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Two impurities in a d-wave superconductor: Local density of states
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We study the problem of two local potential scatterers in ad-wave superconductor, and show how quasi-
particle bound-state wave functions interfere. Each single-impurity electron and hole resonance energy is in
general split in the presence of a second impurity into two, corresponding to one even parity and one odd parity
state. We calculate the local density of states~LDOS!, and argue that scanning tunneling microscopy~STM!
measurements of two-impurity configurations should provide more robust information about the superconduct-
ing state than one-impurity LDOS patterns. In some configurations highly localized, long-lived states are
predicted. We discuss the effects of realistic band structures, and how two-impurity STM measurements could
help distinguish between current explanations of LDOS impurity spectra in the BSCCO-2212 system.
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I. INTRODUCTION

The study of isolated pointlike impurities ind-wave su-
perconductors began with the observation that the scatt
wave pattern probed in tunneling experiments should inh
the fourfold symmetry of thed-wave state.1 It was pointed
out shortly afterwards by Salkolaet al.,2 following earlier
work on the analogousp-wave problem by Stamp,3 that qua-
sibound resonances should occur near strongly scattering
purities. Both the resonance energy and the details of
spatial structure of the resonant wave pattern depend s
tively on electron correlations and a large body of theoret
work exists exploring this relationship.4 Assuming that the
important details of the scattering potential are understo
careful studies of the local density of states~LDOS! near
isolated impurites provide a uniquely powerful probe of t
superconducting state. Experimentally, the high-tempera
superconductors, notably Bi2Sr2CaCu2O81d ~BSCCO!, have
been examined with sensitive scanning tunneling microsc
~STM! techniques. Images of the local environment
impurities5,6 have confirmed the existence of quasi-bou
states near strongly scattering impurities like Zn, but ha
led to new questions regarding the microscopic model
impurities and the superconducting state itself.

Other types of inhomogeneities not directly correlat
with impurity resonances have been discovered by S
measurements on the cuprates. These include the observ
of large, quasibimodal nanoscale fluctuations of the su
conducting order parameter, together with spatially cor
lated variations of the electronic structure and lifetime7,8

More recently, the observation of checkerboard pattern
the LDOS of vortex cores9 and in inhomogeneous samples
zero field10 in BSCCO has led to speculation that antiferr
magnetic phases can be formed in regions where super
ductivity is supressed.11 A good deal of subsequent theore
cal work on the competition betweend-wave
superconductivity and various exotic order parameters12 has
excited the high-Tc community with the suggestion tha
STM measurements could be revealing the presence of c
peting magnetic or other exotic subdominant order, shedd
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light on the origins of superconductivity itself.
On the other hand, a more conventional but still fascin

ing explanation has been put forward by Hoffmanet al.,13

who argue that Friedel oscillations related to quasipart
scattering between nearly parallel sections of the Fermi
face can lead to the observed checkerboard patterns, w
correspond to well-defined dynamical peaks in moment
space. These general remarks were followed very recentl
a calculation by Wang and Lee14 studying the Friedel oscil-
lations of a single impurity in ad-wave superconductor in
momentum space. These calculations support the idea
what STM is seeing is primarily the effect of quasipartic
wave functions interfering with one another in a fluctuati
disorder field on ad-wave superconducting background.

Studies of trueinterferenceof quasiparticle wave func-
tions in the presence of more than a single impurity are ra
however. Numerical solutions of the many-impurity proble
yield little insight into the mechanism of interference itse
In principle, the problem of two impurities is the simple
one which displays the interference effects of interest for
present problem; we study it here in order to understa
whether the STM analysis of isolated impurity resonance
indeed justified, and to test if the scenario proposed by H
manet al.13 is tenable in the presence of interfering Fried
oscillations. There is a small amount of earlier work on tw
impurities in ad-wave superconductor, most of it also n
merical. Onishiet al.15 solved the Bogoliubov-de Genne
~BdG! equations and presented a few local density of sta
profiles for two impurities. In a work philosophically relate
to ours, the interference of bound-state wave functions in
fully disordered system was discussed by Balatsky in
context of supression of localization effects due to impur
band formation.16 Micheluchi and Kampf have recently ex
hibited numerically how impurity induced bound states a
cumulate at low energies, and argued that the impurity b
at low energies could be studied from this perspective.17 Fi-
nally, during the preparation of this manuscript, a paper
Morr and Stavropoulos examined the two-impurity proble
with particular emphasis on predictions for cuprate ST
©2003 The American Physical Society08-1
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studies.18 We comment throughout the text on compariso
with these previous works.

We begin in Sec. II by reviewing the solution to th
single-impurity problem which has been studied by seve
authors. In Sec. III, we setup the formalism for the tw
impurity problem and give the exact solution for th
T-matrix, as well as a simplified form for some special cas
In Sec. IV, we discuss the dependence of the resonance
tings on the orientation and magnitude of the interimpur
separationR. The resonant energy splittings are argued
give important information which is qualitatively differen
from that is obtainable from one-impurity resonance en
gies; in particular, they allow one, in principle, to map o
by repeated measurements of energies for impurity confi
rations at separationR, the spatial structure of the homog
neous superconducting Green’s function. Starting from t
widely separated impurities withR@j0, wherej0 is the co-
herence length, we then give analytical solutions for
splittings which exhibit explicitly the strong dependence
the direction ofR due to thed-wave nodes. Impurities lo
cated along a 100 axis interact very weakly forR*j0,
whereas configurations near 110 relative orientation lea
strong hybridization.

In Sec. V, we begin by discussing the simple quantu
mechanics problem of how bound eigenstates with two s
tering centers are constructed from the eigenstates of
and show how these states may be classified. Of four st
which arise from the single-impurity particle and hole res
nances, two are spatially symmetric (s), and two antisym-
metric (p), one on each side of the Fermi level. The ene
ordering of these states, as well as the crude qualitative
terference pattern~constructive or destructive! depends on
the configurationR in a predictable way. The local density o
states is then calculated and plotted for several cases to
trate the spatial dependence of the resonant state wave
tions. Spectra on individual sites reveal unexpected phen
ena: in certain circumstances the one-impurity states, wh
become sharper as they approach the Fermi level due to
coupling to the lineard-wave continuum, interfere to creat
localized, extremely sharp states located at energies quit
from the Fermi level. In Sec. VI we discuss the situation
a more realistic band characteristic of the BSCCO-2212 s
tem on which impurity STM studies have been perform
The trapped quasiparticle states are still found, and a
namical resonanance criterion depending on the exact F
surface and impurity orientationR is identified.

