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Sum rule analysis of umklapp processes and Coulomb energy:
Application to cuprate superconductivity

Misha Turlakov1 and Anthony J. Leggett2

1Cavendish Laboratory, University of Cambridge, Cambridge, CB3 OHE, United Kingdom
2Loomis Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

~Received 17 July 2002; published 31 March 2003!

The third moment frequency sum rule for the density-density correlation function is rederived in the pres-
ence of umklapp processes. Upper and lower bounds on the electron-electron Coulomb energy are derived in
two-dimensional and three-dimensional media, and the umklapp processes are shown to be crucial in deter-
mining the spectrum of the density fluctuations~especially for the two-dimensional systems!. This and other
standard sum rules can be used in conjunction with experimental spectroscopies~electron energy-loss spec-
troscopy, optical ellipsometry, etc.! to analyze changes of the electron-electron Coulomb energy at the super-
conducting transition in cuprates.
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I. INTRODUCTION

Theoretical progress in the understanding of the mic
scopic origin of high-temperature superconductivity appe
to be ambiguous. The novelty and difficulty is to describe
strong effects of the electron-electron interactions which
termine the strongly correlated phases of cuprates at var
dopings: the Mott antiferromagnetic insulator, the ‘‘anom
lous’’ metallic state, and the superconductor. In fact, the f
damentally new microscopic origin of superconductiv
~SC! in these materials is, perhaps, due to electron-elec
interactions unlike standard phonon-mediat
superconductivity.1,2 We explore the general aspects of su
a scenario with the help of sum rules for the density-den
correlation function.

The particular question of interest is the origin of the co
densation energy, the difference in the energy between
‘‘normal’’ state extrapolated toT50 K, and the supercon
ducting ground state. The famous BCS theory
superconductivity1 is based on the assumption that the attr
tive interaction between electrons arises from the lattice
brations. Here we would like to investigate a general al
native to the BCS phonon-mediated superconductiv
namely, that the superconducting state~e.g., the condensatio
energy! is promoted either by the long-range part of electro
electron Coulomb interaction or by the short-range part
electron-electron and static electron-ion interactions. T
identification of the part of the full electron-ion Hamiltonia
responsible for the condensation energy would be an im
tant step towards a complete and consistent theory of h
temperature superconductivity.

Many proposals for the condensation energy have b
suggested,3,4 most of them~except Ref. 3! based on phenom
enological Hamiltonians. Experimental confirmation of t
origin of the condensation energy based on a phenom
logical Hamiltonian would still require the validation of th
phenomenological Hamiltonian~by various other experi-
ments! in order to construct a self-consistent theory. Altern
tively, the essential terms of the full5 original electron-ion
Hamiltonian~and changes of the expectation values ther
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upon transitions! can be established consistently from expe
ments with the use of sum rules at the outset. Such an
proach, taken in this paper, can potentially identify the orig
of the condensation energy and the phenomenolog
Hamiltonian sufficiently to describe superconductivity a
other strongly correlated phases. For a much more exp
exposition of the general philosophy adopted in this pap
see the Introduction in Ref. 3.

If the ion kinetic and ion-ion Coulomb energies are a
sumed irrelevant~or in other words, these terms do n
change upon the phase transitions and do not determine
important correlated phases!, the full5 electron-ion Hamil-
tonian can be reduced to the following form:

Ĥ5(
p,s

p2

2m
cp,s

1 cp,s1
1

2V (
qÞ0

Vq@ r̂qr̂2q2N#

1 (
kÞ0

U2kr̂k , ~1!

where r̂q5(k,sck2q,s
1 ck,s5( rW i

eiqW rW i is the total density op-

erator.N is the number of electrons, andV is a total volume.
The first and second terms are the kinetic and Coulomb
teraction energies of the electrons. The third term descr
the interaction of the electrons with the periodic potential
the lattice, which can be represented by the umklapp pseu
potentialU2k with the sum over corresponding wave vecto
k of the reciprocal lattice.6 The term of interaction betwee
electrons and the positive homogeneous ion backgroun
omitted. In spite of making the ‘‘static lattice’’ assumptio
@the dynamic lattice effects~e.g., phonons! are neglected#,
the Hamiltonian~1! is quite general. For instance, the Hu
bard model~and multiband versions of it! is only a reduced
version of the Hamiltonian~1! which neglects the long-rang
part of the Coulomb interaction. Presumably, the Ham
tonian~1! is sufficient not only to describe the Mott insula
ing state and the metallic state at high densities~far away
from the half-filled band! but also all other important phase
of the cuprates.
©2003 The American Physical Society17-1
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We can analyze the electron Coulomb energy in situati
of different dimensionalities. In an isotropic medium th
three-dimensional ~3D! Coulomb potential is Vq
5e2/e0e`q2, wheree` is the high-frequency dielectric con
stant due to the screening by the core electrons.7 In a two-
dimensional ~2D! plane, the Coulomb potential isVq
5e2/2e0e`q. For a layered electron gas with interplane d
tanced ~relevant for the discussion of single-layer cuprat!
the Coulomb interaction is

