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Quantum Monte Carlo study of S=3 weakly anisotropic antiferromagnets on the square lattice
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We study the finite-temperature behavior of two-dimensi@all/2 Heisenberg antiferromagnets with very
weak easy-axis and easy-plane exchange anisotropies. By means of quantum Monte Carlo simulations, based
on the continuous-time loop and worm algorithm, we obtain a rich set of data that allows us to draw conclu-
sions about both the existence and the type of finite-temperature transition expected in the considered models.
We observe that the essential features of the Ising universality class, as well as those of the Berezinskii-
Kosterlitz-ThoulesBKT) one, are preserved even for anisotropies as small as fithes the exchange
integral; such outcome, being referred to the most quantum®adé2, rules out the possibility for quantum
fluctuations to destroy the long-range or quasi-long-range order, whose onset is responsible for the Ising or
BKT transition, no matter how small the anisotropy. Besides this general issue, we use our results to extract,
out of the isotropic component, the features which are peculiar to weakly anisotropic models, with particular
attention for the temperature region immediately above the transition. By this analysis we aim to give a handy
tool for understanding the experimental data relative to those real compounds whose anisotropies are too weak
for a qualitative description to accomplish the goal of singling out the genuinely two-dimensional critical
behavior.
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. INTRODUCTION . o o o
H=5 2 (14088 o+ §F ) +(1- 008§,
In the last few decades the Heisenberg antiferromagnet b 1)
(HAFM) on the square lattice has been thoroughly studied by
means of several theoretical, numerical and experimental NPT . s
techniques Such research hands us a picture where threWhere'_('l"Z) runs over the sites of ahxL square lat

classes of substantially different models appear: isotropicﬁce’ d connects each site to its four nearest neighbars,

easy-axis, and easy-plane antiferromagnets >0 is the antiferromagnetic exchange integral, andand
In such a picture, however, there is a gray area where oft» '€ the easy-axi¢EA) and easy-plan¢EP) anisotropy

knowledge is not detailed enough to allow a precise readingarameters, respectively, hereafter given positive values

Nl G

maller than unity. Ad sets the energy scale, the dimension-

of the experimental data: this is the area of very wea . : :
anisotropies and strong quantum effects, which is of particu-eSS temperature=kgT/J will be used in the following. The

lar interest as most of the real layered compounds whos8Pin operatorsS® (a=x,y,z) obey the s(2) commutation
magnetic behavior is properly modeled by e 1/2 HAFM  relations[ S ,Sﬁ]=is“/’76ij$7 and are such thdS|?=S(S
on the square lattice are characterized by anisotropies as1). Besides the isotropic moddl,=A,=0, Eqg. (1) de-
small as 102 times the exchange integral. These compoundsines the EA A, =0, 0< A,<1) and EP {,=0, 0<A,
exhibit a phase transition to three-dimensiof@D) long- <1) magnets, whose respective reference models are the
range order at a finite temperatufg which is often too Ising model @ ,=1) and theXY (also known as<X0) one
large for the interlayer coupling to be the unique player,(A,=1). What is known about these models can be summa-
while the idea of a two-dimensional anisotropic criticality asrized as follows.
the trigger of the transition appears well sodridsuch an (i) The isotropic model has no finite-temperature transi-
idea is corroborated by the measured values of some criticaion; its ground state is ordered for aBynd a critical region
exponent$. The experimental observation tells us that 3D of divergent correlations is clearly observed at very low tem-
long-range order is present beldly,, and that well above peratures;
Ty no trace of anisotropic behavior is left; it is slightly above (i) The EA models exhibit an Ising-like transition at a
Ty that one hence expects evidence of genuine 2D anisaritical temperaturé, which is an increasing function of both
tropic behavior to be detectable. In order to let these experiA , andS, for S=1, t, is finite for all anisotropies;
mental evidences surface out of the sea of the isotropic ther- (iii) The EP models exhibit a transition of the Berezinskii-
modynamics, precise numerical data for the 1/2 nearly  Kosterlitz-Thouless(BKT) type, at a critical temperature
isotropic HAFM are needed: it is the purpose of this work totgyr which is an increasing function of both,, andS; for
fulfill such need. S=1, tgkr is finite for all anisotropies.

We consider theXXZ model, defined by the Hamiltonian Some of the above statements are rigorously prév&t,
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and others come from the combination of theoretttal?
numericalt®~*8and experiment&i-?! results.
In the S=1/2 case, evidence of a phase transition for
anisotropies as small as,=0.01 in the EA casé'’ and
(1 3) (5)

A,=0.02 in the EP cagis suggested by previous quantum
Monte Carlo(QMC) approaches; however, these computa-
tions employed local algorithms which cannot easily access

the critical region, and a rigorous FSS analysis could not be
performed. The situation is still unclear also because recent
works based on real-space renormalization gfipredict
the existence of a critical value of the anisotropy in the EA
) “) (6)

case ({?~0.2), below which the transition would be de-
stroyed by quantum fluctuations.

In this work we conside=1/2 and four nearly isotropic FIG. 1. Plaquette configurations with nonvanishing weights in
systems, two EA systems) ,=0.01 andA ,=0.001, and the S=1/2XXZ model. The vertical axis is the imaginary-time di-
two EP systemsA,=0.02 andA,=0.001. Our resulting rection.
picture is that a phase transition is induced by an arbitrary
amount of anisotropy, and that several distinctive features gblaquettes are defined on different groups of bofips so
the expected universality class can be traced out. that all bonds involved in the propagation at the same time

The structure of the paper is as follows: in Sec. Il thestep do not share any spin; moreover, each plaquette shares
QMC methods are presented, the thermodynamic quantitieigs corner spins with two plaquettes on the previous time step
under investigation are defined, and the finite-size scalingnd two on the subsequent time step. ExpressRinbe-
(FSS theory used in our analysis is briefly recalled. Thecomes exact in the limi — oo,
results for nearly isotropic models, as from both FSS analy- In the case of th&XXZ model, only the 6 plaquette con-
sis and thermodynamic behavior, are presented and discussgurations shown in Fig. 1 have non-zero weights,
in Secs. lll and IV for the easy-axis and easy-plane casewhose expansion to first nontrivial order dr are2°
respectively. In Sec. V the critical-temperature vs anisotropy

phase-diagram is discussed. Eventually, conclusions are J?
drawn in Sec. VI. Wy =wp~1-= AT,
Il. QUANTUM MONTE CARLO, OBSERVABLES, JZ
AND FINITE-SIZE EFFECTS Wa3=wy~1+ ZAT,
A. Quantum Monte Carlo method:
continuous-time algorithms I
W5:W6~7AT. (4)

As usually done in the existing literature on the QMC

method, in this section and in Appendix A we employ thePlaquettes 1, 2, 3, and 4 propagate the state of the spin pair

notation unchanged, while plaquettes 5 and 6 introduce an exchange
Y=3(1-A,) JZEJ(l—A)\) ) of state for the interacting spins, hereafter denoted ldala
p/ )
and B=1/kgT. The QMC method for theS=1/2 XXZ 1. Loop algorithm

model is based on the Trotter-Suzuki decomposition of the 6 can completely eliminate the critical slowing-down

partition ;lf{nction, which can be approximated by the gefecting local-update algorithms by introducing the so-
expressio calledloop-cluster algorithnf® which is the quantum analog
of the Swendsen-WaAgand Wolff® cluster algorithms in-
ZB)=Tre #"=> T] w, (A7), (3y  troduced 9for classical spin systems. Within the multicluster
S ns approack’® (analog to the Swendsen-Wang schéthe loop

. . _ falgorithm consists of probabilistically assigning to each
wherew,, represents the amplitude of prepagenon of a pair Oplaquette doreakup decompositiofor graph G, i.e., a way
nearest-neighbor spins from a configuratioa;, o) to

= ) - : . of grouping its spins in subgroups, so that the grouped spins
o7 o) in the (imaginary) time stepA7=pB/M, M being  can pe flipped all at once bringing the plaquette into a con-
the Trotter number anf{o}) (o7=*1/2) the basis set di- figuration with nonvanishing weight; in the case of #iXZ
agonalizing theS! operator. The two bond configurations de- model the above condition allows only grouping of spins into
fine a  space-time plaguette configuration p pairs (nonfreezingbreakups:=, |, and x) or all together
={0y,0y;0{ 0}, so thatw, can be seen also as the weight (freezing breakup: ®), as shown in Fig. 2. Assigning a
of a given plaquette configuration p. The indexuns over breakup G to each plaquette, one univocally defines a
all plaquettes on the space-time lattice, and the inSlexns  breakup decompositioG={G,} of the whole configuration
over all configurations of the system. At each time stepS={o; ,} into loops Different breakup decompositiors

104414-2



QUANTUM MONTE CARLO STUDY OF S= 5 WEAKLY . .. PHYSICAL REVIEW B 67, 104414 (2003

in the EP case, anp(5,=)=1, p(5,X)=0 in the EA case.
The algorithm then proceeds as follows.

