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Rings and rigidity transitions in network glasses
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Three elastic phases of covalent networks,~I! floppy, ~II ! isostatically rigid, and~III ! stressed-rigid, have
now been identified in glasses at specific degrees of cross linking~or chemical composition! both in theory and
experiments. Here we use size-increasing cluster combinatorics and constraint counting algorithms to study
analytically possible consequences of self-organization. In the presence of small rings that can be locally I, II,
or III, we obtain two transitions instead of the previously reported single percolative transition at the mean

coordination numberr̄ 52.4, one from a floppy to an isostatic rigid phase, and a second one from an isostatic

to a stressed rigid phase. The width of the intermediate phaseD r̄ and the order of the phase transitions depend
on the nature of medium-range order~relative ring fractions!. We compare the results to the group-IV chalco-
genides, such as Ge-Se and Si-Se, for which evidence of an intermediate phase has been obtained, and for
which estimates of ring fractions can be made from structures of high-T crystalline phases.
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I. INTRODUCTION

A covalently bonded amorphous network progressiv

stiffens as its connectivity or mean coordination number̄
increases.1,2 The increase of connectivity can be achieved
adding cross-linking elements~such as As or Ge! to a start-
ing chain network of S or Se. From a mechanical viewpo
twofold coordinated single bond chain networks are flop
because the number of nearest-neighbor (r 52) bonding con-
straints per atom is less than 3, the degrees of freedom.3 On
the other hand, in the case of networks consisting only
tetrahedral units~such as amorphous fourfold coordinat
silicon!, the network is intrinsically rigid.

In single bond random networks, these simple obser
tions have been described with success with a mean-
theory based on Maxwell constraint counting.4 For r-fold
coordinateded atoms, the enumeration of atomic constra
nc

a5r /2 andnc
b52r 23, respectively, due to bond-stretchin

and bond-bending forces has shown that the number of z
frequency~floppy! modes per atoms actually vanishes wh
the mean coordination number5,6 of the network increases t
the magic number of 2.4. At this point, the network sits a
mechanically critical point where the number of constrai
per atomnc5nc

a1nc
b equals the number of degrees of fre

dom per atom. On the one hand, the exhaustion of all
degrees of freedom means that the network efficiently
space. At the same time, because there are no excess
straints, the network can be thought of as globally isosta

Mean-field theory predicts onset of rigidity forr̄ .2.4.
Numerous experiments7,12,13 have confirmed these simpl
predictions, especially in glass science where bulk cha
genide glasses have been used as a benchmark to check
elegant ideas. Threshold behavior has been detecte
structural,8 vibrational,9 thermal,10 and electronic11 proper-
ties whenr̄ approaches 2.4. Applications of rigidity theo
have also been reported in various fields such as gran
matter, biology, and computational science.14 However, re-
0163-1829/2003/67~10!/104204~9!/$20.00 67 1042
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cently it has been shown from Raman scattering and fr
phase-dependent measurements of the kinetics of the g

transition that two transitions15 at r̄ c1 and r̄ c2 appear when
the network stiffens. This suggests that the mean-field c
straint counting alone~leading to the single percolative tran
sition! fails to describe completely network changes. The
two transitions define an intermediate phase in which
connected structure continues to be stress-free16,17 ~isostati-
cally rigid!.

In this paper, we present a simple way to go beyond
mean-field description of rigidity and include local stre
corrections. This is achieved by performing Maxwell co
straint counting on size increasing structures, starting fr
the short-range level corresponding to the previous me
field approach. One main advantage is that medium-ran
order effects such as small rings can be taken into accou
this construction. It appears from this analysis that th
small rings mostly determine the nature of the intermedi

phase and the values of the critical coordination numbersr̄ c1

and r̄ c2, hence the width of the intermediate phaseD r̄ 5 r̄ c2

2 r̄ c1. To apply this construction, we choose the simpl
case that can be built up, and which has received consi
able attention in the context of rigidity, namely singl
bonded group-IV chalcogenide glasses of the formBxA12x
with coordination numbersr A52 and r B54 defining the
mean coordination numberr̄ 5212x. We have used size
increasing cluster approximations~SICA’s! to construct these
size-increasing structures and medium-range order~MRO!
on which we have realized constraint counting. As hoped,
analysis reveals two transitions: a first one, at which
number of floppy modes vanishes, is closely related to w
has been previously obtained in the mean-field approach,
a second one~a ‘‘stress transition’’!, beyond which stress in
the entire structure can no longer be avoided. The sec
transition can be obtained only under certain conditio
which we detail below. We show that the orders of the
©2003 The American Physical Society04-1
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phase transitions are different and depend on the fractio
ring structures. In between the two transitions, one can de
an almost stress-free network structure for which the frac
of isostatic clusters can be computed.

