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Sum rule analysis of umklapp processes and Coulomb energy:
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The third moment frequency sum rule for the density-density correlation function is rederived in the pres-
ence of umklapp processes. Upper and lower bounds on the electron-electron Coulomb energy are derived in
two-dimensional and three-dimensional media, and the umklapp processes are shown to be crucial in deter-
mining the spectrum of the density fluctuatioespecially for the two-dimensional systems§his and other
standard sum rules can be used in conjunction with experimental spectros@p@&mn energy-loss spec-
troscopy, optical ellipsometry, ejdo analyze changes of the electron-electron Coulomb energy at the super-
conducting transition in cuprates.
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[. INTRODUCTION upon transitionscan be established consistently from experi-
ments with the use of sum rules at the outset. Such an ap-
Theoretical progress in the understanding of the microfproach, taken in this paper, can potentially identify the origin
scopic origin of high-temperature superconductivity appear®f the condensation energy and the phenomenological
to be ambiguous. The novelty and difficulty is to describe theHamiltonian sufficiently to describe superconductivity and
strong effects of the electron-electron interactions which deother strongly correlated phases. For a much more explicit
termine the strongly correlated phases of cuprates at variod@Position of the general philosophy adopted in this paper,
dopings: the Mott antiferromagnetic insulator, the “anoma-S€€ the Introduction in Ref. 3. _
lous” metallic state, and the superconductor. In fact, the fun- T the ion kinetic and ion-ion Coulomb energies are as-

damentally new microscopic origin of superconductivity sEmed wrelev&nt(orh n otther '}/lvords, tdhtzse tetrglst do_notth
(SO in these materials is, perhaps, due to electron-electrofi 'an9e upon the phase transi |onssan 0 not determine the
interactions unlike standard phonon-mediated'mportant correlated phaseghe fulP electron-ion Hamil-

superconductivity:> We explore the general aspects of suchtonlan can be reduced to the following form:
a scenario with the help of sum rules for the density-density
correlation function. . p? | 1 " n
The particular question of interest is the origin of the con- H= E(r ﬁcp,ucp,ﬁ 20 ;0 Vqlpgp—q—N]
densation energy, the difference in the energy between the > K
“normal” state extrapolated ta'=0 K, and the supercon- A
ducting ground state. The famous BCS theory of +,;0 U—Pic 1)
superconductivityis based on the assumption that the attrac-
tive interaction between electrons arises from the lattice vi- .
brations. Here we would like to investigate a general alterWhere pq== ,Cy_q ,Ci =2 €% is the total density op-
native to the BCS phonon-mediated superconductivityerator.N is the number of electrons, afilis a total volume.
namely, that the superconducting sté&tey., the condensation The first and second terms are the kinetic and Coulomb in-
energy is promoted either by the long-range part of electron-teraction energies of the electrons. The third term describes
electron Coulomb interaction or by the short-range part othe interaction of the electrons with the periodic potential of
electron-electron and static electron-ion interactions. Théhe lattice, which can be represented by the umklapp pseudo-
identification of the part of the full electron-ion Hamiltonian potentialU _, with the sum over corresponding wave vectors
responsible for the condensation energy would be an impor of the reciprocal lattic8. The term of interaction between
tant step towards a complete and consistent theory of higtelectrons and the positive homogeneous ion background is
temperature superconductivity. omitted. In spite of making the “static lattice” assumption
Many proposals for the condensation energy have beefthe dynamic lattice effectgée.g., phononsare neglectefd
suggested:* most of them(except Ref. Bbased on phenom- the Hamiltonian(1) is quite general. For instance, the Hub-
enological Hamiltonians. Experimental confirmation of thebard model(and multiband versions of)iis only a reduced
origin of the condensation energy based on a phenomenaersion of the Hamiltoniafl) which neglects the long-range
logical Hamiltonian would still require the validation of the part of the Coulomb interaction. Presumably, the Hamil-
phenomenological Hamiltoniariby various other experi- tonian(1) is sufficient not only to describe the Mott insulat-
ments in order to construct a self-consistent theory. Alterna-ing state and the metallic state at high densities away
tively, the essential terms of the fulbriginal electron-ion  from the half-filled bangbut also all other important phases
Hamiltonian(and changes of the expectation values thereobf the cuprates.
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We can analyze the electron Coulomb energy in situationslerived by calculating the commutators of the density opera-
of different dimensionalities. In an isotropic medium the tor and the Hamiltonian. To calculate the well-kno¥vaum
three-dimensional (3D) Coulomb potential is V, rule (or the first moment sum rulét is necessary to calculate
=€’/ ege..q°, Wheree., is the high-frequency dielectric con- the expectation value of the operafpp,,H],p_4]. Another
stant due to the screening by the core electfomsa two-  additional sum rule is the causalitkramers-Kronig rela-
dimensional (2D) plane, the Coulomb potential %  tion. These two well-known sum rules afe
=e?/2¢ye..q. For a layered electron gas with interplane dis-