Finally, in Sec. VII we present our conclusions and d
cuss the implications for STM experiments and other asp
of the disordered quasiparticle problem.

II. SINGLE-IMPURITY PROBLEM

In broad terms, there are two distinct points of vie
which have evolved regarding the localized scattering re
nances observed by STM on the surface of BSCCO-2212
the traditional quasiparticle picture, one simply calculates
scatteringT-matrix for noninteracting BCS quasiparticles
a d-wave superconductor and finds a pair of resonan
which are approximately symmetric in energy about
09450
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Fermi level, and which have distinctive spatial patterns.4 In
the second point of view, additional physics arises from
local disruption of the strongly correlated ground state by
impurity which is predicted to break singlet correlations,19,20

nucleate short-ranged antiferromagnetic order,21–26 or spin
fluctuations associated with a nearby phase transition.18,27

Perhaps the strongest motivation for this point of view is
observation of local moments near Li and Zn impurities
the superconducting state of underdoped yttrium barium c
per oxide ~YBCO!, as observed in NMR28,29 experiments.
For the STM experiments, the basic question is whether
spatial structure which is observed at low energies is eff
tively the result of BCS quasiparticles scattering from
short-range potential~i.e., Friedel oscillations!, or requires
consideration of local correlation effects~e.g., spin-density
wave formation27! or dynamical effects~Kondo physics!.19,30

One notable feature of the STM experiments on Zn-dop
samples of BSCCO is that only a single, negative-ene
resonance with a resonance energy of'21.5 meV is seen;6

the predicted impurity-induced resonances come in mir
pairs as a consequence of the particle-hole symmetry of
superconducting state. A further inconsistency is the fact
a large LDOS is observed on the Zn impurity site; the stro
repulsive potential which Zn is believed to possess must n
essarily allow little or no electron spectral weight at the im
purity site. One appealing explanation31,32 is that the mea-
sured LDOS of the CuO2 planes is in factfilteredby an inert
surface layer, leading to an apparent redistribution of spec
weight in the tunneling LDOS. With this mechanism, o
can simply understand the LDOS without introducing stro
correlation physics. We note, however, that while th
mechanism explains the observed LDOS for Zn impurities
is problematic for both Ni impurities and Cu vacancie
which are consistent with the quasiparticle picture witho
invoking a filtering mechanism.~To date, there is no con
vincing model which has explained the spatial distribution
the LDOS in all three cases.! One of the goals of this work is
to study the effect of the filtering mechanism on the reson
structure of two closely spaced strongly scattering impurit
within the quasiparticle point of view, providing a more rig
orous test of the quasi-particle-plus-filter mechanism for
impurities.

The BCS Hamiltonian for a pure singlet superconduc
can be written as

H05(
k

Fk
†~ekt31Dkt1!Fk , ~1!

whereFk5(ck↓c2k↑
† ), is a Nambu spinor. In this work we

will consider several forms for the dispersionek . Analytic
results are presented for a parabolic bandek5k2/2m, with
correspondingd-wave order parameterDk5Dmaxcos 2f (f
is the angle in momentum space whichk makes with the 100
axis!. Numerical results are presented for a simple tig
binding modelek522t(coskx1cosky)2m and for a realistic
six-parameter tight-binding model proposed by Norm
et al.,33 both having the correspondingd-wave order param-
eterDk5D0(coskx2cosky). Note the maximum value of the
8-2
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TWO IMPURITIES IN A d-WAVE SUPERCONDUCTOR: . . . PHYSICAL REVIEW B 67, 094508 ~2003!
order parameter in the lattice system with the current c
vention is 2D0. The matricest i are the Pauli matrices.

The Hamiltonian of a single on-site impurity atr50 may
be written as Himp5(k,k8V0Fk

†t3Fk8 ,where V0 is the
strength of the impurity potential. The Green’s functio
Ĝkk8(v) in the presence of the impurity is expressed
terms of Green’s functionĜk

0(v) for the pure system

as Ĝ(k,k8,v)5Ĝ0(k,v)dkk81Ĝ0(k,v)T̂(v)Ĝ0(k8,v),
where thê symbol indicates a matrix in Nambu space. T
solution is

T̂5T0t01T3t3 ,

T05V0
2G0 /~S1S2!,

T35V0
2~c2G3!/~S1S2!, ~2!

whereG0 andG3 are thet0 and t3 Nambu components o
the integrated bare Green’s function(kĜ

0(k,v). This ex-
pression has resonances when

S6[12V0~G37G0!50. ~3!

Note that in a simple band 1/(pN0V0)[c/(pN0) is the co-
tangent of thes-wave scattering phase shifth0, whereN0 is
the density of states at the Fermi level. In the special cas
a particle-hole symmetric system,G350 and the resonanc
energy is determined entirely byG0, which is given in the
case of a circular Fermi surface byG0(v)
52 i *(dw/2p)v@v22Dk

2#21/2 which for low energiesv
!Dmax takes the formG0(v).2(pv/Dmax)(ln 4Dmax/v
1i). One may then solve ReS6(v1 i01)50 and estimate
the resonance widthG on the real axis. In the case of stron
scatteringc!N0, the resonance energyV0

6 and scattering
rateG are

V0
65

6pcD0

2 ln~8/pc!
~4a!

G5
p2cD0

4 ln2~8/pc!
. ~4b!

This result was first obtained by Balatskyet al.,2 following
earlier work on thep-wave analog problem by Stamp.3 Note
that the resonance becomes a true bound state only exac
the Fermi levelV50, whenc50; for finite c there are two
resonances whose energies are symmetric,V0

152V0
2 in

this approximation. As seen from Eq.~3!, in particle-hole
asymmetric systems (G3Þ0), the resonance is tuned to sit
the Fermi level for some value of the impurity potentialV0
which is not infinite, so the term ‘‘unitarity’’~as used in this
work, V050) and ‘‘strong potential’’ (V0→`) are not
synonymous.34,36

The ambiguity in defining the resonance energy precis
arises already at the level of the one-impurity proble
Equation~3! is in fact an equation for a complex frequen
v, which may be shown to have no solution in the upper h
plane. Thus theT matrix has no true pole at anyv5V8
1 iV9 in the complex plane, but only a maximum which lie
09450
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along the real axis. Only when the real partV8 approaches
the Fermi level does the damping become sufficiently sm
to allow one to speak of a well-defined resonance in this c
the real partV8 approaches the solutionV0

6 of Re@S6#50
for v on the real axis. For this reason the ‘‘resonance
ergy’’ is usually taken to beV0

6 , as given, e.g., in Eq.~4a!
for the particle-hole symmetric case. It is important to ke
in mind, however, that the definition becomes meaningles
the bound-state energy moves far from the Fermi level;
example, the apparent divergence of Eq.~4a! as c→8/p is
artificial, since no well-defined resonant state exists by
time V0 is a significant fraction of the gapD0. It should also
be noted that the generalization of this resonance criterio
more complicated situations, where the denominator d
not factor, is not straightforward.

