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Translational symmetry breaking in the superconducting state of the cuprates:
Analysis of the quasiparticle density of states

Daniel Podolsky, Eugene Demler, Kedar Damle, and B. I. Halperin
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 30 March 2002; revised manuscript received 4 October 2002; published 31 March 2003!

Motivated by recent scanning tuneling microscopy~STM! experiments on Bi2Sr2CaCu2O81d @J. E. Hoffman
et al., Science295, 466 ~2002!; C. Howald et al., cond-mat/0201546~unpublished!; J. E. Hoffmanet al.,
Science297, 1149 ~2002!: K. McElroy et al. ~unpublished!; C. Howald et al., cond-mat/0208442~unpub-
lished!#, we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a
d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasipar-
ticle scattering off localized defects. We argue that the STM experiments in Bi2Sr2CaCu2O81d cannot be
explained using a simple charge density wave order parameter, but are consistent with the presence of a
periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and
pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss
implications of weak translational symmetry breaking for angle resolved photoemission spectroscopy experi-
ments.

DOI: 10.1103/PhysRevB.67.094514 PACS number~s!: 74.25.2q, 75.10.Jm, 76.50.1g
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I. INTRODUCTION

Puzzling properties of the high-Tc cuprates have often
been attributed to the existence of competing instabilities
proximity ~or even coexistence! of several ordered states
Possible instabilities that have been discussed in this con
include charge density wave~CDW! order, non-two-
sublattice spin density wave~SDW! order,1–4 spin Peierls
order,5 and orbital magnetism.6,7 Neutron scattering experi
ments on La1.62xNd0.4SrxCuO4,8 LaxSr12xCuO4,9,10 and
La2CuO41x

11 demonstrated the coexistence of magneti
and superconductivity, while recent experiments on stron
underdoped YBa2Cu3O6.35 ~Ref. 12! have seen evidence o
CDW order coexisting with superconductivity. Particular
striking in this context are recent scanning tunneling micr
copy ~STM! experiments on Bi2Sr2CaCu2O81d

13–15 which
see spatial structure in the tunneling density of states wi
period of four lattice constants. This structure was origina
observed in the experiments in a magnetic field by Hoffm
et al.13 and later also seen in zero field by Howaldet al.14,15

Modulo certain experimental subtleties, these experime
can be thought of as measurements of the spatial Fou
component~at the ordering wave vectorQ) of the energy
dependent local density of states~LDOS! rQ(e).

In this paper, we demonstrate that the energy depend
of rQ(e) provides important information about the nature
charge ordering in these materials. It allows us to sepa
simple charge density wave order, that has only the Hart
Fock potential modulation, from the more unusual cha
orders that involve modulation of the electron kinetic ene
~dimerization! or the pairing amplitude~anomalous dimer-
ization!. For example, whenQ5(2p/4,0) ~as observed in
slightly overdoped Bi2Sr2CaCu2O81d), there is a change o
sign in rQ(e) for energies around 40 meV when dimeriz
tions are present, but not in the case of a simple CDW. W
several of the simple distortions are present simultaneou
we can understand the resultingrQ(e) as ~roughly! a super-
0163-1829/2003/67~9!/094514~11!/$20.00 67 0945
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position of the corresponding simple cases, since the indu
rQ(e) is approximately linear in the order parameter f
small distortions. Such a superposition is necessary to un
stand the experiments of Refs. 14, 15.

This superposition principle also applies when we ha
potential modulation at several wave vectors andrq(e) can
be analyzed separately for each wave vectorq. This is nec-
essary, for example, when we have randomness that pins
charge order, so that the single particle potential is not a d
function in momentum space but has a narrow distribut
centered at the ordering wave vectorQ. This leads to a finite
rq(e) for a range of wave vectors aroundQ and, as we
discuss below, taking a reasonable value of the CDW co
lation length reproduces well the ‘‘weak dispersion’’ of th
CDW peak observed in Ref. 15. Our analysis can be
tended to systems with no charge order but, instead, w
localized defects, e.g., impurities. In this case we hav
potential that is essentially momentum independent and
find strongly dispersing peaks inrq(e) for a wide range of
wave vectors. Such peaks have been observed in the S
experiments in Refs. 16,17 and discussed theoretically
Refs. 18,19. We provide a qualitative comparison of t
STM spectra for systems with disordered CDW and impur
scattering.

It is common to discuss spin density wave order as
primary competitor to superconductivity in the underdop
cuprates.1,3,20–22An order parameter for non-two-sublattic
magnetism is

SW ~r !5fW eiQs•r1fW * e2 iQs•r, ~1!

where the complex-valued vectorfW acquires an expectatio
value in a state with broken spin symmetry. When the SD
order in Eq.~1! is collinear, it has an associated spin sing
order parameter that only breaks translational symmetry
can be described as a generalized charge density wave22

dr~r !5weiQc•r1w* e2 iQc•r. ~2!
©2003 The American Physical Society14-1
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Symmetry arguments determine the wave vectorQc52Qs of
such generalized CDW, but they do not clarify its intern
structure. For example, modulation of the local Hartree-F
potential of the electrons and modulation of the electron
netic energy~hopping! are both spin singlet order paramete
that can be defined at the same wavevector and describe
Eq. ~2!. Modulation of the electron pairing amplitude als
belongs to the same class of translational symmetry brea
since, in the superconducting state with condensed Co
pairs, order parameters with charge two and zero are
orthogonal. It is important to note, however, that a lon
range SDW order is not a prerequisite for translational sy
metry breaking. One can have a situation where quantum
thermal fluctuations destroy the spin order but preserv
long-range order in the charge sector.23 This was observed
for example, in underdoped YBa2Cu3O6.35,12 where neutron
scattering found period eight CDW but no static spin ord
For slightly overdoped Bi2Sr2CaCu2O81d , on which most of
the tunneling experiments have been performed, neu
scattering experiments suggest dynamic spin fluctuation24

In our analysis we then assume that there is no SDW o
and concentrate on the effects of spin singlet translatio
symmetry breaking. Another possible origin of a generaliz
CDW with no spin symmetry breaking comes from pinni
of SDW by disorder19,25 or vortices.22,26

We restrict our analysis to the case of weak translatio
symmetry breaking, when the new order parameter can
treated as a small perturbation to the superconducting m
field Hamiltonian. This limit clearly applies to the exper
mental situation in Refs. 13–17, where the measured mo
lation is weak, and allows us to obtain explicit approxima
expressions forrQ(e). @This circumvents solving a compli
cated set of equations numerically, as, for instance, car
out in Ref. 25.# Furthermore, we do not address the issue
the origin of charge order, but introduce it phenomenolo
cally and study its consequences for the STM experime
Our basic motivation is that a comparison of the energy
pendence ofrQ with experimental data can, in principle, b
used to identify the correct order parameter~s! which, in turn,
is crucial for understanding their origin.