The paper is organized as follows. In Sec. II, we sh
how to construct from small molecules size increasing cl
ters using SICA’s and perform Maxwell constraint counti
on them. Section III is devoted to the results obtained fr
the construction, and the change in structure and energy
increasing connectivity. We discuss the results obtained
compare them with chalcogenide glasses in Sec. IV, and
nally we extend the approach to fast ionic conducting glas
in Sec. V.

II. SIZE INCREASING CLUSTER APPROXIMATIONS

A. Construction

In this section, we describe size increasing cluster
proximations~SICA’s!. This approach has been first intro
duced to describe the ring statistics and the intermedi
range order in amorphous semiconductors18 such as B2O3
but other applications have been considered such as the
temperature formation of fullerenes19 and the cell distribu-
tion in quasicrystals.20 In principle, any structural quantity
that is computed when one increases the size of a g
structure~or a starting network! converges to its ‘‘true’’ value
if the size becomes almost infinite. In practice, one ho
that the convergence is rapid enough to give reasonable
ues for medium-sized clusters, yielding information abo
MRO structures. In quasi-two-dimensionalv2B2O3 clusters
having ten boron atoms allows one to obtain a fraction
boron atoms trapped in boroxol rings which is in very fa
agreement with experiment,18 but larger clusters may b
needed for three-dimensional networks.

The basic level of the SICA construction is the restrict
mean-field approximation where the probability of the sho
range-order structure is derived from the macroscopic c
centration, assuming that the cations and anions alterna
the network~chemical ordering!. This basic level is denoted
by l 51. Then, we constructl 52, l 53, etc., and compute
the corresponding probabilities in the canonical ensem
with particular energy levelsEi corresponding to bond cre
ation between the (l 51) short-range-order molecules whic
are used as building blocks from step (l 51) ~corresponding
in GexSe12x also to the reported mean-field approach3! to
arbitrary l. The construction is supposed to be realized
the formation of the network, whenT equals the fictive tem-
perature Tf so that Boltzmann factors of the formei
5exp@2Ei /Tf# will be involved in the probabilities.21 Since
we expect to relate the width of the intermediate phase to
ring fraction, we will restrict our present study to group-I
chalcogenides of the form SixSe12x . For the latter, there is
strong evidence that at the stoichiometric concentratiox
50.33 a substantial amount of edge-sharing SiS4/2
tetrahedra22,23 can be found.

In order to study group-IV chalcogenides, we select ba
units such as theA2 ~i.e., Se2) chain fragment and the sto
ichiometric BA4/2 molecule~e.g., GeSe4/2 which is the ma-
jority local structure atx50.333). These basic units hav
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respective probabilities 12p andp52x/(12x), x being the
macroscopic concentration of the group-IV atoms. The
ergy levels are defined as follows. We associate the crea
of a chainlikeA22A2 structure with an energy gain ofE1 ,
A22BA2 bondings with an energy gain ofE2 and corner-
sharing~CS! and edge-sharing~ES! BA4/2 tetrahedra or any
ring structure, respectively, withE3 andE4. The energyE4
will be used to change the fraction of edge-sharing relative
corner-sharing tetrahedra. The probabilities of the differ
clusters have statistical weightsg(Ei) which can be regarded
as the degeneracy of the corresponding energy gain and
respond to the number of equivalent ways a cluster can
constructed. For the stepl 52, four different clusters can be
obtained~see Fig. 1! and their probabilities are given as fo
lows:

p15
4~12p!2e1

4~12p!2e1116p~12p!e21p2~16e3172e4!
,

~2.1!

p25
16p~12p!e2

4~12p!2e1116p~12p!e21p2~16e3172e4!
,

~2.2!

p35
16p2e3

4~12p!2e1116p~12p!e21p2~16e3172e4!
,

~2.3!

p45
72p2e4

4~12p!2e1116p~12p!e21p2~16e3172e4!
~2.4!

out of which the concentration of B atomsx(2) can be com-
puted:

FIG. 1. From the short-range-order molecules (l 51) yielding
the mean-field result to all clusters atl 52 and some MRO pro-
duced atl 53. Isomers start to be created at stepl 53. Note the
creation of medium-range order such as edge-sharing tetrahed
rings. Each boundary atom is counted half.
4-2
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x(2)5
p212~p31p4!