Even if the energiesof the particle and hole resonan
states are symmetric, theirspectral weightson a given site
may be quite different.2,4 The finite impurity potential acts a
a local breaker of particle-hole symmetry, leading in the c
of repulsive potential to a large peak inr(r ,v) at the impu-
rity site r50 at negative energy~holelike states! and a small
feature at positive energy~electronlike!, as seen in Fig. 1.
The impurity-induced LDOS decays asr 22 along the nodal
directions~for the particle-hole symmetric system!, and ex-
ponentially along the antinodes. The LDOS in the near fi
is more complicated, however: the nearest-neighbor s
have peaks at6V0, with the larger spectral weight at1V0.
In the crossover regimer;j0, the LDOS is enhanced alon
the node direction for holelike states, but is spread perp
dicular to the node direction for electronlike states. The
spatially extended LDOS patterns are the fingerprint of
impurity-induced virtual bound states. In Fig. 1, we illustra
the LDOS pattern expected for both particles and holes fo
resonant state close to the Fermi level. Results are obta
with a simple half-filled tight-binding band, ek
522t(coskx1cosky), and unless otherwise specified all e
ergies are given in units of the hoppingt.

At the present writing, the LDOS pattern produced with
the simpleT-matrix theory for a single strong impurity, while
fourfold in symmetry, does not agree in detail with ST
experiments on Zn impurities and native planar defects.6 It is
not currently clear whether this is due to a failing of th
microscopic impurity model, e.g., failure to include stron
correlations in the host or magnetic degrees of freedom
whether a relatively trivial tunneling matrix element effe
prevents direct observation of the simple pattern by ST
For the moment then we consider only the simplest tw
impurity model possible, recognizing that direct applicati
to experiments awaits a resolution of the discrepancy at
one-impurity level.

III. T MATRIX FOR TWO IMPURITIES

We now introduce the formalism necessary to study
interference between two resonances of the type discu
above when two identical impurities are brought close to o
another. The perturbation due to two identical impurities
cated at positionsRl andRm , is given by
8-3
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FIG. 1. ~Color online! Sum-
mary of LDOS results for one-
impurity problem on a tight-
binding lattice, D050.1, m
50,V0510, uV0

6u.0.013: ~a!
LDOS vs v on the impurity site;
~b! LDOS vs v on nearest-
neighbor site;~c!,~d! LDOS map
at resonance v5V0

1 and v
5V0

2 . Color scales in~c! and~d!
are relative to the nearest
neighbor peak heights show
in ~b!.
e
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Ĥ imp5V0 (
i 5 l ,m

Fi
†t3Fi , ~5!

where Fi[@ci↑
† ci↓#. By iterating the procedure for th

single-impurityT matrix with two impurities present we find
in a 434 basis of spin and impurity site labels,37

T̂lm~v!5S f̂ T̂l f̂ T̂l Ĝ
0~R!T̂m

f̂ T̂mĜ0~2R!T̂l f̂ T̂m
D , ~6!

whereR5Rl2Rm and whereT̂l ,T̂m are the single-impurity
T matrices associated with the two impurities. For identi
impurities,T̂l5T̂m5T̂(v), the single-impurityT matrix de-
fined previously. The quantityf̂ is defined as

f̂ ~v!5@12Ĝ0~2R,v!T̂l~v!Ĝ0~R,v!T̂m~v!#21, ~7!

where Ĝ0(R,v)5(kexp@ik•R#Gk
0(v) is just the Fourier

transformation ofĜk
0(v), the unperturbed Nambu Green

function. For systems with inversion symmetryĜ0(R,v)
5Ĝ0(2R,v). Note that in Eq.~6!, the physical processe
are clearly identifiable as multiple scatterings from each
purity l and m individually, plus interference terms wher
electrons scatter many times betweenl andm. In k space, we
can write theT matrix in the more usual 232 notation as

T̂kk8~v!5@eik•Rlt0eik•Rmt0#T̂lmF e2 ik8•Rlt0

e2 ik8•Rmt0
G , ~8!
09450
l
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where t0 is the Pauli matrix. In Sec. II we showed tha
provided the resonance energies are distinct, peaks in
total density of states correspond to minima of theT-matrix
denominator,

D[det@12Ĝ0~2R,v!T̂~v!Ĝ0~R,v!T̂~v!#. ~9!

Explicitly, D5D1D2 /(S1
2 S2

2 ) with

D15D 1
1D 1

21V0
2G1

2~R,v!,

D25D 2
1D 2

21V0
2G1

2~R,v!, ~10!

where

D a
65@12V0G3~0,v!6V0G0~0,v!#

1~21!aV0@7G0~R,v!1G3~R,v!#. ~11!

The factorsD1 ,D2 determine the four two-impurity reso
nant energies. HereGa(R,v) is the ta component of the
integrated bare Green’s function

Ga~R,v!5
1

2
Tr„taG0~R,v!…. ~12!

For completeness, we also give the explicit form of theT
matrix itself,

T̂k,k8~v!5
2V0

D1D2
@cos~k•R/2!cos~k8•R/2!M̂s~v!

1sin~k•R/2!sin~k8•R/2!M̂ p~v!#, ~13!
8-4
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TWO IMPURITIES IN A d-WAVE SUPERCONDUCTOR: . . . PHYSICAL REVIEW B 67, 094508 ~2003!
where

M̂ p5S D 2
1D1 G1~R,v!V0D1

G1~R,v!V0D1 2D 2
2D1

D ,

M̂ s5S D 1
1D2 2G1~R,v!V0D2

2G1~R,v!V0D2 2D 1
2D2

D . ~14!

In certain special configurations, e.g., if the two impuriti
are located at 45° with respect to one other, it is easy
check thatG1(R,v)50 ; R. In this case the entire resona
denominator factorizesD5D11D12D21D22 . TheT matrix
then takes the simple diagonal form

T̂k,k8~v!52V0cosS k•
R

2 D cosS k8•
R

2 D F t1

D12
1

t2

D11
G

12V0sinS k•
R

2 D sinS k8•
R

2 D F t1

D22
1

t2

D21
G ,
~15!

wheret6[(t36t0)/2.