(i) Distribute breakups<, =, and® on the continuous
G: = X @ segments[equal to infinite sequences of infinitesimal
plaquettes 12) and 3(4)] along the imaginary-time evolu-
tion of each pair of interacting spins, according to the Pois-
son distribution having as paramej@o(p,G); for each kink
{'Ilén the propagation, choose a breakup with probabilities

(5G).

FIG. 2. Breakup decompositions of a single plaguette inShe
=1/2 XXZ model; thick lines join grouped spins.

are assigned to each plaquette configuration p according

weights w(p,G) obeying the general sum rulew, (i) Reconstruct the loops defined by the decomposition of

=2cW(p,G). each infinitesimal ;
AL ) plaquette;
Taking into account the symmetries of the model and the (iii ) Decide whether to flip each loop independently with
opportunity to minimize freezing, the complete set of ”On'probability one half

zero breakup weights used in our calculation réas first The above procedurémulti-cluster updaterepresents a

order inA ) as follows. : :
: . ] single MC step in our code. We have generally performed
Easy-plane and isotropic cas& &J,): 10* MC steps for thermalization for each value of the tem-

Y perature, and1-1.5)x 10° MC steps for an evaluation of
w(l)=1- —Ar, thermodynamic observables. The algorithm is very efficient
4 in both the EA and EP cases, with autocorrelation times

which always remain around unity for all the lattice sites
NSNS we considered, i.el,=16, 32, 64, 128, and 200. The auto-

w(1,x)= 4 A, correlation time 7, has been estimated by thalocking
techniqué’ as
3= ® Ny o
w(3,=)= T. o
4 T=m s, ®)
2 42
Easy-axis case)(<J,): where o2 denotes the variance of the time-serigs} (i
z =1, ... Ngeps NpNyp) produced for the variable while 0'>2<
w(l|)=1- 7 A is the variance of the block variable X;
— i* N . .
=N, 12{’:‘(1.*’_1)*Nb+lxi (j=1,...ny), with Ny>7 for the
JXY estimate to be sensible.
w(3,=)= TAT, The introduction of freezing breakups in the EA case is
generally thought to lower the efficiency of the loop
2y algorithm?® although no direct evidence of such conclusion
W(3,.@)= —J Ar ©6) exists. For the EA anisotropies we consider, no significant
' 2 ' loss of efficiency(i.e., no increase in the correlation tijrie

observed.
It is worth noting that in the EA case one must allow for e have implemented improved estimat8rS for all the
freezing W(3,®)#0) in order to ensure the positiveness of quantities of interest. A separate, more careful analysis is
all welahtsl. f 9 Ao needed in the case of off-diagonal observables, whose most
In the limit of continuous imaginary time, Ar—0, o Bty & (1
. e - general bilinear example may K& (7)S (7')). In the ab-
plaquettes with ndink, i.e., of types 1(2) and 3(4), acquire sence of freezing, the improvfdlestimjator s>imply réatfs
unitary weight, while plaquettes with a kink, i.e., of type 5 =, ~_ L ,
(6), acquire an infinitesimal weight, still keeping a finite [ST (NS (7')imp=1, if (i,7) and {,7’) belong to the
same loop, and 0 otherwise.

weight per unit timew,=lim, . ow,/A7; therefore, kink- o )
bearing plaquettes must be regarded as Poissonian events, jn'Wen freezing is present, since only one plaquette con-

the imaginary-time evolution of each pair of interacting figuration admits freezing, the constraint of havingr) and

spins. At the same time the breakup decomposition creating:7') On the same loop is no longer sufficient to have a
no kink in imaginary time evolution|[j acquires a unitary NON-Zero contribution to the estimator. In principle it is pos-
weight, while all the other breakups acquire an infinitesima/SiPlé to define the estimator for off-diagonal observables
weight, still keeping a finite weight per unit time(p,G). In  €ven in case of fre_e_zmg; however,_not onl_y is its implemen-
the case of plaquette(8), since the breakup weights have to tation highly nontrivial from the point of view of program-

be normalized to the plaguette weights, they become finit&1ing, but its evaluation would also consume a considerable
amount of computational time. We have therefore refrained

probabilities . X ; . .
from implementing such estimators in the case of freezing.
1 % To have a complete picture of the thermodynamics of the
p(5=)=5| 1+ |, p(5X)=1-p(5=) (7 system in the EA case, we have then resorted to a different

2 (and generally less efficienQMC scheme, within which the
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calculation of the off-diagonal observables in the EA case is p(1—3)=1+m(1—-3)Ar,

relatively straightforward, i.e., to the so-called worm algo-

rithm. p(3—1)=1+w(3—1)AT,
2. Worm algorithm p(1—5)=7w(1—5)Ar,

The worm algorithm represents an alternative way to
overcome the Sroblem ofpcritical slowing down in QK/IC P(3—5)=m(3-5)Ar, (11)
simulations. The original idea of the algorithm can be foundwhere 7(1—5) and w(3—5) have the meaning dfjposi-
in Ref. 34, but we here formulate the algorithm in a differenttive) transition probabilities per unit imaginary time, while
way, so that it appears as a direct generalization of the loop-(1—3) and #(3—1) are (negativeé corrections to the
algorithm; our formulation is more directly related to the transition probabilites among plaquettes taking non-
so-called “operator-loop update” introduced in the frame-vanishing weights; these corrections arise from the Poisso-
work of the stochastic series expansion. nian occurrence of kinks in imaginary-time evolution. With

The worm algorithm starts by choosing a point at randomhe above parametrization of the transition probabilities, the
in space-time, inserting two discontinuities in the localfirst two sum ruleq10) take the form
imaginary-time evolution, and then keeping one fixgoe

“tail” of the worm ) while letting the othetthe “head” of the m(1—-3)+ 7(1—5)=0,
worm) freely travel through the lattice. The single-worm up-
date ends when the head happens to “eat” the(tag worm m(3—1)+7(3—5)=0, (12

closes, so that the isolated discontinuities disappear and the . . .
system is led to a new configuration having non-zero Weight\."’hIIe l;che thr']rd. remains unfcg_anged_, p|$5—>1) gng'|p'(5 f
All the segments of imaginary-time evolution touched by the >3) keep their meaning of dimensionless probabilities for

worm’s head have to be flipped, i.e., the worm's head per;[he different ways the worm’s head can pass through a kink

forms a real-time update of the system. Its motion convenin the imaginary-time evolution. The set of detailed balance
tionally goes forward(backward in imaginary time while equations in the continuous-time limit takes the form
updating segments with u@own) spins, and it is ruled by z
detailed balance condition, to be locally satisfied on each m(1—-3)—7(3—=1)=—,
(infinitesima) plaquette it touches. 2

General detailed balance conditions for the single v
plaquette update when the worm’s head passes through it, (1—5)= 7p(5—>1),

flipping two spins, read

JXY
Wip(1—3)=wsp(3—1), m(3-5)=—>p(5-3). (13
B Together with the sum rules, they give, as a unique solution,
W1p(1—5)=wsp(5—1), the following set of transition probabilities:
JXY_JZ
W3p(3—5)=wsp(5—3), ©) m(1=5)= —F—,
where we have already introduced the time- and space- XYy g2
reversal symmetries, so that here “1” means 1 or 2, “3” m(3—5)= 7
means 3 or 4, and “5” means 5 or 6, depending on the way
the worm’s head travels through the plaquette. Moreover, the 5
iti iliti i 1 J
transition probabilities must satisfy the sum rules 0(5—3)= _( 1— _) _ (14)
2 JXY
p(1—3)+p(1—-5)=1, It is immediate to see that this solution is equivalent to the

set of breakup weightEEgs. (5)], which means that, at this

level, the worm algorithm is nothing but the Wolff-type
P(3—1)+p(3—5)=1, (single-cluster version of the loop algorithm. However, as
observed in Sec. IlA1, in the EA case transition probabili-
ties are not always positive, and some other transition
mechanism must be invoked to overcome this problem. As
seen before, the remedy in the case of the loop algorithm was
Moving to the continuous-time limit, we express the transi-to allow for branching of the loops; if one hence allows for
tion probabilities from a plaguette with a non-vanishing branching also in the worm algorithm, the single-cluster ver-
weight to another plaquette, as sion of the loop algorithm for the EA case is obtained.

