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Critical dynamics of the simple-cubic Heisenberg antiferromagnet RbMnk:
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Monte Carlo and spin dynamics simulations have been used to study the dynamic critical behavior of
RbMnF;, treated as a classical Heisenberg antiferromagnet on a simple cubic lattice. In an attempt to under-
stand the difference in the value of the dynamic critical expoadigtween experiment and theory, we have
used larger lattice sizes than in our previous simulations to better probe the asymptotic critical region in
momentum. We estimate=1.49+0.03, in good agreement with the renormalization-group theory and dy-
namic scaling predictions. In addition, the central peak in the dynamic structure fadtgr aeen in experi-
ments and previous simulations, but absent in the renormalization-group and mode-coupling theories, is shown
to be solely in the longitudinal component.
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I. INTRODUCTION a polarized neutron scattering experimt@rielow T, the
quasi-elastic peak has been shown to be longitudinal in char-
The dynamic critical behavior of RbMiF a close real- acter. It is thus interesting to investigate whether the central
ization of the isotropic, simple cubic Heisenberg antiferro-peak atT . originates in the longitudinal, in the transverse or
magnet, has been the subject of several experiméséa in both components with respect to the staggered magnetiza-
Coldea etall and references thergin and theoretical tion. Another motivation for separating the longitudinal and
studies® The real time dynamics of this system is governedtransverse com'ponents'of the dynamic structure.fac.tor is to
by coupled equations of motion for the magnetic ions. In theest the theoretical predictiéthat belowT the longitudinal
ciassification of Hohenberg and Halpefine critical dy- ~Momentum-dependent susceptibility behaves gis(q)

namics of this system pertains to cla@sfor which the order  ~ /0 Wpereas thzeq dependence of the transverse compo-
parametefthe staggered magnetizatiois not conserved. ~ "€nt iSx (a)~1/q°. Although experimental measurements

Dynamic critical behavior can be characterized by a dy-2¢ consistent withy(q) ~1/g, the lack of reliable small
namic critical exponer, and for RoMnk; the most precise wave vector measurements hindered a conclusive experimen-
experimental estimajceie 7—1.43+0.04. This estimate is tal test of this predicted divergence. The experimental value

; 2/+1.91£0.05
slightly below the predicted valde® of z=1.5 for an isotro- for the transverse componentys(q)~1/g '

ic three-di ional Heisenb i o In this paper we use spin dynamics simulations to study
pic three-dimensional Heisenberg antiferromagnet. Our preg, o dynamic critical behavior of the isotropic Heisenberg an-

vious estimate using spin-dynamics simulafigobtained tiferromagnet on the simple cubic lattice, using larger lattices
before we knew the latest experimental re]s)unvae Z  than in our previous simulations, as motivated above. We
=1.43+0.03, in good agreement with the experimentalinyestigate the longitudinal and transverse components of the
value.. The slight disagreement between theory and both th@ynamic structure factor, and compare thelependence of

experiment and the simulation was perplexing, but one posge susceptibility with the predicted forms both at and below
sible explanation was that neither of these latter studiesfc_ For brevity, we do not present our methodology in great

probed the asymptotic critical region sufficiently far. To getail here: it was described in earlier wdrk.
check this, neutron scattering experiments would have to be

performed with a smaller momentum transégra task that

can be quite challenging. We can also resort to spin dynamics

simulations of the model on larger lattice sizes which allow We consider three-dimensional classical sghsf unit

access to smalley values. length, defined on the sitasof L XL XL simple cubic lat-
Spin dynamics simulatiofishave proven to be an effec- tices. The interaction is described by a model Hamiltonian

tive tool to study the dynamic behavior of magnetic systemswritten as

Direct and quantitative comparisons of magnetic excitation

dispersion curves and dynamic structure factor line shapes

from experimentand spin dynamics simulations have shown H=J E S-S @

good agreement, with no adjustable parametérat the "

critical temperaturd ., both experiment and simulation find where the summation is over pairs of nearest-neighbor spins,

that the average dynamic structure facgg,w), for mo-  andJ>0 is an antiferromagnetic exchange coupling. An ear-

mentumq and frequencyw, has a spin-wave peak and an lier high-resolution Monte Carlo simulatibh determined

additional central peak not predicted by either theT.=1.442929(77), so any uncertainty in the location of the

renormalization-group theotyor mode-coupling theor/.In critical temperature of this model is negligible.