Vq,qz
5

e2d

2e0e`q

sinh~qd!

cosh~qd!2cos~qzd!
~2!

with different dependencies on the wave numbersq parallel
andqz perpendicular to the planes.8 The Coulomb potentia
of a layered gas becomes three-dimensional,Vq
5e2/e0e`q2, in the long-wavelength limit (qzd!1 andqd
!1) and two-dimensional,Vq5e2/2e0e`q, for short wave-
lengths (qd@1, independently ofqz momentum!.

II. SUM RULES.

The electron-electron Coulomb energy can be related
the density response functionx(q,v), and thus it is instruc-
tive to analyze various sum rules for this response functio9

In particular, the expectation value^Vc& of the Coulomb en-
ergy can be written in the form

^Vc&[
1

2V (
q

Vq@^r̂qr̂2q&2N#5(
q

F ^Vc,q&2
1

2
VqnG ,

^Vc,q&[
1

2
VqE \dv

2p
Im x~q,v!cothS \v

2kTD , ~3!

wheren5N/V is the density of the electron system, and t
density-density correlation function10 x(q,v) is defined in
the standard way:11,12

x~q,v![
i

\VE
0

1`

dtei (v1 id)t^@ r̂~q,t !,r̂1~q,0!#&. ~4!

^Vc,q& is the expectation value of the partial Coulomb ene
corresponding to a particular value of momentumq. The
structure factorSq ,

Sq5
1

N
^r̂qr̂2q&2Ndq,0 , ~5!

can be expressed again through the imaginary
Im x(q,v) using the fluctuation-dissipation theorem

nSq5E
2`

1`

Im x~q,v!cothS \v

2kTD \dv

2p
,

^Vc,q&5
1

2
VqnSq . ~6!

Various sum rules for the imaginary part of the susce
bility Im x(q,v) ~valid for an arbitrary dimensional system
with the appropriate form of Coulomb potentialVq) can be
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derived by calculating the commutators of the density ope
tor and the Hamiltonian. To calculate the well-knownf-sum
rule ~or the first moment sum rule! it is necessary to calculat
the expectation value of the operator@@ r̂q ,Ĥ#,r̂2q#. Another
additional sum rule is the causality~Kramers-Kronig! rela-
tion. These two well-known sum rules are12

J21[
2

pE0

1` Im x~q,v!

v
dv5x~q,0!, ~7!

J1[
2

pE0

1`

v Im x~q,v!dv5
nq2

m
. ~8!

To calculate thev3-moment sum rule13 the expectation value
of the operator@@@@ r̂q ,Ĥ#,Ĥ#,Ĥ#,r̂2q# must be calculated
The result of a long calculation is

J3[
2

pE0

1`

v3Im x~q,v!dv

5
1

m2 K 1

V (
k

~kW qW !2~2U2kr̂k!L
1q4

n2

m2
Vq1q4

3

m2
^T̂pr&1q6

2n\2

~2m!3

1
n

m2

1

V (
pÞ2q

@VupW 1qW u~pW qW 1q2!22Vp~pW qW !2#Sp ,

~9!

where T̂pr51/V(p@(pW q̂W )2/2m#cp
1cp5*@d3p/(2p\)3#

3@(pW q̂W )2/2m#cp
1cp is the projected kinetic-energy operato

and q̂W 5qW /uqu is a unit vector along the direction ofqW . This
higher-order sum rule@Eq. ~9!# is convenient for analysis o
high-frequency transitions in the density response, becau
weights higher frequencies by a factorv3. The existence~or
convergence! of the third moment sum rule can be demo
strated by showing that all terms on the right-hand side
Eq. ~9! are finite. The first and the third terms are expected
be finite, because they are essentially related to the fi
expectation values of the electron lattice and the kinetic
ergy in the ground state. The convergence andq dependence
of the last term will be discussed in detail separately for
and 3D cases.