p(5—1)+p(5—3)=1. (10
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A different strategy can be adopted in the case of thd@ransforms into a local algorithm; however, the case of strong
worm algorithm by introducing a new type of motion, namedanisotropy is not of our interest here.
bouncing where the worm’s head, when attempting to up- The estimator for bilinear off-diagonal quantities like

date a plaquette, is bounced off and hence forced to |Ocallg+(7-)§]*(7-') can be thought of as a partition function for a
trace back its route. From the physical point of view, themodified model, in which two spin discontinuities are in-
existence of a bounce mechanism protects some plaquettggrted into the system configuration at the poirits)(and
from being updated, possibly those plaquettes containing Io(j’Tr)_ Now it becomes clear that configurations giving a
cal spin configurations which give a relevant contribution tonon-zero contribution to such a partition function are gener-
the thermodynamics of the system. In the case of the EAteqd during the worm update whenever the discontinuities
antiferromagnet, the most relevant local configurations arggsociated to the head and tail of the worm coincide with the
those containing antiferromagnetic correlations ofzleem-  5pgve points, both in the EA and EP cases. Therefore the
ponents, i.e., in terms of plaquettgs=3 and 4. Therefore, off.diagonal observables are measured on the fly during the
we allow for bounce on these plaquette configurations, intromotion of worm’s head and each worm update produces a
ducing a finite bounce probabilify(3,0) =7(3b)A7 which  statistics for the estimators which grows linearly with the
has to be accounted for in the sum rule length of the worm. On the other hand, improved estimators
are not defined for diagonal quantities in the EA case; in this
respect, worm and loop algorithms are seen to be exactly

The detailed balance condition for the bounce probability iCOmPlementary. . o .
trivial, reading p(3,b)w(3)=p(3,b)w(3). Equations (14) We remark that the worm algorithm retains its full effi-
and (15) form an underdimensioned set, am(3) can ciency also in presence of a uniform magnetic field applied

hence be chosen arbitrarily, with the only constraint of posi-:E.0 Itlhe ISp'nj’ while ttT]e If(')olz glgorlthm 'S(‘j kn(()j\;vn Eﬁ e?ponen—
tive transition probabilities. As in the case of freezing, it is lally Slow down as the Tield IS Increased anajor the tempera-

highly convenient to minimize the bounce probability: whenture Is lowered” Finally, we note that, independent of us,

the worm’s head bounces, part of its update operations ar?yljuasen and Sandvik recently developed a very similar

lost as it locally traces back its way, so that the efficiency in dlrec_ted lO_Op algorlth_m within the f_ramework of both sto-
updating the configuration, keeping the number of elemenchastic series expansion and path-integral Monte Carlo.
tary update operations fixed, is lowered. The following solu-

tions for the transition probabilities, minimizing the bounce B. Thermodynamic quantities

probability, are found:

7(3—1)+m(3—5)+ m(3p)=0. (15)

Here we briefly report the definition of the relevant ther-
7(1—5)=0, modynamic quantities measured in our QMC study, together
with their respective estimators. The MC average of the es-
timator will be hereafter denoted &s-: - )yc-

1 -
m(3—5)= EJXY, The internal energy#) is estimated as the MC average
of
m(3b)= E(JZ—JXY) 1 B
2 253 | dradn=e, 17
id Jo
p(5-1)=1. (16)

. i ] where ¢; 4(7) takes the value- J%/4 if at imaginary timer
The worm algorithm with the bounce process ispare-  there is an infinitesimal plaguette configuration of type)l
quantumcluster algorithm: in the Ising model, which is a 32/4 if of type 3(4), — 8(7) if of type 5(6). This corresponds
substantially classical statistical model, the algorithm losegg the continuous-time limit of the energy estimator as de-
its cluster nature, since only bounce processes survive, thyged in Ref. 38.

confining the worm on a single site. - 202N AN 2 .

As in the case of the loop algorithm, each of our simuIa-fro;hzn:E;;Iffllgcti:ﬁgn_sﬁagH )= (H)?)IL" is estimated
tions consists of 1DMC steps for thermalization and ¢f—
1.5)x 10° MC steps for evaluation of thermodynamic ob-
servables. During thermalization, the number of worms to be 1 - )2
produced at each step is adjusted so that the total length of E((ﬂ E“— Nyinksmc = BAE)mc) (18
the worms in the imaginary-time direction roughly equals the
size of the D+ 1)-dimensional latticel.?x 3; this number ) ) )
is then kept fixed during the measurement phase. In this way¥hereNyincs is the number of kinks present in each generated
autocorrelation times of the order of unity are achieved forconfiguration. The variance of the specific heat has been es-
all values of the EA anisotropy considered. At variance withtimated via binning analysis of the time series related to the
the loop algorithm, the efficiency here is expected to drasti€nergy estimator and the kink number.
cally decrease as the anisotropy increases, given that, as the The staggered magnetizatidh=(—1)(S’) is estimated
model moves toward the Ising limit, the cluster algorithmas the MC average of
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1 _ Another relevant observable, in the EP case, is the helicity
- 2 (—1)'oi=m;. (199  modulusY, which is a measure of the response of the system
L= to the application of a twistb in the boundary condition

The spin-spin correlation function is along a given direction,

1

1 (8 = aZF(¢) (25
cw<r)=—2f drd7 (S S (7N (7 7). (20 L2 '
BcJo

2
9% |,

where$=®/L. In Appendix A we show that, starting from

N . the above definition as explicitly written in terms of spin
andf(7,7) =1 in the time-averageA) one. In both cases o615 the estimator of the helicity modulus of e

the numerical calculation of the correlation function takes_; 5 v v > Ep model reads
advantage of the existence of the improved estimator defined
in Sec. IlA. t
The generalized susceptibility is Y= §|W|2, (26)

wheref(7,7')=B8(7— 7') in the equal-tim&ET) correlator

@ o iq-raar . whereW = (W,,W,), W, being the total winding number
X (Q)_'BZ erren(n); @1 of spin paths(paths trace(d) by a fixed spin configuration, up
or down in the 1(2) lattice direction. Remarkably, this es-
the time-averaged susceptibility corresponds to the thermaimator is directly related with that of the superfluid density
dynamic definition(second derivative of the free enejgy of bosonic system& An efficient improved version of esti-
while the equal-time one corresponds 85 S(q), where  mator (26) was introduced by Harada and Kawashitia

S(q) is the static structure factor as measured, e.g., in neuhe context of the loop algorithm, and is the one employed in
tron scattering experiments. From the general definitionthis work.

above follow those of the uniform susceptibility,
C. Finite-size scaling

Xu'=x"(a=0), @2 A FSS analysi& can give strong indications of the exis-
and of the staggered one, tence of a phase transition at some temperaturgossibly
leading to a full characterization of its universality class. The
X&4=x*q=(m,7)]. (23 simplest evidence that a transition occurs is found when, for

increasing lattice size, the order parameter scales to a finite

Susceptibilities and correlation functions have been meavalue below a certain temperature, indicating that a nonzero
sured both along the axis (C*% x*? and in thexy-plane  order parameter develops in the thermodynamic limit.
(C*=CYY, x*=xY); in the EA case, the latter have been  In the case of second-order phase transitions, the AHsatz
evaluated by means of the worm algorithm. In what follows,for the scaling behavior of a generic finite-size thermody-
we will show and comment upon our data relative to thenamic quantityA (t) in the neighborhood of the critical
uniform TA susceptibility and to the staggered ET susceptipoint reads
bility, being such quantities the more relevant ones from the
experimental point of view. AL(D)~LPFA[ LY (t=to)], (27

The colrrelat|on lengtl§** is definedvia the Iong—dlstance: where p is the critical exponent oA=A., i.e., A(t—t,)
exponential decay of the staggered correlation functlon,~|t_t |, v is the exponent for the correlation length
(=1)'C*(r)~exp(=r/&*®) (r—x). A direct estimateg” of < P g,

4 fit. while F, is the universal scaling function. At the critical
the correlation length may hence be found by fitting thepoint Eq. (27) implies A_(t)~L*"". In the case of¢ this

lf?j?]?:ii(jc;ita:;?jist)fuhsaé\ggrirfﬁt:he(f:))ll(\),vvzlti?] asg]cct)%ﬂ;despuir;]dgmro[neans a linear scaling at criticality, without any assumption
’ 9 ) PrO%n the universality class; therefore, looking for the tempera-

T e ot s whch & proprty e () sales inear i
y ’ Y Yihe system size gives an unbiased estimate of the critical

defined result in case of a finite-size system in presence of% . A :
. ; ) ; . mperature. Equatiof27) implies that the scaling plot of
phase transition, i.e., of a diverging correlation length. AnAL L7 vs y=(t—t)LY", with a proper estimate of,,

alternative strategy, which we ha\_/e. also used, s offered b%hows the data for different lattice sizes to collapse onto the
the so-called second moment definifidn .
universal curveF,(Y).

