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Three elastic phases of covalent networlts,floppy, () isostatically rigid, andlll) stressed-rigid, have
now been identified in glasses at specific degrees of cross lit@mghemical compositiorboth in theory and
experiments. Here we use size-increasing cluster combinatorics and constraint counting algorithms to study
analytically possible consequences of self-organization. In the presence of small rings that can be locally I, II,
or Ill, we obtain two transitions instead of the previously reported single percolative transition at the mean
coordination number=2.4, one from a floppy to an isostatic rigid phase, and a second one from an isostatic
to a stressed rigid phase. The width of the intermediate phgsmd the order of the phase transitions depend
on the nature of medium-range ordeglative ring fractions We compare the results to the group-1V chalco-
genides, such as Ge-Se and Si-Se, for which evidence of an intermediate phase has been obtained, and for
which estimates of ring fractions can be made from structures of higtystalline phases.
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[. INTRODUCTION cently it has been shown from Raman scattering and from
phase-dependent measurements of the kinetics of the glass

A covalently bonded amorphous network progressivelytransition that two transitiondatr.; andr., appear when
stiffens as its connectivity or mean coordination number the network stiffens. This suggests that the mean-field con-
increases:? The increase of connectivity can be achieved bystraint counting alonéeading to the single percolative tran-
adding cross-linking elemenfsuch as As or Geto a start-  sition) fails to describe completely network changes. These
ing chain network of S or Se. From a mechanical viewpointiwo transitions define an intermediate phase in which the
twofold coordinated single bond chain networks are floppyconnected structure continues to be stress-frédisostati-
because the number of nearest-neighber2) bonding con-  cally rigid).
straints per atom is less than 3, the degrees of fre§d@m. In this paper, we present a Simp|e way to go beyond the
the other hand, in the case of networks consisting only ofnean-field description of rigidity and include local stress

tetrahedral unitgsuch as amorphous fourfold coordinated ¢o(rections. This is achieved by performing Maxwell con-
silicon), the network is intrinsically rigid.

. . . ._order effects such as small rings can be taken into account in
coordinateded atoms, the enumeration of atomic constram&

n“=r/2 andnf=2r—3, respectively, due to bond-stretching Ris construction. It appears from this analysis that these

and bond-bending forces has shown that the number of Zerg_mall rings mostly determine the nature of the intermediate

frequency(floppy) modes per atoms actually vanishes whenPhase and the values of the critical coordination numbgrs

the mean coordination numBérof the network increases to andr,, hence the width of the intermediate phase=r .,

the magic number of 2.4. At this point, the network sits at a—y ,  To apply this construction, we choose the simplest
mechanically critical point where the number of constraintscase that can be built up, and which has received consider-
per atomn.=ng+n¢ equals the number of degrees of free-aple attention in the context of rigidity, namely single-
dom per atom. On the one hand, the exhaustlo_n_of all _th%onded group_|v Cha|cogenide g|asses of the f(Bm1—x
degrees of freedom means that the network efficiently fillsyith coordination numbers,=2 andrg=4 defining the
space. At the same time, because there are no excess CQfaan coordination numbar=2+2x. We have used size

straints, the network can be thought of as gIobaH_y iSOStaticincreasing cluster approximatiofSICA's) to construct these
Mean-field theory predicts onset of rigidity for>2.4.  sjze-increasing structures and medium-range oftRO)

Numerous experiments*** have confirmed these simple on which we have realized constraint counting. As hoped, the
predictions, especially in glass science where bulk chalcognalysis reveals two transitions: a first one, at which the
genide glasses have been used as a benchmark to check thaggnber of floppy modes vanishes, is closely related to what
elegant ideas. Threshold behavior has been detected fns been previously obtained in the mean-field approach, and
structural? vibrational; thermal;® and electronit' proper- 4 second onéa “stress transition}, beyond which stress in
ties whenr approaches 2.4. Applications of rigidity theory the entire structure can no longer be avoided. The second
have also been reported in various fields such as granuldaransition can be obtained only under certain conditions
matter, biology, and computational sciertéeHowever, re- which we detail below. We show that the orders of these
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phase transitions are different and depend on the fraction of A, BA
ring structures. In between the two transitions, one can define 2 1=1
an almost stress-free network structure for which the fraction I % \
of isostatic clusters can be computed.
The paper is organized as follows. In Sec. Il, we show p2
how to construct from small molecules size increasing clus- p3 I=2
ters using SICAs and perform Maxwell constraint counting
on them. Section Il is devoted to the results obtained from pl pd
the construction, and the change in structure and energy with ,/ *

Il. SIZE INCREASING CLUSTER APPROXIMATIONS

increasing connectivity. We discuss the results obtained and ;
compare them with chalcogenide glasses in Sec. IV, and fi-

nally we extend the approach to fast ionic conducting glasses 1=3
in Sec. V.

