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Critical dynamics of the simple-cubic Heisenberg antiferromagnet RbMnF3:
Extrapolation to qÄ0
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Monte Carlo and spin dynamics simulations have been used to study the dynamic critical behavior of
RbMnF3, treated as a classical Heisenberg antiferromagnet on a simple cubic lattice. In an attempt to under-
stand the difference in the value of the dynamic critical exponentz between experiment and theory, we have
used larger lattice sizes than in our previous simulations to better probe the asymptotic critical region in
momentum. We estimatez51.4960.03, in good agreement with the renormalization-group theory and dy-
namic scaling predictions. In addition, the central peak in the dynamic structure factor atTc , seen in experi-
ments and previous simulations, but absent in the renormalization-group and mode-coupling theories, is shown
to be solely in the longitudinal component.

DOI: 10.1103/PhysRevB.67.104411 PACS number~s!: 75.10.Hk, 75.40.Gb, 75.40.Mg, 64.60.Ht
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I. INTRODUCTION

The dynamic critical behavior of RbMnF3, a close real-
ization of the isotropic, simple cubic Heisenberg antifer
magnet, has been the subject of several experimental~see
Coldea et al.1 and references therein!, and theoretical
studies.2–6 The real time dynamics of this system is govern
by coupled equations of motion for the magnetic ions. In
classification of Hohenberg and Halperin,5 the critical dy-
namics of this system pertains to classG, for which the order
parameter~the staggered magnetization! is not conserved.

Dynamic critical behavior can be characterized by a
namic critical exponentz, and for RbMnF3 the most precise
experimental estimate1 is z51.4360.04. This estimate is
slightly below the predicted value3–6 of z51.5 for an isotro-
pic three-dimensional Heisenberg antiferromagnet. Our p
vious estimate using spin-dynamics simulation7 ~obtained
before we knew the latest experimental result1! was z
51.4360.03, in good agreement with the experimen
value. The slight disagreement between theory and both
experiment and the simulation was perplexing, but one p
sible explanation was that neither of these latter stud
probed the asymptotic critical region sufficiently far. T
check this, neutron scattering experiments would have to
performed with a smaller momentum transferq, a task that
can be quite challenging. We can also resort to spin dynam
simulations of the model on larger lattice sizes which all
access to smallerq values.

Spin dynamics simulations8 have proven to be an effec
tive tool to study the dynamic behavior of magnetic system
Direct and quantitative comparisons of magnetic excitat
dispersion curves and dynamic structure factor line sha
from experiment1 and spin dynamics simulations have show
good agreement, with no adjustable parameters.7,9 At the
critical temperatureTc , both experiment and simulation fin
that the average dynamic structure factorS(q,v), for mo-
mentumq and frequencyv, has a spin-wave peak and a
additional central peak not predicted by either t
renormalization-group theory3 or mode-coupling theory.4 In
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a polarized neutron scattering experiment10 below Tc , the
quasi-elastic peak has been shown to be longitudinal in c
acter. It is thus interesting to investigate whether the cen
peak atTc originates in the longitudinal, in the transverse
in both components with respect to the staggered magne
tion. Another motivation for separating the longitudinal a
transverse components of the dynamic structure factor i
test the theoretical prediction2 that belowTc the longitudinal
momentum-dependent susceptibility behaves asxL(q)
;1/q, whereas theq dependence of the transverse comp
nent isxT(q);1/q2. Although experimental measurement1

are consistent withxL(q);1/q, the lack of reliable small
wave vector measurements hindered a conclusive experim
tal test of this predicted divergence. The experimental va
for the transverse component isxT(q);1/q1.9160.05.

In this paper we use spin dynamics simulations to stu
the dynamic critical behavior of the isotropic Heisenberg a
tiferromagnet on the simple cubic lattice, using larger lattic
than in our previous simulations, as motivated above.
investigate the longitudinal and transverse components of
dynamic structure factor, and compare theq dependence of
the susceptibility with the predicted forms both at and bel
Tc . For brevity, we do not present our methodology in gre
detail here; it was described in earlier work.7,8

II. MODEL AND METHODS

We consider three-dimensional classical spinsSr of unit
length, defined on the sitesr of L3L3L simple cubic lat-
tices. The interaction is described by a model Hamilton
written as

H5J (
^rr 8&

Sr•Sr8 , ~1!