In the case of a BKT transition, in which no order param-
aa:_\/ X () 1 (24) eter is given, the presence of topological order at finite tem-
22w N yao(gi 20/l m) perature is shown when the helicity modulus scales to a finite

value below a certain temperature. The use of the scaling
which can be directly extracted by the simulation data,Ansatz to locate the critical temperature can be generalized
supplemented by a binning analysis of susceptibility timeto the case of a BKT transition, though most of the critical
series in order to estimate the variance. exponents are not defined. However the Kosterlitz-Thouless

104414-6



QUANTUM MONTE CARLO STUDY OF S= 5 WEAKLY . .. PHYSICAL REVIEW B 67, 104414 (2003

theory predictspy=1/4 at the critical point, so that a scaling 10’
behavior of the susceptibility ds’>~7=L""is a good signa-

ture of the critical temperature. Moreover, Kosterlitz's renor-

malization group equatiofi$ provide a critical scaling law

for the helicity modulus in the forf

E-’zzfit / L

Y (tgxr) 2
toer 70T Zlog(LiLy) )"

whereL, is a constant. This relation has been widely used to
locate the BKT critical temperature of the classical 2D -
planar-rotator modé?*® and of the S=1/2 quantumXY
model?® 1/L

We end this section with a general remark. It is observed giG. 4. Scaling of the longitudinal correlation lenggff in the
that the smaller the anisotropy, the larger the lattice sizega model withA ,=0.001, for different.
required to enter the asymptotic scaling regime, where FSS
holds. This is essentially due to the fact that the critical re-
gion is shifted to lower temperature: the correlation length of
the isotropic model, acting as a lower bound for that of the Our analysis proceeds in three steps: we give evidence of
nearly isotropic ones, increases exponentially upon lowering transition to occur, then the transition temperature is lo-
the temperature, and therefore, keeping the lattice size fixegated, and eventually the Ising critical scaling is tested. After

the ratioL/&,, that drives the onset of asymptotic scaling the discussion made in Sec. IIC the FSS analysisAfor
near the transition, gets smaller. =0.001 is expected to be more delicate thanfor=0.01.

Indeed, for the lattice sizes used<£128) some quantities
show to have well entered the asymptotic scaling regime,
lll. EASY-AXIS MODEL AND ISING TRANSITION while others have not. In any case, clédrough not com-

The values of the anisotropy here considered Arg plete evidence of the Ising universality clas_s is given also
=0.01(also used in Ref. J7andA ,=0.001. They are com- for A,=0.001; larger lattices would be required to reach a
parable with the characteristic anisotropies of real comfull characterization. _
pounds; yet, for such small anisotropy there is no universal Let us first consider the order parameter, i.e., the stag-
consensus on the existence of a transitfoft From previous ~9ered magnetization given in E€L9). In Fig. 3Mfor A ,
works'®747 the transition is expected in the temperature=0.001 is seen to scale to a finite value<0.22, so that the
range 0.2t<0.3 in both systems. At higher temperature themagnetization in the thermodynamic limit becomes finite;
behavior gets closer to that of the isotropic model, which haghe same behavior i fortiori observed in the casa,
been extensively investigated by means of the QMC method 0.01. We then invoke the scaling Ans@iy. (27)] for the
in recent years®*4-*we have extended our analysis up to longitudinal correlation lengtli*“. The scaling plot of¢z{,
t=0.8 in order to identify those deviations from the isotropic as specifically defined in Sec. Il E below, is shown in Fig. 4
behavior that can be experimentally detected above the critfor A,=0.001 and givest;(A,=0.001)=0.2225(15). A
cal region. In our approach, evidence of the existence of asimilar analysis yield$,(A ,=0.01)=0.2815(25).

Ising-like transition follows from a detailed FSS analysis of ~ Hitherto, no assumptions were made about the universal-
the data; subsequently, we analyze the temperature depeity class. In order to identify it, we consider the so called
dence of some relevant thermodynamic quantities, emphasiBinder’s fourth cumulant’ shown in Fig. 5 and defined by
ing the signatures of the EA nature.

(28)

A. Finite-size scaling analysis

1=0.26
= .
t—0.18*x 0.65 0.27 .‘
020 020 | 1 0.28 .
021 e 5 060 e
S” 0151022 - 0285 e " .
*.
023 o . Y
024 ¢ 0.55 Nbel
0.10 — : 029 - .-
N *
959,00 0.01 0.02 0.03 0.04
0.05 - B . . . . ,
10 10 1/L

1/L
FIG. 5. Scaling of the Binder’s fourth cumulant in the EA model
FIG. 3. Scaling of the staggered magnetizathg in the EA  with A ,=0.01 for differentt. The solid line indicates the universal
model withA ,=0.001, for different. critical valueU'® (see the tejt
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=026
04| 027
0.28
>
a; 03| 0285
s’ 0.29
02} .
030 *
0.1
10° 34107
1/L

FIG. 6. Scaling of the staggered magnetizatig in the EA
model with A,=0.01, for differentt. The critical exponents3
=1/8 andv=1 are those of the Ising universality class.

(Mwc

3<m§>§nc’

Uy, (29

which is known to assume the universal critical valu§’
=0.6106900(1) at, in the 2D Ising model on the square
lattice >® and increase&decreas@swith L, below (abové t,.
For A,=0.01, we verify such a behavior and obtaj(A ,
=0.01)=0.28(3), consistent with the above unbiased esti-
mate from the scaling of*%~ The scaling AnsatfEq. (27)]
for the staggered magnetizatidi~L ~#'” att=t,, consti-

tutes a further way of checking the 2D Ising behavior, since

the critical exponent3=1/8 andv=1 are involved. The
data reported in Fig. 6 givg=0.2842). In thecase of the
weakest anisotropg ,=0.001, both the Binder’s fourth cu-

mulant and the staggered magnetization have not yet Weﬁ1

entered the asymptotic scaling region for the lattice size
considered, ant} cannot be reliably estimated by this tech-
nique.

A further test of the universality class involves the longi-
tudinal staggered susceptibiligf*, Eq.(23): in this case the
scaling Ansat4Eq. (27)] gives y4%(t,)~L""", with 2D lIsing
critical exponentsy=7/4 andv=1, as shown in Fig. 7 for

the caseA ,=0.001. The estimated critical temperatures re-

*\
051 t-021 ™
\‘0;

. 04 | 022« .. .
& 0.2225 +
- 0.225 +
S 0.2275 ¢~
=X 03| o023*
024 ¢

0.2

10™
1/L

FIG. 7. Scaling of the longitudinal staggered susceptibjlify
in the EA model withA ,=0.001, for different. The critical expo-
nentsy=7/4 andv=1 are those of the Ising universality class.

PHYSICAL REVIEW B57, 104414 (2003

..... N
04t s
&
— 03
=
02}
0.1 -
-4 =2 4

0 1/
(t=t) L™

FIG. 8. Scaling plot for the staggered magnetizat\gin the
EA model withA ,=0.01, forL=16 (up triangle$, 32 (down tri-
angle$, 64 (diamondg, and 128(squares The critical exponents
B=1/8 andv=1 are those of the Ising universality class, and the
critical temperature is taken as=0.281.

sult  t,(A,=0.01)=0.2825(25) and t,(A,=0.001)
=0.2235(15), in full agreement with the above unbiased es-
timates.

To summarize, in the cask,=0.01 we find consistency
for the 2D Ising critical exponent ratio8/v and y/v, thus
fully verifying the universality class. Fak,=0.001 the evi-
dence, though limited to the matching of the estimateg of
obtained in Figs. 4 and 7, is quite convincing.

As a check that the magnetization and the staggered sus-
ceptibility have actually reached the asymptotic scaling re-
gime with the considered lattice sizes, we have constructed
their scaling plots after Eq27), which are reported in Figs.
and 9. Data collapse for different lattice sizes is verified for
e staggered susceptibility in the caie=0.001 for L

%64, taking t,=0.223, anda fortiori in the caseA,

=0.01; the staggered magnetization is instead seen to have
entered the asymptotic scaling regime kox 64 only in the
caseA ,=0.01.