A. Construction FIG. 1. From the short-range-order moleculés-1) yielding

In this section, we describe size increasing cluster apthe mean-field result to all clusters k2 and some MRO pro-
proximations(SICA's). This approach has been first intro- duced atl=3. Isomers start to be created at step3. Note the
duced to describe the ring statistics and the intermediaté%reat'on of medium-range o_rder such as edge-sharing tetrahedra or
range order in amorphous semiconduc®such as BO, rings. Each boundary atom is counted half.
but other applications have been considered such as the high-
temperature formation of fulleren€sand the cell distribu- respective probabilities-tp andp=2x/(1—x), x being the
tion in quasicrystal® In principle, any structural quantity macroscopic concentration of the group-IV atoms. The en-
that is computed when one increases the size of a giveergy levels are defined as follows. We associate the creation
structure(or a starting networkconverges to its “true” value  of a chainlikeA,— A, structure with an energy gain &,
if the size becomes almost infinite. In practice, one hope#\,—BA, bondings with an energy gain &, and corner-
that the convergence is rapid enough to give reasonable vagharing(CS and edge-sharin¢ES) BA,, tetrahedra or any
ues for medium-sized clusters, yielding information aboutring structure, respectively, witk; andE,. The energyg,
MRO structures. In quasi-two-dimensionat- B,O; clusters  will be used to change the fraction of edge-sharing relative to
having ten boron atoms allows one to obtain a fraction ofcorner-sharing tetrahedra. The probabilities of the different
boron atoms trapped in boroxol rings which is in very fair clusters have statistical weighd$E;) which can be regarded
agreement with experimeft, but larger clusters may be as the degeneracy of the corresponding energy gain and cor-
needed for three-dimensional networks. respond to the number of equivalent ways a cluster can be

The basic level of the SICA construction is the restrictedconstructed. For the stdp=2, four different clusters can be
mean-field approximation where the probability of the short-obtained(see Fig. 1 and their probabilities are given as fol-
range-order structure is derived from the macroscopic conlows:
centration, assuming that the cations and anions alternate in
the network(chemical ordering This basic level is denoted 4(1-p)2e,
by I=1. Then, we construdt=2, | =3, etc., and compute 1= ,
the corresponding probabilities in the canonical ensemble 4(1-p)®e;+16p(1—p)e,+p*(16e3+72e,)
with particular energy level§; corresponding to bond cre- 2.9
ation between thel & 1) short-range-order molecules which
are used as building blocks from step=(1) (correspg%ding 16p(1—p)e,
in Gg,Se _, also to the reported mean-field approgcto P2= ;
arbitrary |. The construction is supposed to be realized at 4(1-p)?ey+16p(1—p)eytp?(16es+72e,)

the formation of the network, whehequals the fictive tem- 2.2
perature T; so that Boltzmann factors of the forme,

=exf —E;/T;] will be involved in the probabilitied! Since ) 16p2e;

we expect to relate the width of the intermediate phase to the P3~ —0)2e. + _ +p2 + '
ring fraction, we will restrict our present study to group-IV 4(1=p)ies+16p(1-pje,+p(16est72ey) 2.3

chalcogenides of the form &g _,. For the latter, there is
strong evidence that at the stoichiometric concentrakon 5
=0.33 a substantial amount of edge-sharing $iSe _ 2p%ey
tetrahedr&# can be found. Pa 4(1—p)2e,+16p(1— p)e,+ pA(16es+72e,)
In order to study group-lV chalcogenides, we select basic (2.9
units such as thé, (i.e., Se) chain fragment and the sto-
ichiometric BA,, molecule(e.g., GeSg, which is the ma-  out of which the concentration of B atorm§?) can be com-
jority local structure atx=0.333). These basic units have puted:
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+2(ps+ M heinps
x@=—_P2 _(2p3 [_)4) . (2.5 n(l)zﬁ_z'zlnc(')p' @2.7)
4—p2—2(P3—Pa) ¢ =UNp
Due to the initial choice of the basic units, the enegywill where n;, and N; are, respectively, the number of con-