The three sum rules@Eqs. ~7!–~9!# allow us to derive
upper and lower bounds15 on the electron Coulomb energy
and hence to discuss the possible changes of Coulomb
ergy due to the phase transition. Since the imaginary par
the susceptibility Imx(q,v) is a real positive definite func
tion, the two Cauchy-Schwartz inequalities can be written
the partial Coulomb energŷVc&q at T50 K,

1

2
~Vq

2J21J1!1/2>^Vc,q&>
1

2 S Vq
2

J1
3

J3
D 1/2

. ~10!

It is convenient to introduce the notional ‘‘plasma fr
quency’’ vp(q) defined byvp(q)5(nq2Vq /m)1/2. In fact,
7-2
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defined as above, the ‘‘plasma frequency’’ has the right
ymptotics for the corresponding plasma waves in the thr
dimensional case@vp,3D

2 (q)5e2n3D /(e0m)# and the two-
dimensional case@vp,2D

2 (q)5e2n2Dq/(2e0m)#. Another
relation, which is useful in order to rewrite theJ21 sum rule
for q→0, can be derived in the long-wavelength limit (q
!qTF , where qTF is the inverse of the Thomas-Ferm
screening length! for the full susceptibilityx(q,0), if we
expressx(q,v) through the ‘‘bare’’~or local! susceptibility
x0(q,v):

x~q,v!5
x0~q,v!

11Vqx0~q,v!
~11!

~this is an exact result, not a random-phase approximat
provided x0 is defined in terms of the relevant irreducib
diagrams!. If ‘‘bare’’ susceptibility x0(q,0) of the electron
liquid is assumed to be finite~see Sec. 4.1 of Ref. 12 for th
compressibility sum rule!, then forq!qTF ,

x~q,v50!5
1

VqF11
1

Vqx0~q,0!G
'

1

Vq
. ~12!

The discussion up to this point is valid for any dimension
ity of the system~with the corresponding form of Coulom
potential Vq). In what follows we analyze the two
dimensional and three-dimensional cases separately and
important differences.

We consider first the 3D case. The leading terms at sm
q for the third moment sum rule are

J3'
q2

m2
^Â&1q4

n2

m2
Vq , ~13!

whereÂ51/V(k(kW q̂W )2(21)U2kr̂k .16 The third and fourth
terms in Eq.~9!, being proportional toq4 andq6 powers, are
subdominant. The last term in Eq.~9!,

1

m2E dDp@VupW 1qW u~pW qW 1q2!22Vp~pW qW !2#nSp , ~14!

requires careful analysis of its convergence andq depen-
dence. Theq dependence~and convergence!, due to the part
of the integral over small momentap, is evident, since the
upper bound on the pair-correlation functionSp @see Eqs.~6!
and ~10!# is Sp<Bp(D11)/2 ~whereB is a constant andD is
dimensionality!17 is

E d3pVp~pW qW !2@Sp1q2Sp#;E d3pVp~pW qW !2Sq ~15!

for small momentap,q. Since in the 3D case the uppe
boundSq<Bq2, the contribution from small momentap in-
tegration is at least of orderq4 ~or higher power ofq for
small q). To analyze theq dependence of the part of th
integral @Eq. ~14!# from the integration over large momen
p, we use the ‘‘cusp theorem,’’18 which gives the asymptotic
behavior at large momentap ~the 3D case!:
09451
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Sp512
C3D

p4
1oS 1

p5D , ~16!

whereC3D is some constant. The integral of Eq.~14! with
Sp51 is identically zero~this is why Sp can be substituted
by Sp21 if convenient!. It is easy to see that the integra
over p with the second term of expansionC3D /p4, is con-
vergent. By expanding in powers of (q/p) for large p, the
leadingq dependence of the considered term

E d3pVp~pW qW !2@Sp1q2Sp#

5E d3p
Vp~pW qW !2C3D

p4 S 1

@11~q/p!212~q/p!cosu#2
21D

~17!

is found to be proportional toq4. The terms, proportional to
q3 and other odd powers ofq, equal zero after the integratio
over angleu @cosu5(pWqW)/pq is the angle betweenpW andqW )].
It can be seen that for largeq the last term@Eq. ~14!# grows
no faster thanq4 as well. What is important for the ensuin
discussion is that, both for small and largeq, the last term of
Eq. ~9! hassubleading q4 dependence on the wave vectorq.