0

10

Xzzs L—'y/v

10™'

-4 2

6 1/
-ty L

FIG. 9. Scaling plot for the longitudinal staggered susceptibility
xs”in the EA model withA ,=0.001, for different.; symbols as in
Fig. 8. The universal scaling function emerges from the overlap of
the two solid lines. The critical exponents=7/4 andv=1 are
those of the Ising universality class, and the critical temperature is
taken ag,=0.223.
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TABLE I. 2D Ising transition temperaturtg(A ) as obtained by 0.10
FSS analysis and a fit of the critical behaviors. e
Estimation method t,(0.01) t,(0.001) 0.08 |
& ~L 0.281525) 0.222515)
U,—0.6107 0.28(®) >3 006
M~L A" 0.2822)

zz__y ylv
Xe~LY 0.282525) 0.223515) 0.04
2~ t—t)| 7 0.2836)
Xe~t—t| 77 0.2844)
0.02 : -
0.0 0.2 0.4 0.6 0.8
From the above analysis a strong indication for the exis- t

tence of an Ising phase transition is therefore given for both  £,5 11 Uniform susceptibility of the EA model fax ,=0.01

the considered anisotropies. Estimates of the critical temMsnq | =64, Full diamonds: longitudinal branch:; openﬂdiamonds:
peraturet (A ) from the different criteria described in this transverse branch; stars: QMC data for the isotropic mogef.
section are summarized in Table I; all estimates are consiss). Solid and dashed lines are guides to the eye. The arrow indi-
tent, and among them we choose those realizing the best daates the estimated critical temperature.

collapse onto the universal scaling function in the scaling

plots of the staggered susceptibility and magnetizatio
shown in Fig. 8 and 9: the resulting values a€0.01)
=0.281(2) andt;(0.001=0.2232). Such values will be
indicated with a thin arrow in the following figures.

r};misotropy-driven transition; similar behavior is dis-
played by larger-spin compounds whose anisotropy is
known to be Ising-like? such as KNiF, (S=1) and
K,MnF, (S=5/2).

B. Specific heat ) o
C. Uniform susceptibility

The specific heat of the Ising model is characterized by a ) ) . , )
sharp peak at the transition temperature. As the anisotropy At variance with the specific heat, where the anisotropic
decreases, a large bump, eventually coinciding with th&Urves just slightly differ from the isotropic one, the uniform
bump of the isotropic model, grows on the right-hand side Oisgsceptlblllty undoubtedly §hows an anisotropic behavior: in
the peak, which correspondingly moves toward lower temfi9- 11, where data relative ta,=0.01 are shown, the
peratures, meanwhile becoming narrower. In Fig. 10 we selfansverse and longitudinal componegfs andy,” separate
that traces of an Ising-like peak emerging from the isotropidfom the isotropic curve at=<0.4, ie., well abovet,
curve can still be evidenced for both anisotropy values. De= 0.282. It is quite surprising that the Hamiltonian symmetry
spite their being traces, we observe that they develop at thuts up so much resistance to the disordering effects of both
critical temperature as estimated above. These findings are fiHantum and thermal fluctuations: this means that the anisot-
good qualitative agreement with the experimental Hata ropy, even one as weak as those we are here considering, can
relative to the layered S=1/2 antiferromagnet never be neglected, and that there exists a temperature range,
Cu(GsHsNO)g(BF,),, which is supposed to have an extending well above the transitidne., also out of the re-
gion where 2D correlations can trigger the onset of 3D long-
range ordey, where a genuinely 2D anisotropic behavior can

0.25 | A.-0.01 ; 020 ¢ 4,-0.001 be experimentally observed.

e ; The dllffer.ent temperature_ dependence pf thg transv_e(se

5 0.15 | / and longitudinal branches, with the former displaying a mini-

0.20 | & ,é mum and the latter monotonically going to zero, is that ex-
w s pected for an EA antiferromagnet. This behavior results from
© 015 i/l 01w % ,ﬂ the anisotropy-induced spin ordering, that makes the system
g’ ﬁ/g more sensitive to the application of a transverse magnetic

z ,i’/ field, rather than of a longitudinal one. We observe that both

0.10 = I 109§ ] the minimum of the in-plane component, and the start of the
w rapid decrease of the longitudinal one, are close to the tran-
0.05 0.00 sition: as such a feature is peculiar to the Ising model, this
0.25 o.go 020 0.t25 result gives further strength to the characterization of the

FIG. 10. Specific heat of the EA model ¥sfor L=64 (dia-

transition as of Ising type.
The two components of the uniform susceptibility are ex-

mond$ and 128(square} the dashed line represent the specific Perimentally observable by means of conventional magne-
heat of the isotropic model, as obtained by numerically deriving thdOmetry measurements: the above discussed deviations from
internal energy QMC data of Ref. 50. Arrows indicate the estimatedhe isotropic behavior have been actually observed in several
critical temperature. layered compounds withS=1: K,NiF,,>® Rb,NiF,,>®
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10°
0.10
:3 %]
® =
x d
=" 0.05
\ =
10 ;’R;
1S)
0.00 - -
o 0.25 0.30 0.35 0.40
10 - * ;
0.2 0.3 0.4 0.5 t
t FIG. 14. Power-law critical behavior of the longitudinal corre-

I lation length&?? (diamond$ and of the longitudinal staggered sus-
_OF(I)?' éz | St.a?ger_(-idd_sus(geﬂzlbllltly (;f (tjhe EAd rr.u?[del far, ceptibility x5? (open trianglesfor A ,=0.01; solid and dashed lines
—U.0L. Lircles. fongifudinalbulk values, diamonds. ansverse  4ie finear fits of €291 and (29 Y7, respectively. The critical

(L=64); stars, lines, and arrow as in Fig. 11. exponentsy=1 andy=7/4 are those of the Ising universality class.

BaNiF, (Ref. 56 (S=1), K,MnF,,%" Rb,MnF,,%" and : N .
ture. For a 2D-Ising transitiog;” must display a power-law
BaMnF, (Ref. 58 (S=5/2). Such effects are here proved to divergence ZZ~|t—gt B witlﬁs —7/4 Ioniy 13 we plot
be substantial also iB=1/2 systems with a comparable an- ", 91,7 Xs e 4 q ' h'g.h P
isotropy: unfortunately, to our knowledge, no clean experi-(Xs) Vs tfor A,=0.01, using data which are free of
mental realization of a 205=1/2 HAFM with a small EA significant finite-size corrections, according to the criteria
anisotropy is available yet. described in Sec. Il E. The power-law with the Ising expo-
nenty=7/4 is evidently verified and the extrapolated critical
D. Stagaered susceptibilit temperature i$,=0.2844), which agrees with the more ac-
- >tagg pubiity curate value obtained in Sec. lll A. As for the smaller anisot-
Thg _e_qual—time longitudinal and transverse s;agg_ered SUsopy, A ,=0.001, the power-law divergence gf” could not
ceptibilities ys* and x5* for A ,=0.01 are shown in Fig. 12, be unambiguously detected for the considered lattice sizes.
together with the susceptibility of the isotropic mod&Be-
!ow the high-temperature region where the isotropic behavior E. Correlation length
is reproduced, the two curves separatetat0.4, below ) o
which xZ* diverges more rapidly than in the isotropic case, Figure 13 shoz\;vs thexlxongltudmal and the fransverse cor-
while ¥ stays e and shows & maximum at ot 22100 IOV OE 10, 00F The o core
transition temperature. The time-averaged susceptibilitiegucter he?vin left theqlon itudinal c))/he at a temperattre ’
display the same qualitative behavior, though their values are ving 'ong " P
=0.4, displays a maximum at the transition, while the lon-

slightly different with respect to the equal-time case. itudinal branch diverges faster than in the isotropic model
As in the case of the uniform susceptibility, the observeo% ain. the overall beh%vior is suagestive of a 2D Ipsin tran-.
behavior is qualitatively suggestive of an Ising-like transi—sigon’ 99 9

tion. Moreover, the analysis of longitudinal branch diver- The longitudinal antiferromagnetic correlation lengdf
gence gives a direct evidence of the Ising universality class 9 9

as well as an independent estimate of the critical temperéﬂb’ ei<£)ect_ed to display a power—law_ dlyergengéz~|t
—1,| 7", with »=1. One can capture this divergence by se-

lecting a few points for&s” at temperatures immediately
abovet,, discarding those exceedihg4, which are affected
by finite-size saturation. This criterion is reinforced by re-
quiring the consistency of the estimates&f obtained via
the equal-time- and time-averaged susceptibilities: since both
estimates converge to the same value in the thermodynamic
limit, their agreement indicates that finite-size effects are un-
der control. ForA,=0.01, Fig. 14 shows thatéf) 1 is
linear, with an extrapolated intercefpt 0.2836), in agree-
ment with the value found via FSS analysis.

The same observation is not possible foy=0.001, as
%_20 095 030 0.55 0.;10 0_;15 sizes larger th_an tho;e here considered are.requwed tp ap-

i prc_)ach. the critical point of such a model, while controlling
finite-size effects.