42p222~p32p4!
. ~2.5!

Due to the initial choice of the basic units, the energyE2 will
mostly determine the probability of isostatic clusters sin
the related Boltzmann factore2 is involved in the probability
~2.2! of creating the isostaticBA4 cluster~a A22BA4/2 bond-
ing!. This means that if we choose to haveE2!E1 ,E3 ,E4,
the network will be mainly isostatic in the range of intere

For the next steps, care has to be taken in order to co
the possible isomers produced from different pathways~e.g.,
in Fig. 1, the six-membered ring with two B atoms can
produced out ofp2 andp3). More generally, increasing step
will lead to clusters with stoichiometry GenSe2l and prob-
ability proportional topn(12p) l 2n with n50••• l . The cor-
responding statistical weights depend much more on the
the clusters are created and have therefore no genera
mula depending onn or l. However, for the pure edge
sharing tetrahedra chain of sizel, it can be easily checked
that its probability is proportional to 72324l 22ple4

l 21. An-
other simple example is provided by the Se chain wh
probability is 4l 21(12p) le1

l 21.
It is obvious that all the cluster probabilites will depen

only on two parameters~i.e., the factorse1 /e2 and e3 /e2)
and eventuallye4 /e2 if one considers the possibility of edge
sharing~ES! tetrahedra or rings. One of the two factors c
be made composition dependent since a conservation law
the concentration ofB atomsx( l ) can be written at any stepl
of the SICA construction:24

x( l )5x. ~2.6!

This means that either the fictive temperatureTf or the en-
ergiesEi depends21 on x but here only theei(x) @or ei( r̄ )]
dependence is relevant for our purpose. The construction
been realized up to the stepl 54 which already creates clus
ters of MRO size.

B. Maxwell cluster constraint counting

On each cluster one can count Maxwell constraints
enumeration of bond-bending and bond-stretching c
straints and calculation of the corresponding expression
nc

a andnc
b . Of particular importance are the structures co

taining a ring~see Fig. 1!, because one has to take into a
count the effects of ring closure.5 To illustrate this, let us
consider an isolated triangle~i.e., a three-membered ring!
having a two-fold atom at each of its vertices. Of course, t
triangle can be completely defined by three independent v
ables ~e.g., two lengths and one angle!. Performing con-
straint counting on the atoms will give three bond-stretch
and three bond-bending constraints, yielding three extra c
straints with respect to the isostatically rigid structure. T
means that for a three-membered ring, one has to rem
three constraints from the global counting. For the fo
membered ring, this correction is of two constraints, and
a five-membered ring, of one.

For each stepl, we have computed the total number
constraintsnc

l :
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( l )5

( i 51
Nl nc( i )pi

( i 51
Nl Nipi

, ~2.7!

where nc( i ) and Ni are, respectively, the number of con
straints and the number of atoms of the clusteri of sizel with
probabilitypi . Nl is the total number of clusters of sizel. At
stepl 52, it is easy to check that

nc
(2)5

4p1115p2122p3120p4

2p115p216~p31p4!
. ~2.8!

We have determined eithere1 /e2 or e3 /e2 by solving
Eq. ~2.6!, and once these factors become composition dep
dent, it is possible to compute the probabilitiespi as a func-
tion of composition and find for which concentratio
x ~or which mean coordination numberr̄ ) the system reache
optimal glass formation where the number of floppy mod
f l532nc

( l ) vanishes.

III. RESULTS

A. Structural properties

In this section, we consider the solutions of the SIC
construction under various structural possibilities.

The simplest case is random bonding, which is obtain
when the cluster probabilitiespi are only given by their sta-
tistical weightsg(Ei). This would, for example, reduce th
probability p4 in Eq. ~2.4! to

p45
18p2

~11p!2118p2
~3.1!

with p52(r̄ 22)/(42 r̄ ). A single solution is obtained for
the glass optimum point defined by the vanishing of t
number of floppy modesf 50 at all SICA steps, in the mea
coordination number range@2.231,2.275#, slightly lower than
the usual mean-field value of 2.4. Since there is only o
solution, there is no intermediate phase in the case of ran
bonding.