The upper and lower limits on the partial Coulomb ener
can be conveniently written in terms of the 3D ‘‘plasma fr
quency’’ as

\

2
vp,3D~q!1o~q2!>^Vc,q&,

^Vc,q&>
\

2

vp,3D~q!

A11
^Â&

nmvp,3D
2 ~q!

1o~q2!. ~18!

The inequalities~18! have an interesting significance for th
possibility of gaining energy, in the SC condensation, fro
small-q modes. We first notice that in the 3D case if^Â&
50 in both normal and superconducting states, which is c
tainly the case if there is no crystalline potential, the ter
proportional toq4 @the third and last terms of the right-han
side of Eq.~9!# determine the difference between the upp
and lower bounds. Therefore if^Â&50, then for givenq the
maximum possible saving is proportional
(\/2)vp,3D(q/q0)2 ~where q0;qTF,3D and qTF,3D

5Ae2kFm!/e0p2\2 in three dimensions,kF is the Fermi
wave vector!, which is a negligible portion of the partia
Coulomb energy\/2vp,3D at long wavelengths. In fact, in
the absence of the umklapp processes the sum rules@Eqs.~8!
and ~9!# essentially fix the density spectrum at long wav
lengthsq,qTF to the plasma pole contribution: Imx(q,v)
;@p\vp,3D(q)/2Vq#d@v2vp,3D(q)#, which satisfies com-
pletely all three sum rules atq→0 . Other terms in theJ3
sum rule become comparable with the dominant te
q4Vqn2/m2 only at q>qTF . Therefore, a large saving o
7-3
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Coulomb energyin the 3D case in the absence of the latti
due to the phase transition is possible only for short wa
lengthsq>qTF,3D.

In the presence of the periodic lattice potential (^Â&
Þ0), it can be seen from the inequalities~18! that for q
,qTF,3D the maximum theoretical saving is a finite fractio
of the zero-point plasma energy\/2vp,3D(q). Therefore,
substantial saving of the Coulomb energy in the lon
wavelength limit is possible only in the presence of a stro
crystalline potential. In three dimensions~where the Cou-
lomb interactionVq5e2/e0q2), the umklapp termq2/m2^Â&
contributes in the same leading order of powers ofq into the
J3 sum rule as the Coulomb termq4(n2/m2)Vq @see Eq.
~13!#. The umklapp term is then responsible for the fin
width ~or ‘‘lifetime’’ ! of the plasmon peak.

In the 2D case, the leading terms are again

J35
q2

m2
^Â&1q4

n2

m2
Vq,2D. ~19!

Other terms are subleading and proportional toq4 and q6

powers. The last term can be analyzed similarly to the
case and shown proportional toq4 at small q. Using the
‘‘cusp theorem’’ for the 2D case,18

Sp512
C2D

p3
1oS 1

p4D , ~20!

we can expand in powers ofq/p for large momentap and
keep the leading term as a function ofq/p:

E d2pVp,2D~pW qW !2@Sp1q2Sp#

.E d2p
Vp,2D~pW qW !2C2D

p3

3S 1

@11~q/p!212~q/p!cosu#3/2
21D .

~21!

Due to the angleu integration, terms proportional toq3 and
other odd powers vanish. For largeq, the last term grows no
faster thanq4 also@due to the first term in the bracket of Eq
~14!#. In the absence of umklapp scattering (^Â&50), the
density spectrum is given by the expression Imx(q,v)
;@p\vp,2D(q)/2Vq,2D#d@v2vp,2D(q)#, which satisfies all
three sum rules at smallq. The maximum possible saving o
partial Coulomb energy at long wavelengths is of ord
\/2vp,2D(q)(q/qTF,2D) @where qTF,2D5e2m!/2pe0\2 is a
2D Thomas-Fermi screening wave vector#.