tanced (relevant for the discussion of single-layer cuprates 2 (+*Imx(q@)
the Coulomb interaction is Joa=— . ——dw=x(q,0), 7
2 .
v —_® d sinh(qd) @ 2 _n_qz
49 2¢q€.,,0 cosliqd)—cogq,d) Ji= g olmy(q,w)dw= o (8)

with different dependencies on the wave numlzpparallel

andq, perpendicular to the planésThe Coulomb potential

of a layered gas becomes three-dimensiondl

=e?/eye.02, in the long-wavelength limitq,d<1 andqd

<1) and two-dimensionah/qze2/2606xq, for short wave- 2 (i

lengths @d>1, independently o, momentun. Jg= ;f @°lm x(q,w)dw
0

To calculate thes®>-moment sum ruf€ the expectation value

of the operatof[[[ pq,H],H],H],p_4] must be calculated.
The result of a long calculation is

Il. SUM RULES. 1

m2

1 .a -
The electron-electron Coulomb energy can be related to <§ Z (Kq)z(_UKPK)>
the density response functigf{q,»), and thus it is instruc-
tive to analyze various sum rules for this response function. n2 3
In particular, the expectation vald®/.) of the Coulomb en- +0*— Vgt a*—(Tp) +0°
ergy can be written in the form m m

2nh2
(2m)3

n 1 - = - -
.. 22 2
t a2 Vipea(Pata)? = Vy(pa)IS,,

1 .. 1
<Vc>5m % Vq[<Pquq>_N]:% [(Vc,q>_§\/qn
1 dw ho R ©
<Vc,q>=§quﬁ'mx(q'w)co“(m)’ @ where  T,,=103,[(p4)%2m]c; c,= [[d®p/(2777)°]

wheren=N/( is the density of the electron system, and thex[(plq)ZIZm]c;cp is the projected kinetic-energy operator,
density-density correlation functibhy(q,w) is defined in  andq=q/|q| is a unit vector along the direction of This
the standard waj**? higher-order sum rulgEq. (9)] is convenient for analysis of
- high-frequency transitions in the densii;ty response, because it
_ T i ~ weights higher frequencies by a facter. The existencéor
x(Q,0)= hﬂfo dte“ [ p(q,t),p"(9,01). (4 convergenceof the third moment sum rule can be demon-

) ) ) strated by showing that all terms on the right-hand side of
(Ve,q) Is the expectation value of the partial Coulomb energygq (g are finite. The first and the third terms are expected to
corresponding to a particular value of momentamThe o finite, because they are essentially related to the finite
structure factoiS, , expectation values of the electron lattice and the kinetic en-

1 ergy in the ground state. The convergence quigpendence
Sq:N<pqpfq>_N5q,01 (5) of the last term will be discussed in detail separately for 2D
and 3D cases.

can be expressed again through the imaginary part 'ne three sum rulesEgs. (7)-(9)] allow us to derive
Im x(q,®) using the fluctuation-dissipation theorem upper and lower boun&on the electron Coulomb energy,
and hence to discuss the possible changes of Coulomb en-

+o0 ho\ ido ergy due to the phase transition. Since the imaginary part of
n5q=f Im x(q,w)coth o—| ——, the susceptibility Imy(q,®) is a real positive definite func-

o 2kT/) 2 : . o .