This paper is organized as follows. In Sec. II we introdu
mean-field Hamiltonians that describe several kinds of tra
lational symmetry breaking in a lattice system. For the
generalized CDW’s we derive an explicit formula for th
Fourier component of the tunneling density of states at
ordering wave vector. Section III displays numerical resu
of this expression in the case of Bi2Sr2CaCu2O81d type band
structure and period four charge order. We show that rec
STM experiments by Refs. 14,15 are consistent with a g
eralized CDW that has modulation of either the electron h
ping or the pairing amplitude. We also consider period ei
structure that may be relevant to YBa2Cu3O6.35. In Sec. IV
we extend our analysis to phases with randomness and s
that a realistic value of the CDW correlation length (20a0,
with a0 the unit cell size! provides good agreement with th
‘‘weak dispersion’’ of the CDW peak observed in Ref. 15. A
a different application of our formalism we also consid
localized perturbations in the crystal, such as impurity pot
tials, and demonstrate that these can account for the stro
09451
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dispersing peaks observed in Refs. 16,17 at wave vectors
corresponding to the CDW order. In Sec. V we review ho
to include a more realistic model of the atomic wave fun
tions, whose main effect is to introduce a momentum dep
dent structure factor. An important implication of this resu
is that the signal at wave vectors differing only by a rec
rocal lattice vector should have peaks at the same ener
although their amplitudes may differ. We also discuss co
plications in the analysis of the STM data introduced by
normalization procedure used in the experiments. Finally
Sec. VI we discuss several sum rules for the Fourier com
nents of the density of states that may be useful for analyz
experiments.

II. ORDER PARAMETERS AND MEAN-FIELD
HAMILTONIANS FOR GENERALIZED CHARGE

DENSITY WAVE PHASES

Our starting point is a two-dimensional one-band me
field Hamiltonian that is commonly believed to be a go
model for the physics of thedx22y2 superconducting state o
the cuprates

H5(
ks

ekcks
† cks1(

k
Dk~ck↑

† c2k↓
† 1c2k↓ck↑!. ~3!

Here ek522t@cos(kx)1cos(ky)#24t1cos(kx)cos(ky)2m, Dk
5(D0/2)(coskx2cosky) ~from now on the unit cell size is se
to unity!, crs5N21/2(kckseik•r, andN is the number of sites
in the lattice. The Hamiltonian~3! can be diagonalized usin
the Bogoliubov transformationck↑5ukgk↑1vkg2k↓

† , c2k↓
5ukg2k↓2vkgk↑

† with uk
21vk

251, ukvk5Dk/2Ek , and Ek

5(ek
21Dk

2)1/2.
Weak charge order may be introduced into the state~3! by

assuming the appearance of one or more of the additio
order parameters listed below. We note that distinction
tween site and bond centered orders discussed below is
defined for CDW with integer periods.

Site-centered charge density wave. The local Hartree-
Fock potential is modulated alongx with potential
extrema on the lattice sites@see Fig. 1~a!#: DH1

5V0(s,k(ck1Qs
† cks1cks

† ck1Qs).
Bond-centered charge density wave. The local Hartree-

Fock potential is modulated alongx with the extrema of the
modulation at midpoints of the horizontal bonds@see Fig.
1~b!#: DH25V0(s,k(a* ck1Qs

† cks1acks
† ck1Qs), where a

5eiQ/2.
Longitudinal dimerization. Single electron tunneling am

plitudes are modulated on the horizontal bonds and the w
vector of modulation is along the same direction~i.e., along
x). The bond centered version, in which the extrema of
modulation lie on the bonds@see Fig. 1~c!# corresponds to
DH35V0(s,k cos(kx1Q/2)(a* ck1Qs

† cks1acks
† ck1Qs).

Transverse dimerization. Single electron hopping is
modulated on the vertical bonds, and the wave vector
modulation is along the horizontal direction~i.e., alongx).
The site centered version~i.e., with extrema of the modula
tion realized on the vertical bonds! is shown in Fig. 1~d!, and
corresponds toDH45V0(kscosky(ck1Qs

† cks1cks
† ck1Qs).
4-2
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Anomalous longitudinal dimerization. The x components
of thedx22y2-wave pairing amplitudes are modulated in thex
direction. The bond centered version, shown in Fig. 1~c!,
corresponds toDH55V0(s,k$cos(kx1Q/2)(a* ck1Q↑

† c2k↓
†

1ack↑
† c2k2Q↓

† )1H.c.%.
Anomalous transverse dimerization. They-components of

the dx22y2-wave pairing amplitudes are modulated in thex
direction. The site centered version, shown in Fig. 1~d!, cor-
responds toDH65V0(s,k$cosky(ck1Q↑

† c2k↓
† 1ck↑

† c2k2Q↓
† )