mostly determine the probability of isostatic clusters sinCegiraints and the number of atoms of the clustairsizel with
the related Boltzmann fact@, is involved in the probability probability p; . A; is the total number of clusters of sizeAt
(2.2 of creating the isostatiB A, cluster(aA,—BAy, bond- stepl =2, it is easy to check that

ing). This means that if we choose to hake<E,,E;,E,,
the network will be mainly isostatic in the range of interest. (2)_ 4P1+15p,+22p5+20p,

For the next steps, care has to be taken in order to count ¢ T 2p,+5p,+6(Patpa) (2.8
the possible isomers produced from different pathways.,
in Fig. 1, the six-membered ring with two B atoms can beWe have determined eithee,/e, or es/e, by solving
produced out op, andp3). More generally, increasing steps EQ.(2.6), and once these factors become composition depen-
will lead to clusters with stoichiometry G8e, and prob- dent, it is possible to compute the probabilitgsas a func-
ability proportional top"(1—p)' " with n=0---1. The cor-  tion of composition and find for which concentration
responding statistical weights depend much more on the way (or which mean coordination numbey the system reaches
the clusters are created and have therefore no general fagptimal glass formation where the number of floppy modes
mula depending om or |. However, for the pure edge- f|:3—n(cl) vanishes.
sharing tetrahedra chain of siteit can be easily checked
that its probability is proportional to 2224 ~2p'e), *. An- Il RESULTS
other simple example is provided by the Se chain whose _
probability is 471(1—p)'e'171. A. Structural properties

It is obvious that all the cluster probabilites will depend In this section, we consider the solutions of the SICA
only on two parameter§.e., the factorse,/e, ande;/e,) construction under various structural possibilities.
and eventuallye, /e, if one considers the possibility of edge- ~ The simplest case is random bonding, which is obtained
sharing(ES) tetrahedra or rings. One of the two factors canwhen the cluster probabilitigs; are only given by their sta-
be made composition dependent since a conservation law feistical weightsg(E;). This would, for example, reduce the
the concentration oB atomsx(") can be written at any stdp  probability p, in Eq. (2.4) to
of the SICA constructioR?

18p?

(14 p)2+18p2 =D

xN=x. (2.6) Pa
This means that either the fictive temperatiiteor the en-
ergiesE; depend$' on x but here only theg;(x) [or e(T)]
dependence is relevant for our purpose. The construction h
been realized up to the stég 4 which already creates clus-
ters of MRO size.

with p=2(r—2)/(4—r). A single solution is obtained for
the glass optimum point defined by the vanishing of the
#imber of floppy modeg=0 at all SICA steps, in the mean
coordination number rand®.231,2.275 slightly lower than

the usual mean-field value of 2.4. Since there is only one
solution, there is no intermediate phase in the case of random
B. Maxwell cluster constraint counting bonding.

On each cluster one can count Maxwell constraints by, Self-organization of the network can be obtained by start-

enumeration of bond-bending and bond-stretching coniN9 from a floppy cluster of sizé(e.g., a chainlike structure

straints and calculation of the corresponding expressions ¢pade of fa majori'éy ofA atoms, ang_ allcl)wing the agglom- .
n% andn?. Of particular importance are the structures con-Sration of & new basic unit onto this cluster to generate the

taining a ring(see Fig. 1, because one has to take into ac-cluster of sizel+1 only if the creation of a stressed rigid

count the effects of ring closureTo illustrate this, let us region can be av0|_ded on th|s_ new cluster. This happens
consider an isolated triangle.e., a three-membered ripng when twoBA,, basic units are joined together on a given