tion, the two Cauchy-Schwartz inequalities can be written for

1 the partial Coulomb energfV.), at T=0 K,
(Veg)=5VqnS. (6) 3\ 112

2 1 2 1 2v1
E(VqJ_lJl)”Z;(Vc,q)z 3 VqJ— . (10
Various sum rules for the imaginary part of the suscepti- 8
bility Im x(q,w) (valid for an arbitrary dimensional system It is convenient to introduce the notional “plasma fre-
with the appropriate form of Coulomb potentid}) can be  quency” w,(q) defined byw,(q)=(ng?V,/m)¥2 In fact,
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defined as above, the “plasma frequency” has the right as-

1
ymptotics for the corresponding plasma waves in the three-

c
Sp=1-—2+0 (16)

dimensional casé w} 5p(0) =e?nap/(eom)] and the two-
dimensional case[ w}, ,p(q) =€?nypa/(2€om)].  Another
relation, which is useful in order to rewrite tlde ; sum rule
for g—0, can be derived in the long-wavelength limg (
<(tg, Where gr¢ is the inverse of the Thomas-Fermi
screening lengthfor the full susceptibility y(q,0), if we
expressy(q,w) through the “bare{or local) susceptibility
XO(q!w):

_ XO(q!w)

= T+ Voxo(@ @) )

x(g,0)

(this is an exact result, not a random-phase approximation,

provided x, is defined in terms of the relevant irreducible
diagrams$. If “bare” susceptibility x¢(qg,0) of the electron
liquid is assumed to be finitesee Sec. 4.1 of Ref. 12 for the
compressibility sum rule then forq<qqrg,

1

x(q,0=0)= ~v (12
q
Vg 1+

Vqu(q,O)}

The discussion up to this point is valid for any dimensional-
ity of the system(with the corresponding form of Coulomb
potential V,). In what follows we analyze the two-
dimensional and three-dimensional cases separately and fi
important differences.

We consider first the 3D case. The leading terms at smal
g for the third moment sum rule are

2 2
Jg~ q—<A>+q4n—vq, (13
m? m?
whereA=1/03 (xq)%(— 1)U_ p, .1 The third and fourth

terms in Eq(9), being proportional ta* andq® powers, are
subdominant. The last term in E),

1 - ..
?f d®p[Vj54¢(PA+0%)*=Vp(pd)®InS,, (14

requires careful analysis of its convergence andepen-
dence. They dependencéand convergengedue to the part
of the integral over small momenta is evident, since the
upper bound on the pair-correlation functi§p[see Eqs(6)
and (10)] is S,<BpP*12 (whereB is a constant an® is
dimensionality’’ is

f dpV,(PD A Sy q— Spl~ f d®pV,(pa)?s, (15

for small momentgp<<q. Since in the 3D case the upper
boundS,< Bg?, the contribution from small momentain-
tegration is at least of ordeg* (or higher power ofg for
small q). To analyze theq dependence of the part of the
integral[Eq. (14)] from the integration over large momenta
p, we use the “cusp theorem'® which gives the asymptotic
behavior at large momenfa(the 3D casg

2l

p4 5
where C5p is some constant. The integral of Ed4) with
S,=1 is identically zero(this is why S, can be substituted
by S,—1 if convenient. It is easy to see that the integral
over p with the second term of expansi@yp/p?, is con-
vergent. By expanding in powers of/p) for large p, the
leadingq dependence of the considered term

f d3pV,(PA) L Spsq— Sol

V. (p 1
:dep p(p

[1+(q/p)?+2(q/p)cosd]? -1
(17)

9)?Cap
p4

is found to be proportional tq*. The terms, proportional to
g® and other odd powers of equal zero after the integration
over angled [ cos6=(pg)/pq s the angle betweep andq)].