where the summation is over pairs of nearest-neighbor sp
andJ.0 is an antiferromagnetic exchange coupling. An e
lier high-resolution Monte Carlo simulation11 determined
Tc51.442929(77)J, so any uncertainty in the location of th
critical temperature of this model is negligible.
©2003 The American Physical Society11-1
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The dynamics of the spins is governed by coupled eq
tions of motion8 and the dynamic structure factorSk(q,v) is
given by the Fourier transform of the space- and tim
displaced correlation functionsCk(r2r 8,t)5^Sr

k(t)Sr8
k (0)&

2^Sr
k(t)&^Sr8

k (0)&, wherek represents the spin componen
The coupled equations of motion were integrated using
algorithm12 based on fourth-order Suzuki-Trotter decomp
sitions of exponential operators, with a time stepdt. The
integrations were performed up to timetmax, starting from
equilibrium configurations at temperatureT generated with a
hybrid Monte Carlo method.7 The correlationsCk(r2r 8,t)
were computed for time displacements ranging from 0
tcuto f f and the canonical ensemble was established by a
aging results fromN different initial equilibrium configura-
tions. We used periodic boundary conditions in space
thus we could only access a set of discrete values of mom
tum transfer given by q52pnq /L, where nq
51,2, . . . ,L/2. Because of computer memory limitations w
restricted our data toq5(q,0,0), (q,q,0), and (q,q,q),
which correspond to the@100#, @110#, and @111# directions,
respectively.

In an attempt to probe the true asymptotic critical reg
in momentum and thus provide a more accurate estimat
the dynamic critical exponent, we extended our Mon
Carlo13 and spin-dynamics simulations7,8 to systems as large
as L572 at Tc . For L572, each equilibrium configuration
was generated with 2500 hybrid Monte Carlo steps, eac
which consists of two Metropolis sweeps through the latt
and eight overrelaxation steps. We useddt50.2/J, tmax
51080/J, tcuto f f51000/J, andN51000. We have also im
proved the statistics of our previous simulations forL548
and 60 by increasing the number of initial configurations
N51000. WithL572, the smallest wave vector that we c
access isq52p/7252p(0.0139), whereas, in our units, th
smallest q value probed by the experiment1 was q
52p(0.02).

The dynamic critical exponentz can be extracted usin
dynamic finite-size scaling,8 which yieldsvS̄k(q,v)/x̄k(q)
5G(vLz,qL,dvLz) and v̄m

k 5L2zV̄k(qL,dvLz), where k

represents the polarization,S̄k(q,v) is the dynamic structure
factor convoluted with a Gaussian resolution function w
parameterdv , x̄k(q) is the total integrated intensity, andv̄m

k

is a characteristic frequency, defined b

*
2v̄

m
k

v̄m
k

S̄k(q,v)dv/2p5x̄k(q)/2. If we setdv50 the expo-

nentz can be obtained from the slope of a graph of ln(vm
k ) vs

ln(L), at fixedqL. To test the robustness of the estimate,
have also useddv50.005(72/L)z, and determinedz
iteratively.8,7 As in our previous work,7,9 the dynamic critical
exponent is estimated using the average dynamic struc
factor.

After understanding the difference in the dynamic critic
exponent between experiment and theory, we can exam
other unresolved issues, such as the nature of the ce
peak atTc observed in experiments, but absent in theoret
studies. To this end, we analyzed longitudinal and transv
motions of the spins with respect to the staggered magn
10441
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zation. The dynamics of the isotropic Heisenberg mod
given by the coupled equations of motion, conserves both
total energy and the uniform magnetization, which is t
order parameter for the Heisenberg ferromagnet. Howe
for the antiferromagnet the order parameter~staggered mag-
netization! is not a constant of the motion; therefore, sep
rating components of the spin parallel~longitudinal compo-
nent! and perpendicular~transverse component! to the order
parameter is challenging. Our approach to determine the
dividual components of the spin motion, and thus ofS(q,v),
was to rotate the frame of reference to align thez axis par-
allel to the staggered magnetization before starting the t
integrations, to make thez axis coincide with the longitudi-
nal direction. As we integrated the equations of motion,
direction of the staggered magnetization changed slightly
cause it is not a conserved quantity. Therefore, after e
integration step we rerotated the frame of reference to rea
thez axis with the staggered magnetization, thereby restor
the z axis as the longitudinal direction. In this part of ou
simulations we usedL524 with tmax5480/J, tcuto f f

5400/J, dt50.2/J, and N512,000, in addition toL536,
48, and 60, withtmax5880/J, tcuto f f5800/J, dt50.2/J, and
N511 000, 7000, and 3000, respectively. We denote the
gitudinal and transverse components ofS(q,v) asSL(q,v)
andST(q,v), respectively.