IV. BOUND-STATE ENERGIES FOR TWO IMPURITIES

Measuring bound-state energies of impurity resonance
STM experiments allows one to obtain information on imp
rity potentials, and has the virtue of being independent of
STM tunneling matrix elements. On the other hand, re
nance energies of isolated single impurities provide no in
mation on the spatial structure of resonant or extended s
electronic wave functions. In principle, measurement of o
the resonance energies of isolated pairs of impurities w
different separationsR is the simplest method of getting sp
tially resolved information on electronic wave functions i
dependent of the exact tunneling mechanism.

FIG. 2. Two-impurity resonance energiesV1,2
1 .0 vs impurity

separationR/(A2a) for Ri(110), m50, D050.1, V0510. Solid
line, upper two-impurity positive resonance energy; dashed l
lower two-impurity resonance energy; upper dashed-dotted l
reference one-impurity resonance energyV0

1(V0). Lower dashed-
dotted line, one-impurity resonance energy for double-impu
strengthV0

1(2V0). Symbol indicates resonant channel,s5V1
1

.0; !5V2
1.0.
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When two identical impurities with resonance energ
V0

2 ,V0
1 are brought together, the bound-state wave fu

tions interfere with one another, in general splitting and sh
ing each resonance, leading to four resonant frequen
V1

2 ,V1
1 ,V2

2 , andV2
1 , where the subscript indicates whic

factor in Eq.~11! is resonant. If splittings are not too larg
the electron and hole resonances are related in a similar
as in the one-impurity problem,V1

2.2V1
1 and V2

2

.2V2
1 . Again the weight of each resonance may be qu

different or even zero on any given site. A large splitting m
be taken as evidence for strong hybridization of quasipart
wave functions. If we take the interimpurity distanceR as a
parameter and keep impurity potentials and other parame
fixed, there are two obvious limits where this splitting va
ishes. In the case of separationR50, the two impurities
combine ~mathematically! to create a single impurity o
strength 2V0, so bothV1,2

6 approach theV0
6(2V0) appropri-

ate for the double-strength potential. In the case of infin
separation R→`, we must find V1,2

1 approaching the
V0(V0) appropriate for isolated single impurities.

A. Gas model

Equation~9! is a general result for twod-function poten-
tials embedded in a host described by an arbitraryG0. We
would like to derive analytical results for the resonance
ergies obtained therefrom to get some sense of the appr
ate length scales and symmetries in the problem. At la
distances, the resonance energies must approach the s
impurity values, so the splittings can be calculated pertur
tively. To do so one must first obtain analytical expressio
for the large-distance behavior of the unperturbed Gree
functions. This is difficult for the superconducting lattic
tight-binding model on which most of this work is based, b
much insight can be gained by studying the equivalent
model, with spectrumek5k2/2m. In this case expression

e,
e,

y

FIG. 3. Two-impurity resonance energiesV1,2
1 /t.0 vs impurity

separationR/(a) for Ri(100), m50, D050.1, V0510. Solid line,
upper two-impurity positive resonance energy; dashed line, lo
two-impurity resonance energy; upper dashed-dotted line, refere
one-impurity resonance energyV0

1(V0). Lower dashed-dotted line
one-impurity resonance energy for double-impurity stren
V0

1(2V0). Symbol indicates resonant channel,s5V1
1.0; !

5V2
1.0.
8-5
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FIG. 4. ~Color online! Comparison of symmetric~s! and antisymmetric~p! combinations of one-particle wave functions with exact LDO
for D050.1, V0510, m50, R5(6,6). Two-impurity resonance energies areV26 /t560.0195,V16 /t560.0075. Energies are alway
ordered from highest~top! to lowest~bottom!.
ting

nce
,
-
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have been obtained by Joynt34 and Balatskyet al.,16 for the
d-wave integrated Green’s functionsGa(R,v) at large dis-
tances, both forR making an angle 45° or 0° with thex axis.
For frequenciesv/D0!1/kFr !1/kFj0, these reduce to

Ĝ0~R,v!

'5
N0

eikFR

kFR

kFj0

41p2j0
2kF

2 t3 Ri~110!

N0

e2R/j0

AkFR
F S i

v

Dmax
t01t11t3D coskFR

1S i
v

Dmax
t01t12t3D sinkFRG , Ri~100!

~16!

wherej05vF /pDmax is the coherence length.
09450
The resonance energies may now be found by inser
these expressions for frequenciesv5V0

61d into Eq. ~9!
and solving for the shiftsd. We findV1,2

1 .V0
16d, with

d

Dmax
'5

1

ln~V0 /Dmax!

sinkFR

kFR

kFj0

41p2j0
2kF

2 , Ri~110!

e2R/j0

AkFRln~V0 /Dmax!
cos~kFR1p/4!, Ri~100!.

~17!

These expressions are valid ford/V0
1!1.

Clearly the decay of the splitting;exp2r/j0 /AkFr is
much more rapid for distances larger than the cohere
length along the antinode~100! than for along the nodes
where it falls as;1/r . The lack of a scale in the long
distance interference of quasiparticle wave functions orien
along ~110!, where they strongly overlap, is of potential
8-6
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TWO IMPURITIES IN A d-WAVE SUPERCONDUCTOR: . . . PHYSICAL REVIEW B 67, 094508 ~2003!
crucial importance in the STM analysis of ‘‘isolated’’ impu
rities, and we will bear this question in mind in what follow

B. Lattice model

Here we consider a tight-binding model for ease of n
merical evaluation. The definition of the resonant energ
can be obtained either by finding the minimum of Eq.~9! or
from an analysis of phase shifts.35 The solutions correspond
ing to each factor in Eq.~10! can then, in general, be tracke
as a function of separationR by minimizing D1,2 separately.
In practice, this works well except in some special ca
where the minima are very shallow. In Fig. 2 we show t
result for a particle-hole symmetric system. It is seen t
each factorDa corresponds to an oscillating function ofR,
with the factor determining, e.g.,V2

1 , changing from site to
site according to whether the site is even or odd. This is
to the strongR dependence of the componentsGa ; in the
simplest case,Ri(110) and m50, G3(R,v)5G1(R,v)
50, but G0(R,v)[(k cos(kxR/A2)cos(kyR/A2) Gk

0(v) os-
cillates rapidly. AtR50, the problem reduces to the doubl
strength single-impurity case; the factorD1 gives the reso-
nant frequencyV0

6(2V0) and the factorD2 is 1. At large
separation theV1

1 andV2
1 ‘‘envelopes’’ are seen to converg

to V0
1(V0) with a length scale of a fewj0.10a for the

parameters chosen.
In the Ri(100) case, the oscillations of the bound-sta

energies with increasingR are not so simple, as seen in Fi
3. The one obvious simple difference from the~110! case is
that the energy splittings vanish much faster with distance
expected from the discussion in Sec. IV A. Otherwise
short-distance behavior of the bound-state energies is c
plicated. One can check that the energy closest to the F
level is V2

1 whenR5214n, n integer, andV1
1 otherwise.