II. MODEL AND METHODS
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The dynamics of the spins is governed by coupled equazation. The dynamics of the isotropic Heisenberg model,
tions of motiorf and the dynamic structure factsf(q,») is  given by the coupled equations of motion, conserves both the
given by the Fourier transform of the space- and time-otal energy and the uniform magnetization, which is the
displaced correlation function@k(r—r’,t)=(S‘r‘(t)S'r‘,(0)> order parameter for the Heisenberg ferromagnet. However,

—(S',‘(t))(S',‘,(O)), wherek represents the spin components.for the antiferromagnet the order paramdi&naggered mag-

The coupled equations of motion were integrated using atr11et|zat|or) is not a constant of the motion; therefore, sepa-

algorithm'® based on fourth-order Suzuki-Trotter decompo-ralting componentsf of the spin paralléngitudinal compo-
sitions of exponential operators, with a time stép The nen) and perpendiculaftransverse compongro the order

integrations were performed up to ting,y, Starting from pfar.ameter is challenging, Our- apprqach o determine the in-
equilibrium configurations at temperatufegenerated with a dividual components of the spin motion, and thusStd, «),

hybrid Monte Carlo method.The correlationsCk(r—r’,t) was to rotate the frame of reference to align thaxis par-

were computed for time displacements ranging from 0 toﬁ:g trgtzgr?sSt'i)g?nee:Eg {Esggg “(Z:gitr']%? dze\];ﬁ{s ;t:rrgnng ittrlljiiitlme
teutofs @and the canonical ensemble was established by aver- 9 ' 9

aging results fromN different initial equilibrium configura- nal direction. As we integrated the equations of motion, the

tions. We used periodic boundary conditions in space an&lirection of the staggered magnetization changed slightly be-

thus we could only access a set of discrete values of momef2US€ it is not a conserved quantity. Therefore, after each

tum transfer given by q=2mng/L, where n, integration step we rerotated the frame of reference to realign

