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Quantum Monte Carlo study of SÄ 1
2 weakly anisotropic antiferromagnets on the square lattice
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We study the finite-temperature behavior of two-dimensionalS51/2 Heisenberg antiferromagnets with very
weak easy-axis and easy-plane exchange anisotropies. By means of quantum Monte Carlo simulations, based
on the continuous-time loop and worm algorithm, we obtain a rich set of data that allows us to draw conclu-
sions about both the existence and the type of finite-temperature transition expected in the considered models.
We observe that the essential features of the Ising universality class, as well as those of the Berezinskii-
Kosterlitz-Thouless~BKT! one, are preserved even for anisotropies as small as 1023 times the exchange
integral; such outcome, being referred to the most quantum caseS51/2, rules out the possibility for quantum
fluctuations to destroy the long-range or quasi-long-range order, whose onset is responsible for the Ising or
BKT transition, no matter how small the anisotropy. Besides this general issue, we use our results to extract,
out of the isotropic component, the features which are peculiar to weakly anisotropic models, with particular
attention for the temperature region immediately above the transition. By this analysis we aim to give a handy
tool for understanding the experimental data relative to those real compounds whose anisotropies are too weak
for a qualitative description to accomplish the goal of singling out the genuinely two-dimensional critical
behavior.

DOI: 10.1103/PhysRevB.67.104414 PACS number~s!: 75.10.Jm, 75.40.Mg, 75.40.Cx
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I. INTRODUCTION

In the last few decades the Heisenberg antiferromag
~HAFM! on the square lattice has been thoroughly studied
means of several theoretical, numerical and experime
techniques.1–3 Such research hands us a picture where th
classes of substantially different models appear: isotro
easy-axis, and easy-plane antiferromagnets.

In such a picture, however, there is a gray area where
knowledge is not detailed enough to allow a precise read
of the experimental data: this is the area of very we
anisotropies and strong quantum effects, which is of part
lar interest as most of the real layered compounds wh
magnetic behavior is properly modeled by theS51/2 HAFM
on the square lattice are characterized by anisotropie
small as 1023 times the exchange integral. These compou
exhibit a phase transition to three-dimensional~3D! long-
range order at a finite temperatureTN which is often too
large for the interlayer coupling to be the unique play
while the idea of a two-dimensional anisotropic criticality
the trigger of the transition appears well sound:4,5 such an
idea is corroborated by the measured values of some cri
exponents.6 The experimental observation tells us that 3
long-range order is present belowTN , and that well above
TN no trace of anisotropic behavior is left; it is slightly abo
TN that one hence expects evidence of genuine 2D an
tropic behavior to be detectable. In order to let these exp
mental evidences surface out of the sea of the isotropic t
modynamics, precise numerical data for theS51/2 nearly
isotropic HAFM are needed: it is the purpose of this work
fulfill such need.

We consider theXXZ model, defined by the Hamiltonia
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@~12Dm!~Ŝi
xŜi1d

x 1Ŝi
yŜi1d

y !1~12Dl!Ŝi
zŜi1d

z #,

~1!

where i5( i 1 ,i 2) runs over the sites of anL3L square lat-
tice, d connects each site to its four nearest neighborsJ
.0 is the antiferromagnetic exchange integral, andDm and
Dl are the easy-axis~EA! and easy-plane~EP! anisotropy
parameters, respectively, hereafter given positive val
smaller than unity. AsJ sets the energy scale, the dimensio
less temperaturet[kBT/J will be used in the following. The
spin operatorsŜi

a (a5x,y,z) obey the su~2! commutation

relations@Ŝi
a ,Ŝj

b#5 i«abgd ijŜi
g and are such thatuŜu25S(S

11). Besides the isotropic modelDl5Dm50, Eq. ~1! de-
fines the EA (Dl50, 0,Dm<1) and EP (Dm50, 0,Dl

<1) magnets, whose respective reference models are
Ising model (Dm51) and theXY ~also known asXX0) one
(Dl51). What is known about these models can be summ
rized as follows.

~i! The isotropic model has no finite-temperature tran
tion; its ground state is ordered for anySand a critical region
of divergent correlations is clearly observed at very low te
peratures;

~ii ! The EA models exhibit an Ising-like transition at
critical temperaturet I which is an increasing function of bot
Dm andS; for S>1, t I is finite for all anisotropies;

~iii ! The EP models exhibit a transition of the Berezinsk
Kosterlitz-Thouless~BKT! type, at a critical temperature
tBKT which is an increasing function of bothDm and S; for
S>1, tBKT is finite for all anisotropies.

Some of the above statements are rigorously proved,7–10
©2003 The American Physical Society14-1
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and others come from the combination of theoretical,11–14

numerical,15–18 and experimental19–21 results.
In the S51/2 case, evidence of a phase transition

anisotropies as small asDm50.01 in the EA case16,17 and
Dl50.02 in the EP case18 is suggested by previous quantu
Monte Carlo~QMC! approaches; however, these compu
tions employed local algorithms which cannot easily acc
the critical region, and a rigorous FSS analysis could not
performed. The situation is still unclear also because rec
works based on real-space renormalization group22,23 predict
the existence of a critical value of the anisotropy in the
case (Dm

(c)'0.2), below which the transition would be de
stroyed by quantum fluctuations.

In this work we considerS51/2 and four nearly isotropic
systems, two EA systems,Dm50.01 andDm50.001, and
two EP systems,Dl50.02 andDl50.001. Our resulting
picture is that a phase transition is induced by an arbitr
amount of anisotropy, and that several distinctive feature
the expected universality class can be traced out.

The structure of the paper is as follows: in Sec. II t
QMC methods are presented, the thermodynamic quant
under investigation are defined, and the finite-size sca
~FSS! theory used in our analysis is briefly recalled. T
results for nearly isotropic models, as from both FSS ana
sis and thermodynamic behavior, are presented and discu
in Secs. III and IV for the easy-axis and easy-plane ca
respectively. In Sec. V the critical-temperature vs anisotro
phase-diagram is discussed. Eventually, conclusions
drawn in Sec. VI.

II. QUANTUM MONTE CARLO, OBSERVABLES,
AND FINITE-SIZE EFFECTS

A. Quantum Monte Carlo method:
continuous-time algorithms

As usually done in the existing literature on the QM
method, in this section and in Appendix A we employ t
notation

JXY[J~12Dm!, JZ[J~12Dl!, ~2!

and b[1/kBT. The QMC method for theS51/2 XXZ
model is based on the Trotter-Suzuki decomposition of
partition function, which can be approximated by t
expression24

Z~b![Tr e2bĤ'(S )
n

wpn,S~Dt!, ~3!

wherewp represents the amplitude of propagation of a pair
nearest-neighbor spins from a configurationus i ,s j& to
us i8 ,s j8& in the ~imaginary-! time stepDt5b/M , M being
the Trotter number andu$s i%& (s i561/2) the basis set di
agonalizing theŜi

z operator. The two bond configurations d
fine a space-time plaquette configuration p
5$s i ,s j ;s i8 ,s j8%, so thatwp can be seen also as the weig
of a given plaquette configuration p. The indexn runs over
all plaquettes on the space-time lattice, and the indexS runs
over all configurations of the system. At each time s
10441
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plaquettes are defined on different groups of bonds^ ij &, so
that all bonds involved in the propagation at the same ti
step do not share any spin; moreover, each plaquette sh
its corner spins with two plaquettes on the previous time s
and two on the subsequent time step. Expression~3! be-
comes exact in the limitM→`.

In the case of theXXZ model, only the 6 plaquette con
figurations shown in Fig. 1 have non-zero weightswp ,
whose expansion to first nontrivial order inDt are25,26

w15w2'12
JZ

4
Dt,

w35w4'11
JZ

4
Dt,

w55w6'
JXY

2
Dt. ~4!

Plaquettes 1, 2, 3, and 4 propagate the state of the spin
unchanged, while plaquettes 5 and 6 introduce an excha
of state for the interacting spins, hereafter denoted as akink.

1. Loop algorithm

One can completely eliminate the critical slowing-dow
affecting local-update algorithms by introducing the s
calledloop-cluster algorithm,25 which is the quantum analog
of the Swendsen-Wang27 and Wolff28 cluster algorithms in-
troduced for classical spin systems. Within the multiclus
approach29 ~analog to the Swendsen-Wang scheme! the loop
algorithm consists of probabilistically assigning to ea
plaquette abreakup decomposition~or graph! G, i.e., a way
of grouping its spins in subgroups, so that the grouped sp
can be flipped all at once bringing the plaquette into a c
figuration with nonvanishing weight; in the case of theXXZ
model the above condition allows only grouping of spins in
pairs ~nonfreezingbreakups:5, i , and 3) or all together
~freezing breakup: ^ ), as shown in Fig. 2. Assigning a
breakup G to each plaquette, one univocally defines
breakup decompositionG5$Gn% of the whole configuration
S5$s i ,t% into loops. Different breakup decompositionsG

FIG. 1. Plaquette configurations with nonvanishing weights
the S51/2 XXZ model. The vertical axis is the imaginary-time d
rection.
4-2
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are assigned to each plaquette configuration p accordin
weights w(p,G) obeying the general sum rulewp
5(Gw(p,G).