1H.c.%.
Note that these subdominant order parameters may ap

either as a result of a phase transition in the bulk, or due
pinning by vortices, impurities or any other defects~see dis-
cussion in Sec. IV!. Following experimental observations i
Refs. 14,15,27, we assume that the order is unidirectio

and choose the ordering wavevector to beQ5Qêx .28 How-
ever, even if we were to assume checkerboard order,
analysis is carried out to linear order in perturbation the
and, by linear superposition, our results would be identica
those obtained for unidirectional order. For the STM expe
ments in Bi2Sr2CaCu2O81d ,13,14 Q52p/4, while the neu-
tron scattering experiments on YBa2Cu3O6.35 ~Ref. 12! cor-
respond to the smaller valueQ52p/8. We point out that the
six cases listed above are, in general, not orthogonal to e
other in a symmetry sense. As a result it is conceivable
more than one order parameter could be simultaneously
zero; for example, in a microscopic model without partic
hole symmetry, a simple CDW would be expected to indu
dimerization as the two order parameters are linea
coupled.29

Upon expressing the HamiltoniansDH in the basis of
Bogoliubov quasiparticles, they reduce to the generic for

FIG. 1. Order parameters with wave vectorQ5(2p/4,0) con-
sidered in this paper.~a! and ~b! correspond to site and bond ce
tered CDW, respectively. Black circles correspond to sites of hig
electron density, white circles to sites of lower electron density,
gray circles to sites with the average electron density.~c! and ~d!
describe longitudinal and transverse dimerizations, respectiv
Heavy lines correspond to bonds with higher tunneling amplitu
and dotted lines to bonds with lower tunneling amplitude. Anom
lous dimerization may be shown schematically as on~c! and ~d!,
with heavy and dotted bonds describing higher and lower pai
amplitudes.
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DHi5(
ks

@Ak
i gks

† gk1Qs1Ak
i* gk1Qs

† gks#

1(
k

@Bk
i gk↑

† gk1Q↓
† 1Bk

i* gk1Q↑
† gk↓

† 1H.c.#, ~4!

where

Ak
15V0vk , Bk

15V0hk ,

Ak
25V0avk , Bk

25V0ahk ,

Ak
35V0a cosS kx1

Q

2 Dvk , Bk
35V0a cosS kx1

Q

2 Dhk ,

~5!

Ak
45V0cos~ky!vk , Bk

45V0cos~ky!hk ,

Ak
552V0a cosS kx1

Q

2 Dhk , Bk
55V0a cosS kx1

Q

2 Dvk ,

Ak
652V0cos~ky!hk , Bk

65V0cos~ky!vk ,

in terms of the coherence factorsvk5uk1Quk2vk1Qvk and
hk5uk1Qvk1vk1Quk .

STM experiments measure the local density of sta
r(r ,e)5(ns$u^nucrs

† u0&u2d(e2en0)1u^nucrsu0&u2d(e
1en0)%, where the summation overn ranges over all excited
states. In particular, we are interested in the Fourier tra
form

rq~e!5
1

N (
r

e2 iq•rr~r ,e!

5
1

N (
nks

@^0uck1qsun&^nucks
† u0&d~e2en0!

1^0ucks
† un&^nuck1qsu0&d~e1en0!#. ~6!

Although a full treatment of all terms in Eq.~4! is compli-
cated, progress can be made if we assume that the orde
represented byDH is weak, allowing us to obtain an analyti
expression for the Fourier transform that is exact to lin
order inV0. This is then the sum of two contributions

rQ~e!5rQ
A~e!1rQ

B~e!1O~V0
2!, ~7!

whererQ
A(e) is obtained by ignoring theBk term in the per-

turbation~4! andvice versa.
A small value ofV0 leads to another important simplifi

cation: We only need to consider the pairwise mixing b
tween states connected byDH. For instance, in computing
rQ

A(e) for Q52p/4 one would have to analyze couple
equations for four quasiparticles (k, k1Q, k12Q, and
k13Q5k2Q) connected by the perturbation. Howeve
in the limit whenV0 is small, there is at most one pair o
quasiparticles that have similar energies, and that will
hybridized appreciably byDH. This hybridization can be
analyzed by diagonalizing the corresponding two-b
two Hamiltonian, which gives the new eigenstatesuaks&

r
d

ly.
,
-

g
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and ubks& with energies Ẽk65(Ek1Ek1Q)/
26$@(Ek2Ek1Q/2)#21uAku2%1/2. Note that these state
satisfy ^0uck1Qsuaks&^aksucks

† u0&5 1
2 ukuk1Qsin 2uke

2 ixk,
^0uck1Qsubks&^bksucks

† u0&52 1
2 ukuk1Qsin 2uke

2 ixk, where
we have definedAk5uAkueixk, and tan 2uk52uAku/(Ek
2Ek1Q). From these results one easily finds

rQ
A~e!5

1

N
(

k

Ak*

AS Ek2Ek1Q

2
D 2

1uAku2

3$ukuk1Q@d~e2Ẽk1!2d~e2Ẽk2!#

1vkvk1Q@d~e1Ẽk1!2d~e1Ẽk2!#%. ~8!

When consideringrQ
B , one would naively expect that it i

always smaller thanrQ
A , because the perturbation terms

the formgk6Q↑
† g2k↓

† connect states that differ in energy b
Ek1Ek1Q , a factor that is never small. However, in som
cases the coherence factors inAk vanish at important region
of the Brillouin zone, makingrQ

A(e) anomalously small. In
addition, as we discuss below, bothrA,B(e) are large at bi-
ases corresponding to the saddle points on the degene
lines Ek5Ek1Q and van Hove singularities of the Bogoliu
bov quasiparticlese'D0. A nearly identical analysis of the
one above forrA yields

rQ
B~e!5

1

N
(

k

Bk*

AS Ek1Ek1Q

2
D 2

1uBku2

3@ukvk1Qd~e2Êk1!1uk1Qvkd~e2Êk2!

2uk1Qvkd~e1Êk1!2ukvk1Qd~e1Êk2!#,

~9!

where Êk656(Ek2Ek1Q)/21$@(Ek1Ek1Q)/2#2

1uBku2%1/2. Equations~8!,~9!, are two key results of this pa
per. In combination with Eqs.~5!, they provide an explicit
expression for the energy dependence of the Fourier com
nent of the local density of statesrQ(e) when the transla-
tional symmetry breaking is weak.