FIG. 13. Correlation length of the EA model fax,=0.01. We have also extracted the longitudinal correlation length

Symbols, lines, and arrow as in Fig. 12. &% in the vicinity of the critical point by fitting the equal-

30 |

20 |

10 ¢
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FIG. 16. Scaling ofY/t in the EP model forA,=0.001. The

FIG. 15. Longitudinal correlation lengttsf of the EA model  |qiizontal dashed line indicates the valuer2/

with A ,=0.001, forL=32 (down triangle§ 64 (diamond$, and
128 (squares Stars and lines as in Fig. 11. ) ) ) )
perimentally estimated anisotropies of real compounds,

time correlatorC?4r), defined in Eq(20), to a function due among which several cupreous oxides such agCL&,,

to Serena, Garaiand Levanyuﬁ? Sr,CuO,Cl,, and PyCuQ,, known to have an EP
anisotropy’
e * The temperature range covered by our simulations is
F(x)= NI (300 0.15<t=0.90: as suggested by previous calculatidi&this

is the interval where we expect most of the peculiar features
properly symmetrized so as to take into account the periodidue to the anisotropy to be detectable. At higher tempera-

boundary conditions, i.e., by tures the thermodynamic behavior of the model does not
, , , differ from that of the isotropic one. On the other hand,
C*(r)ecF(r/§*%)+F[(L—r)/&%]. (3D finite-size limitations preclude the study of the very-low-

This function interpolates between the known asymptotic bel@mperature region. To this respect, we recall that the corre-
haviors ar — 0 andr — = of the Ising model. Well above the lation length of an EP model is expected to diverge exponen-

. + . . . - .
critical point we used the conventional fitting function for the tially as t—tgr; such a fast divergence makes finite-size

isotropic antiferromagnéf limitations more severe than in the EA case, whéreli-
verges algebraically. On the whole, the BKT transition offers
e X less robust evidence, both numerically and experimentally,
F(x)= E (32)  due to its being a topological phase transition rather than a

second-order one. In what follows we will refer twt-of-
In the case\ ,=0.001 good and stable fits are obtained everPlane quantities as those related to the harexis, and to
if the correlation length becomes comparable(to even in-planequantities as those related to the eagyplane.
exceeds the lattice sizeL: we can hence univocally define
the fitted correlation lengtE?= &7, Moreover, the same
kind of fitting procedure on the time-averaged correlator
C*4r) [Eqg. (20)] gives consistent results. The role of the staggered magnetization in the FSS analy-
Notice that &f increases monotonically with and is  sis of the EA behavior is somehow taken, in the EP case, by
bounded from above by the thermodynamic value; on théhe helicity modulusY, defined in Sec. Il B. In the thermo-
other hand, as3? is systematically smaller thagf?, the  dynamic limitY is finite below and vanishes above the tran-
latter is necessarily less sensitive to size finiteness. For thigition. When finite-size systems are considered, the occur-
reason in Fig. 15 it is possible to observe the clear deviatiofience of a BKT transition is marked by the existence of a
of &7 from the isotropic model, due to its divergencetat finite temperature below whicl scales to a finite value, as
To summarize, the sharp dependence of the longitudinal coguggested by Fig. 16 fak, =0.001. As for the value of the
relation length to small anisotropies, already observedsfor critical temperature, one knows that in the thermodynamic
=5/2 in RMnF, (Ref. 19 and KFef,?is also evidenced limit the ratio Y/t takes the universal value 2/at the

A. Finite-size scaling analysis

for S=1/2. transition®® This behavior is clearly detected in Fig. 17,
where the helicity modulus is shown vs temperature for dif-
IV. EASY-PLANE MODEL AND BKT TRANSITION ferentL: the slope ofY (t) near the point where the ling/2r

is crossed becomes larger for larger sizes, consistent with the
In this section we present our results relative to the ERbccurrence of a jump in the thermodynamic limit.
model. We have used lattice sizes uplie-200 and two An upper bound to the BKT critical temperature can be
anisotropy valuesA, =0.02 (already considered in Ref. 18 hence given by looking at the temperatarehere the scal-
and A, =0.001. These values are comparable with the exing behavior ofY/t is most compatible with the expected

104414-11
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FIG. 17. Helicity modulus of the EP model far=16 (up tri-

angles$, 32 (down triangley 64 (diamond$, 128(squarel and 200

(circles. The dashed line is the functiort/zr.

FIG. 19. Scaling ot* with L for A, =0.02. The dashed line is
a linear fit of the first three points, correspondinglie-32, 64,
and 128.

asymptotic value 2 at criticality. From Fig. 16 we obtain

tBKT(A)\ = 002)5 0.235.

More accurate results are obtained by considering the
critical scaling ofY [Eq. (28)]. According to the procedure

the same procedure leads to

suggested in Ref. 29, we assume the relation

2
t* =gt ————. (34)
BT 4c(InL)?

The above relation, determined by a renormalization-group
based approach, is presented as a general property of BKT
systems, though to our knowledge its validity has never been
checked for models others than the classical pure planar one.

Yi(t) _2A(1) @3

t T

to hold in the vicinity of the transitionA(t) andL, are then
determined via a best-fit procedure apg; identified as the
temperature wherd(t) equals unity, as shown in Fig. 18.
The resulting estimates atgykt(A,=0.02)=0.229(2) and
tgkt(A,=0.001)=0.1725). In the case A,=0.001, this
procedure is more uncertain: due to strong finite-size effect
Y is seen to asymptotically scale just far=128 (to be
compared withL=32 in the caseA,=0.02), so that the
logarithmic fit can only be performed on two points (

2log(L/Lo)

=128,200) for each temperature.

There is another way to exploit the data for the helicity
modulus of a finite-size system, though we are not aware o
such technique having been used by other authors before. Erg
Ref. 61, Bramwell and Holdsworth found that in the classical
2D planar-rotator model on a finite size the raliét takes
the universal value 2/ at a temperaturé* >tgxr, whose

size dependence is given by

14
13 11
1214 i
Ny 1Y S —
S 10 S 09 |
09 08
08 |
0q | Ao002 o7 | A=0001 ¥
0

.6 - -
0.21 0.22 0.23 0.24 0.25
t

FIG. 18. Fitting parameteA vs t. The crossing point with the
line A=1 gives an estimate of the critical temperattyggy .

0.6
0.16 0.17 0.18
t

On the other hand, in the cagg =0.02 we can easily de-

nsidered.

0.7

0.6 |

P
L

Xs

0.4t

0.3

terminet* as a function oL from Fig. 17 and hence obtain
Fig. 19, which shows that Eq34) holds even for weakly
anisotropic, strongly quantum models; a linear fit of the scal-
ing behavior oft* against (IrL)~2 for L=32 provides us
with a rather accurate estimate of the critical temperature,
tek7(A,=0.02)=0.2284). Moreover, the results of Ref. 61
Yelate the coefficient to the coefficienb, appearing in Eq.
(39) in the formb,= w/+/c, and from the linear fit we obtain
b,=0.969), in good agreement with the value obtained be-
low by fitting the critical behavior of the correlation length.
This remarkably shows that the predictions of Ref. 61, de-
ﬁjved for the classical 2D planar-rotator model, also fully
ply to the quantum nearly-isotropic antiferromagnet we

Finally, an additional estimate of the BKT critical tem-
perature is obtained by the in-plane staggered susceptibility,

05 |

L 1=0.16 o 1
..
0.17 e _. N o
TTee e
0.18 & ----- — .
.
bt 4
0.19 «- S e .
T PO .
0.20 -
10° 3107
1/L

the EP model witm\, =0.001.
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TABLE II. BKT transition temperaturesgcr(A,) as obtained 0.10
by FSS analysis and fit of critical behavior &f*.
Estimation method tgk7(0.02) tgk7(0.001)

0.08

asymptotic value oY’ =0.235 =0.175 -
At)=1 0.2292) 0.1735) o3
scaling oft* (L) 0.2284)
XE~L27 0.2305) 0.1805) 0.06 |
&%~ exfbyt—tgkr) ] 0.2356)

. . . _ . 0.04 : : -
which is expected to scale at the transitionL&s 7 with 7 0.0 0.2 0.4 0.6 0.8
=1/4. Looking for the temperature where this scaling law is t

best verified, we obtaintgk(A,=0.02)=0.230(5) and
tekr(8,=0.001)=0.1845), asshown in Fig. 20 for the lat- =0.02 and_ =64. Full diamonds: in-plane; open diamonds: out-of-

ter value. plane; stars: QMC data for the isotropic modRkfs. 50 and 48

is gltzoggr?] treetédtir:rl?gr?t![ﬁg (I);:]he CBaKZ u;“{)er;ilt'gl C(iiis. Solid and dashed lines are guides to the eye. The arrow indicates the
: S P : Ing case, subs ! S'%stimated BKT temperature.

tence between the different estimates of the critical tempera-

ture obtained by different predictions of the Kosterlitz- 5_ 15> wy model above its BKT transitiof? However. we
Thouless theory. 'proves.that the two_anisotropic m.o.del?’nust mention that, at variance with our results, previous
display a BKT critical regime. The estimates for the critical QMC datat

oInne. 1 ) . '8 also reported in Fig. 21, significantly deviate
temperaturdggr(A,) given in this section are summarized from the i

in Table Il for th . . idered. Putt sotropic model. According to the generally low
in Table Il for the two anisotropies considered. PUtting t0-gengitivity shown by the specific heat to weak anisotropies,
gether these estimates we choose as reference valu

seen for instance in the EA case, we find this result a bit
tBKT(A)\ZO.OZ): 0229(5) and tBKT(A)\:OOO].)

unlikely.
=0.175(10). Such values will be indicated by a thin arrow y
in the figures of the following sections.

