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Translational symmetry breaking in the superconducting state of the cuprates:
Analysis of the quasiparticle density of states
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Motivated by recent scanning tuneling microsc@ff M) experiments on BS,L,CaCyOg, 5[J. E. Hoffman
et al, Science295 466 (2002; C. Howald et al, cond-mat/0201546unpublishedt J. E. Hoffmanet al,
Science297, 1149 (2002: K. McElroy et al. (unpublishegt C. Howald et al, cond-mat/0208442unpub-
lished], we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a
d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasipar-
ticle scattering off localized defects. We argue that the STM experiments,Br,BiaCyOg, s cannot be
explained using a simple charge density wave order parameter, but are consistent with the presence of a
periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and
pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss
implications of weak translational symmetry breaking for angle resolved photoemission spectroscopy experi-
ments.
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[. INTRODUCTION position of the corresponding simple cases, since the induced
po(e€) is approximately linear in the order parameter for
Puzzling properties of the highs; cuprates have often small distortions. Such a superposition is necessary to under-
been attributed to the existence of competing instabilities angtand the experiments of Refs. 14, 15.
proximity (or even coexistengeof several ordered states. ~ This superposition principle also applies when we have
Possible instabilities that have been discussed in this conteRotential modulation at several wave vectors @) can
include charge density wavéCDW) order, non-two- De analyzed separately for each wave vegtorhis is nec-
sublattice spin density waveéSDW) order'™ spin Peierls ~€ssary, for example, when we have randomness that pins the

order® and orbital magnetisfi’ Neutron scattering experi- charge order, so that the single particle potential is not a delta
ment:c, on Lgg ,Ndy.SrCu0,® LaSr_,Cu0, % and function in momentum space but has a narrow distribution
d X . X ’ X —X ]

La,Cu0,, ! demonstrated the coexistence of magnetismcentered at the ordering wave vec@r This leads to a finite

o . ; €) for a range of wave vectors arour@ and, as we
o ,
and superconductivity, while recent experiments on Strongl%iscuss below, taking a reasonable value of the CDW corre-
underdoped YB#Cu;Og 55 (Ref. 12 have seen evidence of | - . . e
2 . . . lation length reproduces well the “weak dispersion” of the
CDW order coexisting with superconductivity. Particularly

triking in thi text i ina t i ) CDW peak observed in Ref. 15. Our analysis can be ex-
striing n this context are recent scanning uTgn_?;ng MICT0Stended to systems with no charge order but, instead, with
copy (STM) experiments on BBrL,CaCyOq. 5~ > Which |505)i7ed defects, e.g., impurities. In this case we have a

see spatial structure in the tunneling density of states with Botential that is essentially momentum independent and we
period of four lattice constants. This structure was originallyfijnq strongly dispersing peaks jm,(¢) for a wide range of
observed in the experiments in a magnetic field by Hoffmanyaye vectors. Such peaks have been observed in the STM
et al*® and later also seen in zero field by Howaital'**®  experiments in Refs. 16,17 and discussed theoretically in
Modulo certain experimental subtleties, these experimentRefs. 18,19. We provide a qualitative comparison of the
can be thought of as measurements of the spatial FourigsTm spectra for systems with disordered CDW and impurity
component(at the ordering wave vectdp) of the energy scattering.
dependent local density of statdDOS) py(e). It is common to discuss spin density wave order as the
In this paper, we demonstrate that the energy dependenggimary competitor to superconductivity in the underdoped
of pg(€) provides important information about the nature of cuprated:>2°=22An order parameter for non-two-sublattice
charge ordering in these materials. It allows us to separatgagnetism is
simple charge density wave order, that has only the Hartree-
Fock potential modulation, from the more unusual charge S(r)= e T+ p*e 1T, )
orders that involve modulation of the electron kinetic energy
(dimerization or the pairing amplitudéanomalous dimer- where the complex-valued vectgr acquires an expectation
ization). For example, wherQ=(27/4,0) (as observed in value in a state with broken spin symmetry. When the SDW
slightly overdoped BiSr,CaCyQOg. 5), there is a change of order in Eq.(1) is collinear, it has an associated spin singlet
sign in pg(e€) for energies around 40 meV when dimeriza- order parameter that only breaks translational symmetry and
tions are present, but not in the case of a simple CDW. Whegan be described as a generalized charge density?fvave
several of the simple distortions are present simultaneously, . '
we can understand the resultipg(e) as(roughly) a super- Sp(r)=pe' %+ p*e 1T, 2
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Symmetry arguments determine the wave veQp+=2Qg of  dispersing peaks observed in Refs. 16,17 at wave vectors not
such generalized CDW, but they do not clarify its internalcorresponding to the CDW order. In Sec. V we review how
structure. For example, modulation of the local Hartree-FocKo include a more realistic model of the atomic wave func-
potential of the electrons and modulation of the electron kitions, whose main effect is to introduce a momentum depen-
netic energythopping are both spin singlet order parameters dent structure factor. An important implication of this result
that can be defined at the same wavevector and described #ythat the signal at wave vectors differing only by a recip-
Eq. (2). Modulation of the electron pairing amplitude also rocal lattice vector should have peaks at the same energies,
belongs to the same class of translational symmetry breakingthough their amplitudes may differ. We also discuss com-
since, in the superconducting state with condensed Coopglications in the analysis of the STM data introduced by the
pairS, order parameters with Charge two and zero are ndtormalization prOCEdUre used in the experiments. Fina”y, in
orthogonal. It is important to note, however, that a |Ong_Sec. VI we discuss several sum rules for the Fourier compo-
range SDW order is not a prerequisite for translational symnents of the density of states that may be useful for analyzing
metry breaking. One can have a situation where quantum d¥Xperiments.

thermal fluctuations destroy the spin order but preserve a

long-range order in the charge sectihis was observed, Il. ORDER PARAMETERS AND MEAN-FIELD
for example, in underdoped YB@u;Og 35,12 where neutron HAMILTONIANS FOR GENERALIZED CHARGE
scattering found period eight CDW but no static spin order. DENSITY WAVE PHASES