Self-organization of the network can be obtained by sta
ing from a floppy cluster of sizel ~e.g., a chainlike structure
made of a majority ofA atoms!, and allowing the agglom-
eration of a new basic unit onto this cluster to generate
cluster of sizel 11 only if the creation of a stressed rigi
region can be avoided on this new cluster. This happ
when twoBA4/2 basic units are joined together on a give
cluster. With this rather simple rule, upon increasingr̄ one
accumulates isostatic rigid regions on the size increas
clusters becauseBA4/2 units are only accepted inA2
2BA4/2 isostatic bondings with energyE2. On the opposite
side, one can start at high concentration, close to the m
coordination number ofr̄ 52.67 and follow the same proce
dure but in opposite way, i.e., with addingA atoms, one
allows only bondings which lead to isostatic rigid or stress
rigid regions, excluding systematically the possibility
floppy A22A2 bondings.

In the case of self-organized clusters, the simplest cas
be studied is the case of dendritic clusters, where no rings
4-3
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allowed~achieved by settinge4 to zero!. For an infinite size
l, this would recover the results from Bethe lattice solutio
or random bond models25 for which rings are also exclude
in the thermodynamic limit.26 A single transition for evenl
steps at exactly the mean-field valuer̄ 52.4 is obtained
whereas for the stepl 53, there is a sharp intermediate pha
defined byf 50 ~still at r̄ 52.4) and the vanishing of floppy
regions~i.e., e1 /e2 is zero! at r̄ 52.382(6). Once the prob-
abilities of floppy, isostatic rigid, and stressed rigid clust
as a function of the mean coordination number are co
puted, it appears that the network is entirely isostatic at
point wheref 50 ~solid line, Fig. 2!. There the number o
degrees of freedom per atom is exactly 3.

The intermediate phase shows up if a certain amoun
medium-range order~MRO! is allowed. This is realized in
the SICA construction by setting the quantitye4 /e2 nonzero,
i.e., edge-sharing~ES! tetrahedraBA4/2 leading to four-
membered ringsB2A4 can now be created at the growin
cluster steps. This means also that if stress should be cre
whenr̄ is increasing, then it should be only in ring structur
and not by two corner-sharing connectedBA4/2 tetrahedra.

Two transitions are now obtained for every SICA ste
The first one lies always around the mean coordination n
ber r̄ c152.4 where the number of floppy modesf vanishes.
The second transition is located atr̄ c2 and is a different
feature of rigidity theory. When starting from a floppy ne
work and progressively stiffening the network and requiri
self-organization, the network will reach a point beyo
which stressed rigid bondings outside of ring structures c
not be avoided anymore. This point is a stress transition.
show in Fig. 2 thel 52 result wheref 50 at r̄ c152.4 for
different fractions of ES tetrahedra, defining an intermedi

FIG. 2. Probability of floppy, isostatic stressed, and stres

rigid clusters, as a function of the mean coordination numberr̄ for
different possibilities of medium-range order. The solid line cor
sponds to the dendritic case while the broken lines correspond
respective ES fraction at the stress transition of 0.156, 0.290,
0.818. The filled square indicates the stress transition at the p

r̄ c2 and the filled circle the pointr̄ c1 that does not depend on the E
rate ~see text for details!. For clarity, we have removed the prob
abilities of stressed rigid clusters for nonzero ES fractions.
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phaseD r̄ . We should also stress that even for a nonzero
fraction, f 50 is always obtained atr̄ 52.4 for l 52. From
this analysis, it appears that the first transition atr̄ c1 does not
depend on the ES fraction, as well as the fraction of stres
rigid clusters in the structure. In Fig. 2, the probabilities
the related stressed rigid clusters for a nonzero ES frac
can of course be obtained from the floppy and isostatic o
since the sum of all probabilities is equal to 1.