having a two-fold atom at each of its vertices. Of course, thiscluster. With this rather simple rule, upon increasingne
triangle can be completely defined by three independent varAccumulates isostatic rigid regions on the size increasing
ables (e.g., two lengths and one anglePerforming con- Clusters becauséA,, units are only accepted irA;
straint counting on the atoms will give three bond-stretching— BAs. isostatic bondings with enerdy,. On the opposite
and three bond-bending constraints, yielding three extra corfide, one can start at high concentration, close to the mean
straints with respect to the isostatically rigid structure. Thiscoordination number of=2.67 and follow the same proce-
means that for a three-membered ring, one has to remow#ure but in opposite way, i.e., with addingy atoms, one
three constraints from the global counting. For the four-allows only bondings which lead to isostatic rigid or stressed
membered ring, this correction is of two constraints, and forigid regions, excluding systematically the possibility of

a five-membered ring, of one. floppy A,— A, bondings.
For each step, we have computed the total number of In the case of self-organized clusters, the simplest case to
constraintsn, : be studied is the case of dendritic clusters, where no rings are
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FIG. 3. Width of the intermediate phase as a function of the

FIG. 2. Probability of floppy, isostatic stressed, and stresseqraction of medium-range order at the stress transition |fe2
rigid clusters, as a function of the mean coordination nunnbfer (solid line), 1 =3 (dashed ling andl=4 (dotted line$. The lower
different possibilities of medium-range order. The solid line corre-dotted line corresponds to a structure where only ES tetrahedra have
sponds to the dendritic case while the broken lines correspond to jgeen allowed. The inset shows the probability of isostatic clusters
respective ES fraction at the stress transition of 0.156, 0.290, angith mean coordination number fdre=3 (dashed ling and | =
0 818. The filled square indicates the stress transition at the po"’(Hotted ling, compared to the shaded region defined byﬂhérom

T, and the filled circle the point,; that does not depend on the ES SICA analysis. The point defined Hy=0 is shifted compared tb
rate (see text for detai)s For clarity, we have removed the prob- —2.

abilities of stressed rigid clusters for nonzero ES fractions.

allowed (achieved by setting, to zerd. For an infinite size phaseAr. We should also stress that even for a nonzero ES

|, this would recover the results from Bethe lattice solutiongraction, f=0 is always obtained at=2.4 for|=2. From
or random bond modél&for which rings are also excluded this analysis, it appears that the first transitionatdoes not
in the thermodynamic limit® A single transition for evern depend on the ES fraction, as well as the fraction of stressed

steps at exactly the mean-field value=2.4 is obtained rigid clusters in the structure. In Fig. 2, the probabilities of
whereas for the stelp=3, there is a sharp intermediate phasethe related stressed rigid clusters for a nonzero ES fraction
defined byf=0 (still atr_=2.4) and the vanishing of floppy can of course be obtained from the floppy and isostatic ones

. . . = since the sum of all probabilities is equal to 1.
rebg||ons(| ?ﬂellez is zerg atr 82 38d2(6) On((:je th% prlob To ensure continuous deformation of the network when B
abilities of floppy, isostatic rigid, and stressed rigid Clusters,y, g are added while keeping the sum of the probability of
as a function of the mean coordination number are comg

d, hat th K | h oppy, isostatic rigid, and stressed rigid clusters equal to 1,
puted, it appears that the network is entirely isostatic at t the probability of isostatic rigid clusters connects the isos-
point wheref=0 (solid line, Fig. 2. There the number of —

degrees of freedom per atom is exactly 3. tatic solid line atr,. Stressed rigid rings first appear in the

The intermediate phase shows up if a certain amount ofegionT ;<1 <r, while chainlike stressed clustef@hose
medium-range ordefMRO) is allowed. This is realized in Probability is proportional toes) occur only beyond the
the SICA construction by setting the quantﬁy/ez nonzero, stress transition,_wheasaﬁo. This means that within this
i.e., edge-sharingES tetrahedraBA,, leading to four- approach, whemn is increased, stressed rigidity nucleates
membered ringB,A, can now be created at the growing through the network starting from rings, as ES tetrahedra or
cluster steps. This means also that if stress should be creatgghg| rings. It is easy to see from Fig. 2 that the widkh

Whenr is |ncreasmg then it should be Only In rlng structures = _ Feo—le1 of the intermediate phase increases with the frac-
and not by two corner-sharing connect®d,, tetrahedra.  tion of ES. This can be extended to any MRO ring fraction