Taking into account the symmetries of the model and
opportunity to minimize freezing, the complete set of no
zero breakup weights used in our calculation reads25 ~to first
order inDt) as follows.

Easy-plane and isotropic case (Jx>Jz):

w~1,i !512
JXY

4
Dt,

w~1,3 !5
JXY2JZ

4
Dt,

w~3,5 !5
JXY1JZ

4
Dt. ~5!

Easy-axis case (Jx,Jz):

w~1,i !512
JZ

4
Dt,

w~3,5 !5
JXY

2
Dt,

w~3,^ !5
JZ2JXY

2
Dt. ~6!

It is worth noting that in the EA case one must allow f
freezing (w(3,^ )5” 0) in order to ensure the positiveness
all weights.

In the limit of continuous imaginary time,30 Dt→0,
plaquettes with nokink, i.e., of types 1~2! and 3~4!, acquire
unitary weight, while plaquettes with a kink, i.e., of type
~6!, acquire an infinitesimal weight, still keeping a fini
weight per unit timevp5 limDt→0wp /Dt; therefore, kink-
bearing plaquettes must be regarded as Poissonian eve
the imaginary-time evolution of each pair of interactin
spins. At the same time the breakup decomposition crea
no kink in imaginary time evolution (i) acquires a unitary
weight, while all the other breakups acquire an infinitesim
weight, still keeping a finite weight per unit timev(p,G). In
the case of plaquette 5~6!, since the breakup weights have
be normalized to the plaquette weights, they become fi
probabilities

p~5,5 !5
1

2 S 11
JZ

JXYD , p~5,3 !512p~5,5 ! ~7!

FIG. 2. Breakup decompositions of a single plaquette in thS
51/2 XXZ model; thick lines join grouped spins.
10441
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in the EP case, andp(5,5)51, p(5,3)50 in the EA case.
The algorithm then proceeds as follows.

~i! Distribute breakups3, 5, and ^ on the continuous
segments @equal to infinite sequences of infinitesim
plaquettes 1~2! and 3~4!# along the imaginary-time evolu
tion of each pair of interacting spins, according to the Po
son distribution having as parameterbv(p,G); for each kink
in the propagation, choose a breakup with probabilit
p(5,G).

~ii ! Reconstruct the loops defined by the decomposition
each infinitesimal plaquette;

~iii ! Decide whether to flip each loop independently w
probability one half.

The above procedure~multi-cluster update! represents a
single MC step in our code. We have generally perform
104 MC steps for thermalization for each value of the te
perature, and~1–1.5)3105 MC steps for an evaluation o
thermodynamic observables. The algorithm is very effici
in both the EA and EP cases, with autocorrelation tim
which always remain around unity for all the lattice sizesL
we considered, i.e.,L516, 32, 64, 128, and 200. The auto
correlation time tc has been estimated by theblocking
technique31 as

tc5
Nb

2

sX
2

sx
2

, ~8!

where sx
2 denotes the variance of the time-series$xi% ( i

51, . . . ,Nsteps5nbNb) produced for the variablex, while sX
2

is the variance of the block variable Xj

5Nb
21( i 5( j 21)* Nb11

j* Nb xi ( j 51, . . . ,nb), with Nb@t for the

estimate to be sensible.
The introduction of freezing breakups in the EA case

generally thought to lower the efficiency of the loo
algorithm,25 although no direct evidence of such conclusi
exists. For the EA anisotropies we consider, no signific
loss of efficiency~i.e., no increase in the correlation time! is
observed.

We have implemented improved estimators28,25 for all the
quantities of interest. A separate, more careful analysis
needed in the case of off-diagonal observables, whose m
general bilinear example may be^Ŝi

1(t)Ŝj
2(t8)&. In the ab-

sence of freezing, the improved estimator simply reads32,33

@Ŝi
1(t)Ŝj

2(t8)# impr51, if ( i,t) and (j,t8) belong to the
same loop, and 0 otherwise.

When freezing is present, since only one plaquette c
figuration admits freezing, the constraint of having (i,t) and
( j,t8) on the same loop is no longer sufficient to have
non-zero contribution to the estimator. In principle it is po
sible to define the estimator for off-diagonal observab
even in case of freezing; however, not only is its impleme
tation highly nontrivial from the point of view of program
ming, but its evaluation would also consume a considera
amount of computational time. We have therefore refrain
from implementing such estimators in the case of freezi
To have a complete picture of the thermodynamics of
system in the EA case, we have then resorted to a diffe
~and generally less efficient! QMC scheme, within which the
4-3
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calculation of the off-diagonal observables in the EA case
relatively straightforward, i.e., to the so-called worm alg
rithm.

2. Worm algorithm

The worm algorithm represents an alternative way
overcome the problem of critical slowing down in QM
simulations. The original idea of the algorithm can be fou
in Ref. 34, but we here formulate the algorithm in a differe
way, so that it appears as a direct generalization of the l
algorithm; our formulation is more directly related to th
so-called ‘‘operator-loop update’’ introduced in the fram
work of the stochastic series expansion.35

The worm algorithm starts by choosing a point at rand
in space-time, inserting two discontinuities in the loc
imaginary-time evolution, and then keeping one fixed~the
‘‘tail’’ of the worm ! while letting the other~the ‘‘head’’ of the
worm! freely travel through the lattice. The single-worm u
date ends when the head happens to ‘‘eat’’ the tail~the worm
closes!, so that the isolated discontinuities disappear and
system is led to a new configuration having non-zero weig
All the segments of imaginary-time evolution touched by t
worm’s head have to be flipped, i.e., the worm’s head p
forms a real-time update of the system. Its motion conv
tionally goes forward~backward! in imaginary time while
updating segments with up~down! spins, and it is ruled by
detailed balance condition, to be locally satisfied on e
~infinitesimal! plaquette it touches.

General detailed balance conditions for the sin
plaquette update when the worm’s head passes throug
flipping two spins, read

w1p~1→3!5w3p~3→1!,

w1p~1→5!5w5p~5→1!,

w3p~3→5!5w5p~5→3!, ~9!

where we have already introduced the time- and spa
reversal symmetries, so that here ‘‘1’’ means 1 or 2, ‘‘
means 3 or 4, and ‘‘5’’ means 5 or 6, depending on the w
the worm’s head travels through the plaquette. Moreover,
transition probabilities must satisfy the sum rules

p~1→3!1p~1→5!51,

p~3→1!1p~3→5!51,

p~5→1!1p~5→3!51. ~10!

Moving to the continuous-time limit, we express the tran
tion probabilities from a plaquette with a non-vanishi
weight to another plaquette, as
10441
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p~1→3!511p~1→3!Dt,

p~3→1!511p~3→1!Dt,

p~1→5!5p~1→5!Dt,

p~3→5!5p~3→5!Dt, ~11!

where p(1→5) and p(3→5) have the meaning of~posi-
tive! transition probabilities per unit imaginary time, whil
p(1→3) and p(3→1) are ~negative! corrections to the
transition probabilities among plaquettes taking no
vanishing weights; these corrections arise from the Pois
nian occurrence of kinks in imaginary-time evolution. Wi
the above parametrization of the transition probabilities,
first two sum rules~10! take the form

p~1→3!1p~1→5!50,

p~3→1!1p~3→5!50, ~12!

while the third remains unchanged, asp(5→1) and p(5
→3) keep their meaning of dimensionless probabilities
the different ways the worm’s head can pass through a k
in the imaginary-time evolution. The set of detailed balan
equations in the continuous-time limit takes the form

p~1→3!2p~3→1!5
JZ

2
,

p~1→5!5
JXY

2
p~5→1!,

p~3→5!5
JXY

2
p~5→3!. ~13!

Together with the sum rules, they give, as a unique solut
the following set of transition probabilities:

p~1→5!5
JXY2JZ

4
,

p~3→5!5
JXY1JZ

4
,

p~5→3!5
1

2 S 12
JZ

JXYD . ~14!