From the form ofAk andBk , it is obvious that when there
is no mixing between bond and site centered CDW,rQ(e)
can be made real at all energies by an appropriate choic
the overall phase, i.e., by a shift in the origin of coordina
when doing the Fourier transform. One obvious observa
is that the results for the site-centered and bond-cent
CDW are identical modulo an overall phase factor ofeiQ/2. If
one defines the Fourier transform in such a way that it is
in both cases, the origin will coincide with one of the sites
the lattice for the site-centered CDW, and it will be at t
center of a bond for the bond-centered CDW. Hence car
analysis of the STM data allows one to distinguish two kin
of CDW, a task that is not possible in neutron scatter
09451
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experiments with current resolution. Mixing site and bon
centered orders breaks inversion symmetry and leads
complex-valuedrQ(e).

III. CHARGE ORDER WITH NO RANDOMNESS

A. Period four CDW in Bi 2Sr2CaCu2O8¿d

We first focus on modulations atQ5(2p/4,0) that is rel-
evant to Bi2Sr2CaCu2O81d .13,14 Figure 2 shows results o
the numerical evaluation of formulas~7!, ~8!, and ~9! for
various perturbations~5!. @As transverse and longitudina
dimerization curves are qualitatively similar, curves cor
sponding to the former are not displayed.# We choose the
band structure and the value ofD0 in Eq. ~3! appropriate to
Bi2Sr2CaCu2O81d : t1 /t520.3, m/t520.99 ~this corre-
sponds to 14% doping!, D0 /t50.14 andD0540 meV.30 We
setV0 /t50.02, although its precise value is inconsequent
as rQ(e) scales linearly withV0 when the latter is suffi-
ciently small.

If we turn our attention to the expression forrA, Eq. ~8!,
we see that the energy denominator is smallest for th
quasiparticles lying close to the degeneracy pointsEk
5Ek1Q , which are strongly hybridized by theAk part of the
perturbation. Figure 3 shows the four loci of such pointsa
throughd, that are degenerate witha8 to d8 respectively. The
pairs aa8 and bb8 are obvious, since they havekx56p/4
and kx563p/4 ~for the sameky); the other two require a
more detailed analysis of the band structure. Out of the se
degeneracy points, we expect large contributions from
neighborhood of points A and B, as the dispersion of hybr
ized energiesẼk6 is flat at these points. These same regio

FIG. 2. Energy dependence of the Fourier component of
local density of statesrQ(e) at Q5(2p/4,0) for various cases o
charge ordering. Bi2Sr2CaCu2O81d type band structure is assume
We show a direct calculation based on formulas~7!–~9!. The curves
correspond to the CDW~solid!, longitudinal dimerization~dashed!,
and anomalous longitudinal dimerization~dotted! orders. To sim-
plify the comparison,rQ(e) is multiplied by21 for CDW, and by
1
2 for anomalous longitudinal dimerization. In addition, subsequ
curves are shifted vertically by 0.6. Results for both kinds of tra
verse dimerization are qualitatively similar to corresponding lon
tudinal results and are omitted for visual clarity.
4-4
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TRANSLATIONAL SYMMETRY BREAKING IN TH E . . . PHYSICAL REVIEW B 67, 094514 ~2003!
of the Brillouin zone will dominate therB contribution, since
the energy denominator in Eq.~9! will be small only if both
k andk1Q lie close to the Fermi surface, which occurs on
in the neighborhood of points A and B. In addition we e
pect, for bothrA and rB pieces, a large contribution ate
5D0, where a van Hove singularity for the Bogoliubov qu
siparticles yields a logarithmic divergence in the dens
states.

We turn now to the numerical results displayed in Fig
Consider first the simple CDW curves. The sharp featu
that dominate the CDW plots can be understood in term
the degeneracies mentioned above: the peak at ene
around 0.5D0 comes from the vicinity of the A point, the
peak around 0.7D0 comes from the vicinity of B, and the pile
aroundD0 comes from the van Hove singularity near t
(0,p) and (p,0) points. The longitudinal dimerization resul
can be similarly understood by taking into account the ad
tional minus sign in the vicinity of the point B due to th
cos(kx1p/4) factor inAk andBk . The results for the anoma
lous dimerization can also be understood in this framew
after taking into account the extra sign modulation inukvk ,
which changes sign wheneverDk does. Note that, for al
perturbations considered,rQ(e) displays approximate
particle-hole symmetry for small biases, as observed in S
measurements.14 This is not a generic property ofrQ(e); for
example, for a diamond-shaped Fermi surfacem5t850 the
CDW signal is exactly antisymmetric. Finally, note th
rQ(e) goes to zero ate50 in all cases; this reflects th
vanishing density of low-energy quasiparticle states in
ideal d-wave superconductor.

While the results in Fig. 2 describe a system with infin
quasiparticle lifetime and no disorder, in a real system dis
der will smear the sharp features inrQ(e). To model this,
these curves are redisplayed in Fig. 4 after smearing ove
energy widthw50.2D0. This procedure smooths the sha
features in the spectra, and generates finite intensity at

FIG. 3. Fermi surface for Bi2Sr2CaCu2O81d . Dashed lines cor-
respond to the quasiparticles that satisfyEk1Q5Ek and are strongly
affected byDH when Q5(2p/4,0). Quasiparticles on linea hy-
bridize with quasiparticles on linea8 ~and similarly for linesb and
b8, and curvesc, c8 andd, d8). Crossings of these lines with th
Fermi surface~points A and A8, B and B8) give the minimal energy
of such quasiparticles: 0.5D0 and 0.7D0 respectively. Contributions
from these points produce sharp peaks at energies 20 and 30
in Fig. 2. The Van Hove singularity for the Bogoliubov quasipar
cles at energyD0 leads to a peak at 40 meV.
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energies. Notice that the smeared CDW curve does not h
the two large peaks surrounding zero bias, nor does it h
clear zero crossings atueu'D0, the dominant features of th
STM spectra observed in Refs. 13,14. By contrast, the sig
related to longitudinal dimerization or, especially, to eith
kind of anomalous dimerization, share many of the qual
tive properties of the data. However, neither curve by its
accounts for all the observed features in the data. T
prompts us to consider a combination of several kinds
order. For example, if we assume that no pairing modulat
is present, the combination of longitudinal dimerization a
CDW, (long. dim.)11.05 (CDW), shown as a solid curve i
Fig. 5 reproduces the STM results reasonably well, with o
a small difference in the position of the peaks (617 meV,
compared to experimentally observed625 meV). Alterna-

eV

FIG. 4. The results in Fig. 2 are shown after smearing over
energy range of 8 meV. To simplify the comparison,rQ(e) was
multiplied by21 for CDW and anomalous transverse dimerizatio
and by a factor of2 1

2 for transverse dimerization.