FIG. 22. Uniform susceptibility of the EP model with,

C. Uniform susceptibility

B. Specific heat As in the EA case, the uniform susceptibility reported in
Fig. 22 shows strong evidence of the anisotropy. Moving

~ The specific heat does not show large systematic devigjown from the high-temperature region, where the isotropic
tions from the isotropic case within the resolution reached b3behavior is reproduced, the in-plag® and out-of-plane??
1 u

the simulations for b.Oth anisotropies Cons_ldered. O”'Y_ &yniform susceptibilities separate from each other and from
small temperature region, well above the estimated transitiof), isotropic data

temperature, displays an anomaly in the form of a tiny peak, - ¢ jn_plane component decreases faster than in the iso-

as shown in Fig. 21; such a peak is possibly reminiscent 0{ropic case. At variance with the EA case, howeygf,is not

the rounded peak shown by the specific heat of the quanturgxpected to vanish @t=0, due to the continuous rotational

symmetry of the ground state in the plane. Indeed, in a

A, semiclassical picture, such symmetry allows the staggered
- magnetization to align along the in-plane axis perpendicular
04t
o
02
wp 10
1 0.36
oo L
0.1 02 0.3 0.4 05 06 0.7 0.8 0.9
1
D i L L n
FIG.. 21. Specific heat of the EP model with, =0.02 for L 10 0.1 0.2 03 0.4 05
=64 (diamond$ compared to QMC data for the same mo¢Réf. t

18) (triangles and for the isotropic modd€Refs. 48 and 50(stars.

The arrow indicates the estimated BKT temperature. Inset: zoom on FIG. 23. Correlation length of the EP model with, =0.02.
the temperature region where a deviation is observed with respect @ircles: in-plane(bulk valueg; diamonds: out of planel(=64);
the isotropic case. stars, solid line, and arrow as in Fig. 22.
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FIG. 24. Staggered susceptibility of the EP model with FIG. 25. Critical behavior of}* (full square$ compared to that

=0.02. Symbols as in Fig. 23; stars, lines, and arrow as in Fig. 22gf (Y@= with = 1/4 (open diamondsfor the EP model with
A,=0.02. The solid line is the BKT fit to the correlation length

to the field, making possible the canted spin configuratiordata. Inset: plot of Invs/In & the dashed line represents the ex-
with a finite ferromagnetic magnetization parallel to—andpected BKT value 2 »=1.75.

linear in—the field, so that,* stays finite.

The out-of-plane susceptibility is instead enhanced with In v
. i . - N Xs InK
respect to the isotropic case, showing a minimum well above w2t —T’ (37
the transition. Such a minimum marks the onset of a com- In & Ina;+by(t—tgkr)

pletely different behavior with respect to the isotropic model

_ \ 'which converges to the value—2»=1.75 whent—tg. ;
entirely due to the presence of the small anisotropy. g 7 BT

this is clearly shown by the data plotted in the inset of Fig.
25.
D. Staggered susceptibility and correlation length In the A, =0.001 case, neithegy* nor x2* exhibit the
According to Kosterlitz theor§? in the presence of a BKT expected BKT critical behavior for the considered lattice
transition the correlation lengt§** is expected to diverge sizes. The correlation length obtained by fitting the correlator

exponentially at finite temperature as C** to function (32) is also not of much help. This suggests
the in-plane correlation length to behave as in the isotropic
&*=aexg b (t—tger) 2. (350  model up to relatively large value§’*~100), and the same

) . ] holds for the staggered susceptibility. Such findings closely

As for the A,=0.02 model, this behavior was in fact ob- yesemple those of neutron scattering experiments on very
served in Ref. 18, where it is used to estimate the critica{,veak|y anisotropic layeredS=1/2 compounds, such as
temperature. In Fig. 23 we use the estimaggsobtained by  sy,cu0,Cl,,% La,Cu0,% and PsCu0Q,,%* that do not show
fitting the in-plane correlation function to Eq&81) and(32).  signature of the existing anisotropy in the correlation length
Discarding the values affected by finite-size saturation angnd static structure factor data.
thus considering only those satisfyigg*<L/4, we also ob- Both the out-of-plane staggered susceptibility and corre-
serve the predicted behavior: in particular, singling out theation length have a noncritical behavior, with a maximum
BKT critical region by successively dropping points at highwell above the transition, at a temperature which roughly
temperature until a stable fit is obtained, we obtaip  coincides with that of the minimum of the out-of-plane uni-
=0.6(2), b,=1.0(1), and theestimatetgr=0.23§6),  form susceptibility, marking the onset of an anisotropy-
which agrees with the value found via a FSS analysis.  dominated regime. Both maxima are clearly decoupled from

Furthermore, near criticality it is expected that the stagthe transition temperature, at variance with the maximum of
gered in-plane susceptibilittsee Fig. 24 is related to the the transverse staggered susceptibility and correlation length

in-plane correlation length by the relatitn observed in the EA case. In this respect we mention a defi-
i . nite disagreement with Ref. 18, where the out-of-plane cor-
Xs =K(E*, (36)  relation length is conjectured to diverge exponentially when

T—0. We show such a conjecture to be wrong,&5%is

whereK is a nonuniversal constant ang=1/4. By plotting clearly seen to saturate to a finite value

& together with §*X)¥(2~7 as done in Fig. 25, one ob-

serves that this prediction also holds for the weakly-
anisotropic quantum model; remarkably, the curve
(X292 collapses onto thé** on a wide range of tem-  The detailed analysis presented above for the EA and EP
perature so thaf~1: this property is not shared by, e.g., the models, separately, is now composed to form the phase dia-
classical planar rotator model or by the 2D quantd¥  gramt, g« VS A, ) in Fig. 26, where our best estimates for

model. A closer look to the validity of the scaling relation the critical temperatures relative to the four models consid-
[Eq. (36)] can be obtained by plotting the ratio ered are shown, together with data from Refs. 17 and 18.

V. PHASE DIAGRAM
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s properly entered in the simulations of Refs. 17 and 18,
05 . mainly due to technical limitations which are nowadays
easy—-axis ;
i overcome. We therefore propose our data as more precise
~ 04| e estimates.
4
B 03| aaomaony g 5 VI. CONCLUSIONS
21 r./-"/ & In this paper we have presented an extensive numerical
= o2} " e easy-plane study of thermodynamic and critical properties of weakly
—————— 2.22/In(330/A,) ani_sotropic two-dimensional quantum antiferromagnets de-
0.1 L e s : scrlbed by the 205=1/2 XXZ model with both EA_and EP_
10 10 107 107 anisotropies. Use has been made of the continuous-time
A LA, QMC method based on the loop algorithm, implemented

here also in the EA case, and on the worm algorithm, refor-
FIG. 26. Phase diagram of tH&=1/2 2D XXZ model on the = mulated here as a variant of the loop algorithm. The general
square lattice for weak anisotropies. Full symbols are results of thiputcome of the numerical simulations is that the thermody-
work, open symbols are QMC data from Refs. 17 and 18. namics of 2D quantum antiferromagnets is extremely sensi-
tive to the presence of anisotropies of magnitude comparable
Critical temperatures are seen to be strongly reduced witko those of real compounds, i.e., as small as*limes the
respect to the classical values, as given for instance in Refiominant isotropic coupling.
47: however, the diagram clearly suggests the critical tem- |n the models studied we see a finite temperature transi-
peratures to stay finite for any finite anisotropy, both in thetion to persist with clear signatures of Ising and BKT critical
EA and EP cases, thus leading to the conclusion that quamehavior, in the EA and EP case, respectively; in the more
tum fluctuations cannot destroy the transition. anisotropic case (I%) full consistency with the expected
We can actually see that the above conclusion is the coniniversality class is found. The most striking evidence of the
sequence of a more general finding. If one numericallypresence of the exchange anisotropy is observed in the ther-
analysed, gkr(4A ) finds that a logarithmic dependence is modynamic behavior of correlation lengths and susceptibili-
well consistent with our data, as shown in Fig. 26. Suchties. Moreover, the dependence of the critical temperature on
dependence, already predicted by renormalization groughe anisotropy is found to be quantitatively consistent with
techniques;-**is rederived in Appendix B on the basis of a the prediction relative to the classical case, with properly
fully classical argument. It is found that renormalized parameters. This tells us that quantum effects
can neither destroy the transition nor change the ordering

