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Model Hessian for accelerating first-principles structure optimizations
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We present two methods to accelerate first-principles structural relaxations, both based on the dynamical
matrix obtained from a universal model of springs for bond stretching and bending. Despite its simplicity, the
normal modes of this model Hessian represent excellent internal coordinates for molecules and solids irrespec-
tive of coordination, capturing not only the long-wavelength acoustic modes of large systems, but also the
short-wavelength low-frequency modes that appear in complex systems. In the first method, the model Hessian
is used to precondition a conjugate gradients minimization, thereby drastically reducing the effective spectral
width and thus obtaining a substantial improvement of convergence. The same Hessian is used in the second
method as a starting point of a quasi-Newton algorithm~Broyden’s method and modifications thereof!, reduc-
ing the number of steps needed to find the correct Hessian. Results for both methods are presented for
geometry optimizations of clusters, slabs, and biomolecules, with speed-up factors between 2 and 8.
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The exponential growth of computer power together w
recent methodological advances have opened first-princi
electronic-structure calculations to systems of unprecede
size and complexity. Some first-principles linear-scali
methods1,2 ~methods for which the required computer r
sources scale linearly with system size! already allow calcu-
lations involving a few thousand atoms. In many cases,
first problem to solve when facing a large and complex s
tem is the first-principles determination of its structure
means of some energy minimization algorithm. As poin
out by Goedeckeret al.,3 the linear scaling achieved for eac
ab initio force evaluation degrades to a higher order sca
for the structure determination, since the number of fo
evaluations increases with system size. This is due
the increasing ill conditioning of the structural optimizatio
with larger system sizes, which has become the main bo
neck in theab initio prediction of structures for the size
treatable now.

In the case of conjugate gradients~CG!, for example, the
number of evaluations is proportional to the condition nu
ber, defined as the ratio between the highest and the lo
nonzero curvatures of the energy landscape around
sought minimum. In any solid system, in the limit of larg
sizes, the lowest nonzero frequency is inversely proportio
to a characteristic side length of the system, given the lin
dispersion relation of long-wavelength acoustic phono
The condition number and thus the number of relaxat
steps contributes an additional overall scaling factor of
tweenN1/3 andN, depending on the system shape. A clev
solution3 is to use the known~or approximate! macroscopic
elastic properties to relax the long-wavelength lo
frequency modes. However, with an increasing number
atoms, there is also an increase in the complexity of
system and of the different kinds of low frequency modes
many complex systems of enormous importance~polymers,
biomolecules, and glasses, to name a few!, there are low-
frequency modes that do not correspond to any lo
wavelength continuum limit.
0163-1829/2003/67~10!/100101~4!/$20.00 67 1001
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This ‘‘complexity’’ is best characterized within the theor
of rigidity4 and its floppy modes. Their frequencies are ve
low, since they do not involve the stretching, bending,
torsion of any particular bond, but their wavelengths can
very short, in many instances the modes being localized
system with floppy modes is, therefore, ill conditioned f
relaxation. Even if these floppy modes do not strictly en
scaling arguments, they do spoil the structural optimizatio
of complex systems. The language introduced naturally
rigidity theory is that of internal coordinates: bond length
bond angles, and bond torsion angles. Internal coordin
are quite popular in chemistry and have indeed proven to
more efficient than Cartesian coordinates for the optimi
tion of molecular systems.5,6 They are weaker, however, fo
large condensed systems since, on one hand, they do
address the acoustic ill conditioning and, on the other ha
they are more complicated to handle for high coordination7

It is important to stress that avoiding ill conditioning re
quires a nonpathological identification of the low-frequen
modes, more than a very realistic description of the dyna
cal matrix. Realistic empirical potentials, no matter ho
good8 or universal,9 provide good dynamical matrices clos
to the minimum but may yield negative curvatures aw
from it. We present here a simple and natural way of addre
ing both sources of ill conditioning~acoustic and floppy! on
the same footing. It constructs a positive-definite dynami
matrix from a universal model of springs for bond stretchi
and bending, and uses it to improve the geometry relaxa
in two alternative ways, which correspond to two popu
minimization methods.

a. Model Potential. The proposed Hessian model is bas
on a simple bond bending and stretching potential, defi
for any system at the given coordinatesr i
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ki jk
b 5BAki j

s kjk
s r i j

0 r jk
0 , ~3!