FIG. 5. rQ(e) for Bi2Sr2CaCu2O81d type band structure, order
ing wave vectorQ52p/4 and a combination of charge order
longitudinal dimerization and CDW, 1.05 (CDW)1(long. dim.)
~solid line!; anomalous longitudinal dimerization and CDW
(anom. long. dim.)10.2 (CDW) ~long-dashed line!. The same
smearing is assumed as in Fig. 4. For clarity, curves have b
offset vertically by 0.25.
4-5
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PODOLSKY, DEMLER, DAMLE, AND HALPERIN PHYSICAL REVIEW B67, 094514 ~2003!
tively we can match experimental data by considering
combination of anomalous longitudinal dimerization a
CDW, (anom. long. dim.)10.2 (CDW), shown as a dashe
curve in Fig. 5. It slightly overestimates the peak bias to
629 meV, and yields a low intensity at zero bias. Any i
termediate combination between these two scenarios
gives good agreement with experiments. Although CDW w
used in both combinations discussed above, it can be su
tuted by transverse dimerization, which yields a qualitativ
similar rQ(e) to CDW. We note that, fore<3D0, the results
come from the vicinity of the Fermi surface and are rob
against variations in the band structure that do not a
qualitatively the shape of the Fermi surface~e.g. thea andb8
lines do not move below the Fermi surface!.

We note, however, that a certain care should be exerc
when comparing our results to the STM spectra in Re
13–17. An additional complication of the experiments is th
for every point on the surface of the sample the height of
STM tip is adjusted to keep the tunneling current at a cer
voltage fixed. This implies that the local density of states
not measured directly, but instead its product with so
space dependent function is measured. In Sec. V we rev
how this normalization procedure can be included in ana
sis.

B. Period eight CDW in YBa2Cu3O6.35

To model YBa2Cu3O6.35 for which CDW-type peaks have
been observed atQ52p/8 ~Ref. 12! we take the same ban
structuret1 /t520.3, but a different value of the chemic
potentialm/t520.815~this corresponds to 6% doping!. We
use the same value ofD0 /t50.14, D0540 meV, V0 /t
50.02, and keep the energy smearingw50.2D0. The main
difference with the charge order atQ52p/4 is that the ana-
log of line a in this case is inside the Fermi surface, so th
the only contributions will come from the vicinity of point B
at energies around 0.8D0. This leads to less structure i
rQ(e) and smaller intensity at zero energy~see Fig. 6!.

IV. DISPERSION OF THE STM SPECTRA

Recent experiments16,17 demonstrated that the STM spe
tra of Bi2Sr2CaCu2O81d cannot be explained by charge o
der at a unique wave vector. Peaks inrq(e) have been ob-
served away from (2p/4,0) and the wave vectors of th
peaks are energy dependent. In this section we review
compare two possible scenarios for such dispersion of
STM spectrum:~1! randomness and pinning of charge ord
~2! scattering of BCS quasiparticles by impurities and crys
defects. Both cases can be described using an extensio
the formalism presented in the previous section. We cons
a single particle Hamiltonian that generalizes Eq.~4!

DH5 (
k,qs

@Vk,qck,s
† ck1q,s1H.c.1Wk,q~ck,s

† c2k2q,2s
†

1c2k,2sck1q,s!1H.c.#. ~10!

Here q describes the wave vector of the potential modu
tion, and thek dependence ofV and W gives its internal
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structure~e.g., simple CDW vs dimerization!.31 In Sec. II we
considered charge order at a unique wave vector that co
sponds to taking potentialsV andW asd(q2Q). In the case
of a disordered CDW we expect that these functions are
longer d functions but are centered narrowly around so
particular wave vector. By contrast, when translational sy
metry breaking comes from impurities, we expect to findV
and W that extend over a wide range of wave vectorsq. A
crucial property of Eqs.~8! and ~9! is that rq(e) depends
linearly on the perturbationsVq andWq , hence the formal-
ism for computingrq(e) can be applied independently t
each wave vectorq.

The charge order observed in Bi2Sr2CaCu2O81d ~Refs.
14,15! had strong signatures of randomness and pinning
the form of lattice defects. The correlation length estima
from the distance between defects was'20a0. If we assume
the charge order to be of the form 1.05~CDW!1~long. dim.!,
we can describe it as

Vk,q5V0~q!F1.051cosS kx1
qx

2 D G , Wk,q50, ~11!

whereV0(q) is a Gaussian distribution function centered
(2p/4,0) with a width 2p/20a0. We display in Fig. 7 the
signal produced by a perturbation of this kind, for bias vo
ages 8, 12, 16, and 20 mV, as a function of wavevect
along the (0,0) to (p,0) direction. The resulting dispersio
agrees closely with that observed in Refs. 15,16.