It can be seen that for largethe last tern{Eq. (14)] grows

no faster tharg* as well. What is important for the ensuing
discussion is that, both for small and lamgethe last term of
Eq. (9) hassubleading § dependence on the wave vectpr

The upper and lower limits on the partial Coulomb energy

50 be conveniently written in terms of the 3D “plasma fre-

quency” as
I 5 ,
E wp,3D(Q) +o(q )><Vc,q>,

h

wp,SD(Q)
<Vc,q>25

(A)

nmwf)zD(Q)

+0(0?). (18

1+

The inequalitieg18) have an interesting significance for the
possibility of gaining energy, in the SC condensation, from

smallq modes. We first notice that in the 3D case(&)

=0 in both normal and superconducting states, which is cer-
tainly the case if there is no crystalline potential, the terms
proportional tog* [the third and last terms of the right-hand
side of Eq.(9)] determine the difference between the upper

and lower bounds. Therefore(iA)=0, then for giverg the
maximum  possible  saving is  proportional

(h12)wp 3p(a/qo)®  (where do~drr3p and  dresp

= \Je’kem*/eom?h? in three dimensionskg is the Fermi
wave vectoy, which is a negligible portion of the partial
Coulomb energyi/2w, 3p at long wavelengths. In fact, in
the absence of the umklapp processes the sum [rHbEs (8)
and (9)] essentially fix the density spectrum at long wave-
lengthsq<qrg to the plasma pole contribution: Ig{(q, )
~[7hw, 3p(0)/2V4] 0l @ — wp 3p(q) ], Which satisfies com-
pletely all three sum rules @a—0 . Other terms in the,
sum rule become comparable with the dominant term
q*Vgn?/m? only at g=qr¢. Therefore, a large saving of

to
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Coulomb energyn the 3D case in the absence of the lattice mated by a plasma pole expression, #meplasmon is never
due to the phase transition is possible only for short wavereally a well-defined excitation in two dimensions in the
lengthsq=qrr 3p. presence of umklapp scatterinthis means that the umklapp

In the presence of the periodic lattice potentigh)  Scattering modifies stronglyor “nonperturbatively’) the
#0), it can be seen from the inequalitiés8) that forq  SPectrum of the density fluctuations, and the spectrum is
<0t 3p the maximum theoretical saving is a finite fraction dominated by multipair and pair excitations rather by a plas-
of the zero-point plasma energly/2w, 3p(q). Therefore, ~mon. Of course, the mere existence of a large valug\pfis
substantial saving of the Coulomb energy in the long-in itself perfectly compatible with a traditional textbook pic-
wavelength limit is possible only in the presence of a strondure, in which the sum rules are satisfied by taking proper
crystalline potential In three dimensiongwhere the Cou- account of interband transitions; in such a case there i no
lomb interactiori\/q:ezleoqz), the umklapp terng?m%(A) priori reason why a plasmon associated with the excitations
contributes in the same leading order of powers afto the ~ Of the conduction band must automatically be ill defined.
J; sum rule as the Coulomb terg(n?/m?)V, [see Eq. However, in a system where umklagguasi-momentum-
(13)]. The umklapp term is then responsible for the finite NONconservinginteractions between the Bloch quasiparticles

width (or “lifetime” ) of the plasmon peak. are strong it seems natural that these alone could give rise to
In the 2D case, the leading terms are again a substantial value of Irg even below the first band gap;
particularly in view of the above remark about the enhanced
2 n2 effect in the 2D case, it is tempting to view the so-called
J3:F<A>+Q4EVQ’ZD' (19 midinfrared peak in the cuprates in this light.

The upper bound on the partial Coulomb energy is still
Other terms are subleading and proportionaigfoand ¢ half of the plasmon energyw, »5(q)~\a], but the lower

powers. The last term can be analyzed similarly to the 3Cbound at smalb if <A)¢0 is essentially given by
case and shown proportional & at smallg. Using the

“cusp theorem” for the 2D cas¥ h wp 2p(Q)
(chq>> 5 = s (22)
C 1
S=1-—2+0 —4>, (20 P A
p p NMw? 55(0)

we can expand in powers af/p for large momentg and

keep the leading term as a function qfp: and so in the limig—0,

1/2
d2pV, oo(PD[Sprq— S (V )>éw2 ()T ~q. (23)
PVp,20(PA) T Sp+q~ Sp ea)= 3 “p20l | 73] A
V, 20(Pd)%Cap Therefore, bounds, based on sum rules, are compatible with
_ 2.'p
=|dPp p? saving of almost all Coulomb energy ) w, ,p(q) in two
dimensions whetA)#0.
1 It is necessary to mention extensive literatufer in-