where Ri and Rj are the covalent radii of the atom
connected.10 The sums in Eq.~1! are limited to neighbors
within 63maxi@Ri # The proportionality constantA in Eq.
~2! is irrelevant for the the first relaxation method describ
below but it does affect the second one~very moderately!. Its
value A53.03105 eV/Å2 has been defined universally b
adjusting the bulk modulus of cubic diamond, the larg
known in nature. Albeit arbitrary, a large constant ensu
small initial atomic displacements and thus the stability
the relaxation. The power 8 is also arbitrary but reasona
and has been chosen after some numerical tests. The re
magnitude of the bending and stretching constants has
been arbitrarily chosen asB51/10 after some tests. The in
troduction of the even weaker torsional forces in the pot
tial could bring further benefits and will be explored in lat
works. The Hessian is evaluated at thegiven (initial) coordi-
nates, r i

0 , of the system to be relaxed. By definition@see Eq.
~1!# r i

0 is at the minimum of the potential. A positive defini
Hessian is, hence, guaranteed.

The model has no system-dependent parameters an
completely universal. Despite its simplicity, it captures qua
tatively the separation between high-frequency stretch
modes and lower-frequency bending and torsion mode
similar separation is also provided by the method
Schlegel.8 It is at the cost, however, of greater complex
and loss of generality. Our method naturally yields the lon
wavelength acoustic modes, thus combining the main adv
tages of the methods of internal coordinates5,6,8and of elastic
modes.3

b. Preconditioned conjugate gradients. The problem of ill
conditioned minimization can be seen as the difficulty to fi
the way to the minimum along a gently sloped but narrow
shaped valley. The problem can be quantified by the co
tion number, the ratiovmax

2 /vmin
2 between the curvature

across and along the valley or, in a higher dimensional sp
between the largest and smallest curvatures. The numb
steps in the minimization process increases with grow
condition number, the precise scaling depending on the
ticular algorithm, quadratic for steepest descent and lin
for conjugate gradients, for example.

The number of evaluations of theab initio forces ~the
gradient! can be thus reduced by a transformation of coor
nates such that the curvatures in the new space give a sm
condition number. The effort required for the coordina
transformations is negligible compared with that of calcul
ing theab initio forces. Such preconditioning can be acco
plished by usinga priori knowledge about the system curv
tures.

Our preconditioning procedure requires an initial diag
nalization of the Hessian matrix of the model defined in E
~1!:

Hi j 5
]2U

]xi]xj
. ~4!

The ab initio forces F are then projected over the norm
modesn of that Hessian matrix and divided by the ‘‘freque
10010
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cies’’ vn ~the square root of the eigenvalues!:

f n5
F•n

vn
. ~5!

A conventional conjugate gradients routine is then used
minimize theab initio energy as a function of the new coo
dinates:

yn5vn~x•n! ~6!

wherex are the Cartesian coordinates.
The initial diagonalization represents an unimporta

computational effort for the systems treated nowadays w
first-principles techniques. In the future, however, this fo
seeable limiting step will have to be given some mo
thought. For example, the mentioned rigidity theory could
further exploited, given its ability of predicting subsets
floppy atoms versus rigid bits of the overall structure.4

Figure 1 shows the reduction in spectral width and con
tion number for a tenlayer gold slab, simulated with an e
bedded atom potential.11 This many-body potential has bee
chosen for some of our tests because the efficiency of
minimization methods, in terms of the number of iteration
does not depend on the specific form of the interactions
the new coordinates, the condition number is reduced b
factor 70, proving that the model potential represents a g
initial approximation to the real one.

c. Quasi-Newton method. Variable-metric methods12–14

minimize the energy by applying

dx52H21dF5H21F, ~7!

whereH is the Hessian anddF52F is the desired change o
the forces. Given the exact Hessian of a perfectly harmo
function, one step would suffice to find its minimum. Sin