In experiments of Hoffmanet al.16 and McElroyet al.17

peaks in the LDOS were observed at very different wa
vectors from (2p/4,0) ~including some in diagonal direc
tions!. This suggests that eitherVk,q or Wk,q must be nonzero
over a fairly wide range of values ofq, and the most natura
candidate is scattering by impurities.16–18 For concreteness
we assume that the impurity induces a higher chemical
tential at a single site, so the perturbation used correspo

FIG. 6. YBa2Cu3O6.35 type band structure and ordering wav
vectorQ5(2p/8,0). The inset showsrQ(e) for CDW ~solid line!,
dimerization ~dashed line!, and anomalous dimerization~dotted
line! separately. Main figure has the linear combination (a
10.2 (CDW), which was displayed for Bi2Sr2CaCu2O81d in Fig. 5
~the other linear combination is nearly zero and thus omitted!. The
same smearing is assumed as in Fig. 4.
4-6
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TRANSLATIONAL SYMMETRY BREAKING IN TH E . . . PHYSICAL REVIEW B 67, 094514 ~2003!
to a simple CDW which is uniform inq, Vk,q5V0 , Wk,q
50. In Fig. 8 we show the signal computed along the (0
to (p,0) direction at bias voltages 8, 12, 16, and 20 mV.
all cases there is a pronounced peak that disperses with
applied bias voltage. To find the positions of these peaks
reverse the arguments given in Sec. II. There, we started
a potential at wave vectorQ and found that only quasiparti
cles at certain energies were strongly affected by it. Now
need to find the modulation wave vector that affects qu

FIG. 7. Dispersion in the (0,0) to (p,0) direction in a system
with charge order with randomness~momentum is measured i
units of 2p). Charge order is assumed to have Gaussian distr
tion centered around wave vector (2p/4,0) with the width 2p/20.
The functionV0(q) in Eq. ~11! is shown, up to a scale, as the thic
solid curve. For visual clarity, only results corresponding to
linear combination 1.05 (CDW)1(ld) are displayed. Each curv
corresponds to a different bias; starting from the bottom, the bia
are 8, 12, 16, and 20 mV. Throughout, the quasiparticle smearin
fixed at 8 meV.

FIG. 8. Dispersion in the (0,0) to (p,0) direction in a model
with impurity induced quasiparticle scattering~momentum is mea-
sured in units of 2p). Each curve corresponds to a different bia
starting from the bottom, the biases are 8, 12, 16, and 20
Unlike other computations in this paper, the quasiparticle smea
is fixed at 2 meV. This is done since the main features in th
curves are averaged out for the usual smearing of 8 meV.
09451
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particles at a given energy. From the band structure
Bi2Sr2CaCu2O81d we find for the peak positions~in units of
2p): 0.35, 0.32, 0.29, and 0.26. The curves on Fig. 8 sh
general agreement with this ‘‘quasiparticle scatterin
argument,16,17 except for a consistent small shift to lowe
wave vector, which comes from the energy smearing pro
dure. This dispersion is stronger than that displayed in
data at wave vector (2p/4,0), but is in good agreement wit
the dispersion observed at other wave vectors.

In the discussion above we considered two situations:
dered CDW and noninteracting electrons with impuritie
There may also be an intermediate regime with interact
electrons close to the CDW instability and with disorder.19,32

Qualitatively, this case may be described by Eq.~10! but
with the potentialsVk,q andWk,q coming not only from the
external fields but also from the density induced in the el
tron system. For simplicity let us take only one of the cha
nels discussed in Sec. II, e.g., simple CDW~the generaliza-
tion to the case of several channels is straightforward!. Then

DH5(
q

r̂q
†Uqr̂q1(

q
Vq

extr̂q
†1H.c. ~12!

with

r̂q5(
ks

cks
† ck1qs .

The response of the quasiparticles to Eq.~12! in the Hartree
approximation is determined by the effective perturbat
Hamiltonian

DH5 (
k,qs

Vq
effck1qs

† cks1H.c.

Vq
eff5Vq

ext1Uq^r̂q&5
Vq

ext

12Uqx0~q,v50!
, ~13!

wherex0(q,v50)5^r̂qr̂q
†& must be computed for the non

interacting system. This corresponds to contributions to
LDOS from the class of diagrams in Fig. 9~a!. When the

u-

es
is

;
V.
g
e

FIG. 9. ~a! Diagram of Hartree type used in computing the RP
response for a system of interacting electrons in the vicinity o
CDW instability. An external field~e.g., an impurity potential! pins
the CDW.~b! and~c! Contributions beyond the Hartree approxim
tion, which may be subdominant depending on the model us
Their inclusion leads to a frequency-dependent self-energy.
4-7
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PODOLSKY, DEMLER, DAMLE, AND HALPERIN PHYSICAL REVIEW B67, 094514 ~2003!
system is close to the CDW instability, the denominator
Eq. ~13! approaches zero around some particular wave ve
Q. Hence,Vq

eff may be peaked aroundQ even whenVq
ext is

momentum independent. In principle we can go beyond
Hartree approximation, including diagrams such as th
shown in Figs. 9~b!,9~c!. These will introduce a frequency
dependent self-energy, as in the case of pinned spin de
fluctuations considered in Ref. 25.

It is interesting to ask whether by analyzing experimen
data one can separate contributions of disordered CD
from those due to quasiparticle scattering off impurities. R
erence 15 pointed out that the presence of a weakly disp
ing signal at wave vector (2p/4,0) makes charge order
likely candidate at that wave vector. Here we build on t
idea and suggest that a more consistent approach is to
lyze rq(e) at many different wave vectors using a reasona
set of basis functions, e.g., simple CDW and dimerizati
Such analysis will give theq dependence of various compo
nents in the potentialsVk,q or Wk,q . We expect that some o
them will be almost uniform in momentum space and cor
spond to localized defects, such as impurities; whereas ot
will be centered around particular wave vectors and a
from the existence or at least proximity of charge order.

When the field of view of the STM measurement conta
more than one impurity there are several important quest
that we need to address. We must ask how the contribut
from different impurities add up and whether the system
tains the property of uniformity of phase ofrq(e) at fixedq
but different e. We consider impurities that cause an ar
trary potentialVk,q in Eq. ~10!, i.e., they may modify the
chemical potential, the electron kinetic energy, or the pair
amplitude, but first we assume that all impurities are ide
cal. The Fourier component of the LDOS is proportional
Vk,q

tot 5Vk,q( ra
eiq•ra, wherera runs over impurity positions

If one impurity does not break parity symmetry, we c
makeVk,q real by choosing the origin at the position of th
impurity ~see also discussion in Sec. II!. This implies that
Vk,q

tot has a phase that depends onq only and is the same fo
all k, which in turn proves that, at fixedq, rq(e) has con-
stant phase~modulop) for all values ofe @see Eqs.~5!–~9!#.
So, in the case of identical impurities we have only o
phase to worry about and we can always makerq(e) real by
an appropriate choice of origin. When impurities are diff
ent, we will have an intrinsically complexrq(e), with pos-
sibly energy dependent phase at different bias voltages
either case, interference among the impurities leads to
appreciable suppression of the amplitude ofrq(e). When
there are many impurities in the areaA of the STM field of
view, and their positions are uncorrelated, each impurity
troduces a random phase toVk,q

tot , whose amplitude can b
analyzed in terms of a random walk. Therefore, in a typi
experiment we expect that with increasing the system s
^urq(e)u& will decay as 1/AA, with statistical fluctuations of
the same order. This argument also applies to the cas
disordered CDW, where the role of impurities is played
defects in the CDW lattice.