=1,2, ... L/2. Because of computer memory limitations we thez axis with the staggered magnetization, thereby restoring
restricted our data ta=(q,0,0), @,9,0), and €.9,9), the z axis as the longitudinal direction. In this part of our
which correspond to thgL00], [110], and[111] directions, ~Simulations we usedL=24 with ty,,=4800, teutors
respectively. =4004, dt=0.2, andN=12,000, in addition td_= 36,
In an attempt to probe the true asymptotic critical region48, and 60, with ,,,,=8804, tcyor=8004, dt=0.24, and
in momentum and thus provide a more accurate estimate ¢f =11 000, 7000, and 3000, respectively. We denote the lon-
the dynamic critical exponent, we extended our Montegitudinal and transverse componentsSgf}, ) as S-(q, )
Carlo® and spin-dynamics simulatioh$to systems as large andS'(q,w), respectively.
asL=72 atT.. ForL=72, each equilibrium configuration We have also investigateg-(q) and x'(q), the inte-
was generated with 2500 hybrid Monte Carlo steps, each ajrated intensities ofS-(g,w) and S'(g,w), respectively.
which consists of two Metropolis sweeps through the latticeVhen the decay of the dynamic structure factor is slow, as is
and eight overrelaxation steps. We usét=0.20, t,., the case oS'(q,w) at T., computing the integrated inten-
=10800, t.yio1i= 10000, andN=1000. We have also im- sity is complicated by the fact that at high frequencies
proved the statistics of our previous simulations for48 [ #/(2dt)<w=w/dt] the approximation of the integral Fou-
and 60 by increasing the number of initial configurations torier transform as a discrete sum is highly dependent on the
N=1000. WithL =72, the smallest wave vector that we can summation methode.g., direct sum, trapezoidal rule, Simp-
access is|=2m/72=2(0.0139), whereas, in our units, the son’s rule, etg. In terms of cpu time usage, it is more effi-
smallest q value probed by the experiméntwas q  cient to integrate the equations of motion with the largest
=2m(0.02). time stepdt that still yields a stable method and accurate
The dynamic critical exponert can be extracted using time evolutions; however, the maximum accessible fre-
dynamic finite-size scalin§which yields wS¥(q,w)/x*(q)  9uency is inversely proportional tdt. Simulations forlL
~G(wl2qL,5,L7) and ;ﬁq:L‘z_k(qL,éwLZ), where k t;24 aFTC usm,g a smaller time stepd(_—O.l/J) showed that _
. ) ) oth Simpson’s rule and the trapezoidal rule produce consis-
represents the polar]zatloﬁ,(q,w) is the dynam|c structure tent results foiSt(g, ) andST(q, ) up tow~ 15J. A direct
factor Convoluied with a Gaussian resolution function W'thcomparison between the dynamic structure factor obtained
paramete®,,, x*(q) is the total integrated intensity, amsf,  with dt=0.1 and that obtained with the Simpson’s rule and
is_k a characteristic frequency, defined by the trapezoidal rule usingt=0.2/J up to w~15J sr?gqc\]/(vs that
“m ok _k _ _the trapezoidal rule gives a better approximationSo(q, w)
—Efns (Gw)dol2m=x(q)/2. If we setd,=0 the expo and S"(q,w) at high frequencies. Estimates gf(q) and
nentz can be obtained from the slope of a graph otuﬁq)(vs x'(q) are not significantly dependent on the methods used to
In(L), at fixedqL. To test the robustness of the estimate, weintegrate S-(q,») and S'(q,w), respectively, and we use
have also useds,=0.005(72L)%, and determinedz  Simpson’s rule for these integrations.

iteratively®’ As in our previous work;® the dynamic critical Our approach to determing'(q) at T, was to compute
exponent is estimated using the average dynamic structu®'(qg,w) with the trapezoidal rule and then to integrate it
factor. from w=0 to 8J. Although the intensity 08'(qg,w) has not