Two transitions are now obtained for every SICA step. iy 3 and it shows that is almost an increasing function
The first one lies always around the mean coordination NUM¢ the ES fraction as seen from the result at SICA dtep
berr;=2.4 where the number of floppy modésanishes. = 4. since there is only a small difference between allowing
The second transition is located gt and is a different only four-membered ring¢ES) (lower dotted ling or rings
feature of rigidity theory. When starting from a floppy net- of all sizes(upper dotted lingin the clusters, we conclude
work and progressively stiffening the network and requiringthat the ES mostly determine the stress transition and hence
self-organization, the network will reach a point beyondthe width.
which stressed rigid bondings outside of ring structures can- Finally, one can see from Fig. 2 and the inset of Fig. 3 that
not be avoided anymore. This point is a stress transition. Wéhe probability of isostatic clusters is maximum in the win-

show in Fig. 2 thel=2 result wheref=0 atr,;=2.4 for  dow Ar, and almost equal to 1 for the even SICA steps,
different fractions of ES tetrahedra, defining an intermediatgroviding evidence that the molecular structure of the net-
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work in the window is almost stress-free. The point at which le—T—T ~ Tr66

f=0 shifts slightly around = 2.4 with the SICA step (e.g.,
see the inset of Fig.)3

2.64

o
i
I

B. Constraint free energy

From the cluster distribution obtained by the SICA, it is
also possible to compute the constraint-related free energy
following the approach reported by NauriisHere, we have
kept from the internal energy of the network only the part
related to energy of the elastic deformations of the network,
removing the contributions from the harmonic vibrations of

P T N N N E i sl
the atoms and the anharmonic contributions which are irrel- 2 21 52 23 24 55 56
evant for our purposé¢however, see Ref. 27This idea is Mean coordination number r
also consistent with the work of Duxbury and co-workers 15 - | T ' T
who showed that the number of floppy modes behaves as 10
free energy for both rigidity and connectivity percolatfSn.
The entropy of the network can be evaluated as a Bragg: 3
Williams term from the distribution of cluster probabilitips 0
at stepl, S

S 0 04 0.8 4
ES fraction

Free energy F[arb. units]
T

M
Fi=U,—~TS=NkgTf;+NksT>, pilnp;, (3.2
i=1

|

-20
2.

wheref,=3-n{’ is the number of floppy modes computed
following Eq. (2.7). Since we have expressed the latter quan-
tity as a function of the mean coordination numbeand FIG. 4. Upper panel: free enerdy of the systemA;_,By as a
since the probabilities can also be expressed as a function éinction of the mean coordination numbefor different fractions
T, the free energy can be plotted as a function of the case ~ ©f edge-sharing units;. Open circles:»=0.29; filled circles:z
of self-organization. Figure 4 shows the constraint related=0.56. The inset shows the equilibrium coordination number
free energyF, for two nonzero ES fractions. with respect to the ES fractiofsee text for details Lower panel

It It appears from the figure that the second transition athe first derivative of the free energ-y(l) with respect tor as a
r=r., (the “stress transition} is a first order transition function ofr.

while the first transition afcl is weakly second order. More-
over, as one can see from the lower panel, the first transition IV. DISCUSSION

atr, progressively becomes first order in character when the A. Boolchand intermediate phase
rate of edge-sharing tetrahedsais increased. On the other

hand, the jump ofF(" atr=r, is reduced when the ES
fraction is increased.
Both curves show a marked minimum Ef in the range

[rcz,2 667 at a certain coordination numbeg which sig-
nals an equilibrium state with respect to cross linking. A
major consequence of this result is that one may expe . ™
i\Se _, or GgSe _,. The germanium or silicon corner
phase separation in the stressed rigid region leading for in aring mode chain freauencies chanae with mean coordina-
creasing cluster sizes to nanoscale phase separation in tﬁg Ing ! quenci ge wl '

network backbone. Close to=2.667, the structure should tion numberr of the glass network. These frequencies ex-
therefore be made of B-poor clusters having the statistics dfiPit not only a change in slope at the mean coordination
the localF, minimum but also compensating B-rich clusters numberrcl 2.4, but also a first-order jump at the second
in order to still satisfy Eq(2.6). This structural change is transitionr,. In germanium systems, the second transition is
driven by the entropic term appearing in E§.2) since the |ocated around the mean coordination number of 2.52
energy of the elastic deformation of the network is zero in,, hereasrcz—z 54 in Si based systems. For both systems, a