V. EXPERIMENTAL CONSIDERATIONS

Our discussion in the earlier sections was restricted
models on a square lattice for which we calculated the lat
09451
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density of states in the presence of several kinds of tran
tional symmetry breaking. In analyzing actual experimen
data, additional effects need to be taken into account: the
space structure of the atomic wave functions, and the cur
normalization condition used in the STM measurements.13–17

These are reviewed below.

A. Structure factors

For lattice Hamiltonians, wave vectors that differ by th
reciprocal lattice vectorsG are equivalent. For the Fourie
components of the local density of statesrq this implies that
rq1G

lattice(e)5rq
lattice(e) for any G. To understand why this

equivalence is not observed in experiments we must take
account the real space structure of the Wannier wave fu
tions of electrons in the conduction band. Here we study
effects of a single-band tight-binding model, in which Bloc
states at the Fermi level can be written as a superpositio
localized atomic orbitalsck(r )5(Reik•Rf(r2R).

We begin by projecting the Bogoliubov–de Genn
~BdG! wave functions in terms of the single-band wave fun
tions

un~r !5(
k

ak
nck~r !,

vn~r !5(
k

bk
nck* ~r !.

If we know how an operatorQ̂ acts on the Bloch wave
functionsck , Q̂ck5(k8Qk,k8ck8 , then the above relation
induces an action onak through Q̂ak5(k8ak8Qk8,k ~and
similarly for bk). Thus, the solutions to the BdG equation

S ccĵ1V̂ D̂1Ŵ

D̂†1Ŵ† 2 ĵ2V̂
D S ak

n

bk
nD 5EnS ak

n

bk
nD

will be independent of the Wannier wave functionf(r ) once
we determine the action of the BdG operator on the Blo
wave functionsck .

For positive biasese.0 ~the e,0 case can be analyze
analogously!, the LDOS is given by

rq
phys~e!5E d2reiq•r(

n
un* ~r !un~r !d~e2En!

5(
n

d~e2En!(
k,k8

ak*
nak8

n J~k,k8,q!,

where

J~k,k8,q!5E d2r eiq•xck* ~r !ck8~r !

5(
G

d@q2~k2k8!1G#

3(
R

eik8•RE d2r eiq•rf* ~r !f~r2R!.
4-8
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If we assume that the relevant electronic wave function
well localized, we can ignore terms involving the overl
across different sites (RÞ0) in the last integral. Then, th
only dependence ofJ on k and k8 is through the crysta
momentum conservation condition, and we find

rq
phys~e!5Sqrq

lattice~e! ~14!

with

rq
lattice~e!5(

k,n
d~e2En!ak*

nak1q
n

Sq5E d2r uf~r !u2eiq•r.

One immediately recognizes that in Eq.~14! rq
lattice(e) is the

Fourier component of the lattice density of states that
analyzed in the earlier sections andSq is the structure factor
determined by the atomic wave functions. Peaks in the S
spectra arise fromrq

lattice(e), whereasSq only provides addi-
tional wave vector dependence. Hence in our tight bind
model we expect that wave vectors which differ only
reciprocal lattice vectors have peaks at the same energies
with generally different intensities.

B. Current normalization condition

An additional subtlety of STM experiments in Ref
13–17 is the space-dependent normalization used. It is n
ral to assume that the tunneling matrix elements do
change appreciably with energy over the energy range
interest. Thus, ifz is the height of the STM tip above th
sample, andr is its two-dimensional 2D coordinate along th
plane of the sample surface, then the differential tunne
conductanceg can be written as

g~r ,z,e!5 f ~r ,z!rphys~r ,e!,

whererphys(r ,e) is the 2D density of states in the CuO plan
The experiments in Refs. 13–17 adjust thez coordinate at
every pointr along the surface, so as to keep the curren
Vf fixed at a predetermined valueI f . The differential con-
ductance normalized in this fashion is

gmeas~r ,e!5 f ~r !rphys~r ,e!,

where f (r )5I f /*0
eVfde rphys(r ,e). Let us now discuss som

properties ofgmeas(r ,e).
The spatial variation inf (r ) is dominated by the inhomo

geneous quasiparticle weight within a unit cell. To see th
write

rphys~r ,e!5rper~r ,e!1rTSB~r ,e!,

whererper(r ,e) is periodic with the lattice and is of orde
one, whereasrTSB(r ,e) breaks lattice translational symmet
and is of orderV0 in our formalism. If we definef per(r )
5I f /*0

eVfde rper(r ,e), then

f ~r !5 f per~r !@12H~r !#
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in terms of a TSB functionH(r ) of orderV0.
It is convenient to absorbf per into r by introducing a new

function r8(r ,e)[ f per(r )rphys(r ,e). Due to the symmetry
properties off per, r8 is simply related tor lattice through a
modified structure factor

rq8~e!5Sq8rq
lattice~e!

Sq85E d2r f per~r !uf~r !u2eiq•r.

Expressinggmeasin terms ofr8,

gq
meas~e!5rq8~e!2E d2k

~2p!2
Hq2krk8~e!, ~15!

we see thatgq
meas(e) gets ‘‘direct’’ contributions from struc-

ture in the LDOS at wave vectorq, as well as ‘‘shadow’’
contributions from structure in the LDOS at other wave ve
tors k, wheneverHq2k is nonzero. Whereas Eq.~15! is an
exact relation, it is useful to truncate it to orderV0 by keep-
ing in the second term only those contributions coming fro
the neighborhood of the reciprocal vectorsk'G,

gq
meas~e!5rq8~e!2aqrk50

lattice~e!1O~V0
2!, ~16!

aq5(
G

Hq2GSG8 . ~17!