After understanding the difference in the dynamic criticaldecayed to zero ab=8J, it is a small fraction of the inten-
exponent between experiment and theory, we can examirgity of the spin-wave peak. Data far=4J to 8J were fitted
other unresolved issues, such as the nature of the centraith an exponential function, which was then used in the
peak afT. observed in experiments, but absent in theoreticalntegration tow=2=. (An exponential function was chosen
studies. To this end, we analyzed longitudinal and transversir this fitting because it is the simplest one that yielded a
motions of the spins with respect to the staggered magnetgood fitting in the range of frequency usgdio estimate the
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FIG. 2. Estimate of the dynamic critical exponent for different
FIG. 1. Spin-wave dispersion curve for the average dynamqu The analysis is done with=30, 36, 48, 60, and 72.
structure factor.
fitting S(q,w) with Lorentzian spin-wave creation and anni-
longitudinal component-(q) atT. we simply used the trap- hilation peaks centered at= = wg, and a Lorentzian peak
ezoidal rule to determin&-(q,») and then integrated it at w=0. We have obtained reasonable fittings fpvalues
from =0 to w=10J, without further high-frequency cor- corresponding tm,=1 to 7; for largern,, the spin-wave
rections, becaus8"(q,w) decays quickly in frequency. line shapes were not Lorentzian and the positions of the spin-
The behavior ofy"(q) and x“(q) below T, is studied wave peaksos were read off directly without any fitting. We
with spin dynamics simulations af=0.5T, using dt remind the reader that the first Brillouin zone edge in the
=0.20 and L=24 and 36, withN=1000 for each lattice [100] direction occurs ah,=L/2. An estimate of the dy-
size. At this temperature bot®(g,») and S'(q,w) decay namic critical exponert is obtained by fitting the dispersion
quickly, hence these line shapes were obtained with the tragurve with a functioh ws=Dn?. Since the asymptotic criti-
ezoidal rule and they were then integrated frax0 to w  cal region corresponds to small valuescpfwe have used
=10J. ng=1 to 9 in the fitting (dashed line in Fig. 1 and
For comparison, we have also computed the longitudinabbtainedz= 1.35+ 0.05. Ifny=1 is excluded due to its large
and transverse components $fq,») with respect to the finite-size effect, the fitting y|eldsz 1.45+0.07 (solid line
residual uniform magnetization. In this case, the rotation ofn Fig. 1).
the frame of reference to align one axis parallel to the uni- A better approach to determireis to use the dynamic
form magnetization was only required once, before startinginite-size scaling theory outlined above. Using this method,
the time integrations, because the uniform magnetizatiogve obtainedz for different values of,, with no resolution
vector is conserved. function. Such estimates are denote&@and are shown in
Fig. 2. In our previous work,we estimated as the average
Il. RESULTS vfalue obtained using,=1 and 2, with a maximum I_at'qce
size of L=60. We now have large and better statistics,
Our results for the average dynamic structure factorand hence the present=1 and 2 correspond tq values
S(q,w) show a spin wave and a central peakTeeT.. The  that are closer to the asymptotic critical region. Nevertheless,
spin wave dispersion curve ftr=72, T=T. andq vectors  Fig. 2 shows that these values df are not yet in the
in the [100Q] direction, shown in Fig. 1, was obtained by asymptotic critical region, and a better estimate &f given
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FIG. 3. (a) Longitudinal and(b) transverse components 8{q, ), with respect to the staggered magnetization, wdit=0.005 atT
=0.5T.. Beside a central peak, the longitudinal component has two-spin-wave subtractimated by solid linesand addition peaks
(dashed lines corresponding to 8 /= equal to[a] (2,2,0, [b] (1,1,2, [c] (1,1,0, [d] (1,0,0, [€] (3,2,0, [f] (3,1,D, [g] (3,1,0, [h] (4,1,D),
[i1 (2,1,0, [k] (1,0,0, [m] (1,1,0, [n] (1,1,1) and(3,1,0, [o] (3,1,2, [p] (2,2,0, [q] (2,1,)) and(3,2,0, and[r] (3,2,1) and(4,1,D.
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FIG. 4. (a Longitudinal and(b) transverse
components of5(q,w), with respect to the stag-
gered magnetization &t .
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by z,, obtained by extrapolating, to the limitq—0. We integrated intensities @-(q,w) andS'(q, ), respectively,
fitted z, with the functionzq=zy+a ny+b né, wherez,, a, as a function of momentum in tH&0Q] direction. The mo-
andb are fitting parameters. Using,=1,2, ...,7 in the fit-  mentum dependence of the integrated intensity has the form
ting (dashed line in Fig. Pwe find z,)=1.48+-0.02 and ex- g *. At T=0.5T. [Fig. 5@)], a linear fitting in the log-log
cludingn,=1, due to its large finite-size dependen@alid  plane ofx"(q) and x'(q) versusn, for L=36 usingn,=1

line in Fig. 2 we find zo=1.50+0.02. Both estimates agree to 6 givesy-~ 1/q°8%016 and y T~ 1/g194006 whereas if
With_the theoretic_al prediction of= 1_.5. Dynamic finite-size  the ng=1 point is dropped the linear fitting yieldsolid
scalmg-theo.ry W|t_h a small resolution functl(_)n was US?d_tOIines) ¥-~1/q088035 and y T~ 1/q192-2-10 These results are
determinez, iteratively. The resu_lts thus obt_alned are within ;| agreement with both renormalization-group theory
a onee error bar of the respective, =0 estimates. predictiorf and experimental resultswWe have also tried to