We have also investigatedxL(q) and xT(q), the inte-
grated intensities ofSL(q,v) and ST(q,v), respectively.
When the decay of the dynamic structure factor is slow, a
the case ofST(q,v) at Tc , computing the integrated inten
sity is complicated by the fact that at high frequenc
@p/(2dt)&v&p/dt# the approximation of the integral Fou
rier transform as a discrete sum is highly dependent on
summation method~e.g., direct sum, trapezoidal rule, Simp
son’s rule, etc.!. In terms of cpu time usage, it is more effi
cient to integrate the equations of motion with the larg
time stepdt that still yields a stable method and accura
time evolutions; however, the maximum accessible f
quency is inversely proportional todt. Simulations forL
524 atTc using a smaller time step (dt50.1/J) showed that
both Simpson’s rule and the trapezoidal rule produce con
tent results forSL(q,v) andST(q,v) up tov'15J. A direct
comparison between the dynamic structure factor obtai
with dt50.1/J and that obtained with the Simpson’s rule a
the trapezoidal rule usingdt50.2/J up tov'15J shows that
the trapezoidal rule gives a better approximation forSL(q,v)
and ST(q,v) at high frequencies. Estimates ofxL(q) and
xT(q) are not significantly dependent on the methods use
integrateSL(q,v) and ST(q,v), respectively, and we us
Simpson’s rule for these integrations.

Our approach to determinexT(q) at Tc was to compute
ST(q,v) with the trapezoidal rule and then to integrate
from v50 to 8J. Although the intensity ofST(q,v) has not
decayed to zero atv58J, it is a small fraction of the inten-
sity of the spin-wave peak. Data forv54J to 8J were fitted
with an exponential function, which was then used in t
integration tov5`. ~An exponential function was chose
for this fitting because it is the simplest one that yielded
good fitting in the range of frequency used.! To estimate the
1-2
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longitudinal componentxL(q) at Tc we simply used the trap
ezoidal rule to determineSL(q,v) and then integrated i
from v50 to v510J, without further high-frequency cor
rections, becauseSL(q,v) decays quickly in frequency.

The behavior ofxT(q) and xL(q) below Tc is studied
with spin dynamics simulations atT50.5Tc using dt
50.2/J and L524 and 36, withN51000 for each lattice
size. At this temperature bothSL(q,v) and ST(q,v) decay
quickly, hence these line shapes were obtained with the t
ezoidal rule and they were then integrated fromv50 to v
510J.

For comparison, we have also computed the longitud
and transverse components ofS(q,v) with respect to the
residual uniform magnetization. In this case, the rotation
the frame of reference to align one axis parallel to the u
form magnetization was only required once, before start
the time integrations, because the uniform magnetiza
vector is conserved.

III. RESULTS

Our results for the average dynamic structure fac
S(q,v) show a spin wave and a central peak forT<Tc . The
spin wave dispersion curve forL572, T5Tc andq vectors
in the @100# direction, shown in Fig. 1, was obtained b

FIG. 1. Spin-wave dispersion curve for the average dyna
structure factor.
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fitting S(q,v) with Lorentzian spin-wave creation and ann
hilation peaks centered atv56vs , and a Lorentzian peak
at v50. We have obtained reasonable fittings forq values
corresponding tonq51 to 7; for largernq , the spin-wave
line shapes were not Lorentzian and the positions of the s
wave peaksvs were read off directly without any fitting. We
remind the reader that the first Brillouin zone edge in t
@100# direction occurs atnq5L/2. An estimate of the dy-
namic critical exponentz is obtained by fitting the dispersio
curve with a function5 vs5Dnq

z . Since the asymptotic criti-
cal region corresponds to small values ofq, we have used
nq51 to 9 in the fitting ~dashed line in Fig. 1!, and
obtainedz51.3560.05. If nq51 is excluded due to its large
finite-size effect,7 the fitting yieldsz51.4560.07 ~solid line
in Fig. 1!.

A better approach to determinez is to use the dynamic
finite-size scaling theory outlined above. Using this meth
we obtainedz for different values ofnq , with no resolution
function. Such estimates are denoted aszq and are shown in
Fig. 2. In our previous work,7 we estimatedz as the average
value obtained usingnq51 and 2, with a maximum lattice
size of L560. We now have largerL and better statistics
and hence the presentnq51 and 2 correspond toq values
that are closer to the asymptotic critical region. Neverthele
Fig. 2 shows that these values ofq are not yet in the
asymptotic critical region, and a better estimate ofz is given