The presence of the umklapp termq2/m2^Â& has a much
more dramatic effect on the density spectrum in two dim
sions, because this term, proportional toq2, has a leading
power of q in the third moment sum rule at smallq domi-
nating over the Coulomb term~unlike the 3D case, where th
umklapp term has the same power-q dependence as the Cou
lomb term!. The density spectrum cannot even be appro
09451
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mated by a plasma pole expression, andthe plasmon is neve
really a well-defined excitation in two dimensions in t
presence of umklapp scattering. This means that the umklap
scattering modifies strongly~or ‘‘nonperturbatively’’! the
spectrum of the density fluctuations, and the spectrum
dominated by multipair and pair excitations rather by a pl
mon. Of course, the mere existence of a large value of^Â& is
in itself perfectly compatible with a traditional textbook pic
ture, in which the sum rules are satisfied by taking pro
account of interband transitions; in such a case there is na
priori reason why a plasmon associated with the excitati
of the conduction band must automatically be ill define
However, in a system where umklapp~quasi-momentum-
nonconserving! interactions between the Bloch quasiparticl
are strong it seems natural that these alone could give ris
a substantial value of Imx even below the first band gap
particularly in view of the above remark about the enhanc
effect in the 2D case, it is tempting to view the so-call
midinfrared peak in the cuprates in this light.

The upper bound on the partial Coulomb energy is s
half of the plasmon energy@vp,2D(q);Aq#, but the lower
bound at smallq if ^Â&Þ0 is essentially given by

^Vc,q&>
\

2

vp,2D~q!

A11
^Â&

nmvp,2D
2 ~q!

, ~22!

and so in the limitq→0,

^Vc,q&>
\

2
vp,2D

2 ~q!S nm

^Â&
D 1/2

;q. ~23!

Therefore, bounds, based on sum rules, are compatible
saving of almost all Coulomb energy (\/2)vp,2D(q) in two
dimensions when̂Â&Þ0.

It is necessary to mention extensive literature~for in-
stance, Ref. 14! using sum rules~in particular, a third mo-
ment sum rule! in order to analyze and derive various loca
field corrections and approximations of the density respon
whereas our goal in this paper is to analyze general c
straints on the electron Coulomb energy at smallq without
relying on any approximation.

It is also interesting to discuss briefly, for comparison, t
interaction energy of a many-particle system interacting vi
short-range potential (Vq→V05const, forq→0). The upper
bound on the partial interaction energy^Vint,q& is given by
the ‘‘acoustic mode’’\/2@V0

2(nq2/m)x0(q,0)#1/2,

\

2 S V0n

ms Dq>^Vint,q&, ~24!

where x0(q,0) is given by the compressibility sum rule12

x0(q,0)5n/ms2, wheres is the velocity of sound. There
fore, the maximum available interaction energy at a lo
wavelength is insignificant~especially when weighted by th
phase volume!. For instance, it implies that in most phas
transitions in neutral systems~i.e., many-particle systems in
7-4
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teracting via a short-range potential! the interaction energy is
saved predominantly at short distances.

III. EXPERIMENTAL PROBES

The remainder of this paper is devoted to a brief disc
sion of the experimental spectroscopies which should
least in principle, be able to shed light on the origin of t
condensation energy in the SC transition, and the inferen
which we may currently draw from them~cf. also Ref. 3,
Sec. 4.2!. For simplicity we will consider explicitly a single
plane cuprate such as Tl-2201, so that in the normal ph
there is only one large characteristic length~other than, pos-
sibly, the electron mean free path! compared to the quantity
qTF

21 , namely, the interplane spacingd ~typically ;10 Å,
i.e., ;10220qTF

21) ~note notational differences from Ref. 3!.
The case of a multilayer cuprate such as Bi-2212 is m
complicated, since there is now a second ‘‘large’’ charac
istic length, namely, the intrabilayer spacing (;325 Å);
however, the general pattern of the results is unchanged
addition, we will assume tetragonal symmetry.

The two spectroscopies which most directly probe
Coulomb energy, or something closely related to it, are e
tron energy-loss spectroscopy19 ~EELS! and optical
reflectivity;20 in the latter case we shall assume that ellip
metric measurements are possible in an interesting frequ
regime21,22 so that we may deduce the relevant complex
electric constant without the use of Kramers-Kronig re
tions. In a bulk isotropic 3D metal the situation is ve
simple: to the approximation that we neglect multiple sc
tering and the effect of the ionic cores, the transmiss
EELS cross sections(q,v) is a direct measure of the quan
tity Vq

2Im x(q,v), wherex(q,v) is the ‘‘true’’ density sus-
ceptibility as defined in Eq.~4!. Since in the 3D case th
longitudinal dielectric constante i(q,v) is identically equal
to 11(e2/e0q2)x0(q,v) with the help of Eq.~11!, we find
the simple result

s~q,v!5const
1

q2
ImF2

1

e i~q,v!G , ~25!