It is immediate to see that this solution is equivalent to
set of breakup weights@Eqs. ~5!#, which means that, at this
level, the worm algorithm is nothing but the Wolff-typ
~single-cluster! version of the loop algorithm. However, a
observed in Sec. II A 1, in the EA case transition probab
ties are not always positive, and some other transit
mechanism must be invoked to overcome this problem.
seen before, the remedy in the case of the loop algorithm
to allow for branching of the loops; if one hence allows f
branching also in the worm algorithm, the single-cluster v
sion of the loop algorithm for the EA case is obtained.
4-4
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A different strategy can be adopted in the case of
worm algorithm by introducing a new type of motion, nam
bouncing, where the worm’s head, when attempting to u
date a plaquette, is bounced off and hence forced to loc
trace back its route. From the physical point of view, t
existence of a bounce mechanism protects some plaqu
from being updated, possibly those plaquettes containing
cal spin configurations which give a relevant contribution
the thermodynamics of the system. In the case of the
antiferromagnet, the most relevant local configurations
those containing antiferromagnetic correlations of thez com-
ponents, i.e., in terms of plaquettes,p53 and 4. Therefore
we allow for bounce on these plaquette configurations, in
ducing a finite bounce probabilityp(3,b)5p(3,b)Dt which
has to be accounted for in the sum rule

p~3→1!1p~3→5!1p~3,b!50. ~15!

The detailed balance condition for the bounce probability
trivial, reading p(3,b)w(3)5p(3,b)w(3). Equations ~14!
and ~15! form an underdimensioned set, andp(3,b) can
hence be chosen arbitrarily, with the only constraint of po
tive transition probabilities. As in the case of freezing, it
highly convenient to minimize the bounce probability: wh
the worm’s head bounces, part of its update operations
lost as it locally traces back its way, so that the efficiency
updating the configuration, keeping the number of elem
tary update operations fixed, is lowered. The following so
tions for the transition probabilities, minimizing the boun
probability, are found:

p~1→5!50,

p~3→5!5
1

2
JXY,

p~3,b!5
1

2
~JZ2JXY!,

p~5→1!51. ~16!

The worm algorithm with the bounce process is apure-
quantumcluster algorithm: in the Ising model, which is
substantially classical statistical model, the algorithm lo
its cluster nature, since only bounce processes survive,
confining the worm on a single site.

As in the case of the loop algorithm, each of our simu
tions consists of 104 MC steps for thermalization and of~1–
1.5)3105 MC steps for evaluation of thermodynamic o
servables. During thermalization, the number of worms to
produced at each step is adjusted so that the total lengt
the worms in the imaginary-time direction roughly equals
size of the (D11)-dimensional lattice,L23b; this number
is then kept fixed during the measurement phase. In this w
autocorrelation times of the order of unity are achieved
all values of the EA anisotropy considered. At variance w
the loop algorithm, the efficiency here is expected to dra
cally decrease as the anisotropy increases, given that, a
model moves toward the Ising limit, the cluster algorith
10441
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transforms into a local algorithm; however, the case of stro
anisotropy is not of our interest here.

The estimator for bilinear off-diagonal quantities lik
Ŝi

1(t)Ŝj
2(t8) can be thought of as a partition function for

modified model, in which two spin discontinuities are i
serted into the system configuration at the points (i,t) and
( j,t8). Now it becomes clear that configurations giving
non-zero contribution to such a partition function are gen
ated during the worm update whenever the discontinui
associated to the head and tail of the worm coincide with
above points, both in the EA and EP cases. Therefore
off-diagonal observables are measured on the fly during
motion of worm’s head,34 and each worm update produces
statistics for the estimators which grows linearly with t
length of the worm. On the other hand, improved estimat
are not defined for diagonal quantities in the EA case; in t
respect, worm and loop algorithms are seen to be exa
complementary.

We remark that the worm algorithm retains its full effi
ciency also in presence of a uniform magnetic field appl
to the spins, while the loop algorithm is known to expone
tially slow down as the field is increased and/or the tempe
ture is lowered.36 Finally, we note that, independent of u
Syljuåsen and Sandvik37 recently developed a very simila
~directed loop! algorithm within the framework of both sto
chastic series expansion and path-integral Monte Carlo.

B. Thermodynamic quantities

Here we briefly report the definition of the relevant the
modynamic quantities measured in our QMC study, toget
with their respective estimators. The MC average of the
timator will be hereafter denoted as^•••&MC .

The internal energŷĤ& is estimated as the MC averag
of

1

2b (
i,d

E
0

b

dtf i,d~t![E, ~17!

wheref i,d(t) takes the value2JZ/4 if at imaginary timet
there is an infinitesimal plaquette configuration of type 1~2!,
JZ/4 if of type 3~4!, 2d(t) if of type 5 ~6!. This corresponds
to the continuous-time limit of the energy estimator as d
fined in Ref. 38.

The specific heatc[b2(^Ĥ2&2^Ĥ&2)/L2 is estimated
from energy fluctuations as

1

L2
~^b2E22Nkinks&MC2b2^E&MC

2 !, ~18!

whereNkinks is the number of kinks present in each genera
configuration. The variance of the specific heat has been
timated via binning analysis of the time series related to
energy estimator and the kink number.

The staggered magnetizationM s[(21)i^Ŝi
z& is estimated

as the MC average of
4-5
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1

L2 (
i

~21! is i
z[ms. ~19!

The spin-spin correlation function is

Caa~r!5
1

b2E0

b

dtdt8^Ŝi
a~t!Ŝi1r

a ~t8!& f ~t,t8!, ~20!

wheref (t,t8)5bd(t2t8) in the equal-time~ET! correlator
and f (t,t8)51 in the time-averaged~TA! one. In both cases
the numerical calculation of the correlation function tak
advantage of the existence of the improved estimator defi
in Sec. II A.

The generalized susceptibility is

xaa~q!5b(
r

eiq•rCaa~r!; ~21!

the time-averaged susceptibility corresponds to the ther
dynamic definition~second derivative of the free energ!
while the equal-time one corresponds tob* S(q), where
S(q) is the static structure factor as measured, e.g., in n
tron scattering experiments. From the general definit
above follow those of the uniform susceptibility,

xu
aa5xaa~q50!, ~22!

and of the staggered one,

xs
aa5xaa@q5~p,p!#. ~23!

Susceptibilities and correlation functions have been m
sured both along thez axis (Czz, xzz) and in thexy-plane
(Cxx5Cyy, xxx5xyy); in the EA case, the latter have bee
evaluated by means of the worm algorithm. In what follow
we will show and comment upon our data relative to t
uniform TA susceptibility and to the staggered ET susce
bility, being such quantities the more relevant ones from
experimental point of view.

The correlation lengthjaa is definedvia the long-distance
exponential decay of the staggered correlation functi
(21)rCaa(r);exp(2r/jaa) (r→`). A direct estimatejfit

aa of
the correlation length may hence be found by fitting t
long-distance behavior ofCaa(r) with a model-dependen
function, as discussed in the following sections. Such a p
cedure, however, is strongly dependent on the quality
stability of the fit, and does not always lead to a univoca
defined result in case of a finite-size system in presence
phase transition, i.e., of a diverging correlation length.
alternative strategy, which we have also used, is offered
the so-called second moment definition39

j2
aa5

L

2p
A xaa~p,p!

xaa~p12p/L,p!
21, ~24!

which can be directly extracted by the simulation da
supplemented by a binning analysis of susceptibility ti
series in order to estimate the variance.
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Another relevant observable, in the EP case, is the heli
modulusY, which is a measure of the response of the syst
to the application of a twistF in the boundary condition
along a given direction,

Y[
1

JXYL2 F ]2F~f!

]f2 G
f50

, ~25!

wheref5F/L. In Appendix A we show that, starting from
the above definition as explicitly written in terms of sp
operators, the estimator of the helicity modulus of theS
51/2 XXZ EP model reads

Y5
t

2
uWu2, ~26!

whereW5(W1 ,W2), W1(2) being the total winding numbe
of spin paths~paths traced by a fixed spin configuration, u
or down! in the 1 ~2! lattice direction. Remarkably, this es
timator is directly related with that of the superfluid dens
of bosonic systems.40 An efficient improved version of esti
mator ~26! was introduced by Harada and Kawashima29 in
the context of the loop algorithm, and is the one employed
this work.

C. Finite-size scaling

A FSS analysis41 can give strong indications of the exis
tence of a phase transition at some temperaturetc , possibly
leading to a full characterization of its universality class. T
simplest evidence that a transition occurs is found when,
increasing lattice size, the order parameter scales to a fi
value below a certain temperature, indicating that a nonz
order parameter develops in the thermodynamic limit.

