges financial support from FAPESP,
tion of these systems is still lacking. The field-theoreticalGrant No. 00/06572-6 and Departamento dsida Mate-
framework just presented might be useful to address thisaica da Universidade de 8#&aulo for the use of its facili-
problem. ties. He also thanks L. C. de Albuquerque and N. Berkovits

The quest towards a generalization of the Lifshitz univer-for discussions.
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