To ensure continuous deformation of the network when
atoms are added while keeping the sum of the probability
floppy, isostatic rigid, and stressed rigid clusters equal to
the probability of isostatic rigid clusters connects the is
tatic solid line atr̄ c2. Stressed rigid rings first appear in th
region r̄ c1, r̄ , r̄ c2 while chainlike stressed clusters~whose
probability is proportional toe3) occur only beyond the
stress transition, whene3Þ0. This means that within this
approach, whenr̄ is increased, stressed rigidity nucleat
through the network starting from rings, as ES tetrahedra
small rings. It is easy to see from Fig. 2 that the widthD r̄

5 r̄ c22 r̄ c1 of the intermediate phase increases with the fr
tion of ES. This can be extended to any MRO ring fracti
~Fig. 3! and it shows thatD r̄ is almost an increasing functio
of the ES fraction as seen from the result at SICA stel
54. Since there is only a small difference between allow
only four-membered rings~ES! ~lower dotted line! or rings
of all sizes~upper dotted line! in the clusters, we conclude
that the ES mostly determine the stress transition and he
the width.

Finally, one can see from Fig. 2 and the inset of Fig. 3 t
the probability of isostatic clusters is maximum in the wi
dow D r̄ , and almost equal to 1 for the even SICA step
providing evidence that the molecular structure of the n

d

-
a

nd
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FIG. 3. Width of the intermediate phase as a function of
fraction of medium-range order at the stress transition forl 52
~solid line!, l 53 ~dashed line!, and l 54 ~dotted lines!. The lower
dotted line corresponds to a structure where only ES tetrahedra
been allowed. The inset shows the probability of isostatic clus
with mean coordination number forl 53 ~dashed line! and l 54

~dotted line!, compared to the shaded region defined by theD r̄ from
SICA analysis. The point defined byf 50 is shifted compared tol
52.
4-4
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work in the window is almost stress-free. The point at wh
f 50 shifts slightly aroundr̄ 52.4 with the SICA stepl ~e.g.,
see the inset of Fig. 3!.

B. Constraint free energy

From the cluster distribution obtained by the SICA, it
also possible to compute the constraint-related free ene
following the approach reported by Naumis.27 Here, we have
kept from the internal energy of the network only the p
related to energy of the elastic deformations of the netwo
removing the contributions from the harmonic vibrations
the atoms and the anharmonic contributions which are ir
evant for our purpose~however, see Ref. 27!. This idea is
also consistent with the work of Duxbury and co-worke
who showed that the number of floppy modes behaves
free energy for both rigidity and connectivity percolation28

The entropy of the network can be evaluated as a Bra
Williams term from the distribution of cluster probabilitiespi
at stepl,

Fl5Ul2TSl5NkBT fl1NkBT(
i 51

Nl

pi ln pi , ~3.2!

where f l532nc
( l ) is the number of floppy modes compute

following Eq. ~2.7!. Since we have expressed the latter qu
tity as a function of the mean coordination numberr̄ and
since the probabilities can also be expressed as a functio
r̄ , the free energy can be plotted as a function ofr̄ in the case
of self-organization. Figure 4 shows the constraint rela
free energyFl for two nonzero ES fractions.

It appears from the figure that the second transition
r̄ 5 r̄ c2 ~the ‘‘stress transition’’! is a first order transition
while the first transition atr̄ c1 is weakly second order. More
over, as one can see from the lower panel, the first trans
at r̄ c1 progressively becomes first order in character when
rate of edge-sharing tetrahedrah is increased. On the othe
hand, the jump ofFl

(1) at r̄ 5 r̄ c2 is reduced when the ES
fraction is increased.

Both curves show a marked minimum ofFl in the range

@ r̄ c2,2.667# at a certain coordination numberr̄ e which sig-
nals an equilibrium state with respect to cross linking.
major consequence of this result is that one may exp
phase separation in the stressed rigid region leading for
creasing cluster sizes to nanoscale phase separation i
network backbone. Close tor̄ 52.667, the structure shoul
therefore be made of B-poor clusters having the statistic
the localFl minimum but also compensating B-rich cluste
in order to still satisfy Eq.~2.6!. This structural change is
driven by the entropic term appearing in Eq.~3.2! since the
energy of the elastic deformation of the network is zero
the stressed rigid phase. With increasing ES fraction,
equilibrium state shifts to the value 2.667~inset of Fig. 4
upper panel!. For a ES fraction of 1, equilibrium state an
stoichiometric composition merge together. Experimen
evidence of nanoscale phase separation is discussed i
following.
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IV. DISCUSSION