For slightly overdoped BiSr,CaCyOg, 5, on which most of

the tunneling experiments have been performed, neutroP
scattering experiments suggest dynamic spin fluctuafibns. el
In our analysis we then assume that there is no SDW ord
and concentrate on the effects of spin singlet translation
symmetry breaking. Another possible origin of a generalized
CDW with no spin symmetry breaking comes from pinning H=2 &Cl,Crot > A(chich e gC). (3
of SDW by disordet®?® or vortices??2® ko k

We restrict our analysis to the case of weak translationa{_|ere ex= — 2t[cos) +cosk,)]—AtcoskIcosk,) — i, Ay
eyimety bresing e he e order parameter <an 1€ (2 cosk, ok (rom how o e unit cl sice s e
field Hamiltonian. '?'his limit clearly appIFi)es to the egperi- ﬂ) unity), gr”:Nillzzkc.k"e”f'r’ andNis th? numbgr of sﬂgs
mental situation in Refs. 13-17, where the measured mod . Iattu;e. The Hamlltonla}(e) can be dlagon;';\llzed using
lation is weak, and allows us to obtain explicit approximate_he Bogol|ubo¥ tra.nSforzmat'zo_nkT_ukyk_T+Uk7‘kl’ €kl
expressions fopg(e). [This circumvents solving a compli- — “kY ki -UkYi with u+vi=1, uwi= A2, andEy
cated set of equations numerically, as, for instance, carried (€kT4i) ™ _ i
out in Ref. 25] Furthermore, we do not address the issue of Weak charge order may be introduced into the s@éy
the origin of charge order, but introduce it phenomenologi-2SSuming the appearance of one or more of the additional
cally and study its consequences for the STM experimenté?rder parameters listed below. We note that dlstlncnon be-
Our basic motivation is that a comparison of the energy defWeen site and bond centered orders discussed below is only
pendence opq with experimental data can, in principle, be defined for CDW with integer periods.
used to identify the correct order paramésewhich, in turn, Site-centered charge density wavehe local Hartree-
is crucial for understanding their origin. Fock potential is mpdulatgd along ' with  potential

This paper is organized as follows. In Sec. Il we introduce€Xtrema on the 'aEr“CG sitedsee Fig. @] AH,;
mean-field Hamiltonians that describe several kinds of trans= Y02 ¢ k(Ck+oCko T CkoChk+ Qo) -
lational symmetry breaking in a lattice system. For these Bond-centered charge density wavine local Hartree-
generalized CDW's we derive an explicit formula for the Fock potential is modulated alongwith the extrema of the
Fourier component of the tunneling density of states at thénodulation at midpoints of the horizontal bonfieee Fig.
ordering wave vector. Section IIl displays numerical resultsl(b)]: AH,=VoE, (@ ¢} 1 0,Cko T aCh,Ch+ o), Where a
of this expression in the case of,Bi,CaCyOg., stype band = el
structure and period four charge order. We show that recent Longitudinal dimerizationSingle electron tunneling am-
STM experiments by Refs. 14,15 are consistent with a genplitudes are modulated on the horizontal bonds and the wave
eralized CDW that has modulation of either the electron hopvector of modulation is along the same directi@e., along
ping or the pairing amplitude. We also consider period eigh). The bond centered version, in which the extrema of the
structure that may be relevant to Y&u;0g 35. In Sec. IV modulation lie on the bondgsee Fig. 1c)] corresponds to
we extend our analysis to phases with randomness and sho¥Hz= V2, « COSk+Q/2) (a* CLQUck(ﬂ— acﬁUcHQU).
that a realistic value of the CDW correlation length 420 Transverse dimerization Single electron hopping is
with ag the unit cell sizg provides good agreement with the modulated on the vertical bonds, and the wave vector of
“weak dispersion” of the CDW peak observed in Ref. 15. As modulation is along the horizontal directigne., alongx).

a different application of our formalism we also consider The site centered versidine., with extrema of the modula-
localized perturbations in the crystal, such as impurity potention realized on the vertical bondis shown in Fig. {d), and
tials, and demonstrate that these can account for the stronggprresponds th4=VOEkUcosky(c,I +00Cke T CEUCHQU).

Our starting point is a two-dimensional one-band mean-
d Hamiltonian that is commonly believed to be a good
odel for the physics of the,2_,2 superconducting state of
e cuprates
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X where
1 1
Ai=Vowy, By=Vonx,
Ak Voawy, Bﬁ=V0a Mk »
© (d) a 9
A§=V0a COS( kX+E Wk, BE=V0a COS( K, + E) Mk s
FIG. 1. Order parameters with wave vec@r (2#/4,0) con- (5)

sidered in this papefa) and (b) correspond to site and bond cen-
tered CDW, re_spectl_vely_. Black C|r_cles correspond to sites of_ higher AﬁZVoCOS(k ) oy, Bﬁ:VoCOS( ky) T
electron density, white circles to sites of lower electron density, and
gray circles to sites with the average electron densilyand (d) Q
describe longitudinal and transverse dimerizations, respectively.Aﬁz—voa Cos(k + = 7, Bk Voa Cog( Ket+ — | oy,
Heavy lines correspond to bonds with higher tunneling amplitude, 2 2
and dotted lines to bonds with lower tunneling amplitude. Anoma- 6 6
lous dimerization may be shown schematically as(onand (d), Ag=—Vocogky) 7, Bg=Vocogky) wy,
with heavy and dotted bonds describing higher and lower pairin

9n terms of the coherence factoig = Uy Uk — v+ Uk and
7= Ui+ QUkH Uk+ QUK - _
STM expenments measure the local density of states
Anomalous longitudinal dimerizatiorThe x components  p(r,e) ==, {|(n|c! |0)|28(e— €no) + |(n|C;,]0)|?5(e
of thed,2_2-wave pairing amplitudes are modulated in¥he + ¢,,)}, where the summation overranges over all excited
direction. The bond centered version, shown in Fig:)l states. In particular, we are interested in the Fourier trans-
corresponds t0AHs5=V(Z, {cosk+Q/2) (a* ck+QTc K| form
+acch k—q) T H.c}. 1
Anomalous transverse dimerizatiorhey-components of - E —ig-r
> . . pq(€) e p(r,e)
the d,2_2-wave pairing amplitudes are modulated in the
direction. The site centered version, shown in Figl) 1cor-

amplitudes.