where the constant is of purely geometrical origin and can
calculated, and the quantity Im@21/e i(q,v)# is usually
known as the loss function. This formula is valid for arb
trary q, including values larger than the inverse lattice sp
ing in the approximation of neglect of the ionic cores dire
scattering effect. If the latter is taken into account, the eff
is to multiply the formula~25! by a factor which is, in gen-
eral, a function ofq but not ofv, provided that the latter is
small compared to typical core excitation energies
(;20 eV), and expected to be unaffected by the superc
ducting transition. Writing out the integrand of Eq.~6! ex-
plicitly in terms of x0(q,v) @see Eq.~11!# and using the 3D
relation between the latter ande i(q,v), we see that apar
from a function ofq the transmission EELS cross section is

direct measure of the Coulomb energy locked up in dqW dv.
It is well known that the condensation energy due to

SC transition is extremely small@of order 1024 eV per elec-
tron ~or per unit cell!# in comparison with the atomic ene
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gies~10 eV!. It implies stringent requirements on experime
tal techniques; nevertheless, changes associated with th
transition were observed by optics at midinfrar
frequencies21,22 of a magnitude sufficient to provide the con
densation energy~measured directly by specific-heat me
surements!. It is worth noting that we do not discuss th
changes at frequencies comparable to or lower than a su
conducting gap~although these changes, of course, are m
remarkable consequences of superconductivity!, because the
change of Coulomb energy associated with this region
frequencies is negligible~if limited to small momentaq
!qTF). The optical reflectivity measurements21,22 have
enough precision to explore the type of questions discus
in this paper, while it is hoped that transmission EELS c
achieve the required accuracy in the near future.

In a 3D bulk metal, ellipsometric optical measuremen
can measure the completetransversedielectric constant
e'(q,v), in the limit qW→0, and hence the correspondin
‘‘transverse’’ loss function Im@21/e'(q,v)#. Since in the
normal phase, at least, there should be no distinction, in
limit qW→0, betweene i(q,v) ande'(q,v), it follows that in
this phase theqW→0 limit of ‘‘loss functions’’ measured by
EELS and by optics should coincide. It is a somewhat d
cate question, once one renounces reliance on some sp
model such as the Fermi-liquid one, which is to count
‘‘the qW→0 limit’’; in addition to the obvious scaleqTF or
qF , it is not immediately clear whether the inverse electr
mean free path 1/l is a relevant quantity. However, it is plau
sible that this quantity may not play a major role forv in the
midinfrared region, thus we shall tentatively take ‘‘qW→0’’ to
mean in the 3D caseq!qTF ,qF .

Some care is needed in adapting the above results to
case of a layered material such as cuprates, even if we
cialize ~as we shall! in the limit qz!1/d, which is automati-
cally fulfilled in optical experiments and may be satisfied
transmission EELS by a suitable choice of geometry. In
context of EELS experiments, we now have to distingu
between the casesqd!1 andqd@1 ~whereq is the ab-plane
component of the momentum loss!. In the former case the
3D bulk formula@Eq. ~25!# applies unchanged, provided th
e i(q,v) is defined to be the tensor component of the lon
tudinal dielectric constant corresponding to current flow
the ab plane; note, in particular, that, at least in the norm
phase, we expect that Im@21/e i(q,v)# is nearly independen
of uqW u in the limit qW→0. In the opposite limitqd@1, we
could choose to continue to use the 3D formula@Eq. ~25!#,
but we would then find that thee i(q,v) so defined has a
strong explicit dependence onq. A much more natural con-
vention in this limit is to treat the scattering as occurri
independently from the different CuO2 planes, and to define
a two-dimensional ~‘‘per-plane’’! version x0

(2)(q,v) of
x0(q,v), or equivalently a quantity~cf. Ref. 3!, Sec. 4.1!