In this approximation the shadow contribution togq
meas(e)

factorizes into the space-dependent factoraq and the space-
averaged density of statesrk50

lattice}^gmeas(e)&. From Eqs.~16!
and ~17! we can verify an important property of the tunne
ing spectra

gq1G
meas~e!

gq
meas~e!

5
Sq1G8

Sq8

when G is a vector of the reciprocal lattice andq is not.
Hence, we expectgq

meas(e) andgq1G
meas(e) to have peaks at the

same energies but in general with different overall amp
tudes.

An interesting question to ask is whether it is possible
analyze experimental data in a way that would allow to se
rate direct and shadow contributions togq

meas(e). Below we
demonstrate that this is possible using an exact sum
obeyed byrq

lattice(e). Regardless of the model used and t
nature of the symmetry breaking perturbation, the sum o
all frequencies ofrq

lattice(e) should be identically zero for al
q different from the reciprocal lattice vectorsG:

E
2`

`

de rq
lattice~e!5

1

N (
ks

^0u$ck1qs ,cks
† %u0&

[2(
G

~2p!2d~q2G!.

In principle, this identity can be used to remove the shad
contribution in Eq.~15!. In particular, forqÞG, combining
4-9
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the approximate result~16! and our knowledge ofrk50
lattice(e)

from experiment, we can fixaq by requiring the sum rule to
be obeyed:

rq8~e!5gq
meas~e!2^gmeas~e!&

E
2Vmax

Vmax
gq

meas~e!de

E
2Vmax

Vmax

^gmeas~e!&de

.

~18!

Here Vmax should be chosen sufficiently large so that t
ratio of the two integrals is close to its saturated value, ye
should be small enough that we are still justified in using
single band model and a local picture of electron tunneli

For completeness, we also list two other sum rules obe
by tunneling spectra. By construction, at every wave vec
qÞ0 the functiongq

meas(e) must satisfy the normalization
condition

E
0

eVf
de gq

meas~e!50.

One can derive an independent sum rule if we restrict
class of symmetry breaking Hamiltonians to effective on
particle operators~10! @This includes all perturbations con
sidered in this work.# Then the e-weighted average o
rq

lattice(e) will be, for qÞG,

E
2`

`

de e rq
lattice~e!5

1

N (
ks

^0u$@ck1qs ,H#,cks
† %u0&

5
2

N (
ks

Vk,q .

For the basis functions discussed in Sec. II we find that o
the Vk,q describing simple CDW gives finite contribution
after summing overk. Hence,

E
2`

`

de e rq
lattice~e!52Vq

CDW.

It is important to point out that this sum rule will be spoile
by shadow contributions in Eq.~15!, and is only of use if
these have been previously removed, using for example
cedure in equation Eq.~18!.

As a useful consistency check of our formalism, one c
easily verify that expressions~7!, ~8!, and ~9! satisfy both
sum rules. We emphasize, however, that although these
pressions are only correct to linear order in perturbat
strength, the sum rules are nonperturbative and there
hold to all orders in perturbation theory. Furthermore, th
validity is not affected by the introduction of finite quasipa
ticle lifetimes as, for any normalized symmetric distributio
g(e), *de(a1be)g(e2e0)5a1be0. By contrast, the av-
erage ofrq(e) weighted by any other power ofe is sensitive
to details of quasiparticle smearing. Unfortunately, these s
rules are of limited immediate use, since the bulk of t
integration comes from large energies, whereas current
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periments only probe a relatively narrow range of bias
about the chemical potential.

VI. PHOTOEMISSION

Before concluding, we would like to propose a way
identifying weak charge ordering in photoemission expe
ments that could supplement current STM studies. A co
mon signature of a strong charge ordering in the angle
solved photoemission microscopy experiments is
presence of shadow bands: the electron spectral functio
momentumk acquires an additional peak at the energy of
quasiparticle at momentumk1Q. For weak charge order th
shadow bands may be difficult to observe: when the ene
difference betweenEk and Ek1Q is large, mixing between
quasiparticles is negligible and the intensity of the shad
peaks is vanishingly small. Strong mixing only occurs wh
statesk and k1Q are nearly degenerate, although in th
case the two peaks are hard to distinguish since they
close in energy. Thus we expect to observe an increase o
apparent linewidth of quasiparticles when the latter sati
the degeneracy conditionEk5Ek1Q and are strongly af-
fected by the charge order. For example, in the case of
Bi2Sr2CaCu2O81d band structure shown on Fig. 3 we expe
an anomalous increase in the apparent quasiparticle
width at the points A, A8, B, and B8 on the Fermi surface.

VII. CONCLUSIONS

To summarize, we considered the effects of weak tran
tional symmetry breaking on thed-wave superconducting
state of the cuprates. For systems with periodic charge o
we derived an explicit formula for the energy dependence
the Fourier component of the local density of states for s
eral types of order, including simple charge density wa
electron kinetic energy and superconducting gap mod
tions. We argued that within a one band model the ST
spectra observed in Refs. 13–15 cannot be explained b
simple charge density wave but require the existence of s
form of ~anomalous! dimerization, i.e., modulation in the
electron hopping or in the superconducting pairing amp
tude. We discussed a situation in which charge order
finite correlation length due to pinning by impurities. In th
case the LDOS has Fourier components for a range of
menta around the ordering wave vectorQ. For different
wave vectorsq, peaks inrq(e) will occur at different ener-
gies, although the peak dispersion is weak, in agreement
Refs. 16,15. We also considered systems in which tran
tional symmetry breaking comes not from charge order
but from impurities. We found that the Fourier componen
of the LDOS in this case have peaks for a wide range
wavevectors and strong dispersion of these peaks is co
tent with the STM experiments of Refs. 16,17.
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