In the case of second-order phase transitions, the Ansa41

for the scaling behavior of a generic finite-size thermod
namic quantityAL(t) in the neighborhood of the critica
point reads

AL~ t !;Lr/nFA@L1/n~ t2tc!#, ~27!

where r is the critical exponent ofA[A` , i.e., A(t→tc)
;ut2tcu2r, n is the exponent for the correlation lengt
while FA is the universal scaling function. At the critica
point Eq. ~27! implies AL(tc);Lr/n. In the case ofj this
means a linear scaling at criticality, without any assumpt
on the universality class; therefore, looking for the tempe
ture at which a properly defined42 jL(t) scales linearly with
the system size gives an unbiased estimate of the cri
temperature. Equation~27! implies that the scaling plot o
AL L2r/n vs y5(t2tc)L

1/n, with a proper estimate oftc ,
shows the data for different lattice sizes to collapse onto
universal curveFA(y).

In the case of a BKT transition, in which no order param
eter is given, the presence of topological order at finite te
perature is shown when the helicity modulus scales to a fi
value below a certain temperature. The use of the sca
Ansatz to locate the critical temperature can be general
to the case of a BKT transition, though most of the critic
exponents are not defined. However the Kosterlitz-Thoul
4-6
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theory predictsh51/4 at the critical point, so that a scalin
behavior of the susceptibility asL22h5L7/4 is a good signa-
ture of the critical temperature. Moreover, Kosterlitz’s ren
malization group equations43 provide a critical scaling law
for the helicity modulus in the form44

YL~ tBKT!

tBKT
'

2

p S 11
1

2 log~L/L0! D , ~28!

whereL0 is a constant. This relation has been widely used
locate the BKT critical temperature of the classical 2
planar-rotator model45,46 and of the S51/2 quantumXY
model.29

We end this section with a general remark. It is observ
that the smaller the anisotropy, the larger the lattice si
required to enter the asymptotic scaling regime, where F
holds. This is essentially due to the fact that the critical
gion is shifted to lower temperature: the correlation length
the isotropic model, acting as a lower bound for that of
nearly isotropic ones, increases exponentially upon lowe
the temperature, and therefore, keeping the lattice size fi
the ratioL/jL , that drives the onset of asymptotic scalin
near the transition, gets smaller.

III. EASY-AXIS MODEL AND ISING TRANSITION

The values of the anisotropy here considered areDm
50.01~also used in Ref. 17! andDm50.001. They are com
parable with the characteristic anisotropies of real co
pounds; yet, for such small anisotropy there is no unive
consensus on the existence of a transition.22,23From previous
works16,17,47 the transition is expected in the temperatu
range 0.2,t,0.3 in both systems. At higher temperature t
behavior gets closer to that of the isotropic model, which
been extensively investigated by means of the QMC met
in recent years;30,48–50we have extended our analysis up
t.0.8 in order to identify those deviations from the isotrop
behavior that can be experimentally detected above the c
cal region. In our approach, evidence of the existence o
Ising-like transition follows from a detailed FSS analysis
the data; subsequently, we analyze the temperature de
dence of some relevant thermodynamic quantities, empha
ing the signatures of the EA nature.

FIG. 3. Scaling of the staggered magnetizationM s in the EA
model withDm50.001, for differentt.
10441
-

o

d
s
S
-
f
e
g
d,

-
al

s
d

ti-
n

f
en-
iz-

A. Finite-size scaling analysis

Our analysis proceeds in three steps: we give evidenc
a transition to occur, then the transition temperature is
cated, and eventually the Ising critical scaling is tested. A
the discussion made in Sec. II C the FSS analysis forDm
50.001 is expected to be more delicate than forDm50.01.
Indeed, for the lattice sizes used (L<128) some quantities
show to have well entered the asymptotic scaling regim
while others have not. In any case, clear~though not com-
plete! evidence of the Ising universality class is given al
for Dm50.001; larger lattices would be required to reach
full characterization.

Let us first consider the order parameter, i.e., the st
gered magnetization given in Eq.~19!. In Fig. 3 M s for Dm
50.001 is seen to scale to a finite value ift&0.22, so that the
magnetization in the thermodynamic limit becomes fini
the same behavior isa fortiori observed in the caseDm
50.01. We then invoke the scaling Ansatz@Eq. ~27!# for the
longitudinal correlation lengthjzz. The scaling plot ofjfit

zz,
as specifically defined in Sec. III E below, is shown in Fig
for Dm50.001 and givest I(Dm50.001)50.2225(15). A
similar analysis yieldst I(Dm50.01)50.2815(25).

Hitherto, no assumptions were made about the univer
ity class. In order to identify it, we consider the so call
Binder’s fourth cumulant,51 shown in Fig. 5 and defined by

FIG. 4. Scaling of the longitudinal correlation lengthjfit
zz in the

EA model withDm50.001, for differentt.

FIG. 5. Scaling of the Binder’s fourth cumulant in the EA mod
with Dm50.01 for differentt. The solid line indicates the universa
critical valueU4

(c) ~see the text!.
4-7
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U4512
^ms

4&MC

3^ms
2&MC

2
, ~29!

which is known to assume the universal critical valueU4
(c)

50.6106900(1) att I in the 2D Ising model on the squar
lattice,52 and increases~decreases! with L, below ~above! t I .
For Dm50.01, we verify such a behavior and obtaint I(Dm
50.01)50.280(3), consistent with the above unbiased es
mate from the scaling ofjzz. The scaling Ansatz@Eq. ~27!#
for the staggered magnetization,M s;L2b/n at t5t I , consti-
tutes a further way of checking the 2D Ising behavior, sin
the critical exponentsb51/8 andn51 are involved. The
data reported in Fig. 6 givet I50.282(2). In thecase of the
weakest anisotropyDm50.001, both the Binder’s fourth cu
mulant and the staggered magnetization have not yet
entered the asymptotic scaling region for the lattice si
considered, andt I cannot be reliably estimated by this tec
nique.

A further test of the universality class involves the long
tudinal staggered susceptibilityxs

zz, Eq. ~23!: in this case the
scaling Ansatz@Eq. ~27!# givesxsL

zz(t I);Lg/n, with 2D Ising
critical exponentsg57/4 andn51, as shown in Fig. 7 for
the caseDm50.001. The estimated critical temperatures

FIG. 6. Scaling of the staggered magnetizationM s in the EA
model with Dm50.01, for different t. The critical exponentsb
51/8 andn51 are those of the Ising universality class.

FIG. 7. Scaling of the longitudinal staggered susceptibilityxs
zz

in the EA model withDm50.001, for differentt. The critical expo-
nentsg57/4 andn51 are those of the Ising universality class.
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sult t I(Dm50.01)50.2825(25) and t I(Dm50.001)
50.2235(15), in full agreement with the above unbiased
timates.

To summarize, in the caseDm50.01 we find consistency
for the 2D Ising critical exponent ratiosb/n and g/n, thus
fully verifying the universality class. ForDm50.001 the evi-
dence, though limited to the matching of the estimates ot I
obtained in Figs. 4 and 7, is quite convincing.

As a check that the magnetization and the staggered
ceptibility have actually reached the asymptotic scaling
gime with the considered lattice sizes, we have construc
their scaling plots after Eq.~27!, which are reported in Figs
8 and 9. Data collapse for different lattice sizes is verified
the staggered susceptibility in the caseDm50.001 for L
>64, taking t I50.223, and a fortiori in the caseDm
50.01; the staggered magnetization is instead seen to h
entered the asymptotic scaling regime forL>64 only in the
caseDm50.01.

FIG. 8. Scaling plot for the staggered magnetizationM s in the
EA model with Dm50.01, for L516 ~up triangles!, 32 ~down tri-
angles!, 64 ~diamonds!, and 128~squares!. The critical exponents
b51/8 andn51 are those of the Ising universality class, and t
critical temperature is taken ast I50.281.

FIG. 9. Scaling plot for the longitudinal staggered susceptibi
xs

zz in the EA model withDm50.001, for differentL; symbols as in
Fig. 8. The universal scaling function emerges from the overlap
the two solid lines. The critical exponentsg57/4 andn51 are
those of the Ising universality class, and the critical temperatur
taken ast I50.223.
4-8
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From the above analysis a strong indication for the ex
tence of an Ising phase transition is therefore given for b
the considered anisotropies. Estimates of the critical te
peraturet I(Dm) from the different criteria described in thi
section are summarized in Table I; all estimates are con
tent, and among them we choose those realizing the best
collapse onto the universal scaling function in the scal
plots of the staggered susceptibility and magnetizat
shown in Fig. 8 and 9: the resulting values aret I(0.01)
50.281(2) andt I(0.001)50.223(2). Such values will be
indicated with a thin arrow in the following figures.