K~q,v![
1

2e0q2
x0

(2)~q,v!5
d

2
@e i~q,v!2eb#, ~26!

where e i(q,v) is the ‘‘natural’’ definition of the 3D bulk
ab-plane dielectric constant, i.e. the quantity which rela
7-5
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the local polarization to the local field, and is expected to
nearly constant over a rangeq@1/d, and eb is its ‘‘back-
ground’’ ~off-plane! contribution~cf. Ref. 3!. With this defi-
nition we find that, apart from factors depending only onq,
both the transmission EELS cross section and the~single-
plane! Coulomb energy locked up in the rangedqW dv are
proportional to the quantity

2ImF 1

11qK~q,v!/esc
G , ~27!

whereesc is the dielectric constant which screens the Co
lomb interactions of the in-plane electrons~note that, in gen-
eral,esc is not equal toeb). Thus, just as in the bulk 3D case
the transmission EELS cross section is a direct measur
the Coulomb energy locked up in the relevant region
(q,v) space; note, however, that Eq.~27! introduces an extra
explicit q dependence that is absent in the bulk case. T
subtlety seems to have been overlooked in the analysi
existing normal-state EELS data19 on the cuprates, where
seems to be assumed that even in the regimeqd@1 EELS
experiments measure the ‘‘bulk’’e i(q,v). In the intermedi-
ate case (qd;1) a similar analysis using Eq.~2! is possible,
but will not be given here.

In the case of optical experiments on the cuprates~with
the sample surface assumed to lie in theab plane! we always
haveqd!1, qzd!1 , and thus at first sight we would expe
the complex dielectric constant inferred from reflectiv
measurements to be identical to thee i(q,v) inferred, via
Eqs. ~25! and ~27!, from EELS experiments in the limitqW
→0. Existing measurements in the normal phase do ap
to be consistent with this prediction. In the superconduct
state, however, there are three complications: first, it is
clear that even in the midinfrared regime the Cooper-p
radius j0 is not a relevant length scale, so that it may
illegitimate to use the ‘‘true’’qW→0 (qj0!0) behavior ob-
served in the optics to infer the behavior in the regime 1j0
!q!qTF . Secondly, it is not completely obvious, partic
larly in the former limit qj0!1, that the finite-frequency
longitudinal and transverse dielectric constants must be e
in the superconducting state. This latter complication may
somewhat mitigated by a third consideration, namely, tha
the non-normal angles of incidence necessary in the ellip
metric technique, in layered material the measured quan
is not simplye' but a combination ofe' ande i . We will not
attempt to develop those points further, but rather use th
to draw the conclusion that, while the spectacular chan
observed21,22in the optically measured dielectric constants
the cuprates at and below the superconducting transition
strongly suggestive, a quantitative test of any scenario~such
as the midinfrared one of Ref. 3! that attributes the energ
saving largely to a regime ofq, small compared toqTF but
large compared toj0 ~and 1/d), will require accurate trans
mission EELS data taken across the transition, someth
which ~as regards the midinfrared regime of frequenci!
does not, to our knowledge, exist at present.

We finally and directly address the question of which
the three terms in Eq.~1! is ~are! reduced in the supercon
09451
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ducting transition. If it is the second~Coulomb! one, in what
regime~s! of q andv does the saving predominantly occu
Part of the interest in these questions is that as we have
above, a conjectured answer can be tested directly in tr
mission EELS experiments.

We start by recalling a well-known result: since the orig
nal ~‘‘true’’ ! Hamiltonian of theN-body system~the nonrel-
ativistic limit of the Dirac Hamiltonian! is composed exclu-
sively of kinetic-energy terms and~unscreened! Coulomb
interactions, the virial theorem immediately tells us that t
change in total kinetic energy~of electrons and ions! must be
exactly minus half that of the total Coulomb energ
~electron-electron, electron-ion, and ion-ion!, and thus Cou-
lomb energy must be saved in the superconducting trans
~and indeed in any other phase transition into a lower-ene
state!. While this conclusion is very generic and rigorous,
is not usually regarded as providing much insight into t
‘‘mechanism’’ of superconductivity in the cuprates~or for
that matter in the classic superconductors! since the term
‘‘mechanism’’ is often held to refer to a low-energy effectiv
Hamiltonian in which the separation of the original kinet
and potential energies may no longer be explicit. Howev
the ‘‘intermediate-level’’ effective Hamiltonian~1! is suffi-
ciently close to the original truly first-principles one in whic
the virial-theorem result for the latter might at least sugg
that it is one or both of the last two terms of Eq.~1! that are
saved.23

If we assume for the sake of argument that Coulomb
ergy is indeed saved, then where in the space ofq andv is it
saved? It is at this point that the sum-rule arguments of S
II come into their own. For convenience we reproduce h
the three relevant sum rules with terms of relative orderq4

and h,igher omitted on the right-hand sides, with notation
in Eqs.~7!–~9!:

J215
1

Vq
, ~28!