the stressed rigid phase. With increasing ES fraction, this law beh — — detect Fi f
equilibrium state shifts to the value 2.66inset of Fig. 4 power-law be avior i —r, is detectedsee Fig. 3 for r

upper panel For a ES fraction of 1, equilibrium state and >'c2 and the corresponding measured exponent is very close
stoichiometric composition merge together. Experimentaf© the one obtained in numerical simulations of stressed rigid
evidence of nanoscale phase separation is discussed in tA8tworks:® Moreover, these results clearly correlate with the

following. vanishing betweenCl andrcz of the nonreversing heat flow

[
™)
=
I
n
N
[=)}

As mentioned above, chalcogenide glasses systems have
been carefully studied and the intermediate phase defined by
the two transitions has been discovered by Boolchand in the
context of self-organizatiot?:'® SICA provides therefore a
benchmark to check the results obtained. To be specific, Ra-

an scattering’?® probes elastic thresholds in binary
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1.04 R LA W L - have focused on thermally driven heterogeneities which can
i i in some cases display bimodal glass transition temperatures.
Here the separation effect results from a change in network
connectivity which has its origin in the free-energy minimum
atre.
- It appears that these nanoscale phase separation have been
revealed from compositional trerfdof the glass transition
temperaturdl ; because they display a maximumTg close
. to the stoichiometric concentration. Such a feature has been
i observed in Ge-SE, As-Se (Ref. 38 alloys, but not in
Si-Sel® TheseT trends can be compared with spectroscopic
(Ramart®® Mossbauet®) data which also give evidence of
T broken chemical order, suggesting that the structure of sto-
| ichiometric glasses such as GeS® As,Se; is made of a
chalcogen rich majority phase and a compensating Ge- or
As-rich phase. Furthermore, in the metal rich phase Ge-Ge or
0.98 2!2 ' 2!3 : 2!4 : 2!5 - 2!6 — As-As bonds are present. _ _
Mean coordination number T ~ The difference between the Si-Se and the Ge-Se glass lies
in the following. Since the Si-Se has a much higher ES frac-
FIG. 5. Variation of theBSe,, (B=Ge, Sj corner-sharing tion compared to Ge-Se, the value of its corresponding local
mode frequency normalized to 1 in Raman spectroscopy with reconstraint free-energy equilibrium will lie very close to the

spect to the mean coordination numberThe solid vertical lines valuer=2.667 (see inset of Fig. 4 upper panellhe Ge
define the intermediate phase in Ge&ef. 13 while the lower  coynterpart will have the same minimum at a lower value in

lid li h hed li fine it f i- following Ref. 16.
solid line and the dashed line define it for Si-Se, following Ref. 16 the rangg[r.,, 2.667 because of fewer ES tetrahedra thus

The Si intermediate phase is larger than the Ge one. _
favoring the emergence of the chalcogen-rich phase when

AH,, (the part of the heat flow which is thermal history is increased. Our last comments brings us back to constraint

sensitivé in MDSC measurements:*® counting. Since Si-Se is more weakly constrained than Ge-Se
The study of stoichiometric compounds such as §i@e due to the higher amount of EShe glass transition tem-

GeSg also leads to better understanding of medium-ranggerature of the stoichiometric glass will be higher compared

order. In the former?°Si NMR experiments have shown that to Ge-Se.

most of the tetrahedra were part of long edge-sharing

chains' in the glass. SiSehas different crystalline polymor- V. APPLICATION TO FAST IONIC CONDUCTORS

phs which all exhibit a strong edge-sharing tendeficghe

high-temperature phase is made of 100% edge-sharingn

tetrahedraf® while different phases display a distribution in

terms of NMRE® functions(where the subscrigt=0,1,2

refers to the number of tetrahedra shared by edges on a t

1.03

0.99

One interesting field of application of cluster construction
d constraint counting algorithms is the field of fast ionic
conductors(FIC’s),***! which has received considerable at-
(%ention in the last 15 years because of potential applications
. S f these solid electrolytes in all solid-state electrochemical
“”Fhed“""’ but with a_majorl(t%/) ofE® structures®*In the devices and/or miniatli/rized systems such as solid-state bat-
SiSg Sglass, the fraction oE'* has been found to be of the o a5 An important step forward has been made by replac-
qrde? of 0.53. On the other he_md, low-temperature crystal—ing the oxygen in usual oxide glasses by more polarizable
line GeSg has no edge-sharing tetrahedfalbut glassy chalcogenide atoméS, Se mostly which has increased the
GeSe exhibits a companion Raman line associated withye conductivity? in these systems by several orders of
edge-sharing tetrahedta. - magnitude’® up to a value of about IG O~ tcm i Sur-

