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Evaluation of the low-lying energy spectrum of magnetic Keplerate molecules
using the density-matrix renormalization group technique
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We apply the density-matrix renormalization-groiPMRG) technique to magnetic molecules in order to
evaluate the low-lying energy spectrum. In particular, we investigate the giant Keplerate m¢MowEesq}
[A. Mdiller et al. Angew Chem. Int. Ed. EngB38, 3238(1999], where 30 F&" ions (spins 5/2 occupy the
sites of an icosidodecahedron and interact via nearest-neighbor antiferromagnetic Heisenberg exchange. The
aim of our investigation is to verify the applicability and feasibility of DMRG calculations for complex
magnetic molecules. To this end we first use a fictitious molecule with the same struc{ieaBe;;} but
with spins 1/2 as a test system. Here we investigate the accuracy of our DMRG implementation in comparison
to numerically exact resulfs). Schnaclet al, Eur. Phys. J. B4, 475(2001]. Then we apply the algorithm
to {Mo.Fe;o} and calculate an approximation of the lowest-energy levels in the subspaces of total magnetic
qguantum number. The results prove the existence of a lowest rotational band, which was predicted in J.
Schnacket al,, Europhys. Lett56, 863 (2001J.
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[. INTRODUCTION address questions of spin tunneling and other transitions
without diagonalizing the full Hamiltoniatf

The rapid progress in polyoxometalate chemistry gener- The purpose of this paper is twofold. We show that
ates larger and larger magnetic molecules. The most promPMRG can be used in order to approximate the low-lying
nent example of recent times is the molecular magneenergy levels of magnetic macromolecules such as
{MOYZFQSO}: where 30 F%Jr paramagnetic ionSpin 5/2 oc- {M072F630}., and we prOV'e numer.ica”y that the |'0West levels
cupy the sites of an icosidodecahedron, see Fig. 1, and inte®S @ function of total spi$ form indeed a rotational band.
act via isotropic nearest-neighbor antiferromagnetic Heisenl N€ latter observation strengthens the predictions made in
berg exchangé? Whereas the statistical and dynamical Ref. 3.
properties of smaller molecules can be evaluated by numeri-
cally exact diagonalizatiohthe huge dimension of the Hil- Il. DMRG TECHNIQUE
bert space of magnetic macromolecules prohibits such at-

tempts. In the case ¢Mo,Fey} this dimension amounts to ~ The DMRG techniqughas become one of the standard
639~ 1073 which is beyond the power of any computer. numerical methods for quantum lattice calculations in recent
Many ,attempts have been undertaken in order to apyears%9 Its basic idea is the reduction of Hilbert space while

proximate the energy eigenvalue spectrum of large magnetif cusing on the accuracy of a target state. For this purpose

systems. Among these the density-matrixt e system is divided into subunl_ts blocks wh|ch are rep
o . . resented by reduced sets of basis states. The dimemsidn
renormalization-group (DMRG) technique is one of the . . e
. the truncated block Hilbert space is a major input parameter

mo.:,t powe:ul, a; Iegsttln the f|eldt.of one—dlmer_lsm::n'all dSp'an the method and to a large extent determines its accuracy.
systems, where, for Instance, questions concerning Haldan€'s p\irg js pest suited for chainlike structures. Many accu-

conjecturé’ could be answered with great accurdci It is
as well a powerful tool for studying=0 quantum phase
transitionst! since it delivers accurate results for ground !

states. The DMRG method was also applied to spin rings—

“ferric wheels”—which are quasi-one-dimensional magnetic

molecules? Here the aim was to evaluate low-lying A
magnetic levels and the related low-temperature spin dynam- P

ics in order to understand macroscopic quantum coherent

phenomena.
Another method of approximating the energy spectrum is
stimulated by the observation that in many Heisenberg spin
systems the low-lying energy levels,,,(S) form a rota- «
tional band'® i.e., they depend approximately quadratically

on the total spin quantum numb& Experimentally this

property has been described as “following the Lainterval FIG. 1. Three-dimensional model ¢Mo.Fey): the vertices
rule.”**=1" For spin ring systems the low-energy spectrummark the sites of the Bé ions (spin 5/2, and the lines denote
consists of a sequence of rotational bands, which allows teearest-neighbor interactions.

0163-1829/2003/69)/0944414)/$20.00 67 094440-1 ©2003 The American Physical Society



MATTHIAS EXLER AND JURGEN SCHNACK PHYSICAL REVIEW B67, 094440 (2003

@gﬁa’x Yg@a’xg@a’
RIS AKX Pt
NI N
FIG. 2. One-dimensional projection of the icosidodecahedron:
the lines represent interactions.

rate results have been achieved by applying DMRG to vari-
ous (quasi) one-dimensional systerfis’® The best results
were found for the limit of infinite chains with open bound-
ary conditions. It is commonly accepted that DMRG reaches
maximum accuracy when it is applied to systems with a
small number of interactions between the blocks, e.g., sys-
tems with only nearest-neighbor interactitn.