In general, the short-distance behavior is difficult to an
lyze analytically and we note that in neither the~110! nor
~100! directions do resonances appearat all for R51.
Clearly the hybridization is so strong in these cases that

FIG. 5. Comparison of LDOS spectrar(r ,v) for variousr with
two impurities with D050.1, V0510, m50 at positions (23,
23) and (3,3) @R5(6,6)#. Vertical lines correspond to one
impurity resonances atV0

6560.013. Note difference in vertica
scales between upper and lower panels.
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picture of perturbatively split one-impurity states brea
down. More importantly, the splittings are significant out
quite large distances. Parameters in Figs. 2 and 3 are ch
such thatj0'10a, as seen from Fig. 3, where we indee
expect ae2R/j0 falloff according to the preceding section. O
the other hand, Fig. 2 indicates strong interference ou
distances of 30a or more!

V. LOCAL DENSITY OF STATES

A. General

The spatial distribution of two-impurity bound-state
gives much more detailed information about the nature of
quantum interference processes between impurities than
bound-state energies by themselves. Here we ask whe
one can simply express the bound-state wave functions o
two-impurity system in terms of the one-impurity boun
states, and how they can be classified by symmetry.
would like to make predictions for STM experiments, inclu
ing which qualitative features of the spectra reflect the qu
tum numbers of these states directly, and how these feat
depend on impurity potential and configuration. As indicat
in the preceding section, it is important to determine how
apart two impurities need to be considered ‘‘isolated.’’ F
nally, we would like to understand how robust these pred
tions are with respect to changes in band structure, scatte
potential, etc.

Throughout this work, the LDOS refers to thetunneling
density of states,

r~r ,v!5
1

2 (
s

rs~r ,v! ~18!

with the spin-resolved LDOS,

r↑~r ,v!52p21ImG11~r ,r ,v1 i01!, ~19a!

r↓~r ,v!51p21Im G22~r ,r ,2v2 i01!, ~19b!

where the subscripts 11 and 22 refer to the electron and
parts of the diagonal Nambu Green’s function.

The factor of 1/2 in Eq.~18! ensures that the LDOS nor
malization is

E
2`

`

dvr~r ,v!51.

Provided the peaks in the LDOS are well defined, the p
energies agree closely with the resonance energies define
Eq. ~4a!. Some care is required, however, because peak
the LDOS may not appear on all sites, and can be difficul
resolve. It is also worth noting that the peaks in the LDO
are not symmetric with respect to the Fermi energy, thou
in practice the degree of asymmetry is very small.

The local electron density of states measured by STM
given by Eq.~18!, with
8-7
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Ĝ~r ,r ,v!5(
k

Ĝ0~k,v!1(
k,k8

e2 i (k2k8)•r

3Ĝ0~k,v!T̂kk8~v!Ĝ0~k8,v!, ~20!

and T̂kk8 is theT matrix for any number of impurities.

B. Interference of one-impurity wave functions.

In the one-impurity case, theT matrix is given by Eq.~2!
and it is easy to see that

2dG11
9 ~r ,r ,v!52V0 ImS @G11

0 ~r !#2

S2
1

@G21
0 ~r !#2

S1
D .

~21!

Quite generally one can express Green’s function in term
the exact eigenstatescn(r ) of the system in the presence
the impurity37

dG11~r ,r ,v!5(
n

cn* ~r !cn~r !

v2Vn1 i01
'

cn* ~r !cn~r !

v2Vn
, ~22!

where the final approximation is valid for a true bound-st
with v very close to a particular bound-state energyVn , and
will be a good approximation in the present case to the ex
the resonances are well defined, in the sense discu
above. Comparing with form~21! thus allows us to identify
the positive- and negative-energy wave functions of
single-impurity resonances (V0.0 assumed!:

c6~r !5Z6H G21
0 ~r ,v!, v5V0

1

G11
0 ~r ,v!, v5V0

2 ,
~23!

whereZ6 are nonresonant wave function normalization fa
tors. Note that the electronlike bound-state eigenfunctio

FIG. 6. ~Color online! LDOS maps at resonant energies f
Ri(110). Tight-binding band,D050.1, V0510, m50.
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directly related to the off-diagonal bare Green’s functio
while the holelike wave function is proportional to the dia
onal bare Green’s function.

We can follow the same procedure for the two-impur
Green’s function, and ask how the eigenfunctions at a p
ticular resonant energy are related to the single-impu
wave functions we have just found. Since the single-impu
resonant energies are different from the two-impurity en
gies, this analysis will be valid to the extent the splittings a
small compared toV06 . The Green’s functiondG(r ,r ) can
now be constructed from Eq.~13! and the wave functions
read off by comparing with the spectral representation in
same way as in the one-impurity case. By examining
~13! it may be shown that, depending on whetherD1 or D2 is
resonant, the wave functions thus extracted will be of d
nite spatial parity,cn(r )56cn(2r ). We find

c1
p 5Z1

p S G11p
0 1

G1~R!V0

D 2
1

G12p
0 D , v5V21 ,

c2
p 5Z2

p S G11p
0 2

D 2
2

G1~R!V0
G12p

0 D , v5V22,

c1
s 5Z1

s S G11s
0 2

G1~R!V0

D 1
1

G12s
0 D , v5V11 ,

c2
s 5Z2

s S G11s
0 1

D 1
2

G1~R!V0
G12s

0 D , v5V12 , ~24!

where Ĝ(s,p)
0 [Ĝ0(r2R/2)6Ĝ0(r1R/2), and theZ6

s,p are
normalization coefficients. These are the two-impurity o
~p! and even-parity~s! resonant state eigenfunctions e
pressed directly as linear combinations of the correspond
one-impurity eigenfunctionsc6 given in Eq.~23!.

1. Ri„110…

We note now that, in general, particle and holelike on
impurity eigenfunctions are mixed in each two-impurity sta
~24!; this is possible because anomalous scattering proce
with amplitudeG1(R) can take place. There are special sit
ations, including all configurations withRi(110), where
G1(R)50 and the eigenfunctions become much simpler a
do not mix particle and hole degrees of freedom,

c6
s ~r !5Z6

s H G21s
0 ~r ,v!, v5V11

G11s
0 ~r ,v!, v5V12 ,

~25!

and

c6
p ~r !5Z6

p H G21p
0 ~r ,v!, v5V21

G11p
0 ~r ,v!, v5V22 .