FIG. 1. Histogram of eigenvaluesv2 of the Hessian~matrix of
second derivatives! of a 247-atom gold slab made of ten layers
25 atoms each, with three vacancies. simulated with an embe
atom potential.11 Upper panel: using standard Cartesian coordina
Lower panel: using transformed coordinates, for which the eig
values of our model Hessian become all equal. The condition n
ber ~ratio between largest and smallest eigenvalues! is given for
each case. The units ofv are per centimeter.
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TABLE I. Number of iterations needed to reach a force tolerance of 1026 eV/Å in a ten-layer crystalline
slab and a 77-atom cluster of gold, simulated with an embedded atom potential. The initial atomic c
nates were randomly displaced from the equilibrium geometry in an interval of6dx0. Fmax

0 is the maximum
initial atomic force. The conjugate gradient~CG! method was used with conventional Cartesian coordina
~CG! and with preconditioned coordinates~PGC! that diagonalize the model Hessian~at the initial geometry!
or the exact Hessian~at the minimum!. The variable-metric Broyden method was used starting with
conventional unit-matrix Hessian and with our new model Hessian.

System dx0 Fmax
0 CG PCG PCG Broyden Broyden

~Å! ~eV/Å! Model H Exact H Unit H Model H

250 atom 1024 2.1331023 40 18 3 8 5
Crystalline 1023 2.1331022 100 29 7 15 9
Slab 1022 2.1431021 180 35 10 32 14

1021 2.52 240 60 45 339 33
77 atom 1024 3.0331023 51 22 3 22 14
amorphous 1023 3.0331022 72 40 6 29 19
Cluster 1022 3.0431021 101 53 9 36 25

1021 3.25 167 90 50 140 27
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the potential is generally not harmonic and the Hessian
unknown, an iterative process is followed in practice, sta
ing with a trial Hessian, moving according to Eq.~7! and
updating the Hessian afterwards so that it obeys Eq.~7! for
the true change of the force found. Since no information
generally known about the Hessian, a unity matrix is used
the initial H21. We simply use the inverse of our mod
Hessian instead, and then apply a standard variable-m
method.13 This latter idea has already proposed and used
Fisher and Almlo¨f,14 using a modified version of Schlegel
model for the Hessian.8

Again, the fact that our model Hessian captures nontriv
low-frequency modes allows the iterative learning proces
save many steps to find out about them~the ill-conditioning
affects this kind of methods as well!. The initial inversion of
the model Hessian represents a very small overhead c
pared with the evaluation ofab initio forces.

In addition, Broyden-like methods lend themselves nic
to hierarchical approaches whereby lower quality relaxati
can feed the Hessian for higher quality ones. For exam
one can perform a relaxation with a small basis set for
electronic structure, starting from our model Hessian, a
use the resultingab initio inverse Hessian to launch a fine
relaxation with a better basis set. We will explore this a
proach in a later work.

The two methods have been applied to systems of dif
ent character and complexity, namely, to metal clusters
slabs, and a biomolecule. They constitute quite extreme
amples of complex systems. On one hand, two systems
high coordinations and a nontrivial energy landscape.15 On
the other, a low-coordination molecule with floppy modes

Table I shows results for the relaxation of two gold sy
tems, simulated with the embedded atom potential:11 a ten-
layer crystalline slab and an amorphous 77-atom cluster.
number of iterations needed to reach the minimum are gi
as a function of its distance from the initial coordinates, ch
sen at random within a window of6dx0 from the relaxed
structure. Our two methods are compared with~i! regular
CG, ~ii ! CG preconditioned with the exact Hessian, and~iii !
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Broyden’s method starting from the identity matrix. The e
act Hessian is calculated at the minimum because other
it soon develops negative eigenvalues, whereas the m
one is evaluated at the starting point, since it is always p
tive definite.

The table shows that our model Hessian improves con
erably the efficiency of both the CG and the modified Bro
den methods. As expected, the efficiency of the Broyden-
schemes is superior when starting close to the minimu
though this advantage decreases with initial separation f
the harmonic basin. It is also interesting the comparison
our preconditioned CG with the one using the exact Hess
at the minimum~which is generally not available in practice
of course!. The latter is extraordinarily efficient when starte
well within the harmonic basin, but it deteriorates very ra
idly with distance, making it not much better than o
method in practice. We do not, therefore, expect a be
performance if using realistic empirical potentials instead
our universal model.