A. Boolchand intermediate phase

As mentioned above, chalcogenide glasses systems
been carefully studied and the intermediate phase define
the two transitions has been discovered by Boolchand in
context of self-organization.15,16 SICA provides therefore a
benchmark to check the results obtained. To be specific,
man scattering15,29 probes elastic thresholds in binar
SixSe12x or GexSe12x . The germanium or silicon corne
sharing mode chain frequencies change with mean coord

tion numberr̄ of the glass network. These frequencies e
hibit not only a change in slope at the mean coordinat

number r̄ c152.4, but also a first-order jump at the seco

transitionr̄ c2. In germanium systems, the second transition
located around the mean coordination number of 2
whereasr̄ c252.54 in Si based systems. For both systems
power-law behavior inr̄ 2 r̄ c2 is detected~see Fig. 5! for r̄

.r̄c2 and the corresponding measured exponent is very c
to the one obtained in numerical simulations of stressed r
networks.30 Moreover, these results clearly correlate with t
vanishing betweenr̄ c1 and r̄ c2 of the nonreversing heat flow

FIG. 4. Upper panel: free energyFl of the systemA12xBx as a

function of the mean coordination numberr̄ for different fractions
of edge-sharing unitsh. Open circles:h50.29; filled circles:h

50.56. The inset shows the equilibrium coordination numberr̄ e

with respect to the ES fraction~see text for details!. Lower panel:

the first derivative of the free energyFl
(1) with respect tor̄ as a

function of r̄ .
4-5
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DHnr ~the part of the heat flow which is thermal histo
sensitive! in MDSC measurements.15,29

The study of stoichiometric compounds such as SiSe2 or
GeSe2 also leads to better understanding of medium-ra
order. In the former,29Si NMR experiments have shown th
most of the tetrahedra were part of long edge-shar
chains31 in the glass. SiSe2 has different crystalline polymor
phs which all exhibit a strong edge-sharing tendency.32 The
high-temperature phase is made of 100% edge-sha
tetrahedral,33 while different phases display a distribution
terms of NMRE(k) functions~where the subscriptk50,1,2
refers to the number of tetrahedra shared by edges on a
rahedron!, but with a majority ofE(2) structures.32,34 In the
SiSe2 glass, the fraction ofE(2) has been found to be of th
order35 of 0.53. On the other hand, low-temperature cryst
line GeSe2 has no edge-sharing tetrahedral,36 but glassy
GeSe2 exhibits a companion Raman line associated w
edge-sharing tetrahedra.4

The SICA approach has shown that the widthD r̄ of the
intermediate phase increases mostly with the fraction of
tetrahedra. We stress that the width should converge
lower limit value ofD r̄ compared to the stepl 52, therefore
one can observe the shift downwards when increasingl from
2 to 4. This limiting value is in principle attained forl
→`, or at least for much larger steps37 thanl 54. For Si-Se,
D r̄ 50.14 is much more sharply defined than for Ge-
(D r̄ 50.12) consistent with the fact that the number of E
tetrahedra is higher in the former.16

B. Nanoscale phase separation

Phase-separation effects in glasses exhibit usually
nounced changes in physical properties and most stu

FIG. 5. Variation of theBSe4/2 (B5Ge, Si! corner-sharing
mode frequency normalized to 1 in Raman spectroscopy with

spect to the mean coordination numberr̄ . The solid vertical lines
define the intermediate phase in Ge-Se~Ref. 15! while the lower
solid line and the dashed line define it for Si-Se, following Ref. 1
The Si intermediate phase is larger than the Ge one.
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have focused on thermally driven heterogeneities which
in some cases display bimodal glass transition temperatu
Here the separation effect results from a change in netw
connectivity which has its origin in the free-energy minimu
at r̄ e .

It appears that these nanoscale phase separation have
revealed from compositional trends29 of the glass transition
temperatureTg because they display a maximum inTg close
to the stoichiometric concentration. Such a feature has b
observed in Ge-Se,15 As-Se ~Ref. 38! alloys, but not in
Si-Se.16 TheseTg trends can be compared with spectrosco
~Raman,39 Mössbauer29! data which also give evidence o
broken chemical order, suggesting that the structure of
ichiometric glasses such as GeSe2 or As2Se3 is made of a
chalcogen rich majority phase and a compensating Ge
As-rich phase. Furthermore, in the metal rich phase Ge-G
As-As bonds are present.