~26!

We study this case now both to get a simple idea of h
the quantum interference between two impurities works
practice, and because the~110! states are claimed to be o
particular importance for the formation of the impurity ban
due to the strong interference of long-range tails in the q
siparticle wave functions. In Fig. 4, we have exhibited t
8-8
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TWO IMPURITIES IN A d-WAVE SUPERCONDUCTOR: . . . PHYSICAL REVIEW B 67, 094508 ~2003!
resonant state wave functionsc6
s,p for the ~110! case. We

exhibit both the wave functions themselves, so that
reader may verify the parity of these states explicitly, a
their absolute square. There is good agreement betwee
spatial pattern of theucu2 as defined and the exact LDO
calculated from Eq.~21! at each resonant energy, implyin
that near each resonant energy the nonresonant contribu
are quite insignificant. It is clear that some states invo
constructive and some destructive interference between
one-impurity wave functions in different regions of spac
but the spatial patterns are, not unexpectedly, consider
more intricate than the ‘‘hydrogen molecule’’ type states o
might first imagine would form, with electrons living eithe
directly between impurities or completely expelled from th
region. This is of course due to thed-wave character of the
medium in which the quasiparticles propagate. For exam
the LDOS is zero at the point halfway between the two i
purities for thep-wave states, but it is quite small in th
s-wave states as well. It is furthermore clear from the figu
that boths and p functions can have either constructive
destructive character, in the molecular sense. Note that
states are shown arranged vertically according to th
eigenenergies, but recall that the ordering of thes andp (D1
and D2) states changes according to whetherR is even or
odd, as indicated in Fig. 2.

In Fig. 5, we show the full energy variation of the LDO
spectra on sites near one of the impurities to illustrate
expected widths of the resonances and the variability w
position. Note the surprisingly sharp high-energy resonan
which we discuss further below. On the other hand, on c
tain sites in the configuration of Fig. 5 such as~0,0!, ~2,2!
and ~4,4!, virtually no LDOS weight at all is observed. I
Fig. 6, we show LDOS maps for several impurity separatio
along ~110!. Note that in the high-energyp states for
R5~2,2! and ~6,6!, both of which are fairly narrow, nearly
total destructive interference exists along the~110! direction
outside of the two impurities, but there is substantial wei
along the~11̄0! direction relative to each of the two impur
ties. As one moves the impurities apart, the tails of th
wave functions in the~11̄0! direction simply shift with the

FIG. 7. Comparison of LDOS spectrar(r ,v) for variousr with
two impurities at positions (23,0) and (3,0)@R5(6,0)#. Tight-
binding band,D050.1, V0510, m50.
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impurities. This suggests that these states may be some
narrowed, because the quasiparticle is localized between
two impurities, but only in the~110! direction; it may easily
leak out along the~11̄0! tails.

2. Ri„100…

We noted above that for large separations the intere
ence between quasiparticle wave functions vanishes m
more rapidly with increasing separation in configuratio
with impurities aligned along a crystal axisRi(100). For
small or intermediate spacingsR&j0, however, the bound-
state splittings are just as large. Figure 7 shows a spect
for impurities separated by six lattice constants in the~100!
direction. Although the low-energy peaks are weak, th
are, nevertheless, four well-defined peaks as expected.
most striking feature of Fig. 7 is that the upper resonanc
extremely sharp, far sharper in fact than a single-impu
resonance at the same energy! This is counterintuitive ba
on our knowledge of the one-impurity problem: theT-matrix
denominatorS6 defined in Eq.~2! has an imaginary par
proportional to the density of states of the cleand-wave su-
perconductor, so that the resonance width depends~approxi-
mately! linearly on the resonance energy. This is clearly n
the case here. In the two-impurity problem where one im
rity is at the origin and the second is atR, the T-matrix
denominator is given by Eq.~9!, which can equivalently be
written as

D5det@V0
21t32Ĝ(1imp)~R,R,v!#detT̂~v!,

whereT̂ is the one-impurityT matrix andĜ(1imp) is Green’s
function with one impurity at the origin. Thus sharp two
impurity resonances occur for exactly the same reason a
the one-impurity case, but because the one-impurity DOS
R is nonmonotonic inv, the resonance broadening is n
necessarily proportional to the resonance energy.

It seems intuitively clear that, because of destructive
terference along the nodal directions, two-impurity boun
statescould be formed in which quasiparticles are quite e
fectively trapped because they will be prevented fro
escaping via the long~110! tails of the individual impurity
wave functions. In Fig. 8, the spatial structure of the hig
energy states confirms our intuition, since quasiparticles
pear to be confined primarily to the axis joining the impu
ties. The 45° tails of these two-impurity states are supres
in all directions, and as expected the spectral features
even narrower than for theRi(110) configurations of Fig. 5
In the R5(2,0) case, the quasiparticle is nearly complet
confined to the site between the two impurities, while t
wave function spreads out somewhat in theR5(6,0) case.
For these cases,G1(R,v) vanishes as in the~110! case, so
the wave functions have the same structure as in Eqs.~25!
and ~26!. We note that when the peaks are sharp, the re
nance state is essentially localized, that is the contributio
the wave function at resonance from the continuum has v
ishing weight. In general, one might have expected th
states to decay as 1/r along the~110! direction and exponen
8-9
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LINGYIN ZHU, W. A. ATKINSON, AND P. J. HIRSCHFELD PHYSICAL REVIEW B67, 094508 ~2003!
tially along the ~100! direction, but they may decay mor
rapidly from interference effects.

Thus far we have considered only a simple tight-bind
band at half-filling, and one might worry that the existence
quasilocalized states was a consequence of the perfect
ing of this special electronic structure, and that such featu
are unlikely to be observed in real systems. We show be
that this is not the case, and argue that a commensuratio
dominant scattering wave vectorsat the bound-state energ
is the important quantity, and that finding such a state
pends on band structure and other details.

VI. REALISTIC BANDS

Until now we have focussed on the rather artificial sy
metric tight-binding band case, both for calculational si
plicity and to illuminate the unusual density of states ph
nomena driven by nesting features of the Fermi surfa
Some, but clearly not all of these phenomena will surv
away for a realistic band with particle-hole asymmetry. B
cause of the intense current interest on STM studies of
cuprates, we now focus exclusively on a ‘‘realistic’’ repr
sentation of the electronic structure of BSCCO-2212, wh
we parametrize by adopting the tight-binding coefficients
Normanet al.,33

e~k!5t012t1@cos~kx!1cos~ky!#14t2cos~kx!cos~ky!