The longitudinal and lransverse components of the dyg; x-(q) with the Ornstein-Zernike mean-field formifta
namic structure factor with respect to the staggered magneX—L(q):)(L(O)Kgl(qur «?), usingx-(0) andx as fitting pa-

tization are shown in Figs.(8) and 3b), respectively, for rameters; however, this expression did not yield a good fit-

L=36, T=0.5T;, and q in the [100] direction, with n - : IPYR: L
. ting. At T, [Fig. 5(b)], data forL =60 indicate th
=3. While the transverse component has a pronouncedvnf/ql,gliao[g ;%]ds)((TE lc;clljlr,ngo%zl Ovrvheren '1 2|c:taoelo ﬁg(ve

single spin-wave_ excitfatior) ai/)~1.49 and intensiLty~ 30, been used in the fitting. Finite-size effects on the pwli-
as shown in the inset in '.:'g@’ the structures 08-(q, ) vergence exponents gf- and " at T, are shown in Fig. 6.
have muc_h smaller amplltudes and comprise a Ce”t.“f" PEARK linear fitting of these exponents as a function df Yields
and a series of two-spin-wave subtracti@ai() and addition L 1/q 885005 and T~ 1/g-%5-097 for the thermodynamic
(I_<—r) peaks. Denoting the momentum and frequer_my_ of tw imit where L=c0. The dynamic scaling prediction for the
Fesulting ffom their acitiah and Scbiraction have frequenSAC SUSCEPIily al, 1s%2 y—11q’ 7, where for the
CieS® . = w1+ 0, andw = | @, — w,|, respectively, and mo- purpose of this comparison we can tsg~0.04+0.01. We
mentu+m ot +2 For odd \1/a|UGZS, of. there are no two  S€€ that whiley" is consistent with the dynamic scaling pre-
s in-wa\(/qe_ qleal?s?. atw=0 so the cegtral cak seen in diction, our large error bars do not exclude the mean-field
P P B P behavior ofy~1/g?. Our estimate for the divergence gf

S (g,w) is presumably due to spin diffusion. L . . i i

ALT,, S-(q.0) [see Fig. 43)] seems to be predominantly a_t smallq is _sllg_htl_y less rapid than predicted, but still con
diffusi ith iral K that i h Nt h sistent with it within a twoe error bar.

Musive with a central peak that Is much more intense than Figure 7 shows a log-log plot of the longitudinal and

- . T -
the spin-wave peak i8(q,») [Fig. 4b)]. These data pro- transverse components of the characteristic frequency as a

vide clear evidence that the central peak in the averagg i o ofl forn.=2 ands =0 atT.. These components
' q ® c

S(q,w) atT,, seen in experiment and previous simulations, L T . .
. o .—'are denoted a®,, and w,,, respectively, and according to
but not present in renormalization-group and mode-coupling

. .. . . Ly — L
theories, appears only in the longitudinal component. Twcijna”‘'CT‘C”'“te'S'Ze scaling we have;=L"*Q"(qL) and
spin-wave excitations ak; cannot be resolved. ern= L~2QT(qL). For ng=2 (see Fig. 7 we obtain z
Figure 5 shows log-log plots of“(q) and x'(q), the  =1.48+0.14 and z'=-0.03+0.25, where data forL

m?

FIG. 5. Log-log plot of the longitudinal &)
and transverse @) integrated intensities as a
function ofny, at(a) T=0.5T; and(b) T=T,.
The solid lines are linear fittings using,=2 to
ng="6 for (a), and tony=10 for (b).