ic
FIG. 2. Estimate of the dynamic critical exponent for differe

nq . The analysis is done withL530, 36, 48, 60, and 72.
FIG. 3. ~a! Longitudinal and~b! transverse components ofS(q,v), with respect to the staggered magnetization, withdv50.005 atT
50.5Tc . Beside a central peak, the longitudinal component has two-spin-wave subtraction~indicated by solid lines! and addition peaks
~dashed lines!, corresponding to 18q1 /p equal to@a# ~2,2,0!, @b# ~1,1,1!, @c# ~1,1,0!, @d# ~1,0,0!, @e# ~3,2,0!, @f# ~3,1,1!, @g# ~3,1,0!, @h# ~4,1,1!,
@i# ~2,1,1!, @k# ~1,0,0!, @m# ~1,1,0!, @n# ~1,1,1,! and ~3,1,0!, @o# ~3,1,1!, @p# ~2,2,0!, @q# ~2,1,1! and ~3,2,0!, and@r# ~3,2,1! and ~4,1,1!.
1-3
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FIG. 4. ~a! Longitudinal and~b! transverse
components ofS(q,v), with respect to the stag
gered magnetization atTc .
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by z0, obtained by extrapolatingzq to the limit q→0. We
fitted zq with the functionzq5z01a nq1b nq

2 , wherez0 , a,
andb are fitting parameters. Usingnq51,2, . . . ,7 in the fit-
ting ~dashed line in Fig. 2! we find z051.4860.02 and ex-
cludingnq51, due to its large finite-size dependence,~solid
line in Fig. 2! we find z051.5060.02. Both estimates agre
with the theoretical prediction ofz51.5. Dynamic finite-size
scaling theory with a small resolution function was used
determinezq iteratively. The results thus obtained are with
a one-s error bar of the respectivedv50 estimates.

The longitudinal and transverse components of the
namic structure factor with respect to the staggered mag
tization are shown in Figs. 3~a! and 3~b!, respectively, for
L536, T50.5Tc , and q in the @100# direction, with nq
53. While the transverse component has a pronoun
single spin-wave excitation atv/J'1.49 and intensity;30,
as shown in the inset in Fig. 3~b!, the structures onSL(q,v)
have much smaller amplitudes and comprise a central p
and a series of two-spin-wave subtraction (a- i ) and addition
~k-r! peaks. Denoting the momentum and frequency of t
single spin waves as (q1 ,v1) and (q2 ,v2), the excitations
resulting from their addition and subtraction have frequ
ciesv15v11v2 andv25uv12v2u, respectively, and mo
mentumq5q11q2. For odd values ofnq there are no two
spin-wave peaks atv50 so the central peak seen
SL(q,v) is presumably due to spin diffusion.

At Tc , SL(q,v) @see Fig. 4~a!# seems to be predominantl
diffusive with a central peak that is much more intense th
the spin-wave peak inST(q,v) @Fig. 4~b!#. These data pro-
vide clear evidence that the central peak in the aver
S(q,v) at Tc , seen in experiment and previous simulatio
but not present in renormalization-group and mode-coup
theories, appears only in the longitudinal component. T
spin-wave excitations atTc cannot be resolved.

Figure 5 shows log-log plots ofxL(q) and xT(q), the
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integrated intensities ofSL(q,v) andST(q,v), respectively,
as a function of momentum in the@100# direction. The mo-
mentum dependence of the integrated intensity has the f
q2x. At T50.5Tc @Fig. 5~a!#, a linear fitting in the log-log
plane ofxL(q) andxT(q) versusnq for L536 usingnq51
to 6 givesxL;1/q0.8060.16 and xT;1/q1.9460.06, whereas if
the nq51 point is dropped the linear fitting yields~solid

lines! xL;1/q0.8860.35andxT;1/q1.9260.10. These results are
in agreement with both renormalization-group theo
prediction2 and experimental results.1 We have also tried to
fit xL(q) with the Ornstein-Zernike mean-field formula14

xL(q)5xL(0)k2/(q21k2), usingxL(0) andk as fitting pa-
rameters; however, this expression did not yield a good
ting. At Tc @Fig. 5~b!#, our data forL560 indicate thatxL

;1/q1.8160.03 andxT;1/q1.9260.04, wherenq52 to 10 have
been used in the fitting. Finite-size effects on the low-q di-
vergence exponents ofxL andxT at Tc are shown in Fig. 6.
A linear fitting of these exponents as a function of 1/L yields
xL;1/q1.8860.05 andxT;1/q1.9560.07 for the thermodynamic
limit where L5`. The dynamic scaling prediction for th
static susceptibility atTc is6,15 x51/q22h, where for the
purpose of this comparison we can use16 h'0.0460.01. We
see that whilexT is consistent with the dynamic scaling pr
diction, our large error bars do not exclude the mean-fi
behavior ofx;1/q2. Our estimate for the divergence ofxL

at smallq is slightly less rapid than predicted, but still con
sistent with it within a two-s error bar.