The difference between the Si-Se and the Ge-Se glass
in the following. Since the Si-Se has a much higher ES fr
tion compared to Ge-Se, the value of its corresponding lo
constraint free-energy equilibrium will lie very close to th
value r̄ 52.667 ~see inset of Fig. 4 upper panel!. The Ge
counterpart will have the same minimum at a lower value
the range@ r̄ c2, 2.667# because of fewer ES tetrahedra th
favoring the emergence of the chalcogen-rich phase wher̄
is increased. Our last comments brings us back to constr
counting. Since Si-Se is more weakly constrained than Ge
due to the higher amount of ES,5 the glass transition tem
perature of the stoichiometric glass will be higher compa
to Ge-Se.

V. APPLICATION TO FAST IONIC CONDUCTORS

One interesting field of application of cluster constructi
and constraint counting algorithms is the field of fast ion
conductors~FIC’s!,40,41 which has received considerable a
tention in the last 15 years because of potential applicati
of these solid electrolytes in all solid-state electrochemi
devices and/or miniaturized systems such as solid-state
teries. An important step forward has been made by rep
ing the oxygen in usual oxide glasses by more polariza
chalcogenide atoms~S, Se mostly! which has increased th
dc conductivity42 in these systems by several orders
magnitude,43 up to a value of about 1023 V21 cm21. Sur-
prisingly, the extension of constraint theory from netwo
chalcogenide glasses such as AsxSe12x to ionic glasses has
received little attention and to our knowledge, has been o
reported for a few oxide glasses.44,45 Elastic percolative ef-
fects in these types of networks have not been studied so
with the network change in solid electrolytes, although it
certainly fundamental for the understanding of the mob
carriers’ motion since various models of conductivity46,47

stress the importance of the mobilitym in the contribution to
conductivity. Obviously, the mobility is related to a loc
mechanical deformation of the network,48 allowing a cation
to move through holes in the structure. In terms of rigidi
one may therefore expect that the mobilitym in a stressed
rigid solid electrolyte should be substantially lower com
pared to the cation mobility in a floppy one, because in

e-

.
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latter floppy modes allow a local low-energy deformatio
The percolative effect of mobility should certainly show u
in this kind of network so that the conductivitys should
display some particular behavior in the stress-free interm
ate phase and at the two transitions.

The SICA approach can be applied to the present s
electrolyte case by considering the simplest binary cond
ing glass, which is of the form (12x)SiX22xM2X with X
an anion of group VI (X5O, S, Se! andM an alkali cation
(M5Li, Na, K, . . . ). Thefree carriers are theM % cations.
The local structure in these glasses can be determine
many different expertiments and is usually described
terms of so-calledQ4 and Q3 units, derived from NMR
data.49 The former corresponds to the usual silica tetrahed
made of one silicon and four group-VI atoms at the cor
~e.g., SiSe4/2) while the latter has one additional anio
bonded to the alkali cation~e.g., SiSe5/2

* Na% ) that does not
connect anymore to the network~Fig. 6!. Although it is yet
not clear what is the coordination number of the alk
cation,50 it can be assumed that the strongest interaction
the alkali cation is the one related to the NBO. This mea
that the effective coordination number ofM is taken as 1, as
suggested by different authors.45,51

Starting from the localQ4 andQ3 units @with respective
probabilities 12p and p52x/(12x)], the SICA probabili-
ties can be evaluated for different steps of cluster sizes
lowing the procedure described previously and taking i
account the mechanical constraints of onefoldM cations.52

When constraint counting is performed, it appears that
creation of aQ42Q4 connections leads to a stressed rig
cluster, while theQ42Q3 and Q32Q3 connections yield,
respectively, isostatically stressed and floppy clusters.
SICA results show again that the intermediate phase ex
only when a nonzero fraction of small rings is allowed in t
self-organized structure. The corresponding results are
played in Fig. 7 forl 52 and work on higher SICA steps is i
progress.53 Rigidity nucleates here in a way opposite to n
work chalcogenides. The vanishing of the number of flop
modes defines the upper limit of the intermediate pha
while stressed rigidity outside of ring structures disappe
for x.xc1. This is consistent with the fact that the network
stressed rigid at low modifier concentration. However,
base network glass is stress free. In SiO2, the Si-O-Si angle
distribution is quite wide leading to broken bond-bendi
constraints on oxygen,54 while in the SiS2 and SiSe2 glasses,
the structure is mostly made out of edge-sharing SiS4/2
or SiS4/2 tetrahedra31 which are weakly stressed~i.e., nc