12t3@cos~2kx!1cos~2ky!#12t4@cos~2kx!cos~ky!

1cos~kx!cos~2ky!#14t5cos~2kx!cos~2ky! ~27!

with t0 , . . . ,t550.879,21,0.275,20.087,20.1876,0.086
and ut1u[0.1488 eV. The density of states of this band
both normal and superconducting states is shown in Fig

FIG. 8. ~Color online! LDOS maps at resonant energies f
Ri(100). Tight-binding band,D050.1, V0510, m50.
09450
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A. Direct spectra

We first reconsider some of the impurity configuratio
we treated in Sec. V to see how the LDOS patterns a
bound states are affected by the electronic structure. The
per panel in Fig. 10 shows the distribtion of spectral weig
on nearby sites for a configuration with impurities at sepa
tion R5(6,6). Comparison with the half-filled tight-bindin
model case shown in Fig. 5 shows little qualitative change
nearby sites with respect to either peak positions, spec
weight or spatial distribution. On the other hand, comparis
of LDOS maps in Figs. 6 and 11 show that the longer-ran
character of the holelike resonances has changed cons
ably. In other cases, particularly for smallR, the changes are
much more drastic. In particular, one does not generally
all four resonances, as also found by Morr a
Stavropoulos.18 This is particularly true for resonances wit
Ri(100), as illustrated in the lower panel of Fig. 10, whe
the low-energyresonances have completely disappeared
all sites investigated.

To give an impression of the systematics of impurity res
nance dependence on separation in the realistic system
the configurations in which certain resonances are ov
damped, in Fig. 12 we present a series of plots of LD
spectra on nearest-neighbor sites along the line joining
impurities for a range of separations withRuu(100) and~110!
directions. The number of peaks in each spectrum is varia
and for the closer separations normally only two peaks
observed~no peaks are observed for separation 1!!. As the
impurities are moved farther apart, hybridization weake
and it becomes easier to observe the full complement of f
resonances. It is also clear that the bound-state splittings
the realistic band are decaying faster in the~100! direction,
but that this splitting has not disappeared even for sep
tions as large asR513. This suggests that even in relative
dilute impurity systems the assumption of isolated impurit
used to analyze recent STM experiments may need to
reexamined.

We note further that extremely sharp states occur
quently, for both even and odd separations; clearly the co
mensurability condition depends sensitively on the details

FIG. 9. Solid line, BSCCO total density of states after Ref. 33
v/t1. Dashed line, withd-wave superconducting gap of magnitud
D050.1t1. Insert, Fermi surface at optimal doping.
8-10
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TWO IMPURITIES IN A d-WAVE SUPERCONDUCTOR: . . . PHYSICAL REVIEW B 67, 094508 ~2003!
the band structure. Contrary to the results of Ref. 18, we
that the state farthest from the Fermi level is frequen
sharpest. In general, however, the spectra found here fo
band of Ref. 33 are quite similar to those obtained in Ref.
when direct comparisons are possible.

The condition for a true bound-state@see Eq.~9!# is sat-
isfied at frequencyv by Ĝ0(R,v)T̂Ĝ0(R,v)T̂51. Since
this must be satisfied independently for real and imagin
parts ofG0(R,v), sharp resonances only appear for selec
impurity separations. The productĜ0(R,v)T̂Ĝ0(R,v)T̂ in
Eq. ~9! is equivalently written as

(
k,q

eiq•RĜ~k,v!T̂~v!Ĝ~k1q,v!T̂~v!. ~28!

It was argued by Hoffmanet al.,13 in an analysis of disor-
dered BSCCO samples, that the characteristic wavevec
found in the spatial Fourier transform of the LDOS are d
termined by peaks in the joint density of stat
(kIm G11(k,v)Im G11(k1q,v). It is interesting to ask
whether these sameq-vectors are seen in Eq.~28!.

At the small energies considered here, three distincq
vectors contribute to the joint DOS@a fourth,q50 does not

FIG. 10. LDOS spectra for various sites as indicated. Up
panel for impurities at~-3,-3! and~3,3! @R5(6,6)#, lower panel for
impurities at~-1,0! and~1,0! @R5(2,0)#. Parameters for ‘‘realistic’’
band~see text!, energiesv in units of t1, with V055.3. Note peak
at v520.18 in lower panel is gap edge, not impurity resonanc
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produce any oscillatoryR dependence in Eq.~28!#, as illus-
trated in Fig. 13~we neglect, for states sufficiently close
unitarity, the distinction between the tips of the quasiparti
constant energy contours and the nodal wave vectors!. As a
simple example, consider the realistic band model in
~100! direction, shown in the upper panel of Fig. 12. TheR
dependence of Eq.~28! is straightforward sinceq1•(1,0)
5q2•(1,0)'2.28/a, and q3•R50, where a is the lattice
constant. Naively, the standing-wave condition for a parti
trapped between the two impurities is (q1•R12h0)5np,
where h05tan21(pN0V0) is the one-impurity scattering
phase shift. On the other hand, forR in the ~110! direction,
we must simultaneously satisfy the commensurability
quirements (q1•R12h0)5(q3•R12h0)5np, and (q2•R
12h0)5mp to form a resonant state, and we see that—
we observe in Fig. 12—sharp resonances occur much
frequently in the~110! than in the~100! direction. Quantita-
tively, the criterion for standing-wave formation is approx
mately satisfied forR5(3,0), (7,0), (11,0), (14,0) andR
5(3,3), (11,11), which generally agrees with Fig. 12.

We stress, however, that the relative success of this n
picture at making quantitative predictions is a bit surprisin
There is nothing in our consideration to account for thev
dependence of theT matrix, or for the Nambu structure o
Green’s functions. Furthermore, the approximation of the
tegral overq in Eq. ~28! by a sum over a few dominant wav
vectors is not expected to by justified at a quantitative lev
Nonetheless, our considerations seem to indicate that
long-lived two-impurity bound-states are derived from a fe
selected wave vectors.

r

FIG. 11. ~Color online! LDOS maps for realistic band~see text!,
V055.3t1.
8-11
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B. Filtering effects

The discrepancies between the simple picture of a Zn
purity as a strong potential scatterer in ad-wave supercon-
ducting host and the LDOS measured near Zn impuritie
BSCCO-2212 samples have been alluded to above. Ma
and Balatsky16 proposed that this problem could be resolv
by noting that electrons must first tunnel through the B
layer before reaching the CuO2 plane; applying the appropri
ate matrix elements for this process led them to a picture
a ‘‘filtered’’ DOS in which, in the simplest version, the STM
tip samples not the LDOS corresponding to the atom dire
under it, but rather to a sum of the LDOS on the surround
four nearest-neighbor sites. With this ansatz, the LDOS
tern surrounding a Zn atom becomes, at a resonant energ
21.5 meV, rather similar to the experimentally observ
one, with a bright spot at the center of the pattern,
Fig. 14.