1
respo?ds t0AHe= Vo=, Wl cok/(ch oty + et o) =N g [{0]C+ qolNY{(N|Ci,|0) (€= €no)
+H.cl. 7
Note that these subdominant order parameters may appear +<O|c|‘: INY(N|Crs o] 0) S( €+ €n0) ] (6)
o qo n

either as a result of a phase transition in the bulk, or due to

pinning by vortices, impurities or any other defetsse dis- Although a full treatment of all terms in E¢4) is compli-
cussion in Sec. 1Y, Following experimental observations in cated, progress can be made if we assume that the ordering
Refs. 14,15,27, we assume that the order is unidirectional€Ppresented b7 is weak, allowing us to obtain an analytic
and choose the ordering wavevector tode Q&, .28 How- expression for the Fourier transform that is exact to linear

ever, even if we were to assume checkerboard order, ourrder inVo. This is then the sum of two contributions
analysis is carried out to linear order in perturbation theory pQ(e)=pg(e)+pg(e)+O(VS), )
and, by linear superposition, our results would be identical to
those obtained for unidirectional order. For the STM exper|—WherepQ(e) is obtained by ignoring th8, term in the per-
ments in BjSr,CaCyOg, 5,>* Q=27/4, while the neu- turbation(4) andvice versa
tron scattering experiments on YB21,0; 35 (Ref. 12 cor- A small value ofV, leads to another important simplifi-
respond to the smaller valu@= 2/8. We point out that the ~cation: We only need to consider the pairwise mixing be-
six cases listed above are, in general, not orthogonal to eactween states connected WyH. For instance, in computing
other in a symmetry sense. As a result it is conceivable thatQ(e) for Q=2m/4 one would have to analyze coupled
more than one order parameter could be simultaneously nomquations for four quasiparticlex,( k+Q, k+2Q, and
zero; for example, in a microscopic model without particle-k+3Q=k—Q) connected by the perturbation. However,
hole symmetry, a simple CDW would be expected to inducen the limit whenV, is small, there is at most one pair of
dimerization as the two order parameters are linearlyquasiparticles that have similar energies, and that will be
coupled?® hybridized appreciably byA7. This hybridization can be
Upon expressing the HamiltoniansH in the basis of analyzed by diagonalizing the corresponding two-by-
Bogoliubov quasiparticles, they reduce to the generic form two Hamiltonian, which gives the new eigenstates,)
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and  |Bs)  with  energies Ey.=(Ec+Exiq)
2+ {[(Ex—Ex+0/2)]>+|AJAY2 Note that these states
satisfy (0]Cy + qol @) { Aol Chy| 0) = 3Uyly 1 oSN 268X,
(0lCk+ 00l Bra)(BrolCiyl0) = = Ukl oSin 268~ '*, where
we have definedA,=|A.|e'Xk, and tan 2,=2|A.|/(E,
—Ex+ ). From these results one easily finds

Fourier amplitude (arb. units)

1
A
PQ(E):_E
N "k Ex—Exio)? 5
— +]A

X {ugUyof 8(e—Eys)— 8(e—Ex-)]

Energy(meV)

tuwisgld(e+Ex)—d(e+E )]} (8) .
FIG. 2. Energy dependence of the Fourier component of the

.. B . ... local density of statepp(€) at Q=(2/4,0) for various cases of
When COHSIderII’lg)AQ, one would naively expgct that it is charge ordering. QBrZCQaCQOSM type band structure is assumed.
always smTaIIer Erha'p’Q’ because the pertgrba’gon terms of We show a direct calculation based on formul@s-(9). The curves
the form y,. o; v\, connect states that differ in energy by correspond to the CDW&olid), longitudinal dimerizatior(dashed
Ex+Exio, a factor that is never small. However, in some and anomalous longitudinal dimerizati¢dotted orders. To sim-
cases the coherence factorsAipvanish at important regions  plify the comparisonpg(€) is multiplied by —1 for CDW, and by
of the Brillouin zone, making)g(e) anomalously small. In 3 for anomalous longitudinal dimerization. In addition, subsequent
addition, as we discuss below, bqﬁﬁ'B(E) are large at bi- curves are shifted vertically by 0.6. Results for both kinds of trans-
ases corresponding to the saddle points on the degeneraesrse dimerization are qualitatively similar to corresponding longi-
lines Ey=Ey. o and van Hove singularities of the Bogoliu- tudinal results and are omitted for visual clarity.
bov quasiparticleg~A,. A nearly identical analysis of the

one above fop” yields experiments with current resolution. Mixing site and bond-
centered orders breaks inversion symmetry and leads to a
. 1 B complex-valuetpg(€).
pa(e= ; -
\/ Bt Biro +By 2 lll. CHARGE ORDER WITH NO RANDOMNESS
2 A. Period four CDW in Bi ,Sr,CaCu,0Ogy4 5
X[ukvk+Q5(e—Ek+)+uk+ka5(e— E) We first focus on modulations &= (2#/4,0) that is rel-
. . evant to BySr,CaCyOg. 5.2 Figure 2 shows results of
— U QuiS(€t By ) — Ui gdle+Ey )], the numerical evaluation of formulag), (8), and (9) for