T~ Amps 38) mechanism responsible for the transition to occur, and that
! In(c/A,) our quantum models, despite haviBg 1/2 and very weak
anisotropies, do actually behave as renormalized classical
and ones. Given the results of Ref. 47 81, we can say that
this conclusion generally holds for quantum Heisenberg an-
T Amps (39) tiferromagnets on the square lattice.
BT (e, As for the thermodynamic behavior of the specific observ-

ables considered, we find all the non-diverging quantities to

wherec andc’ are constants, whilps is the spin stiffness of be highly sensitive to the anisotropy, while critical quantities
the classical isotropic model, entering the above expressiorshow deviations with respect to the isotropic case which are
via the exponential divergence of its correlation length. Thegenerally harder to detect. This is due to the fact that, in
dominant effect of quantum fluctuations on such divergencerder to discriminate betweefi=0 isotropic and finiteF
is embodied in the spin stiffness renormalization; thereforeanisotropic divergences one must come very close to the
if the ordering process we are observing here is the same agitical point of the anisotropic model, which is a nontrivial
in the classical case, we expecirds=2.26J, where the issue both numericallydue to severe finite-size effegtand
value ps=0.18] has been taken for the renormaliz& experimentally(due to finite experimental resolution and in-
=1/2 isotropic spin stiffnes® From the logarithmic fits of tralayer coupling
the quantum data we indeed find 2.22 and 2.49 as prefactors As for the EP case, we underline that the considered val-
of the logarithm, which are remarkably near to the predictedies of anisotropy compare to that of several real compounds.
value, despite the simplicity of the argument that led to it. On the other hand, we have clearly shown, for instance in

For Ay=0.02 andA ,=0.01, where a direct comparison Figs. 22, 23, and 24, that in the EP case traces of 2D aniso-
is possible, the critical temperatures are not fully consistentropic behavior are detectable above the transition, due to the
with the values given in Refs. 17 and 18. We notice that thdact that some quantities display either a minimum or a
latter were estimated as free parameters of fitting functionsnaximum in a temperature region well apart fragxy,
for the critical behavior of the susceptibility and correlation where the in-plane correlation length has not diverged yet,
length; the precision of this approach is hindered by the facand experimental observation should hence be more feasible.
that the critical regime of both quantities was not alwaysWe therefore think that our results could constitute a sound
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basis for a possible experimental observation of genuinelm((ﬁzo)’ ‘“71’ andﬂ(lxy) operators, for the helicity modulus,

2D EP behavior in real magnets. averaged over the 1 and 2 directions of the applied twist, one
obtains the expression
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where Ni+dl is the number of(+) kinks (of the type
|LiTi+dl)—>|Tili+dl>) on thei,i+d; bond, and analogously
for Niﬁl- Therefore, the estimator for theY energy takes the

APPENDIX A: ESTIMATOR OF THE HELICITY MODULUS

In this appendix we derive the QMC estimafg. (26)]
for the helicity modulus starting from its thermodynamic
definition [Eq. (25)]. The derivation is a finite-temperature '0'M
generalization of the one given by Sandvik in Ref. 65, in the 1
context of Stochastic Series Expansion, to estimate the spin <7:[(XY)>: — —(N"+N e, (A7)
stiffness, i.e., at zero temperature. B

We start from the “twisted”XXZ ham”tonian, with the WhereNi is the total number Of:t) kinks present in each
twist applied along the 1 direction of the lattice, as configuration. The current-current correlator present in Eq.

(A5) can be decomposed into bond-pair contributions as fol-

H( P)= 2 [JXYcosd)(ASIXAIXerl_F ASYASIYerl) lows:

T(0)Ti(7)= —Zj [T,(0)= T (0)][ Ty, (1~ Tig (D]

+IVsing(S, g — SIS ) +I7SS g 1+ Ha,
(A8)
(AL) L
. Taking into account th&=1/2 constrainS*S*|o)=0, one
whered;=(1,0) andH, is the term containing only bonds obtains that

along the 2-direction, which remains unchanged.

. . . . B ~ ~ N R
aSWe expand the twisted Hamiltonian to second ordegin fo dT<[Ti51(0)—TiH1(0)][Tj+d (7T (7))
A A J ¢2A(XY) 3 _£[<(N+—N7)(N+ —Njg,))
H(P)=H($=0)= T~ 5 H "+ 0O(¢7), (A2) = 51\ (Niay ™ Mgy (Nja, = Njay)me
where = 8j{(Nig,* Nig ) mcl- (A9)
Y - o Pgtting together EQSA7) and (A9) with Eq. (A5), one ob-
F=— 2 (88488, Ay m@ns
t
is the 1 component of the spin current operator, and Y= E«NI_ N7)%2+ (N3 —N;)%ue  (A10)
,\ Y “ln A Ry :
FHON_Z__ +S- 1§58 ). Ad where (Nj,)) is the total number of= kinks on 12) bonds.
! 2 2. (570,75 Siea) (A4) Since a(+) kink and a () kink affect a spin path crossing

the kink by shifting it of a lattice spacing in opposite direc-
Carefully deriving the free energy with respect to thetions, we have that the spin-path winding number can be
twist, i.e., taking care of the non-commutativity between theexpressed as
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Wi (2= (N3~ Ny)/L (A11)

and this reduces the estimai@10) to expressior(26).

APPENDIX B: CLASSICAL DESCRIPTION
OF THE ORDERING MECHANISM

Here we give a sketchy description of the ordering
mechanism in slightly anisotropic 2D magnets, referring t
the classical limit where the antiferromagnetic and ferromag
netic cases are thermodynamically equivalent.

EA caseWe rewrite Hamiltoniar{1) in the classical limit
as

Jai
H==> 2 S SiatH’
i,d

JgA
2

"

H'= % (Sixsix+d+ Siys%/+d)’ (B1)

where s= (cosésin ¢,sindsin ¢,cosé) is a unitary classical

PHYSICAL REVIEW B 67, 104414 (2003

where 6. is the polar angle of the spin orientation on each
cluster and border terms of ordérare neglected. Hence, the
anisotropy term creates an effective potential for the orienta-
tion of each correlated cluster that has two minimadin

=0 and 7 (up and dowp separated by an energy barrier
AE=J4A &% When¢ increases upon lowering, the bar-

rier becomes comparable to the thermal energy, so that the
orientation of each cluster is confined to one side of the

(0)

potential barrier: the system becomes Ising-like and a finite
magnetization appears. Using the isotropic behaviog,of
this happens when

T~AE=JgA ,(aTe#™s/T)2; (B3)

solving this equation gives the critical temperature as in Eq.
(38). The above simplified picture accounts for the logarith-
mic dependence of . upon the(smal) anisotropyA , that
was earlier obtained via more sophisticated approa
logarithm appears to follow from the exponential correlation
length in the isotropic model.

EP case The above argument can be essentially re-

vector, andJ is the classical exchange constant. In thephrased, this time taking as perturbation of the isotropic

above form the Hamiltonian is written as the isotropic
Heisenberg Hamiltonian plus, as long as <1, a small
Ising perturbatior{’. The isotropic Heisenberg model has
an exponentially divergent correlation length Bs>0,%" ¢
~aTe™s'T whereps is the spin stiffness of the classical
model. At very high temperatures, i.&3Jy, the spins are
fully uncorrelated, so that the anisotropy has little effect.
When T~J correlations set on and clusters of almost
aligned spins form on the length scale Very roughly, one
can imagine theg? spins of each cluste€ to be fully
aligned, so that the anisotropy term can be written as

Jad,

H==

Zd cog i~ i g)SING; SiNG; ¢

~JC,A#§2; sifoc, (B2)

Hamiltonian the term

JC|A}\
2

Z Z
i Sitds

[

(B4)

>'s
id
which, in the presence of clusters on the scgldecomes

H’deAng% cob.. (B5)

The anisotropy potential has the minimumégt= =/2, i.e.,

for a cluster orientation on they plane, and the well depth is
AE=J4A, €2 As in the EA case, the anisotropy becomes
relevant oncel is comparable tAAE: the out-of-plane fluc-
tuations are suppressed making the system effectively planar,
so that vortex excitations appear and the BKT transition can
take place. This roughly happens when E2f) holds.
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