1 . P T
0.001 1 10 20
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FIG. 6. Lowq divergence exponents gi- (A) and " (O) at i .
T., as a function of the inverse lattice linear size. The solid lines FIG. 7. Log-log plot of the longitudinal) and transverse(t)

are linear fittings using data far=24, 36, 48, and 60. ((:sor:%onents of the characteristic frequency as a functidn with

=36, 48, and 60 have been included in the analysis. Our
data show that the dynamic critical exponent for the transrately. This required rotation of the frame of reference after
verse component is consistent witk 0, indicating that this ~each integration step because the staggered magnetization is
component is not critical. In contrast, the longitudinal com-not a conserved quantity. BeloW,, the transverse compo-
ponent is critical, withz~1.5. nentS'(q, ) has a pronounced spin-wave peak, whereas the
SeparatingS(q, ») into longitudinal and transverse com- longitudinal componen$-(q, ) is dominated by two-spin-
ponents with respect to the uniform magnetization we segvave addition and subtraction peaks, and a central peak pre-
that the longitudinal component has a central peak, a prosumably due to spin diffusion. These results are consistent
nounced spin-wave peak and less intense two-spin-wawgith theory and experiment? both of which have shown
peaks. In contrast, each such peak in the transverse compitrat the transverse spin fluctuations are propagating, domi-
nent is split into two peaks, with frequencies-+Aw, nated by spin waves, whereas the quasielastic peak is due to
wherew" is the frequency of the corresponding peak in thelongitudinal fluctuations. Af;, S-(q,) has a central peak
longitudinal component (g, w). The shiftAw in the peak that is much more intense than the spin-wave peak in
frequencies corresponds to the frequency of oscillation of th&'(qg,w) and no central peak was seenSH(q, »). Explain-

staggered magnetization. ing the appearance of a central peakSr(q,w) at T, re-
mains a challenge for theory. We have also seen that while
IV. CONCLUSIONS S'(g,w) is not critical, S-(q, ) is critical and it has a dy-

namic critical exponent~1.5.

We have used Monte Carlo and spin dynamics simula- These findings further support our earlier conclusion that
tions to study the dynamic behavior of the isotropic Heisen—a Simp|e’ neares[_neighbor, isotropic Heisenberg model| de-
berg antiferromagnet on the simple cubic lattice. When wescribes the behavior of RbMgFjuite well. The only limita-
use the same range of momentum as probed by tions in the agreement appear to bérat and even there all
experiment, the dynamic critical exponent obtairfed in  qualitative features and dynamic exponent are faithfully re-
good agreement with its experimental value, which i5produced.
slightly lower than theoretical predictions. In our present Below T, our results for the longitudinal and transverse
work we have used a larger lattice size, and thus Sma”eéomponents of the integrated intensitiesS), ) are con-
values ofq, in addition to obtaining better statistics and ex- gistent with renormalization-group theory predictions, and
trapolating finiteq r_esults to the limig=0. This allowed us not with the mean-field one. In contrast, B, while the
to study systematic changes as we approach the asymptofigegrated intensities are consistent with the renormalization-

critical region and our improved estimaliee., with system-  group theory prediction, the large error bars do not allow us
atic errors largely eliminatgdis z=1.49+0.03, in good tg exclude the mean-field behavior.

agreement with the renormalization group theory and dy-
namic scaling predictions. Presumably the values| oked
in the experimeritand in our previous simulations were not
in the true asymptotic critical region, resulting in a slightly
lower estimate of. This should serve as a warning for future  This research was partially supported by NSF Grant No.
simulational and experimental probes of dynamic critical be-DMR-0094422. Simulations were performed on the Cray
havior. T90 at SDSC and on the IBM SP at the U. of Michigan.
Longitudinal and transverse componentsSgf],w) with Fruitful discussions with A. Cuccoli are gratefully acknowl-
respect to the staggered magnetization are investigated sepaiged.
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