B. Specific heat

The specific heat of the Ising model is characterized b
sharp peak at the transition temperature. As the anisotr
decreases, a large bump, eventually coinciding with
bump of the isotropic model, grows on the right-hand side
the peak, which correspondingly moves toward lower te
peratures, meanwhile becoming narrower. In Fig. 10 we
that traces of an Ising-like peak emerging from the isotro
curve can still be evidenced for both anisotropy values. D
spite their being traces, we observe that they develop at
critical temperature as estimated above. These findings a
good qualitative agreement with the experimental da53

relative to the layered S51/2 antiferromagnet
Cu(C5H5NO)6(BF4)2, which is supposed to have a

TABLE I. 2D Ising transition temperaturet I(Dm) as obtained by
FSS analysis and a fit of the critical behaviors.

Estimation method t I(0.01) t I(0.001)

jzz;L 0.2815~25! 0.2225~15!

U4→0.6107 0.280~3!

M s;L2b/n 0.282~2!

xs
zz;Lg/n 0.2825~25! 0.2235~15!

jzz;ut2t Iu2n 0.283~6!

xs
zz;ut2t Iu2g 0.284~4!

FIG. 10. Specific heat of the EA model vst, for L564 ~dia-
monds! and 128~squares!; the dashed line represent the speci
heat of the isotropic model, as obtained by numerically deriving
internal energy QMC data of Ref. 50. Arrows indicate the estima
critical temperature.
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anisotropy-driven transition; similar behavior is di
played by larger-spin compounds whose anisotropy
known to be Ising-like,54 such as K2NiF4 (S51) and
K2MnF4 (S55/2).

C. Uniform susceptibility

At variance with the specific heat, where the anisotro
curves just slightly differ from the isotropic one, the unifor
susceptibility undoubtedly shows an anisotropic behavior
Fig. 11, where data relative toDm50.01 are shown, the
transverse and longitudinal componentsxu

xx andxu
zz separate

from the isotropic curve att&0.4, i.e., well abovet I
50.282. It is quite surprising that the Hamiltonian symme
puts up so much resistance to the disordering effects of b
quantum and thermal fluctuations: this means that the an
ropy, even one as weak as those we are here considering
never be neglected, and that there exists a temperature ra
extending well above the transition~i.e., also out of the re-
gion where 2D correlations can trigger the onset of 3D lon
range order!, where a genuinely 2D anisotropic behavior c
be experimentally observed.

The different temperature dependence of the transv
and longitudinal branches, with the former displaying a mi
mum and the latter monotonically going to zero, is that e
pected for an EA antiferromagnet. This behavior results fr
the anisotropy-induced spin ordering, that makes the sys
more sensitive to the application of a transverse magn
field, rather than of a longitudinal one. We observe that b
the minimum of the in-plane component, and the start of
rapid decrease of the longitudinal one, are close to the t
sition: as such a feature is peculiar to the Ising model, t
result gives further strength to the characterization of
transition as of Ising type.

The two components of the uniform susceptibility are e
perimentally observable by means of conventional mag
tometry measurements: the above discussed deviations
the isotropic behavior have been actually observed in sev
layered compounds withS>1: K2NiF4,55 Rb2NiF4,55

e
d

FIG. 11. Uniform susceptibility of the EA model forDm50.01
and L564. Full diamonds: longitudinal branch; open diamond
transverse branch; stars: QMC data for the isotropic model~Ref.
50!. Solid and dashed lines are guides to the eye. The arrow i
cates the estimated critical temperature.
4-9
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BaNiF4 ~Ref. 56! (S51), K2MnF4,57 Rb2MnF4,57 and
BaMnF4 ~Ref. 58! (S55/2). Such effects are here proved
be substantial also inS51/2 systems with a comparable a
isotropy; unfortunately, to our knowledge, no clean expe
mental realization of a 2DS51/2 HAFM with a small EA
anisotropy is available yet.

D. Staggered susceptibility

The equal-time longitudinal and transverse staggered
ceptibilitiesxs

zz andxs
xx for Dm50.01 are shown in Fig. 12

together with the susceptibility of the isotropic model.50 Be-
low the high-temperature region where the isotropic beha
is reproduced, the two curves separate att.0.4, below
which xs

zz diverges more rapidly than in the isotropic cas
while xs

xx stays finite and shows a maximum at about
transition temperature. The time-averaged susceptibili
display the same qualitative behavior, though their values
slightly different with respect to the equal-time case.

As in the case of the uniform susceptibility, the observ
behavior is qualitatively suggestive of an Ising-like tran
tion. Moreover, the analysis of longitudinal branch dive
gence gives a direct evidence of the Ising universality cla
as well as an independent estimate of the critical temp

FIG. 12. Staggered susceptibility of the EA model forDm

50.01. Circles: longitudinal~bulk values!; diamonds: transverse
(L564); stars, lines, and arrow as in Fig. 11.

FIG. 13. Correlation length of the EA model forDm50.01.
Symbols, lines, and arrow as in Fig. 12.
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ture. For a 2D-Ising transitionxs
zz must display a power-law

divergence,xs
zz;ut2t Iu2g, with g57/4. In Fig. 14 we plot

(xs
zz)21/g vs t for Dm50.01, using data which are free o

significant finite-size corrections, according to the crite
described in Sec. III E. The power-law with the Ising exp
nentg57/4 is evidently verified and the extrapolated critic
temperature ist I50.284(4), which agrees with the more ac
curate value obtained in Sec. III A. As for the smaller anis
ropy, Dm50.001, the power-law divergence ofxs

zz could not
be unambiguously detected for the considered lattice siz

E. Correlation length

Figure 13 shows the longitudinal and the transverse c
relation lengthsjzz andjxx for Dm50.01. The two correla-
tion lengths behave quite differently: the transverse bran
after having left the longitudinal one at a temperaturet
.0.4, displays a maximum at the transition, while the lo
gitudinal branch diverges faster than in the isotropic mod
Again, the overall behavior is suggestive of a 2D Ising tra
sition.

The longitudinal antiferromagnetic correlation lengthjzz

is expected to display a power-law divergencejzz;ut
2t Iu2n, with n51. One can capture this divergence by s
lecting a few points forj2

zz at temperatures immediatel
abovet I , discarding those exceedingL/4, which are affected
by finite-size saturation. This criterion is reinforced by r
quiring the consistency of the estimates ofj2

zz obtained via
the equal-time- and time-averaged susceptibilities: since b
estimates converge to the same value in the thermodyna
limit, their agreement indicates that finite-size effects are
der control. ForDm50.01, Fig. 14 shows that (jzz)21 is
linear, with an extrapolated interceptt I50.283(6), in agree-
ment with the value found via FSS analysis.

The same observation is not possible forDm50.001, as
sizes larger than those here considered are required to
proach the critical point of such a model, while controllin
finite-size effects.

We have also extracted the longitudinal correlation len
jzz in the vicinity of the critical point by fitting the equal

FIG. 14. Power-law critical behavior of the longitudinal corr
lation lengthjzz ~diamonds! and of the longitudinal staggered su
ceptibility xs

zz ~open triangles! for Dm50.01; solid and dashed line
are linear fits of (jzz)21/n and (xs

zz)21/g, respectively. The critical
exponentsn51 andg57/4 are those of the Ising universality clas
4-10
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time correlatorCzz(r), defined in Eq.~20!, to a function due
to Serena, Garcı´a and Levanyuk,59

F~x!5
e2x

x1/21x1/4
, ~30!

properly symmetrized so as to take into account the perio
boundary conditions, i.e., by

Czz~r !}F~r /jzz!1F@~L2r !/jzz#. ~31!

This function interpolates between the known asymptotic
haviors atr→0 andr→` of the Ising model. Well above the
critical point we used the conventional fitting function for th
isotropic antiferromagnet:48

F~x!5
e2x

xh
. ~32!

In the caseDm50.001 good and stable fits are obtained ev
if the correlation length becomes comparable to~or even
exceeds! the lattice sizeL: we can hence univocally defin
the fitted correlation lengthjzz[jfit

zz. Moreover, the same
kind of fitting procedure on the time-averaged correla
Czz(r ) @Eq. ~20!# gives consistent results.

Notice that jfit
zz increases monotonically withL and is

bounded from above by the thermodynamic value; on
other hand, asj2

zz is systematically smaller thanjfit
zz, the

latter is necessarily less sensitive to size finiteness. For
reason in Fig. 15 it is possible to observe the clear devia
of jfit

zz from the isotropic model, due to its divergence att I .
To summarize, the sharp dependence of the longitudinal
relation length to small anisotropies, already observed foS
55/2 in Rb2MnF4 ~Ref. 19! and KFeF4,20 is also evidenced
for S51/2.