The SICA approach has shown that the width of the  prisingly, the extension of constraint theory from network
intermediate phase increases mostly with the fraction of EShalcogenide glasses such as®g_, to ionic glasses has
tetrahedra. We stress that the width should converge to gceived little attention and to our knowledge, has been only
lower limit value of At compared to the stelp=2, therefore  reported for a few oxide glass&s® Elastic percolative ef-
one can observe the shift downwards when increalsfram fects in these types of networks have not been studied so far
2 to 4. This limiting value is in principle attained fdr ~ With the network change in solid electrolytes, although it is
—oo, or at least for much larger steéfshanl =4. For Si-Se, ~ certainly fundamental for the understanding of the mobile
gecarriers’ motion since various models of conductifit/
stress the importance of the mobilityin the contribution to
conductivity. Obviously, the mobility is related to a local
mechanical deformation of the netwd¥kallowing a cation
to move through holes in the structure. In terms of rigidity,
one may therefore expect that the mobiligyin a stressed

Phase-separation effects in glasses exhibit usually praigid solid electrolyte should be substantially lower com-
nounced changes in physical properties and most studigsared to the cation mobility in a floppy one, because in the

Ar=0.14 is much more sharply defined than for Ge-

(Ar_= 0.12) consistent with the fact that the number of ES
tetrahedra is higher in the formét.

B. Nanoscale phase separation

104204-6



RINGS AND RIGIDITY TRANSITIONS IN NETWORK GLASSES PHYSICAL REVIEW B57, 104204 (2003

0.2

. X 2 M
e ’
o? Q

FIG. 6. The two local structure®* and Q% in (1—x)SiX,
—xM,X glasseqRef. 49 with X=0, S, Se andM=Na, K, ... .
The Q3 structure has one nonbridging anion.
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latter floppy modes allow a local low-energy deformation.
The percolative effect of mobility should certainly show up - P .
in this kind of network so that the conductiviiy should ol N
display some particular behavior in the stress-free intermedi- © 01
ate phase and at the two transitions.

The SICA approach can .be appllt_ad to the. present solid FIG. 7. Critical concentrations in (2x)SiX,—xM,X glasses,
electrolyte case by considering the simplest binary conductiy x=0 s Se andi=Na. K. . . . . as dunction of the fraction
ing glass, which is of the form (1 x)SiX;—xM,X with X' 4 edge-sharindES) in the base Si, glass. The inset shows the

an ani?” of group VIX=0, S, Séland M an alkali C?‘tion corresponding width of the intermediate phase as a function of the
(M=Li, Na, K, ...). Thefree carriers are th#® cations. same quantity.

The local structure in these glasses can be determined by
many different expertiments and is usually described in . . -
term35l of so-callecg“ and Q° units derivedyfrom NMR =<3.667 a value which would be expected in a dendritic net-
data®® The former corresponds to the usual silica tetrahedroivork at the mean coordination number2.667 or concen-
made of one silicon and four group-VI atoms at the corneitration x=0.333) due to the four-membered ring correction
(e.g., SiSg,) while the latter has one additional anion coming from the counting of extra constraifits.

bonded to the alkali catiofe.g., SiSg,Na®) that does not Increase of the alkali content leads to an increase of flop-
connect anymore to the netwotKig. 6). Although it is yet ~ Piness. In the oxide system {ix)SiO,—xM,0, the width

not clear what is the coordination number of the alkaliAXx should be very small or zero since the fraction of ES
cation® it can be assumed that the strongest interaction ofétrahedra in the oxide systems is almost Zertill, perco-

the alkali cation is the one related to the NBO. This meandative effects are expected at the concentrakier0.2 corre-
that the effective coordination number Mfis taken as 1, as sponding to the transition from rigid to floppy networks, a