Figure 7 shows a log-log plot of the longitudinal an
transverse components of the characteristic frequency
function ofL, for nq52 anddv50 atTc . These components
are denoted asvm

L and vm
T , respectively, and according t

dynamic finite-size scaling we havevm
L 5L2zL

VL(qL) and

vm
T 5L2zT

VT(qL). For nq52 ~see Fig. 7! we obtain zL

51.4860.14 and zT520.0360.25, where data forL
a

FIG. 5. Log-log plot of the longitudinal (n)

and transverse (s) integrated intensities as
function of nq , at ~a! T50.5Tc and ~b! T5Tc .
The solid lines are linear fittings usingnq52 to
nq56 for ~a!, and tonq510 for ~b!.
1-4
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536, 48, and 60 have been included in the analysis.
data show that the dynamic critical exponent for the tra
verse component is consistent withz50, indicating that this
component is not critical. In contrast, the longitudinal co
ponent is critical, withz'1.5.

SeparatingS(q,v) into longitudinal and transverse com
ponents with respect to the uniform magnetization we
that the longitudinal component has a central peak, a p
nounced spin-wave peak and less intense two-spin-w
peaks. In contrast, each such peak in the transverse co
nent is split into two peaks, with frequenciesvL6Dv,
wherevL is the frequency of the corresponding peak in t
longitudinal component ofS(q,v). The shiftDv in the peak
frequencies corresponds to the frequency of oscillation of
staggered magnetization.

IV. CONCLUSIONS

We have used Monte Carlo and spin dynamics simu
tions to study the dynamic behavior of the isotropic Heis
berg antiferromagnet on the simple cubic lattice. When
use the same range of momentumq as probed by
experiment,1 the dynamic critical exponent obtained7 is in
good agreement with its experimental value, which
slightly lower than theoretical predictions. In our prese
work we have used a larger lattice size, and thus sma
values ofq, in addition to obtaining better statistics and e
trapolating finiteq results to the limitq50. This allowed us
to study systematic changes as we approach the asymp
critical region and our improved estimate~i.e., with system-
atic errors largely eliminated! is z51.4960.03, in good
agreement with the renormalization group theory and
namic scaling predictions. Presumably the values ofq used
in the experiment1 and in our previous simulations were n
in the true asymptotic critical region, resulting in a slight
lower estimate ofz. This should serve as a warning for futu
simulational and experimental probes of dynamic critical
havior.

Longitudinal and transverse components ofS(q,v) with
respect to the staggered magnetization are investigated s

FIG. 6. Low-q divergence exponents ofxL (n) andxT (s) at
Tc , as a function of the inverse lattice linear size. The solid lin
are linear fittings using data forL524, 36, 48, and 60.
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rately. This required rotation of the frame of reference af
each integration step because the staggered magnetizat
not a conserved quantity. BelowTc , the transverse compo
nentST(q,v) has a pronounced spin-wave peak, whereas
longitudinal componentSL(q,v) is dominated by two-spin-
wave addition and subtraction peaks, and a central peak
sumably due to spin diffusion. These results are consis
with theory2 and experiment,10 both of which have shown
that the transverse spin fluctuations are propagating, do
nated by spin waves, whereas the quasielastic peak is du
longitudinal fluctuations. AtTc , SL(q,v) has a central peak
that is much more intense than the spin-wave peak
ST(q,v) and no central peak was seen inST(q,v). Explain-
ing the appearance of a central peak inSL(q,v) at Tc re-
mains a challenge for theory. We have also seen that w
ST(q,v) is not critical,SL(q,v) is critical and it has a dy-
namic critical exponentz'1.5.

These findings further support our earlier conclusion t
a simple, nearest-neighbor, isotropic Heisenberg model
scribes the behavior of RbMnF3 quite well. The only limita-
tions in the agreement appear to be atTc , and even there al
qualitative features and dynamic exponent are faithfully
produced.

Below Tc our results for the longitudinal and transver
components of the integrated intensities ofS(q,v) are con-
sistent with renormalization-group theory predictions, a
not with the mean-field one. In contrast, atTc , while the
integrated intensities are consistent with the renormalizat
group theory prediction, the large error bars do not allow
to exclude the mean-field behavior.
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s
FIG. 7. Log-log plot of the longitudinal (n) and transverse (s)

components of the characteristic frequency as a function ofL with
dv50.
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