stance, Ref. 14using sum rulegin particular, a third mo-
ment sum rulgin order to analyze and derive various local-
(21 field corrections and approximations of the density response,
whereas our goal in this paper is to analyze general con-
straints on the electron Coulomb energy at snyaltithout
relying on any approximation.
o It is also interesting to discuss briefly, for comparison, the
(14)]. In the absence of umklapp scatteringhf=0), the  interaction energy of a many-particle system interacting via a
density spectrum is given by the expression \d,») — short-range potentiaM,— Vo=const, forq—0). The upper
~[mhwp,20(0)/2Vq,20] 6l @ — wp 2p(q) ], which satisfies all  pound on the partial interaction energy;,. ) is given by
thre_e sum rules at smajl The maximum possmle.savmg of the “acoustic mode’:/2[V3(ng?/m) xo(,0)]¥2
partial Coulomb energy at long wavelengths is of order
h120p ,0(0)(A/G7r 20) [Where gt p=6"M*/2megh? is a h (Von

2D Thomas-Fermi screening wave vedtor 5

—1
. ( [1+(a/p)?+2(q/p)cosd]®?

Due to the angld integration, terms proportional @p* and
other odd powers vanish. For largethe last term grows no
faster tharg* also[due to the first term in the bracket of Eq.

m—s)q><Vim,q>, (24)
The presence of the umklapp teqym?(A) has a much
more dramatic effect on the density spectrum in two dimenwhere x4(q,0) is given by the compressibility sum rife
sions, because this term, proportionald® has a leading xo(q,0)=n/ms?, wheres is the velocity of sound. There-
power ofq in the third moment sum rule at smajldomi-  fore, the maximum available interaction energy at a long
nating over the Coulomb tergunlike the 3D case, where the wavelength is insignificaniespecially when weighted by the
umklapp term has the same powgdependence as the Cou- phase volume For instance, it implies that in most phase

lomb term). The density spectrum cannot even be approxitransitions in neutral systenfse., many-particle systems in-
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teracting via a short-range potenjittie interaction energy is gies(10 eV). It implies stringent requirements on experimen-

saved predominantly at short distances. tal techniques; nevertheless, changes associated with the SC
transition were observed by optics at midinfrared
IIl. EXPERIMENTAL PROBES frequencie$-?2 of a magnitude sufficient to provide the con-

] ] ] S densation energymeasured directly by specific-heat mea-

~ The remainder of this paper is devoted to a brief discussyrements It is worth noting that we do not discuss the
sion of the experimental spectroscopies which should, athanges at frequencies comparable to or lower than a super-
least in principle, be able to shed light on the origin of theconducting gapalthough these changes, of course, are most
condensation energy in the SC transition, and the inferencggmarkable consequences of superconducjivitgcause the
which we may currently draw from thertcf. also Ref. 3,  change of Coulomb energy associated with this region of
Sec. 4.2. For simplicity we will consider explicitly a single- frequencies is negligibldif limited to small momentaq
plane_cuprate such as TI-2201, so that in the normal phasquF)_ The optical reflectivity measuremeft€? have
there is only one large characteristic lengtither than, pos-  enough precision to explore the type of questions discussed
sibly, the electron mean free pattompared to the quantity i this paper, while it is hoped that transmission EELS can
gre, namely, the interplane spacird (typically ~10 A, achieve the required accuracy in the near future.

i.e., ~10—20q7¢) (note notational differences from Ref..3 In a 3D bulk metal, ellipsometric optical measurements
The case of a multilayer cuprate such as Bi-2212 is morgan measure the completeansversedielectric constant
complicated, since there is now a second “large” character-el(q’w), in the limit GHO, and hence the corresponding
istic length, namely, the intrabilayer spacing-8—5 A);  wyansverse” loss function If—1/e, (q,w)]. Since in the
however, the general pattern of the results is unchanged. lgymal phase, at least, there should be no distinction, in the

addition, we will assume tetragonal symmetry. Lo . :
The two spectroscopies which most directly probe theiMit d—0, betweere (g, ) ande, (4, ), it follows that in