FIG. 6. The two local structuresQ4 and Q3 in (12x)SiX2

2xM2X glasses~Ref. 49! with X5O, S, Se andM5Na, K, . . . .
The Q3 structure has one nonbridging anion.
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<3.667 a value which would be expected in a dendritic n

work at the mean coordination numberr̄ 52.667 or concen-
tration x50.333) due to the four-membered ring correcti
coming from the counting of extra constraints.5

Increase of the alkali content leads to an increase of fl
piness. In the oxide system (12x)SiO22xM2O, the width
Dx should be very small or zero since the fraction of E
tetrahedra in the oxide systems is almost zero.21 Still, perco-
lative effects are expected at the concentrationx50.2 corre-
sponding to the transition from rigid to floppy networks,
transition that has been observed in sodium tellur
glasses.44 In sulfur and selenide glasses such as (12x)SiS2
2xNa2S, the width should be much broader because of
existence of the high amount of edge-sharing tetrahedr
the SiS2 or SiSe2 base networks.35 For glasses with a high
amount of ES tetrahedra, the lower limit atxc1 of the inter-
mediate phase is expected to decrease down tox50 for the
limiting caseh51. In the sulfur base glass,29Si NMR have
shown that the fraction of ES tetrahedra should be about
slightly higher than in the selenide analogous system.55,56

From Fig. 7, forh50.5 one should observe a window o
aboutDx50.09. Unfortunately, conductivity, structural, an
thermal results57 on these systems are only available for
alkali concentrationx.0.2. However, in the different silica
based glasses, a rigidity transition has been observed58 at the
concentrationx50.2 which should provide guidance fo
forthcoming studies in this area.

Finally, temperature and fictive temperature effects sho
be observable close to this transition. Since the concentra
of alkali free carriersnL depends on the temperature~the
higher the temperature, the highernL), an increase of the
temperatureT should lead to a decrease of the numb
of network constraints, the fraction of intact bond-stretchi
constraintsnc

a of the alkali atom being proportional to
12nL . Consequently, a shift of the mechanical thresh

FIG. 7. Critical concentrations in (12x)SiX22xM2X glasses,
with X5O, S, Se andM5Na, K, . . . , as afunction of the fraction
of edge-sharing~ES! in the base SiX2 glass. The inset shows th
corresponding width of the intermediate phase as a function of
same quantity.
4-7
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( f 50) to the higher concentrations should result from
increase ofT. On the other hand, fictive temperature effe
should be detectable from the rate of edge-sharing un
since it has been shown that the probability of rings59 has a
non-negligible dependence onTf . In silica, specific modes
~the so-calledD1 and D2 lines! appear in Raman spectro
scopic studies and have an Arrhenius dependence withTf
involving a corresponding ring activation energy. We conje
ture that the same may happen in the corresponding cha
genide glasses where two sets of samples prepared u
different kinetic conditions~through the value ofTf) would
produce different edge-sharing fractions~and consequently
different widths of the intermediate phase!. However, at this
stage of modeling, the SICA construction does not dis
guish between ring activation energy and fictive tempera
Tf so that the probabilities are only sensitive to lnei .

VI. SUMMARY AND CONCLUSIONS

To summarize, we have shown in this paper how str
change in molecular systems can be described using
.

p

z

h,

.A

, J

s.
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cluster construction and constraint counting. This permits
to go beyond the usual mean-field approach of rigidity and
obtain the two observed rigidity transitions. We have fou
that there is a single transition from floppy to rigid networ
in a certain number of structural possibilities. An interme
ate phase appears when a fraction of medium-range ord
allowed in self-organized networks and the order of the
derlying phase transitions is first and second order, and
pend also on the fraction of ES. Nanoscale phase separa
appears in the stressed rigid phase and is driven by the c
ter entropy. This separation leads to group-VI rich clust
and chalcogen rich clusters when the stoichiometric com
sition is attained. Finally, extension of this approach to io
conductors has been emphasized and should motivate
developments in this field.
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