IV. EASY-PLANE MODEL AND BKT TRANSITION

In this section we present our results relative to the
model. We have used lattice sizes up toL5200 and two
anisotropy values:Dl50.02 ~already considered in Ref. 18!
and Dl50.001. These values are comparable with the

FIG. 15. Longitudinal correlation lengthjfit
zz of the EA model

with Dm50.001, forL532 ~down triangles!, 64 ~diamonds!, and
128 ~squares!. Stars and lines as in Fig. 11.
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perimentally estimated anisotropies of real compoun
among which several cupreous oxides such as La2CuO4,
Sr2CuO2Cl2, and Pr2CuO4, known to have an EP
anisotropy.3

The temperature range covered by our simulations
0.15&t&0.90: as suggested by previous calculations18,47this
is the interval where we expect most of the peculiar featu
due to the anisotropy to be detectable. At higher tempe
tures the thermodynamic behavior of the model does
differ from that of the isotropic one. On the other han
finite-size limitations preclude the study of the very-low
temperature region. To this respect, we recall that the co
lation length of an EP model is expected to diverge expon
tially as t→tBKT

1 ; such a fast divergence makes finite-si
limitations more severe than in the EA case, wherej di-
verges algebraically. On the whole, the BKT transition offe
less robust evidence, both numerically and experimenta
due to its being a topological phase transition rather tha
second-order one. In what follows we will refer toout-of-
plane quantities as those related to the hardz axis, and to
in-planequantities as those related to the easyxy plane.

A. Finite-size scaling analysis

The role of the staggered magnetization in the FSS an
sis of the EA behavior is somehow taken, in the EP case
the helicity modulusY, defined in Sec. II B. In the thermo
dynamic limitY is finite below and vanishes above the tra
sition. When finite-size systems are considered, the oc
rence of a BKT transition is marked by the existence o
finite temperature below whichY scales to a finite value, a
suggested by Fig. 16 forDl50.001. As for the value of the
critical temperature, one knows that in the thermodynam
limit the ratio Y/t takes the universal value 2/p at the
transition.60 This behavior is clearly detected in Fig. 1
where the helicity modulus is shown vs temperature for d
ferentL: the slope ofY(t) near the point where the line 2t/p
is crossed becomes larger for larger sizes, consistent with
occurrence of a jump in the thermodynamic limit.

An upper bound to the BKT critical temperature can
hence given by looking at the temperaturet where the scal-
ing behavior ofY/t is most compatible with the expecte

FIG. 16. Scaling ofY/t in the EP model forDl50.001. The
horizontal dashed line indicates the value 2/p.
4-11
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asymptotic value 2/p at criticality. From Fig. 16 we obtain
tBKT(Dl50.001)&0.180; the same procedure leads
tBKT(Dl50.02)&0.235.

More accurate results are obtained by considering
critical scaling ofY @Eq. ~28!#. According to the procedure
suggested in Ref. 29, we assume the relation

YL~ t !

t
5

2A~ t !

p S 11
1

2log~L/L0! D ~33!

to hold in the vicinity of the transition;A(t) andL0 are then
determined via a best-fit procedure andtBKT identified as the
temperature whereA(t) equals unity, as shown in Fig. 18
The resulting estimates aretBKT(Dl50.02)50.229(2) and
tBKT(Dl50.001)50.172(5). In the case Dl50.001, this
procedure is more uncertain: due to strong finite-size effe
Y is seen to asymptotically scale just forL*128 ~to be
compared withL*32 in the caseDl50.02), so that the
logarithmic fit can only be performed on two points (L
5128,200) for each temperature.

There is another way to exploit the data for the helic
modulus of a finite-size system, though we are not aware
such technique having been used by other authors befor
Ref. 61, Bramwell and Holdsworth found that in the classi
2D planar-rotator model on a finite size the ratioY/t takes
the universal value 2/p at a temperaturet* .tBKT , whose
size dependence is given by

FIG. 17. Helicity modulus of the EP model forL516 ~up tri-
angles!, 32 ~down triangles!, 64 ~diamonds!, 128~squares!, and 200
~circles!. The dashed line is the function 2t/p.

FIG. 18. Fitting parameterA vs t. The crossing point with the
line A51 gives an estimate of the critical temperaturetBKT .
10441
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t* .tBKT1
p2

4c~ ln L !2
. ~34!

The above relation, determined by a renormalization-gro
based approach, is presented as a general property of
systems, though to our knowledge its validity has never b
checked for models others than the classical pure planar
On the other hand, in the caseDl50.02 we can easily de
terminet* as a function ofL from Fig. 17 and hence obtain
Fig. 19, which shows that Eq.~34! holds even for weakly
anisotropic, strongly quantum models; a linear fit of the sc
ing behavior oft* against (lnL)22 for L>32 provides us
with a rather accurate estimate of the critical temperatu
tBKT(Dl50.02)50.228(4). Moreover, the results of Ref. 61
relate the coefficientc to the coefficientbj appearing in Eq.
~35! in the formbj5p/Ac, and from the linear fit we obtain
bj50.96(9), in good agreement with the value obtained b
low by fitting the critical behavior of the correlation length
This remarkably shows that the predictions of Ref. 61,
rived for the classical 2D planar-rotator model, also fu
apply to the quantum nearly-isotropic antiferromagnet
considered.

Finally, an additional estimate of the BKT critical tem
perature is obtained by the in-plane staggered susceptib

FIG. 19. Scaling oft* with L for Dl50.02. The dashed line is
a linear fit of the first three points, corresponding toL532, 64,
and 128.

FIG. 20. Scaling of the in-plane staggered susceptibilityxs
xx in

the EP model withDl50.001.
4-12



i

s
s

er
z-
e
a
d
to
alu

w

vi
b

tio
a
t
tu

us
te
w
ies,

bit

in
ing
pic

om

iso-

l

red
lar

o
ct

f-

s the

QUANTUM MONTE CARLO STUDY OFS5
1
2 WEAKLY . . . PHYSICAL REVIEW B 67, 104414 ~2003!
which is expected to scale at the transition asL22h with h
51/4. Looking for the temperature where this scaling law
best verified, we obtaintBKT(Dl50.02)50.230(5) and
tBKT(Dl50.001)50.180(5), asshown in Fig. 20 for the lat-
ter value.

Although the identification of the BKT universality clas
is less complete than in the Ising case, substantial con
tence between the different estimates of the critical temp
ture obtained by different predictions of the Kosterlit
Thouless theory proves that the two anisotropic mod
display a BKT critical regime. The estimates for the critic
temperaturetBKT(Dl) given in this section are summarize
in Table II for the two anisotropies considered. Putting
gether these estimates we choose as reference v
tBKT(Dl50.02)50.229(5) and tBKT(Dl50.001)
50.175(10). Such values will be indicated by a thin arro
in the figures of the following sections.

B. Specific heat

The specific heat does not show large systematic de
tions from the isotropic case within the resolution reached
the simulations for both anisotropies considered. Only
small temperature region, well above the estimated transi
temperature, displays an anomaly in the form of a tiny pe
as shown in Fig. 21; such a peak is possibly reminiscen
the rounded peak shown by the specific heat of the quan

TABLE II. BKT transition temperaturestBKT(Dl) as obtained
by FSS analysis and fit of critical behavior ofjxx.

Estimation method tBKT(0.02) tBKT(0.001)

asymptotic value ofY &0.235 &0.175
A(t)51 0.229~2! 0.172~5!

scaling oft* (L) 0.228~4!

xs
xx;L22h 0.230~5! 0.180~5!

jxx;exp@bj(t2tBKT)21/2# 0.235~6!

FIG. 21. Specific heat of the EP model withDl50.02 for L
564 ~diamonds! compared to QMC data for the same model~Ref.
18! ~triangles! and for the isotropic model~Refs. 48 and 50! ~stars!.
The arrow indicates the estimated BKT temperature. Inset: zoom
the temperature region where a deviation is observed with respe
the isotropic case.
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S51/2 XY model above its BKT transition.62 However, we
must mention that, at variance with our results, previo
QMC data,18 also reported in Fig. 21, significantly devia
from the isotropic model. According to the generally lo
sensitivity shown by the specific heat to weak anisotrop
as seen for instance in the EA case, we find this result a
unlikely.

C. Uniform susceptibility

As in the EA case, the uniform susceptibility reported
Fig. 22 shows strong evidence of the anisotropy. Mov
down from the high-temperature region, where the isotro
behavior is reproduced, the in-planexu

xx and out-of-planexu
zz

uniform susceptibilities separate from each other and fr
the isotropic data.