9) various perturbationg5). [As transverse and longitudinal
dimerization curves are qualitatively similar, curves corre-
where Ekt:i(Ek_Ek+Q)/2+{[(Ek+Ek+Q)/2]2 sponding to the former are not _displayfeu\/e choo_se the
+|B,/2} 2. Equations(8),(9), are two key results of this pa- bgnd structure and the value &f in Eq. (3) appropriate to
per. In combination with Eqs(5), they provide an explicit Bi2S2CaCy0g. 51 t1/t=—0.3, p/t=-0.99 (this corre-

expression for the energy dependence of the Fourier comp&PONds to 14% dopingA,/t=0.14 andA =40 meV>" We ,
nent of the local density of statgg,(e) when the transla- setV,/t=0.02, although its precise value is inconsequential,

tional Symmetry breaking is weak. as pQ(E) scales Iinearly W|thVO when the latter is suffi-
From the form ofA, andBy, it is obvious that when there Ciently small. _ .
iS no mixing between bond and site centered Cwe) If we turn our attention to the expression fpﬁ, Eq (8),

can be made real at all energies by an appropriate choice ¥f€¢ sée that the energy denominator is smallest for those
the overall phase, i.e., by a shift in the origin of coordinatesduasiparticles lying close to the degeneracy poifs
when doing the Fourier transform. One obvious observatior™ Ex+q, Which are strongly hybridized by th&, part of the

is that the results for the site-centered and bond-centerg@friurbation. Figure 3 shows the four loci of such poiats,
CDW are identical modulo an overall phase factoel?. If ~ throughd, that are degenerate witti to d” respectively. The
one defines the Fourier transform in such a way that it is reapairsaa’ andbb’ are obvious, since they havg=+ /4

in both cases, the origin will coincide with one of the sites ofand k== 3m/4 (for the samek,); the other two require a
the lattice for the site-centered CDW, and it will be at themore detailed analysis of the band structure. Out of the set of
center of a bond for the bond-centered CDW. Hence carefulegeneracy points, we expect large contributions from the
analysis of the STM data allows one to distinguish two kindsh€ighborhood of points A and B, as the dispersion of hybrid-
of CDW, a task that is not possible in neutron scatteringzed energie, . is flat at these points. These same regions
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Fourier amplitude (arb. units)

[]
1
|
1
|
1
I
|
A |
|
I
|
I
|
|

d B
3 1 1 3
0 im0 im0 0O (3mO  (Gno @0
FIG. 3. Fermi surface for BBr,CaCyOg, s. Dashed lines cor- 0.3 " ' . : .
respond to the quasiparticles that satify, o= E, and are strongly -120 -80 -40 0 40 80 120
affected byAH when Q= (2/4,0). Quasiparticles on lina hy- Energy(meV)

bridize with quasiparticles on line’ (and similarly for linesb and
b’, and curveg, ¢’ andd, d’). Crossings of these lines with the
Fermi surfacdpoints Aand A, B and B)) give the minimal energy
of such quasiparticles: @M% and 0.2\, respectively. Contributions
from these points produce sharp peaks at energies 20 and 30 m
in Fig. 2. The Van Hove singularity for the Bogoliubov quasiparti-
cles at energy\, leads to a peak at 40 meV.

FIG. 4. The results in Fig. 2 are shown after smearing over an
energy range of 8 meV. To simplify the comparisgry(e) was
multiplied by — 1 for CDW and anomalous transverse dimerization,
&?d by a factor of—% for transverse dimerization.

energies. Notice that the smeared CDW curve does not have
the two large peaks surrounding zero bias, nor does it have
clear zero crossings &|~A,, the dominant features of the
STM spectra observed in Refs. 13,14. By contrast, the signal
related to longitudinal dimerization or, especially, to either
kind of anomalous dimerization, share many of the qualita-
tive properties of the data. However, neither curve by itself
= A, where a van Hove singularity for the Bogoliubov qua- accounts for all the observed features in the data. This

siparticles yields a logarithmic divergence in the densityprompts us to cons!der a combination of s_e_veral kmds_of
states. order. For example, if we assume that no pairing modulation

We turn now to the numerical results displayed in Fig 2 is present, the combination of longitudinal dimerization and

Consider first the simple CDW curves. The sharp feature _DW' (long. dim.)+ 1.05 (CDW), shown as a solid curve in
that dominate the CDW plots can be understood in terms o 1. 5 reproduces the STM re;ylts reasonably well, with only
the degeneracies mentioned above: the peak at energi@sSmall difference in the position of the peaks 17 meV,
around 0.8, comes from the vicinity of the A point, the compared to experimentally observe?5 meV). Alterna-
peak around 0X, comes from the vicinity of B, and the pile
aroundA, comes from the van Hove singularity near the
(0,7) and (7r,0) points. The longitudinal dimerization results 0.6 -

of the Brillouin zone will dominate theg contribution, since
the energy denominator in E) will be small only if both
k andk+Q lie close to the Fermi surface, which occurs only
in the neighborhood of points A and B. In addition we ex-
pect, for bothp” and p® pieces, a large contribution at

can be similarly understood by taking into account the addi—-é o0s |

tional minus sign in the vicinity of the point B due to the 5

cosk,+m/4) factor inA, andBy . The results for the anoma- < 04r

lous dimerization can also be understood in this frameworkS 531

after taking into account the extra sign modulatiorujw,, [ i P—
which changes sign wheneveéy, does. Note that, for all g 0z T T
perturbations consideredpg(e) displays approximate 5 o1y

particle-hole symmetry for small biases, as observed in STM+

0
measurement¥. This is not a generic property oly(e); for \/ \//(

example, for a diamond-shaped Fermi surfacet’ =0 the 0t

CDW signal is exactly antisymmetric. Finally, note that 02 . . , . .

po(€) goes to zero ak=0 in all cases; this reflects the -120 -80 -40 0 40 80 120
vanishing density of low-energy quasiparticle states in an Energy(meV)

ideal djwave supercqndgctor. . o FIG. 5. pg(e€) for Bi,Sr,CaCyOg, 5 type band structure, order-
While the results in Fig. 2 describe a system with |nf|n|teing wave vectorQ=2m/4 and a combination of charge orders:

guasiparticle lifetime and no disorder, in a real system diSOfrongitudinal dimerization and CDW, 1.05 (CDWYlong. dim.)