Figure 2 shows the convergence in energy, forces,
atomic positions, for the ten-layer gold slab with the differe
methods discussed. Within CG, the convergence is slo
during the first steps with the preconditioned method for
energy and the forces, but not for the coordinates. This
because CG responds with larger displacements to the
curvature modes, which dominate the energy drop in the
tial stages. The situation is reverted soon, however, and
overall efficiency is clearly better for preconditioned CG.

The modified Broyden method with our model Hessi
initialization is most efficient for small displacements fro
the minimum, accelerating the convergence by factors 3
In this and other systems, we have generally found that
Broyden method is extremely effective whenever it sta
well within the harmonic basin. However, it is rather sen
tive to other effects, as, for instance, the space inhomoge
ity introduced by the grid used to integrate the Hartree a
exchange-correlation energies in ourab initio method.1 On
the other hand, the preconditioned CG method appears t
more robust against this kind of effects.
1-3
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Figure 3 shows the convergence for a piece of a dou
helix of DNA with two base pairs~134 atoms!. The forces in
this case were calculated usingab initio density-functional
theory, norm-conserving pseudopotentials, and a basis s
numerical atomic orbitals.1 The preconditioned conjugated
gradient method represents a much better option for rela

FIG. 2. Logarithmic convergence of the energy~a!, forces~b!,
and coordinates~c!, for a tenlayer gold slab with 247 atoms an
three vacancies. The initial coordinates where randomly displa
by ;0.2 Å from the equilibrium geometry. Four different minim
zation methods were used: conventional conjugate gradients~CG!;
preconditioned conjugate gradients~PGC!; Broyden’s method start-
ing from a unit Hessian matrix~BU!; and Broyden’s method start
ing from our model Hessian~BM!.
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this molecular system. Low-energy modes not included
the acoustic branch are responsible of the ill conditioning
the relaxation of these sort of structures and the model ta
account of them, improving the convergence by a factor o

We have developed two methods for accelerating fi
principles structure relaxations, based on a classical and
versal model Hessian. Drastic improvements in overall e
ciency are achieved, reducing the number of minimizat
steps by factors of 2–8 in the cases studied. Of the
methods presented, the Broyden method is more effic
when sufficiently close to the minimum, while the precond
tioned CG method is more robust when the energy landsc
is far from harmonic.
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d

FIG. 3. Logarithmic convergence of the energy of a two-ba
pair DNA strand relaxed with conventional conjugate gradie
~CG! and preconditioned conjugate gradients~PGC! methods, using
atomic forces obtained from density functional theory.1
d

ry,
e,
1J.M. Soler, E. Artacho, J.D. Gale, A. Garcı´a, J. Junquera, P. Or
dejón, and D. Sa´nchez-Portal, J. Phys.: Condens. Matter14,
2745 ~2002!.

2D.R. Bowler, T. Miyazaki, and M.J. Gillan, J. Phys.: Conden
Matter 14, 2781~2002!.

3S. Goedecker, F. Lancon, and T. Deutsch, Phys. Rev. B64,
161102~2001!.

4J.C. Phillips and M.F. Thorpe, Solid State Commun.53, 699
~1985!

5P. Pulay, G. Fogarasi, F. Pang, and J. Boggs, J. Am. Chem.
101, 2550~1979!.

6Jon Baker, J. Chem. Phys.105, 192 ~1996!.
7J. Andzelm, R.D. King-Smith, and G. Fitzgerald, Chem. Ph

Lett. 335, 321 ~2001!
.

oc.

.

8H.B. Schlegel, Theor. Chim. Acta66, 333 ~1984!.
9A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, an

W.M. Skiff, J. Am. Chem. Soc.114, 10024~1992!
10See, www.webelements.com
11S.M. Foiles, Phys. Rev. B32, 3409 ~1985!; M.S. Daw and M.I.

Baskes,ibid. 29, 6443~1984!.
12W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flanne

Numerical Recipes~Cambridge University Press, Cambridg
1992!.

13D. Vanderbilt and S.G. Louie, Phys. Rev. B30, 6118~1984!.
14T.H. Fischer and J. Almlo¨f, J. Phys. Chem.96, 9768~1992!.
15J.M. Soler, M.R. Beltra´n, K. Michaelian, I.L. Garzo´n, P. Ordejo´n,

D. Sánchez-Portal, and E. Artacho, Phys. Rev. B61, 5771
~2000!.
1-4