J15
nq2

m
, ~29!

J35
n2q4

m2
Vq1

q2

m2
^Â&, ~30!

where in the case of a layered system,Vq is given by Eq.~2!
and tends toe2/(e0e`q2) for qd!1 ~andqzd!1, see above!
and toe2/(2e0e`q) for qd@1, andÂ is defined below Eq.
~13!. The (T50-K) contribution ^Vc,q& to the expectation
value of the Coulomb energy from wave vectorqW is, up to a
factor, justJ0 @see Eq.~6!#.

The arguments of Sec. II now show that the maximu
change of^Vc,q& in the ‘‘essentially 3D’’ regimeqd!1 is
proportional to a finite fraction of the ‘‘3D plasmon energy
but weighted byq2 of the phase space (d3q), and hence the
maximum total saving possible from this regime is ve
small. On the other hand, the contribution from the regi
1/d!q!qTF @where the truncated forms, Eqs.~28!–~30!, are
still a good approximation# can be of orderq1/2 @cf. the con-
7-6
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clusion after Eq.~23!#, provided the quantitŷÂ& is substan-
tial, while the phase space allows a significant saving
Coulomb energy sincedqzd

2q;(2p/d)2pqdq and 1/d!q

!qTF . Thus, in a quasi-2D system with a large value of^Â&,
substantial energy is, in principle, available for saving in t
small-q regime. To estimate the value of^Â& we return for a
moment to the limitqd!1 and refer to the normal-stat
optical loss-function data: using Eqs.~28!–~30! with the ap-
propriate form@e2/(e0e`q2)# of Vq , we see that the quantit

^Â&n is given, in natural units ofn2e2/(e0e`), by the expres-
sion ~‘‘ n’’ is the normal-state value!

^Â&n

n2e2/~e0e`!
5J32J1

2/J21 . ~31!

Although a strict evaluation of the right-hand side of Eq.~31!
from the optical loss function requires us to know the effe
tive frequency cutoff@since at high frequencies there will b
contributions toe(q,v) from ‘‘core’’ processes not describe
by Eq. ~1!#, it is clear that the mere existence of a midinfr
red ~MIR! peak extending over an order of magnitude
frequency already implies that it at least of order of on
Thus, a very appreciable fraction of the Coulomb ene
locked up, in the normal state, in the low-q, MIR-frequency
regime is, in principle, available for saving in the SC tran
tion ~or indeed in other possible phase transitions!. Whether
it is saved and to what extent, as is, in fact, postulated in
‘‘MIR scenario’’ of Ref. 3, depends of course on the cost
the formation of the Cooper pairs in kinetic and/or sta
lattice energies. Actually, rather than asking as above for
fraction of the Coulomb energy which is, in principle, ava
able for saving~something which is not that significant if th
original value is itself small!, it may be more informative to
estimate the relative contribution of the small-q regime in
two and three dimensionsfor a given change inx0 due to the
no
ex
a

m

e
t
o

ts
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phase transition. Taking into account both the phase-sp
factor and the extra factor ofq in the denominator of the
expression~27! in the 2D case, we find that in the regim
where (qK) dominates, the contribution of smallq is propor-
tional to q2 in three dimensions but to a constant in tw
dimensions, so that the relative importance of the lon
wavelength regime is vastly enhanced in the 2D case.

On the experimental front, it has to be said that as no
in Ref. 21, the optical data, if extrapolated into the releva
(qj0@1) regime with several other assumptions, indica
rather the opposite, i.e., that the Coulomb energy associ
with the MIR regime actually increases in the SC state. Ho
ever, because of the various considerations noted above
extrapolation may be problematic, and a definitive test of
MIR hypothesis must await quantitative transmission EE
measurements across the superconducting transition@or a
better theoretical understanding of the genericq dependence
of e(q,v) in the SC state#.

In sum, we analyzed the electron-electron Coulomb
ergy in the presence of the periodic lattice potential us
various sum rules for the density-density response funct
We believe that in this paper we have made it plausible t
two specific properties of cuprates, namely,~i! the layered
~two-dimensional! structure of the CuO2 planes and~ii ! the
occurrence of a broad and strong peak in the optical l
function can be essential ingredients in the occurrence
high-temperature superconductivity in these materials
conspiring to save the small-q (q,qTF) part of electron-
electron Coulomb energy.
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