der will smear the sharp features jig(e). To model this, (solid line); anomalous longitudinal dimerization and CDW,
these curves are redisplayed in Fig. 4 after smearing over a@anom. long. dim.} 0.2 (CDW) (long-dashed line The same
energy widthw=0.2A,. This procedure smooths the sharp smearing is assumed as in Fig. 4. For clarity, curves have been
features in the spectra, and generates finite intensity at lowffset vertically by 0.25.
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tively we can match experimental data by considering the 2 s ]
combination of anomalous longitudinal dimerization and ’

CDW, (anom. long. dim} 0.2 (CDW), shown as a dashed € 2| 0o
curve in Fig. 5. It slightly overestimates the peak bias to be 3 o1
k)

+29 meV, and yields a low intensity at zero bias. Any in- e ) 06 f

termediate combination between these two scenarios alsg
gives good agreement with experiments. Although CDW wass
used in both combinations discussed above, it can be subst® ¢ |
tuted by transverse dimerization, which yields a qualitatively 5
similar po(€) to CDW. We note that, foe<3A,, the results £

come from the vicinity of the Fermi surface and are robust
against variations in the band structure that do not alter 5|
qualitatively the shape of the Fermi surfaeeg. thea andb’ . s . s s
lines do not move below the Fermi surface -120 -80 -40 0 40 80 120

We note, however, that a certain care should be exercisec. Energy(meV)
when comparing our results to the STM spectra in Refs.

13-17. An additional complication of the experiments is tha - . .
for every point on the surface of the sample the height of tth.eCtOrQ_.(ZW/S’O)' The inset showsq(e) for CDW (solid line)

2 . . ,%lmerlzatlon (dashed ling and anomalous dimerizatiotdotted
STM tip IS adjustgd_to k_eep the tunneling curr(_ant ata Certa_'rﬁne) separately. Main figure has the linear combination (ald)
voltage fixed. This implies that the local density of states is, g » (CDW), which was displayed for B8r,CaCyOs ., 5 in Fig. 5

not measured directly, but instead its product with SOM&the other linear combination is nearly zero and thus omitféte
space dependent function is measured. In Sec. V we revieame smearing is assumed as in Fig. 4.

how this normalization procedure can be included in analy-
sis. structure(e.g., simple CDW vs dimerizatiofi® In Sec. Il we
considered charge order at a unique wave vector that corre-

B. Period eight CDW in YBa,Cu3Og 35 sponds to taking potentialé andW as §(q— Q). In the case

of a disordered CDW we expect that these functions are no

longer 6 functions but are centered narrowly around some

particular wave vector. By contrast, when translational sym-

metry breaking comes from impurities, we expect to find

and W that extend over a wide range of wave vectqrsA

- . . crucial property of Eqs(8) and (9) is that p,(€) depends

—0.02, and keep the energy smearimig 0.24,. The main linearly on the perturbationg,; and W, henge the formal-

difference with the charge order @=27/4 is that the ana- . m for comoutin n'b ied independently t
log of line a in this case is inside the Fermi surface, so that>™ fOr computingpq(e) can be applie ependently to
each wave vectog.

the only contributions will come from the vicinity of point B The charge order observed in,Br,CaCyOg, 5 (Refs.

at (eer)le;gldessrg;cl}zp(ijnt(;ﬁr?s;it;r:‘ltszIeeridesnte?g;séslzisérugture n 14,15 had strong signatures of randomness and pinning in
PQ ' the form of lattice defects. The correlation length estimated

from the distance between defects wa0a,. If we assume
IV. DISPERSION OF THE STM SPECTRA the charge order to be of the form 1.0BDW)+ (long. dim),

Recent experiment$!” demonstrated that the STM spec- We can describe it as

tra of Bi,Sr,CaCyOg, s cannot be explained by charge or-

der at a unique wave vector. Peakspij(€) have been ob- Vi q:vo(q){1.05+ cos{ K+ 9x
served away from (2/4,0) and the wave vectors of the ’ 2
peaks are energy dependent. In this section we review and
compare two possible scenarios for such dispersion of th
STM spectrum{(1) randomness and pinning of charge order,
(2) scattering of BCS quasiparticles by impurities and crysta

defects. Both cases can be described using an extension es 8, 12, 16, and 20 mV, as a function of wavevectors

the formalism presented in the previous section. We ConSidez;rgge;hc?o(s%l?/)V\tlghﬁt’r?;tdc;fscglr(\)/gaTirr:eRreizungl glspersmn
a single particle Hamiltonian that generalizes E4). In experiments of Hoffmaret al2® and McElroyet al’

peaks in the LDOS were observed at very different wave

FIG. 6. YBaCu;04.35 type band structure and ordering wave

To model YBaCu;Og 35 for which CDW-type peaks have
been observed & =27/8 (Ref. 12 we take the same band
structuret, /t=—0.3, but a different value of the chemical
potentialu/t= —0.815(this corresponds to 6% dopingNe
use the same value oh,/t=0.14, A;=40 meV, V,y/t

, Wieq=0, (11

hereVy(q) is a Gaussian distribution function centered at
2/4,0) with a width 27/20a,. We display in Fig. 7 the
ﬁignal produced by a perturbation of this kind, for bias volt-

AH= Z [Vk,qu,UCk+q,a+ H.c.+Wk,q(clv(,clk_qy_U vectors from (27/4,0) (including some in diagonal direc-
K.qo tions). This suggests that eith¥f , or W, o must be nonzero
+C . oChsqo) TH.CI. (10) over a fairly wide range of values @f, and the most natural

candidate is scattering by impuriti€s.*8 For concreteness,
Here g describes the wave vector of the potential modula-we assume that the impurity induces a higher chemical po-
tion, and thek dependence o¥ and W gives its internal tential at a single site, so the perturbation used corresponds
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. . . . . . . . . FIG. 9. (a) Diagram of Hartree type used in computing the RPA
0.05 0 005 041 015 02 025 03 035 04 045 05 response for a system of interacting electrons in the vicinity of a
Qx| CDW instability. An external fielde.g., an impurity potentialpins