02 03 0.4
Rate of ES in the base glass

suggested by different authdts>* transition that has been observed in sodium tellurate
Starting from the locaD? and Q3 units [with respective  dlasse$? In sulfur and selenide glasses such as-(JSiS,
probabilities 1-p and p=2x/(1—x)], the SICA probabili- —XN&S, the width should be much broader because of the

ties can be evaluated for different steps of cluster sizes foleXistence of the high amount of edge-sharing tetrahedra in
lowing the procedure described previously and taking intdhe Si$ or SiSe base network$> For glasses with a high
account the mechanical constraints of onefbldcations>?> ~ amount of ES tetrahedra, the lower limityay of the inter-
When constraint counting is performed, it appears that thénediate phase is expected to decrease down=t0 for the
creation of aQ*—Q* connections leads to a stressed rigid limiting casen=1. In the sulfur base glas$’Si NMR have
cluster, while theQ*— Q3 and Q®—Q? connections yield, shown that the fraction of ES tetrahedra should be about 0.5,
respectively, isostatically stressed and floppy clusters. Thélightly higher than in the selenide analogous systerfi.

SICA results show again that the intermediate phase exists From Fig. 7, fory=0.5 one should observe a window of
only when a nonzero fraction of small rings is allowed in theaboutAx=0.09. Unfortunately, conductivity, structural, and
self-organized structure. The corresponding results are dighermal resul¥ on these systems are only available for an
played in Fig. 7 fol =2 and work on higher SICA steps is in alkali concentratiorx>0.2. However, in the different silica
progress® Rigidity nucleates here in a way opposite to net-based glasses, a rigidity transition has been obsghatdhe
work chalcogenides. The vanishing of the number of floppyconcentrationx=0.2 which should provide guidance for
modes defines the upper limit of the intermediate phasdorthcoming studies in this area.

while stressed rigidity outside of ring structures disappears Finally, temperature and fictive temperature effects should
for x>x.;. This is consistent with the fact that the network is be observable close to this transition. Since the concentration
stressed rigid at low modifier concentration. However, theof alkali free carriersn. depends on the temperatuftae
base network glass is stress free. In Sithe Si-O-Si angle higher the temperature, the higher), an increase of the
distribution is quite wide leading to broken bond-bendingtemperatureT should lead to a decrease of the number
constraints on oxygef,while in the Si$ and SiSe glasses, 0f network constraints, the fraction of intact bond-stretching
the structure is mostly made out of edge-sharing $jSe constraintsng of the alkali atom being proportional to
or SiS,, tetrahedrd which are weakly stressed.e., n, 1—-n,.. Consequently, a shift of the mechanical threshold

104204-7



MATTHIEU MICOULAUT AND JAMES C. PHILLIPS PHYSICAL REVIEW B 67, 104204 (2003

(f=0) to the higher concentrations should result from ancluster construction and constraint counting. This permits us
increase ofT. On the other hand, fictive temperature effectsto go beyond the usual mean-field approach of rigidity and to
should be detectable from the rate of edge-sharing unitsybtain the two observed rigidity transitions. We have found
since it has been shown that the probability of riigsas a  that there is a single transition from floppy to rigid networks
non-negligible dependence dn. In silica, specific modes in a certain number of structural possibilities. An intermedi-
(the so-calledD; and D, lines) appear in Raman spectro- ate phase appears when a fraction of medium-range order is
scopic studies and have an Arrhenius dependence With allowed in self-organized networks and the order of the un-
involving a corresponding ring activation energy. We conjec-derlying phase transitions is first and second order, and de-
ture that the same may happen in the corresponding chalcgend also on the fraction of ES. Nanoscale phase separation
genide glasses where two sets of samples prepared undgppears in the stressed rigid phase and is driven by the clus-
different kinetic conditiongthrough the value oT;) would ter entropy. This separation leads to group-VI rich clusters
produce different edge-sharing fractiotend consequently and chalcogen rich clusters when the stoichiometric compo-
different widths of the intermediate phaselowever, at this  sition is attained. Finally, extension of this approach to ionic
stage of modeling, the SICA construction does not distinconductors has been emphasized and should motivate new
guish between ring activation energy and fictive temperaturéevelopments in this field.

T so that the probabilities are only sensitive tain
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