Coulomb energy, or something closely related to it, are electhiS phase the&—0 limit of “loss functions™ measured by
tron energy-loss spectroscdfy (EELS and optical EELS and_by optics should coincide. Itis a somewhat dellj_
reflectivity2% in the latter case we shall assume that ellipso-cat€ guestion, once one renounces reliance on some specific
metric measurements are possible in an interesting frequenéjodel such as the Fermi-liquid one, which is to count as
regimé*?? so that we may deduce the relevant complex di-‘the g—0 limit”; in addition to the obvious scaleje or
electric constant without the use of Kramers-Kronig rela-qg, it is not immediately clear whether the inverse electron
tions. In a bulk isotropic 3D metal the situation is very mean free path Lis a relevant quantity. However, it is plau-
simple: to the approximation that we neglect multiple scat-sible that this quantity may not play a major role toin the
tering and the effect of the ionic cores, the transmissionnidinfrared region, thus we shall tentatively takéi>0“ to
EELS cross sectionr(q, w) is a direct measure of the quan- mean in the 3D casg<Qrr,qr .
tity VGIm x(0,w), wherex(q, o) is the “true” density sus- Some care is needed in adapting the above results to the
ceptibility as defined in Eq(4). Since in the 3D case the case of a layered material such as cuprates, even if we spe-
longitudinal dielectric constant(q,w) is identically equal cialize (as we shajlin the limit q,< 1/d, which is automati-
to 1+ (€% €,9?) xo(d, ) with the help of Eq.(11), we find  cally fulfilled in optical experiments and may be satisfied in
the simple result transmission EELS by a suitable choice of geometry. In the
context of EELS experiments, we now have to distinguish
25 between the casegl<1 andqd>1 (whereq is the ab-plane
’ component of the momentum Igssn the former case the
3D bulk formula[Eq. (25)] applies unchanged, provided that
where the constant is of purely geometrical origin and can bQH(q,w) is defined to be the tensor component of the longi-
calculated, and the quantity [m 1/e(q,w)] is usually tudinal dielectric constant corresponding to current flow in
known as the loss function. This formula is valid for arbi- the ab p|ane; note, in particu|ar, that, at least in the normal
trary g, including values larger than the inverse lattice spacphase, we expect that [m 1/€H(q"")] is nearly independent
ing in the approximation of neglect of the ionic cores direct- |6| in the limit g—0. In the opposite limitgd>1, we
;cattering effect. If the latter is taken into aclcou.nt,.the effectq,1d choose to continue to use the 3D formlEy. (25)],
IS to mult|pl)_/ the formula25) by a faqtor which is, in 9€N- hut we would then find that the|(q,w) so defined has a
eral, a function ofg but not of w, prowded_tha_\t the Iatter_ is strong explicit dependence @p A much more natural con-
small compared to typical core excitation energies \ention in this limit is to treat the scattering as occurring

gN 20 eV), and expected to behunaffected dby fthe SUPEIrCONgependently from the different Cy@lanes, and to define
ucting transition. Writing out the integrand of E@) ex- a two-dimensional (“per-plane”) version (g, w) of

plicitly in terms of xo(q, ) [see Eq(11)] and using the 3D : :
relation between the latter ang(q,»), we see that apart Xo(d,®), or equivalently a quantityct. Ref. 3, Sec. 4.1

from a function ofg the transmission EELS cross section is a

direct measure of the Coulomb energy locked up i@ K(q,w)=
It is well known that the condensation energy due to the 2

SC transition is extremely smdibf order 10 # eV per elec-  where €/(g,0) is the “natural” definition of the 3D bulk

tron (or per unit cell] in comparison with the atomic ener- ab-plane dielectric constant, i.e. the quantity which relates

1
€)(d,w)