the CDW.(b) and(c) Contributions beyond the Hartree approxima-

FIG. 7. Dispersion in the (0,0) ton(,0) direction in a system tion, which may be subdominant depending on the model used.
with charge order with randomnegmomentum is measured in Their inclusion leads to a frequency-dependent self-energy.
units of 277). Charge order is assumed to have Gaussian distribu-
tion centered around wave vectors#2,0) with the width 27/20. particles at a given energy. From the band structure of
The functionVy(q) in Eq. (11) is shown, up to a scale, as the thick Bj,Sr,CaCuy0Og, s we find for the peak positiongn units of
solid curve. For visual clarity, only results corresponding to thep 7): 0.35, 0.32, 0.29, and 0.26. The curves on Fig. 8 show
linear combination 1.05 (CDW (Id) are displayed. Each curve general agreement with this “quasiparticle scattering”
corresponds to a different bias; starting from the bottom, the biaseérgumeml,e'” except for a consistent small shift to lower
are 8, 12, 16, and 20 mV. Throughout, the quasiparticle smearing

i Rave vector, which comes from the energy smearing proce-
fixed at 8 meV.

dure. This dispersion is stronger than that displayed in the
i o i . data at wave vector (2/4,0), but is in good agreement with
to a simple CDW which is uniform irg, Vi q=Vo, Wik,q  the dispersion observed at other wave vectors.

=0. In Fig. 8 we show the signal computed along the (0,0) |n the discussion above we considered two situations: or-
to (,0) direction at bias voltages 8, 12, 16, and 20 mV. Ingered CDW and noninteracting electrons with impurities.
all cases there is a pronounced peak that disperses with thgyere may also be an intermediate regime with interacting
applied bias voltage. To find the positions of these peaks We|ectrons close to the CDW instability and with disortfei?
reverse the arguments given in Sec. Il. There, we started Witbualitatively, this case may be described by Etp) but

a potential at wave vectdp and found that only quasiparti- ith the potentials/, , and W, coming not only from the
cles at certain energies were strongly affected by it. Now Wexternal fields but also from the density induced in the elec-
need to find the modulation wave vector that affects quasitrgn system. For simplicity let us take only one of the chan-

nels discussed in Sec. Il, e.g., simple COihe generaliza-

0.04 — tion to the case of several channels is straightforyvarten
SN (S o )
2 AH=2 plUgpe+ 2 VED!+H.c. (12)
3 q q
8 -
0.02 | .
< with
2 i
S o001 [ .
% quz CIIUCk+q<r-
2 ko
5 0Ff
£ The response of the quasiparticles to E®) in the Hartree
0.01 | approximation is determined by the effective perturbation
Hamiltonian
0.0z 0 0 ;)5 0I1 0 I15 0I2 0 :’25 0I3 0 ;35 0I4 0 215 0.5
' B B R o ’ AH=D, VSHCIJqu.Ckﬂ.-F H.c.
1Qx| Kqo
FIG. 8. Dispersion in the (0,0) ton(,0) direction in a model ext
with impurity induced quasiparticle scatterifigmomentum is mea- veff=yexty <;) )= ! (13
sured in units of 2r). Each curve corresponds to a different bias; q q aras— Ugxo(g,0=0)"

starting from the bottom, the biases are 8, 12, 16, and 20 mV. o

Unlike other computations in this paper, the quasiparticle smearinthereXo(qyw:0):<Pqpa> must be computed for the non-

is fixed at 2 meV. This is done since the main features in thesénteracting system. This corresponds to contributions to the
curves are averaged out for the usual smearing of 8 meV. LDOS from the class of diagrams in Fig(e®. When the
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system is close to the CDW instability, the denominator ofdensity of states in the presence of several kinds of transla-
Eq. (13) approaches zero around some particular wave vectdional symmetry breaking. In analyzing actual experimental
Q. Hence,Vgff may be peaked aroun@ even WhenvgXt is  data, additional effects need to be taken into account: the real
momentum independent. In principle we can go beyond thapace structure of the atomic wave functions, and the current
Hartree approximation, including diagrams such as thos@ormalization condition used in the STM measuremétt¥’
shown in Figs. $),9(c). These will introduce a frequency- These are reviewed below.

dependent self-energy, as in the case of pinned spin density
fluctuations considered in Ref. 25.

It is interesting to ask whether by analyzing experimental
data one can separate contributions of disordered CDW's For lattice Hamiltonians, wave vectors that differ by the
from those due to quasiparticle scattering off impurities. Ref+eciprocal lattice vector§& are equivalent. For the Fourier
erence 15 pointed out that the presence of a weakly dispersomponents of the local density of stajgsthis implies that
ing signal at wave vector (2/4,0) makes charge order a p'g‘f'ge(e)zp'(f“'ce(e) for any G. To understand why this
likely candidate at that wave vector. Here we build on thisequivalence is not observed in experiments we must take into
idea and suggest that a more consistent approach is to angeccount the real space structure of the Wannier wave func-
lyze p4(€) at many different wave vectors using a reasonablgjons of electrons in the conduction band. Here we study the
set of basis functions, e.g., simple CDW and dimerizationeffects of a single-band tight-binding model, in which Bloch
Such analysis will give the dependence of various compo- giates at the Fermi level can be written as a superposition of
nents in the potentialg) , or W . We expect that some of |,calized atomic orbitalg (1) = Sre'* Rep(r —R).

them will be almost uniform in momentum space and corre- \ya begin by projecting the Bogoliubov—de Gennes
spond to localized defects, such as impurities; whereas othe BdG) wave functions in terms of the single-band wave func-
will be centered around particular wave vectors and aris% ons
from the existence or at least proximity of charge order.
When the field of view of the STM measurement contains
more than one impurity there are several important questions up(r)= Z agi(r),
that we need to address. We must ask how the contributions k
from different impurities add up and whether the system re-