We now point out the rather obvious fact that this filteri
mechanism is characteristic of the presence of the BiO la
in the BSCCO-2212 system, and should therefore be pre
in any STM measurement. If two nearby impurities are
cated via their resonant signals in such a measurement

FIG. 12. LDOS spectra for realistic band andV055.3t1 on
nearest-neighbor site. Upper panel, impurities at (2R/2,0) and
(R/2,0) @R5(R,0)#, spectra taken atr5(R/2,1). Lower panel, im-
purities at (2R/2,2R/2) and (R/2,R/2) @R5(R,R)#, spectra taken
at r5(R/2,R/211).
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same filter should be applied to extract the true LDOS of
superconducting CuO2 layer ~see Fig. 15!. If it is found that
the filtering mechanism works only in the case of isolat
impurities, but the observed pattern in the two-impurity ca
is quite different than that predicted by the simple filter
potential model, it must be abandoned and more soph
cated explanations sought. For example, it will be interest
to pursue the alternative ‘‘Kondo’’ explanation of Polkovn
kov et al.,19 in the case of the two-impurity problem. If on
takes this model seriously, bringing two impurities close
gether should induce an RKKY interaction between the lo
moments on each impurity site, supressing the local Kon
screening and thereby weakening each impurity’s scatte
phase shift. One might then naively expect, in such a s
nario, that bound-state energies would generally be foun
higher energies than in the isolated impurity case. Of cou
one’s intuition based on the two-Kondo impurity problem
a normal metal is to be distrusted in this case, where
linear bare density of states already makes the one-impu
problem critical.30

FIG. 13. Fermi surface of BSCCO-2212 with constant ene
surfaces atv50.04 shown as small filled ellipses at the nod
points.q1, q2, q3 are wave vectors for which the joint density o
states is large.

FIG. 14. ~Color online! LDOS map for one strong repulsiv
impurity (V055.3) at hole-type resonanceV0

250.011t1 in system
with ‘‘realistic band’’ ~see text! ~a! without and~b! with filter.
8-12
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TWO IMPURITIES IN A d-WAVE SUPERCONDUCTOR: . . . PHYSICAL REVIEW B 67, 094508 ~2003!
VII. CONCLUSIONS

In this paper we have explored a number of aspects of
quantum interference of impurity bound-states ind-wave su-
perconductors. We gave the exact form of the two-impu
t-matrix for two potentials separated byR, and showed that
in general, it has four resonances at frequencies6V1 and
6V2 which depend onR. In simple situations, the eigen
functions of the two-impurity resonant states can be c
structed explicitly in terms of the eigenfunctions of the on
impurity problem. Depending on the impurity configuratio
and electronic structure, some of the resonances are o
damped on specific sites or indeed sometimes over the e
lattice, leading to a smaller number of visible resonance
special situations. On the other hand, in other situations r
nant states were observed in the two-impurity problem wh
were much sharper than their one-impurity counterparts
some cases occuring quite far from the Fermi level, con
dicting one’s intuition that these states should be m
strongly damped. We have interpreted these states as im
rity ‘‘traps’’ in which quasiparticles are hindered by quantu
interference, over surprisingly long lifetimes, from leakin
out of the region between the two impurities.

The splitting of the bound-state energies relative to
one-impurity case was studied, and it was shown that
parity and energy of the two-impurity eigenfunctions osc
late as a function of impurity separation. At asymptotica
large distances the splittings were shown to vary as;1/R
for impurities aligned along the~110! direction and
;exp(2R)/AR along ~100!. Systematic STM measuremen
of these splittings for isolated pairs of impurities at differe
R were shown to provide a direct measurement of spa
dependence of the Green’s functions of the bulk superc
ductor.

FIG. 15. ~Color online! Comparison of true and filtered LDOS
for two impurities at~-1,0! and ~1,0!, R5(2,0). V055.3, uV1

6u
50.026t1, ‘‘realistic band’’ ~see text!.
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Finally we calculated the local density of states for tw
impurities in a realistic band characteristic of the BSCC
2212 system on which most STM experiments have b
performed. The one qualitative difference relative to t
particle-hole symmetric case we examined earlier was
overdamping of some bound-states onany lattice site we
studied for certain impurity configurations. This makes
clear that even some qualitative features of LDOS spe
with two impurities will depend on details of the system
question. To extract information from STM when two
impurity configurations are isolated will therefore require
careful fit to theory. We have made predictions for seve
concrete situations which can be tested if such configurat
can be found. In particular, we have calculated the densit
states for realistic parameters corresponding to a Zn impu
in BSCCO, and given results for both the direct LDOS a
for the ‘‘filtered’’ LDOS proposed by Martin and Balatsky32

to explain discrepancies in the standard model of Zn a
potential scatterer when compared with experiment. If
‘‘filter’’ works for isolated single Zn impurities but not for
pairs of Zn atoms, it would be strong evidence in favor of
explanation for the Zn results in terms of residual induc
local magnetism of the defect.

We close by remarking that the solution of the tw
impurity problem may have important implications for th
disorderedN-impurity d-wave superconductor and the inte
pretation of STM experiments. In particular, we have sho
on one hand that pairs of impurities can give rise to trapp
states which have great deal of spectral weight; on the o
hand, interference from other impurities can destroy
characteristic pattern expected for an ‘‘isolated’’ impuri
even when they are widely separated. A more thorough
vestigation of these questions requires a careful compar
with the many-impurity system. One hint of the importan
of the two-impurity states in the fully disordered syste
comes from the study of the perfectly nested band, where
find that many of the unusual symmetry-based features of
total density of states38 are reflected already in the simp
two-impurity problem as well. In addition, we have inves
gated the effects of self-consistent treatment of the order
rameter on the results above, which were all produced
suming homogeneousDk . We find that, although spectra
weight is shifted by the order-parameter supression aro
the impurity site, in general away from the Fermi level,39 the
LDOS patterns are rather weakly affected. We will report
detail on these findings elsewhere.35
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