1
cr(q,w)=const—zlm
q

1 @) d
2 X0 (,0)=5[€(q,0)~ €], (26
€oq
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the local polarization to the local field, and is expected to beducting transition. If it is the secon@oulomb one, in what
nearly constant over a rangg>1/d, and ¢, is its “back-  regimds) of g and w does the saving predominantly occur?
ground” (off-plang contribution(cf. Ref. 3. With this defi-  Part of the interest in these questions is that as we have seen
nition we find that, apart from factors depending onlygyn above, a conjectured answer can be tested directly in trans-
both the transmission EELS cross section and (8iegle-  mission EELS experiments.
p|ane Coulomb energy locked up in the rangédw are We start by recalling a well-known result: since the Origi—
proportional to the quantity nal (“true” ) Hamiltonian of theN-body systerm(the nonrel-
ativistic limit of the Dirac Hamiltoniahis composed exclu-
sively of kinetic-energy terms antunscreened Coulomb
, (27)  interactions, the virial theorem immediately tells us that the
change in total kinetic energpf electrons and ionsnust be
) ) ) . exactly minus half that of the total Coulomb energy
wherg €sc IS the dlelectrl_c constant which screens the COU'(eIectron-eIectron, electron-ion, and ionJjpand thus Cou-
lomb interactions of the in-plane electromte that, in gen- |5 mp energy must be saved in the superconducting transition
eral, ecis not equal taep). Thus, just as in the bulk 3D case, (and indeed in any other phase transition into a lower-energy
the transmission EELS cross section is a direct measure Qf4tg Wwhile this conclusion is very generic and rigorous, it
the Coulomb energy locked up in the relevant region ofig not ysually regarded as providing much insight into the
(0, ) space; note, however, that Hg7) introduces an extra = «mechanism” of superconductivity in the cupratéer for
explicit g dependence that is absent in the bulk case. Thig,5t matter in the classic superconductasice the term
subtlety seems to have been overlooked in the analysis 6fhechanism” is often held to refer to a low-energy effective
existing normal-state EELS dé?a)n the cuprates, where it pamilionian in which the separation of the original kinetic
seems to be assumed that even in the regit® 1 EELS 54 potential energies may no longer be explicit. However,
experiments measure the “bulké(q, ). In the intermedi-  the “intermediate-level” effective Hamiltoniaril) is suffi-
ate caseqd~1) a similar analysis using E) is possible,  ciently close to the original truly first-principles one in which
but will not be given here. , . the virial-theorem result for the latter might at least suggest
In the case of optical experiments on the cuprdteish  tnat it is one or both of the last two terms of H@) that are
the sample surface assumed to lie indleplang we always  ggyed
haveqd<1, q,d<1, and thus at first sight we would expect  |f we assume for the sake of argument that Coulomb en-
the complex dielectric constant inferred from reflectivity ergy is indeed saved, then where in the spacgaidw is it
measurements to be identical to tef{q,) inferred, via  saved? It is at this point that the sum-rule arguments of Sec.
Egs. (25) and (27), from EELS experiments in the limij Il come into their own. For convenience we reproduce here
—0. Existing measurements in the normal phase do appedle three relevant sum rules with terms of relative orgfer
to be consistent with this prediction. In the superconductingand h,igher omitted on the right-hand sides, with notation as
state, however, there are three complications: first, it is noin Egs.(7)—(9):
clear that even in the midinfrared regime the Cooper-pair
radius &, is not a relevant length scale, so that it may be

illegitimate to use the “true’ﬁ—>0 (9é,<<0) behavior ob-
served in the optics to infer the behavior in the regim&, 1/
<q<(re. Secondly, it is not completely obvious, particu- nq
larly in the former limitqéy<<1, that the finite-frequency Jl:W' (29
longitudinal and transverse dielectric constants must be equal

in the superconducting state. This latter complication may be n%q’ q
somewhat mitigated by a third consideration, namely, that at J3=—Vq+ —
the non-normal angles of incidence necessary in the ellipso- m? m?

metric technique, in layered material the measured quanti . o
is not simplye, but a combination o¢, ande;. We will not %here in the case of a layered systérg,is given by Eq(2)

2 2

attempt to develop those points further, but rather use ther@ind tengs t@/(eoe-q7) for qd<1 (:im'dqzdfl, see above
to draw the conclusion that, while the spectacular change8nd t0€%/(2¢q¢€-.q) for qd>1, andA is defined below Eq.
observed-?in the optically measured dielectric constants of (13). The (T=0-K) contribution(V.q) to the expectation
the cuprates at and below the superconducting transition asalue of the Coulomb energy from wave vectprs, up to a
strongly suggestive, a quantitative test of any scen@tich  factor, justd, [see Eq(6)].
as the midinfrared one of Ref) 3hat attributes the energy The arguments of Sec. Il now show that the maximum
saving largely to a regime af, small compared tg but ~ change of(V, ) in the “essentially 3D” regimeqd<1 is
large compared t@, (and 148), will require accurate trans- proportional to a finite fraction of the “3D plasmon energy”
mission EELS data taken across the transition, somethingut weighted byg? of the phase spaceliq), and hence the
which (as regards the midinfrared regime of frequencies maximum total saving possible from this regime is very
does not, to our knowledge, exist at present. small. On the other hand, the contribution from the regime