A. Structure factors

ccé+V  A+W
AT+Wh —&-v

tains the property of uniformity of phase pf(e) at fixedq v (r)ZE bl (1)
but differente. We consider impurities that cause an arbi- n o TkTk A
trary potentialV, 4 in Eq. (10), i.e., they may modify the A
chemical potential, the electron kinetic energy, or the pairingf we know how an operato® acts on the Bloch wave
amplitude, but first we assume that all impurities are identiynctions i, , @ =3,/ 0, s, then the above relation
cal. The Fourier component of the LDOS is proportional to, d i th’r hOa,—S 0 (and
VO =\, S el%Ta wherer, runs over impurity positions. - ouce> @n action Ofay througn ©a, = i aw Pi k (an
k™ kg a i similarly for b,). Thus, the solutions to the BdG equation
If one impurity does not break parity symmetry, we can
makeV, 4 real by choosing the origin at the position of this an an
impurity (see also discussion in Sec).IThis implies that k) —E ( ")
Vt,f’tq has a phase that dependsaonly and is the same for by 3 by
all k, which in turn proves that, at fixed, €) has con- . . . .
stant phasémoduIOﬂ-F; for all values ofeeE‘segq(Eq)s(5)—(9)]. will be mde_pendent of_the Wannier wave functigiir) once
So, in the case of identical impurities we have only oneWe determl_ne the action of the BAG operator on the Bloch
phase to worry about and we can always mpjge) real by ~ Wave functionsy .
an appropriate choice of origin. When impurities are differ- For positive biaseg>0 (the e<0 case can be analyzed
ent, we will have an intrinsically complep,(e), with pos- ~ analogously, the LDOS is given by
sibly energy dependent phase at different bias voltages. In
either case, interference among the .impurities leads to an pghy5(€)=f d2re‘q'rz u* (Nuy(r)d(e—E,)
appreciable suppression of the amplitudepg(e). When n
there are many impurities in the aréaof the STM field of
view, and their positions are uncorrelated, each impurity in- => S(e—En > ar"ald(k,k’,q),
troduces a random phase ‘t(ﬁog whose amplitude can be n Kk’
analyzed in terms of a random walk. Therefore, in a typica\Nhere
experiment we expect that with increasing the system size,
(Ipg(e)|) will decay as 1A, with statistical fluctuations of ,
the same order. This argument also applies to the case of J(k.k’,Q)=f d?r €9y (1) g (1)
disordered CDW, where the role of impurities is played by
defects in the CDW lattice.

=2, dq—(k—k')+G]
V. EXPERIMENTAL CONSIDERATIONS ¢

Our discussion in the earlier sections was restricted to X e‘k"Rf d?r €97 p* (1) p(r —R).
models on a square lattice for which we calculated the lattice R

094514-8



TRANSLATIONAL SYMMETRY BREAKING IN THE . .. PHYSICAL REVIEW B 67, 094514 (2003

If we assume that the relevant electronic wave function ign terms of a TSB functiorH (r) of orderV,,.

well localized, we can ignore terms involving the overlap It is convenient to absorf,, into p by introducing a new
across different sitesR#0) in the last integral. Then, the function p’(r,e)Efpe,(r)pphVS(r,e). Due to the symmetry
only dependence of on k andk’ is through the crystal properties off ., p' is simply related top'@ce through a
momentum conservation condition, and we find modified structure factor

P €)=Sypg " e) (14 pa(€)=Sypg "“e)
with '
Si= [ a7 fputnl ) e

lattice *Nan
= E o(e—Ey)a; a . .
P (¢ kn (e~ En)ai Ak q Expressingg™®°in terms ofp’,

. d%k
Sq=f d?r| p(r)|2€'9T. gg]eafé)ﬂ)é(f)—f ——Hg-wpi(e), (15
(2m)
One immediately recognizes that in HG4) pg ) isthe e see thatyy**{e) gets “direct” contributions from struc-
Fourier component of the lattice density of states that W§ e in the LDOS at wave vectay, as well as “shadow”
analyzed in the earlier sections aglis the structure factor contriputions from structure in the LDOS at other wave vec-
determined by the atomic wave functions. Peaks in the STMq, g k wheneverH,_, is nonzero. Whereas E¢L5) is an

: latti ; i S ;
spectra arise frompg™ °(€), whereasS, only provides addi-  exact relation, it is useful to truncate it to ordés by keep-

tional wave vector dependence. Hence in our tight bindingng in the second term only those contributions coming from

reciprocal lattice vectors have peaks at the same energies, but .
with generally different intensities. 97 e)=pg(€)— aquag'ge €)+0(V3), (16)

B. Current normalization condition 2 Y N (17
ag= _ .
An additional subtlety of STM experiments in Refs. g e
13-17 is the space-dependent normalization used. It is natu- . . N I ca
ral to assume that the tunneling matrix elements do no}" E{h'$ appr?xmatlon thedshadgw tc?nét”bu“grlr?q (e)
change appreciably with energy over the energy range of C o '2€S INt0 the space-cependent factgrand Ine space-
interest. Thus, ifz is the height of the STM tip above the 2veraged density of statp§s% (g% €)). From Eqs(16)

sample, and is its two-dimensional 2D coordinate along the 21d(17) we can verify an important property of the tunnel-

plane of the sample surface, then the differential tunneling"9 SPectra

conductance can be written as
9qrole)  Sgie

g(r.z,e)=1(r,2)p"™ir,e), gMe) S,

wherepPV{r, €) is the 2D density of states in the CuO plane.
The experiments in Refs. 13-17 adjust theoordinate at
every pointr along the surface, so as to keep the current a
V; fixed at a predetermined valle. The differential con-

when G is a vector of the reciprocal lattice arglis not.
Hence, we expedy“*{€) andgy' Gl e) to have peaks at the