The in-plane component decreases faster than in the
tropic case. At variance with the EA case, however,xu

xx is not
expected to vanish att50, due to the continuous rotationa
symmetry of the ground state in thexy plane. Indeed, in a
semiclassical picture, such symmetry allows the stagge
magnetization to align along the in-plane axis perpendicu

n
to

FIG. 22. Uniform susceptibility of the EP model withDl

50.02 andL564. Full diamonds: in-plane; open diamonds: out-o
plane; stars: QMC data for the isotropic model~Refs. 50 and 48!.
Solid and dashed lines are guides to the eye. The arrow indicate
estimated BKT temperature.

FIG. 23. Correlation length of the EP model withDl50.02.
Circles: in-plane~bulk values!; diamonds: out of plane (L564);
stars, solid line, and arrow as in Fig. 22.
4-13
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to the field, making possible the canted spin configurat
with a finite ferromagnetic magnetization parallel to—a
linear in—the field, so thatxu

xx stays finite.
The out-of-plane susceptibility is instead enhanced w

respect to the isotropic case, showing a minimum well ab
the transition. Such a minimum marks the onset of a co
pletely different behavior with respect to the isotropic mod
entirely due to the presence of the small anisotropy.

D. Staggered susceptibility and correlation length

According to Kosterlitz theory,43 in the presence of a BKT
transition the correlation lengthjxx is expected to diverge
exponentially at finite temperature as

jxx5ajexp@bj~ t2tBKT!21/2#. ~35!

As for the Dl50.02 model, this behavior was in fact ob
served in Ref. 18, where it is used to estimate the crit
temperature. In Fig. 23 we use the estimatesjfit

xx obtained by
fitting the in-plane correlation function to Eqs.~31! and~32!.
Discarding the values affected by finite-size saturation
thus considering only those satisfyingjxx&L/4, we also ob-
serve the predicted behavior: in particular, singling out
BKT critical region by successively dropping points at hi
temperature until a stable fit is obtained, we obtainaj

50.6(2), bj51.0(1), and theestimate tBKT50.235(6),
which agrees with the value found via a FSS analysis.

Furthermore, near criticality it is expected that the sta
gered in-plane susceptibility~see Fig. 24! is related to the
in-plane correlation length by the relation43

xs
xx5K~jxx!22h, ~36!

whereK is a nonuniversal constant andh51/4. By plotting
jfit

xx together with (xs
xx)1/(22h), as done in Fig. 25, one ob

serves that this prediction also holds for the weak
anisotropic quantum model; remarkably, the cur
(xs

xx)1/(22h) collapses onto thejxx on a wide range of tem
perature so thatK'1: this property is not shared by, e.g., th
classical planar rotator model or by the 2D quantumXY
model. A closer look to the validity of the scaling relatio
@Eq. ~36!# can be obtained by plotting the ratio

FIG. 24. Staggered susceptibility of the EP model withDl

50.02. Symbols as in Fig. 23; stars, lines, and arrow as in Fig.
10441
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ln xs
xx

ln jxx
522h1

ln K

ln aj1bj~ t2tBKT!21/2
, ~37!

which converges to the value 22h51.75 whent→tBKT
1 ;

this is clearly shown by the data plotted in the inset of F
25.

In the Dl50.001 case, neitherj2
xx nor xs

xx exhibit the
expected BKT critical behavior for the considered latti
sizes. The correlation length obtained by fitting the correla
Cxx to function ~32! is also not of much help. This sugges
the in-plane correlation length to behave as in the isotro
model up to relatively large values (jxx'100), and the same
holds for the staggered susceptibility. Such findings clos
resemble those of neutron scattering experiments on v
weakly anisotropic layeredS51/2 compounds, such a
Sr2CuO2Cl2,63 La2CuO4

21 and Pr2CuO4,64 that do not show
signature of the existing anisotropy in the correlation len
and static structure factor data.

Both the out-of-plane staggered susceptibility and cor
lation length have a noncritical behavior, with a maximu
well above the transition, at a temperature which roug
coincides with that of the minimum of the out-of-plane un
form susceptibility, marking the onset of an anisotrop
dominated regime. Both maxima are clearly decoupled fr
the transition temperature, at variance with the maximum
the transverse staggered susceptibility and correlation le
observed in the EA case. In this respect we mention a d
nite disagreement with Ref. 18, where the out-of-plane c
relation length is conjectured to diverge exponentially wh
T→0. We show such a conjecture to be wrong, asjzz is
clearly seen to saturate to a finite value.

V. PHASE DIAGRAM

The detailed analysis presented above for the EA and
models, separately, is now composed to form the phase
gram t I,BKT vs Dm,l in Fig. 26, where our best estimates f
the critical temperatures relative to the four models cons
ered are shown, together with data from Refs. 17 and

2.
FIG. 25. Critical behavior ofjfit

xx ~full squares! compared to that
of (xs

xx)1/(22h) with h51/4 ~open diamonds! for the EP model with
Dl50.02. The solid line is the BKT fit to the correlation leng
data. Inset: plot of lnxs/ln j; the dashed line represents the e
pected BKT value 22h51.75.
4-14
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Critical temperatures are seen to be strongly reduced
respect to the classical values, as given for instance in
47: however, the diagram clearly suggests the critical te
peratures to stay finite for any finite anisotropy, both in t
EA and EP cases, thus leading to the conclusion that qu
tum fluctuations cannot destroy the transition.

We can actually see that the above conclusion is the c
sequence of a more general finding. If one numerica
analysest I,BKT(Dm,l) finds that a logarithmic dependence
well consistent with our data, as shown in Fig. 26. Su
dependence, already predicted by renormalization gr
techniques,11,14 is rederived in Appendix B on the basis of
fully classical argument. It is found that

TI'
4prS

ln~c/Dm!
~38!

and

TBKT'
4prS

ln~c8/Dl!
. ~39!

wherec andc8 are constants, whilerS is the spin stiffness of
the classical isotropic model, entering the above express
via the exponential divergence of its correlation length. T
dominant effect of quantum fluctuations on such diverge
is embodied in the spin stiffness renormalization; therefo
if the ordering process we are observing here is the sam
in the classical case, we expect 4prS52.26J, where the
value rS50.18J has been taken for the renormalizedS
51/2 isotropic spin stiffness.49 From the logarithmic fits of
the quantum data we indeed find 2.22 and 2.49 as prefac
of the logarithm, which are remarkably near to the predic
value, despite the simplicity of the argument that led to i

For Dl50.02 andDm50.01, where a direct compariso
is possible, the critical temperatures are not fully consist
with the values given in Refs. 17 and 18. We notice that
latter were estimated as free parameters of fitting functi
for the critical behavior of the susceptibility and correlati
length; the precision of this approach is hindered by the
that the critical regime of both quantities was not alwa

FIG. 26. Phase diagram of theS51/2 2D XXZ model on the
square lattice for weak anisotropies. Full symbols are results of
work, open symbols are QMC data from Refs. 17 and 18.
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properly entered in the simulations of Refs. 17 and
mainly due to technical limitations which are nowada
overcome. We therefore propose our data as more pre
estimates.

VI. CONCLUSIONS

In this paper we have presented an extensive nume
study of thermodynamic and critical properties of weak
anisotropic two-dimensional quantum antiferromagnets
scribed by the 2DS51/2 XXZ model with both EA and EP
anisotropies. Use has been made of the continuous-
QMC method based on the loop algorithm, implemen
here also in the EA case, and on the worm algorithm, re
mulated here as a variant of the loop algorithm. The gen
outcome of the numerical simulations is that the thermo
namics of 2D quantum antiferromagnets is extremely se
tive to the presence of anisotropies of magnitude compar
to those of real compounds, i.e., as small as 1023 times the
dominant isotropic coupling.

In the models studied we see a finite temperature tra
tion to persist with clear signatures of Ising and BKT critic
behavior, in the EA and EP case, respectively; in the m
anisotropic case (1022) full consistency with the expecte
universality class is found. The most striking evidence of
presence of the exchange anisotropy is observed in the
modynamic behavior of correlation lengths and susceptib
ties. Moreover, the dependence of the critical temperature
the anisotropy is found to be quantitatively consistent w
the prediction relative to the classical case, with prope
renormalized parameters. This tells us that quantum eff
can neither destroy the transition nor change the orde
mechanism responsible for the transition to occur, and
our quantum models, despite havingS51/2 and very weak
anisotropies, do actually behave as renormalized class
ones. Given the results of Ref. 47 forS>1, we can say that
this conclusion generally holds for quantum Heisenberg
tiferromagnets on the square lattice.