We finally and directly address the question of which of 1/d<q<qqrg [where the truncated forms, E428)—(30), are
the three terms in EqJ) is (are reduced in the supercon- still a good approximatiohcan be of ordeg®?[cf. the con-

1

—im 1+9K(qg,w)/ eg

\],1: (28)

1
Vq'

2 ~
(A), (30
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clusion after Eq(23)], provided the quantitYA) is substan- Phase transition. Taking into apcount both t_he phase-space
tial, while the phase space allows a significant saving ofactor and the extra factor af in the denominator of the
Coulomb energy sincdq,d?q~ (27/d)27qdqand 1<q  expression(27) in the 2D case, we find that in the regime

<q+e. Thus, in a quasi-2D system with a large value@)}, where QK) dominates, the contribution of smallis propor-

. 2 . . . .
substantial energy is, in principle, available for saving in thist'pnaI o g” in three dlmen5|oqs b.UI to a constant in two
dimensions, so that the relative importance of the long-

smallq regime. Tp e_:stimate the value pA) we retur for a wavelength regime is vastly enhanced in the 2D case.

mo!”nelnlt to fthe I!mltgdﬁl qnd refer to the n(r)]rrrr]]al-state On the experimental front, it has to be said that as noted
optical loss- uncznon ata;. using EG28)—(30) with the ap-  , per 21, the optical data, if extrapolated into the relevant
propriate form e%/(eoe~q) ] of Vq, we see thatthe quantity (. 1) regime with several other assumptions, indicate

(A)n is given, in natural units afi“e’/(epe..), by the expres-  rather the opposite, i.e., that the Coulomb energy associated
sion (“ n” is the normal-state value with the MIR regime actually increases in the SC state. How-
R ever, because of the various considerations noted above, this

(Adn 3. 3%3 31) extrapolation may be problematic, and a definitive test of the
n2e?/(eqe..) BT St MIR hypothesis must await quantitative transmission EELS
. ) i i measurements across the superconducting tranditora
Although a strict evaluation of the right-hand side of E2{l) better theoretical understanding of the generitependence
from the optical loss function requires us to know the effec-¢ (g, ») in the SC statp
tive frequency cutoffsince at high frequencies there will be In sum, we analyzed the electron-electron Coulomb en-
contributions toe(q, ) from “core” processes not described ergy in the presence of the periodic lattice potential using
by Eq.(1)], it is clear that the mere existence of a midinfra- yarious sum rules for the density-density response function.
red (MIR) peak extending over an order of magnitude inye pelieve that in this paper we have made it plausible that
frequency already implies that.it at least of order of one.yo specific properties of cuprates, namefy, the layered
Thus, a very appreciable frac'qon of the Coulomb energy(wo-dimensional structure of the Cu@®planes andii) the
locked up, in the normal state, in the lay-MIR-frequency  gccurrence of a broad and strong peak in the optical loss
regime is, in principle, available for saving in the SC transi-fynction can be essential ingredients in the occurrence of
tion (or indeed in other possible phase transitjoghether  high-temperature superconductivity in these materials by

it is saved and to what extent, as is, in fact, postulated in thgonspiring to save the smail-(q<qrg) part of electron-
“MIR scenario” of Ref. 3, depends of course on the cost of gjectron Coulomb energy.

the formation of the Cooper pairs in kinetic and/or static
lattice energies. Actually, rather than asking as above for the
fraction of the Coulomb energy which is, in principle, avail-
able for savingsomething which is not that significant if the =~ We are grateful for discussions with Dirk van der Marel
original value is itself smal) it may be more informative to and Neil Ashcroft. A.J.L. acknowledges the support from
estimate the relative contribution of the smalFegime in  Grant No. NSF-DMR-99-86199. M.T. was supported by
two and three dimensiorisr a given change iryo due to the  EPSRC.
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