Lame energies but in general with different overall ampli-

duct lized in this fashion i tudes.
uctance normalized in this fashion 1s An interesting question to ask is whether it is possible to
g™, €)= f(r)pPMr, €), analyze experimental data in a way that would allow to sepa-

rate direct and shadow contributionsg**{¢). Below we
Wheref(r):|f/ngdepphyS(r,€)_ Let us now discuss some demonstrate that this is possible using an exact sum rule

properties ofg™2%r, ¢). obeyed byp:""Y(€). Regardless of the model used and the

The spatial variation irf(r) is dominated by the inhomo- nature of the symlrgﬁecgy breaking perturbation, the sum over
geneous quasiparticle weight within a unit cell. To see this@ll frequencies op™"(€) should be identically zero for all

write q different from the reciprocal lattice vectof:
PYYr, €)= r,e)+ r,e), ” i 1
p S( ) ppev( ) pTSB( ) J_ d6p|qattICE( E)ZN kE <0|{Ck+qg— 1Clg-}|0>

where pye(r,€) is periodic with the lattice and is of order
one, whereaprsg(r, €) breaks lattice translational symmetry
and is of orderV, in our formalism. If we definef ,(r) EZ% (2m)?8(q—G).
=1¢/15""de ppefr,€), then
In principle, this identity can be used to remove the shadow
f(r)="fped N[1—H(r)] contribution in Eq.(15). In particular, forg# G, combining
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the approximate resultl6) and our knowledge oﬁ[f‘ﬁige(e) periments only probe a relatively narrow range of biases
from experiment, we can fix, by requiring the sum rule to about the chemical potential.

be obeyed: VI. PHOTOEMISSION

Vmax meag o) 4 Before concluding, we would like to propose a way of
_Vmaxgq €)ce identifying weak charge ordering in photoemiss.ion experi-
Vi . ments_that could supplement current ST™M stud|es. A com-
J' (g™ €))de mon signature of.a strong _charge ordering in the angle re-
solved photoemission microscopy experiments is the
(18 presence of shadow bands: the electron spectral function at
. momenturrk acquires an additional peak at the energy of the
Here V,ax Should be chosen sufficiently large so that thequasiparticle at momentukn+ Q. For weak charge order the
ratio of the two integrals is close to its saturated value, yet ihadow bands may be difficult to observe: when the energy
s_hould be small enough that we are still justified in usin_g agifference betweerk, and Ev:o is large, mixing between
single band model and a local picture of electron tunnelingquasiparticles is negligible and the intensity of the shadow
For completeness, we also list two other sum rules Obeyegeaks is vanishingly small. Strong mixing only occurs when
by tunneling spectra. By construction, at every wave vectoktatesk and k+Q are nearly degenerate, although in this
q#0 the functiongg“{e) must satisfy the normalization case the two peaks are hard to distinguish since they are
condition close in energy. Thus we expect to observe an increase of the
apparent linewidth of quasiparticles when the latter satisfy
eV mea the degeneracy conditiok,=Ey,o and are strongly af-
fo deg, {e)=0. fected by the charge order. For example, in the case of the
Bi,Sr,CaCyOg, 5 band structure shown on Fig. 3 we expect

: . : : n anomalous increase in the apparent quasiparticle line-
One can derive an independent sum rule if we restrict théi‘vidth at the points A, A, B, and B on the Fermi surface.

class of symmetry breaking Hamiltonians to effective one-

pa(€)=0qTe) — (g™ e))

~ Vmax

particle olpera.tor$10) [This includes al! perturbations con- VIl. CONCLUSIONS
sidered in this worK. Then the e-weighted average of _ _
p'&'ﬁtlce( €) will be, for q#G, To summarize, we considered the effects of weak transla-
tional symmetry breaking on thd-wave superconducting
o . 1 state of the cuprates. For systems with periodic charge order
f de epg"“'ce( €)= N > (OH{[ck+qo H1.cl }0) we derived an explicit formula for the energy dependence of
— ko the Fourier component of the local density of states for sev-

2 eral types of order, including simple charge density wave,
=_ E Vieg- electron kinetic energy and superconducting gap modula-
N % ' tions. We argued that within a one band model the STM
) . . . ) spectra observed in Refs. 13—15 cannot be explained by a
For the basis functions discussed in Sec. Il we find that onlyjn e charge density wave but require the existence of some
the Vy 4 describing simple CDW gives finite contributions form of (anomalous dimerization, i.e., modulation in the
after summing ovek. Hence, electron hopping or in the superconducting pairing ampli-
tude. We discussed a situation in which charge order has
finite correlation length due to pinning by impurities. In this
case the LDOS has Fourier components for a range of mo-
menta around the ordering wave veci@Qr For different
It is important to point out that this sum rule will be spoiled wave vectorsy, peaks inp,(€) will occur at different ener-
by shadow contributions in Eq15), and is only of use if gies, although the peak dispersion is weak, in agreement with
these have been previous|y removed, using for examp|e prd?EfS. 16,15. We also considered systems in which transla-
cedure in equation Ed18). tional symmetry breaking comes not from charge ordering
As a useful consistency check of our formalism, one carPut from impurities. We found that the Fourier components
easily verify that expressiond), (8), and (9) satisfy both of the LDOS in this case_have_peaks for a wide range o_f
sum rules. We emphasize, however, that although these eyavevectors and strong.dlspersmn of these peaks is consis-
pressions are only correct to linear order in perturbatiof€nt With the STM experiments of Refs. 16,17.
strength, the sum rules are nonperturbative and therefore
hold to all orders in perturbation theory. Furthermore, their
validity is not affected by the introduction of finite quasipar-  We thank J.C. Campuzano, J.C. Davis, J.P. Hu, A. Kamin-
ticle lifetimes as, for any normalized symmetric distribution ski, A. Kapitulnik, S. Kivelson, S. Sachdev, and S.C. Zhang
g(e), fde(a+ Be)g(e—€g) =a+ Bey. By contrast, the av- for illuminating discussions. This work was supported by the
erage ofp,(€) weighted by any other power e@fis sensitive  Nanoscale Science and Engineering Initiative of the National
to details of quasiparticle smearing. Unfortunately, these surgcience Foundation under NSF Grant No. PHY-0117795,
rules are of limited immediate use, since the bulk of theand by NSF Grants No. DMR-9981283, DMR-9714725, and
integration comes from large energies, whereas current eXDMR-9976621.

f dee p'c?ttice( €)= ZVEDW.
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