As for the thermodynamic behavior of the specific obse
ables considered, we find all the non-diverging quantities
be highly sensitive to the anisotropy, while critical quantiti
show deviations with respect to the isotropic case which
generally harder to detect. This is due to the fact that,
order to discriminate betweenT50 isotropic and finite-T
anisotropic divergences one must come very close to
critical point of the anisotropic model, which is a nontrivi
issue both numerically~due to severe finite-size effects! and
experimentally~due to finite experimental resolution and in
tralayer coupling!.

As for the EP case, we underline that the considered
ues of anisotropy compare to that of several real compou
On the other hand, we have clearly shown, for instance
Figs. 22, 23, and 24, that in the EP case traces of 2D an
tropic behavior are detectable above the transition, due to
fact that some quantities display either a minimum or
maximum in a temperature region well apart fromtBKT ,
where the in-plane correlation length has not diverged y
and experimental observation should hence be more feas
We therefore think that our results could constitute a sou

is
4-15
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basis for a possible experimental observation of genuin
2D EP behavior in real magnets.
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APPENDIX A: ESTIMATOR OF THE HELICITY MODULUS

In this appendix we derive the QMC estimator@Eq. ~26!#
for the helicity modulus starting from its thermodynam
definition @Eq. ~25!#. The derivation is a finite-temperatur
generalization of the one given by Sandvik in Ref. 65, in
context of Stochastic Series Expansion, to estimate the
stiffness, i.e., at zero temperature.

We start from the ‘‘twisted’’XXZ hamiltonian, with the
twist applied along the 1 direction of the lattice, as

Ĥ~f!5(
i

@JXY cosf~Ŝi
xŜi1d1

x 1Ŝi
yŜi1d1

y !

1JXY sinf~Ŝi
xŜi1d1

y 2Ŝi
yŜi1d1

x !1JZŜi
zŜi1d1

z #1Ĥ2 ,

~A1!

whered15(1,0) andĤ2 is the term containing only bond
along the 2-direction, which remains unchanged.

We expand the twisted Hamiltonian to second order inf
as

Ĥ~f!5Ĥ~f50!2fĴ12
f2

2
Ĥ1

(XY)1O~f3!, ~A2!

where

Ĵ15
iJXY

2 (
i

~Ŝi
1Ŝi1d1

2 2Ŝi
2Ŝi1d1

1 ! ~A3!

is the 1 component of the spin current operator, and

Ĥ1
(XY)5

JXY

2 (
i

~Ŝi
1Ŝi1d1

2 1Ŝi
2Ŝi1d1

1 !. ~A4!

Carefully deriving the free energy with respect to t
twist, i.e., taking care of the non-commutativity between
10441
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Ĥ(f50), Ĵ1, andĤ1
(XY) operators, for the helicity modulus

averaged over the 1 and 2 directions of the applied twist,
obtains the expression

Y52
1

2JXYL2 S ^Ĥ(XY)&1E
0

b

dt^Ĵ~0!• Ĵ~t!& D , ~A5!

whereĤ(XY)5Ĥ1
(XY)1Ĥ2

(XY) and Ĵ5(Ĵ1 ,Ĵ2). Such an ex-
pression stands as the direct quantum analog of the clas
expression as given in, e.g., Ref. 66 for the plane rota
model; in the limit of zero temperature it reproduces t
expression given by Ref. 65.

The QMC estimator@Eq. ~26!# can be obtained directly
starting from Eq.~A5! in the caseS51/2. In the continuous-
time limit, the estimator for the bond exchange operat
T̂id1

6 5(JXY/2)Ŝi
6Ŝi1d1

7 takes the form

^T̂id1

6 &5
1

bE0

b

dt^T̂id1

6 ~t!&52
1

b
^Nid1

6 &MC , ~A6!

where Nid1

1 is the number of ~1! kinks ~of the type

u↓ i↑ i1d1
&→u↑ i↓ i1d1

&) on the i,i1d1 bond, and analogously

for Nid1

2 . Therefore, the estimator for theXY energy takes the

form

^Ĥ(XY)&52
1

b
^N11N2&MC , ~A7!

whereN6 is the total number of (6) kinks present in each
configuration. The current-current correlator present in
~A5! can be decomposed into bond-pair contributions as
lows:

Ĵ1~0!Ĵ1~t!52(
i,j

@ T̂id1

1 ~0!2T̂id1

2 ~0!#@ T̂jd1

1 ~t!2T̂jd1

2 ~t!#.

~A8!

Taking into account theS51/2 constraintŜ6Ŝ6us&50, one
obtains that

E
0

b

dt^@ T̂id1

1 ~0!2T̂id1

2 ~0!#@ T̂jd1

1 ~t!2T̂jd1

2 ~t!#&

5
1

b
@^~Nid1

1 2Nid1

2 !~Njd1

1 2Njd1

2 !&MC

2d ij^~Nid1

1 1Nid1

2 !&MC#. ~A9!

Putting together Eqs.~A7! and ~A9! with Eq. ~A5!, one ob-
tains

Y5
t

2L2
^~N1

12N1
2!21~N2

12N2
2!2&MC ~A10!

where (N1(2)
6 ) is the total number of6 kinks on 1~2! bonds.

Since a~1! kink and a (2) kink affect a spin path crossing
the kink by shifting it of a lattice spacing in opposite dire
tions, we have that the spin-path winding number can
expressed as
4-16
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W1(2)5~N1(2)
1 2N1(2)

2 !/L ~A11!

and this reduces the estimator~A10! to expression~26!.

APPENDIX B: CLASSICAL DESCRIPTION
OF THE ORDERING MECHANISM

Here we give a sketchy description of the orderi
mechanism in slightly anisotropic 2D magnets, referring
the classical limit where the antiferromagnetic and ferrom
netic cases are thermodynamically equivalent.

EA case. We rewrite Hamiltonian~1! in the classical limit
as

H52
Jcl

2 (
i,d

si•si1d1H8

H85
JclDm

2 (
i,d

~si
xsi1d

x 1si
ysi1d

y !, ~B1!

wheres5(cosu sinf,sinu sinf,cosu) is a unitary classica
vector, andJcl is the classical exchange constant. In t
above form the Hamiltonian is written as the isotrop
Heisenberg Hamiltonian plus, as long asDm!1, a small
Ising perturbationH8. The isotropic Heisenberg model ha
an exponentially divergent correlation length asT→0,67 j
'aTe2prS/T, whererS is the spin stiffness of the classic
model. At very high temperatures, i.e.,T@Jcl , the spins are
fully uncorrelated, so that the anisotropy has little effe
When T'Jcl correlations set on and clusters of almo
aligned spins form on the length scalej. Very roughly, one
can imagine thej2 spins of each clusterC to be fully
aligned, so that the anisotropy term can be written as

H85
JclDm

2 (
i,d

cos~f i2f i1d!sinu i sinu i1d

'JclDmj2(
C

sin2uC , ~B2!
n

10441
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whereuC is the polar angle of the spin orientation on ea
cluster and border terms of orderj are neglected. Hence, th
anisotropy term creates an effective potential for the orien
tion of each correlated cluster that has two minima inuC
50 and p ~up and down! separated by an energy barri
DE5JclDmj2. Whenj increases upon loweringT, the bar-
rier becomes comparable to the thermal energy, so that
orientation of each cluster is confined to one side of
potential barrier: the system becomes Ising-like and a fin
magnetization appears. Using the isotropic behavior ofj,
this happens when

T'DE5JclDm~aTe2prS/T!2; ~B3!

solving this equation gives the critical temperature as in
~38!. The above simplified picture accounts for the logari
mic dependence ofTc upon the~small! anisotropyDm that
was earlier obtained via more sophisticated approaches;68 the
logarithm appears to follow from the exponential correlati
length in the isotropic model.

EP case. The above argument can be essentially
phrased, this time taking as perturbation of the isotro
Hamiltonian the term

H85
JclDl

2 (
i,d

si
zsi1d

z , ~B4!

which, in the presence of clusters on the scalej, becomes

H8'JclDlj2(
C

cos2uC . ~B5!

The anisotropy potential has the minimum atuC5p/2, i.e.,
for a cluster orientation on thexy plane, and the well depth is
DE5JclDlj2. As in the EA case, the anisotropy becom
relevant onceT is comparable toDE: the out-of-plane fluc-
tuations are suppressed making the system effectively pla
so that vortex excitations appear and the BKT transition
take place. This roughly happens when Eq.~39! holds.
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~1998! @JETP87, 310 ~1998!#.

35A. W. Sandvik, Phys. Rev. B59, R14 157~1999!.
36H. Onishi, M. Nishino, N. Kawashima, and S. Miyashita, J. Ph

Soc. Jpn.68, 2547~1999!.
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