In order to carry out DMRG calculations for two-
dimensional systems a mapping onto a one-dimensional

structure was proposed.We adopt this idea and derive a g, 3. Two-dimensional projection of the icosidodecahedron;

simple DMRG algorithm for two-dimensioné&2D) spin sys-  the site numbers are those used in our DMRG algorithm.
tems in the Heisenberg mod@ISince the spin array consists

of a countable number of spins, any arbitrary numbering is
already a mapping onto a one-dimensional structure. How-

ever, even if the original system had only nearest—nelghbo?hoose this enumeration because it minimizes the average

exchange, the new one-dimensional system has many lon \teraction length between two sites. The interaction length
range interactions depending on the way the spins are enu- 9 ) 9

merated, see, e.g., Fig. 2. Therefore, a numbering whicf "¢ Chain Is measured as the distaficei] of the two
minimizes long-range interactions is preferable. 9 - y

The Hamiltonian of the Heisenberg model, which is ap_with a minimal number of interactions between the blocks.
propriate for the investigated magnetic molécules can b herefore, a short average interaction Iength helps to reduce
written as ' e number of interblock interactions. With our enumeration

we get an average length of 3 between two interacting sites.
Lo . However, the choice is not unique because of the various
H=—2 Jj S-§= -2 Ji S5, (1)  symmetries of the system. Our choice, Fig. 3, is rotationally
7 = symmetric with a fivefold symmetry corresponding to the
whereJj; is the interaction matrix an§; are the spin opera- fivefold symmetry of the central pentagon. The sites 1-6
tors at the sites. form the unit cell.

We use a block algorithnfincluding the sweepssimilar In Fig. 4 our DMRG result¢crossepare compared to the
to the setup in White’s original papeiwo blocks are con- €nergy e|genvalu2eléc|rcle9 determined numerically with a
nected via two single spin sites, and these four parts form the@NCZ0S meth_oa'. We find very good agreement of both
superblock. sequences, with a maximal relative error of less than 1%.

The Hamiltonian is invariant under rotations in spin Although we don't achieve the high accuracy of one-
space. Therefore the total magnetic quantum nunvbés a dimensional calculationgoften with a relative error of the

. . 6 . .
good quantum number and we can perform our calculation ifrder of 10°°), the result demonstrates that DMRG is appli-
each orthogonal subspa#gM) separately. cable to finite 2D spin systems.

The DMRG calculations were implemented using the
numeration of the spin sites as shown in Figs. 2 and 3. We

IIl. ACCURACY OF THE METHOD ‘ ' | : . : ,

Since it is difficult to predict the accuracy of a DMRG 20’_ O exact cigenvalues
calculation, we apply our implementation to an exactly diag- [ | DMRG calculation ]
onalizable system first. The most realistic test system for the 10+ .
use of DMRG for{Mo-,Fey} is the icosidodecahedron with ]
spinss=1/2. This fictitious molecule, which possibly may I - ]
be synthesized with vanadium ions instead of iron ions, has 10k o 4
the same structure Mo, ,Feyq}, but the smaller spin quan- - 1
tum number reduces the dimension of the Hilbert space sig- -201 n B 7
nificantly. Therefore a numerically exact determination of [P , , ]
low-lying levels using a Lanczos method is possible and was 0 5 10 15
carried out by Richter, Schulenburg, and co-workerswe
use these results to analyze the principle feasibility and the FIG. 4. Eigenvalues and lowest rotational band of ¢ivel/2
accuracy of the method. icosidodecahedron.
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s=5/2 icosidodecahedromim= 60 was used except for the lowest
FIG. 5. Dependence of the approximate ground-state energy oand first exited levels which were calculated with=120.
the DMRG parametem. E, is the true ground-state energy in the
cases=1/2 and the extrapolated one fer 5/2. sublattices with opposite sublattice magnetization. In the
case of{Mo,Fe; the spin system is decomposable into
Our results were obtained keeping= 60 states per block. three sublattices with sublattice spin quantum numiSars
The number of states could easily be increased forsthe s, and S..3!2 Then the low-lying spectrum can be de-
=1/2 case, but we wanted to have a prediction forscribed by an approximate Hamilton operator
{Mo,,Fey}, wherem is limited by the available computer
resources because of the much larger sgib/2. The num- D 20 xp  ap
ber of sweeps ranged from 5 to 20 depending on how quickly Happro= —I g[S~ 7(Sat S+ 501, (3
the algorithm ran into oscillations with no further improve- R
ment of accuracy. This oscillatory behavior of the sweep alwhereS is the total spin operator and the others are sublattice

gorithm is described in Ref. 19. spin operators. At least in the case of bipartite systems this
We also investigated the behavior of the accuracy of ouapproximation has turned out to be a very good tré.
DMRG energies when varying the valueraf Unfortunately, The minimal-energy eigenvalues B0« as a function

we found a very weak convergence of the relative error withof S form a rotational band by construction,
increasingm. In our calculations, the error relative to the D
width of the spectrum Emin(S)=-J NS(S+ 1H+E,. (4

Ebmra(M) —Eq We use the DMRG method to approximate the lowest-energy
e(m)= |EAF—EF] 2 eigenvalues of the full Hamiltoniafi) and compare them to
o -0 those predicted by the rotational band hypothésisin our

is approximately proportional to ¥ (see Fig. 5 Unfortu- calculation we obtain energy levels for the ground states of
nately, such weak convergence is characteristic for two#(M) subspaces. These states are equivalent to the ground
dimensional systems in contrast to one-dimensional chaistates of the subspaceqS) with S=M. The proof for this
structures, where the relative error of the approximate energgroperty rests on the monotonous increase of the sequence
was reported to decay exponentially with® Nevertheless, E(M) with M for 0O<SM<Ns,

the extrapolated ground-state energyderl/2 deviates only Figure 6 shows our results and a fit to the lowest rota-
by e=0.7% from the ground-state energy determined with aional band. Assuming the same dependencenaas in the
Lanczos algorithm. s=1/2 case, the relative err¢?) of our DMRG data should
also be less than 1%. We find good agreement between our
IV. ROTATIONAL BAND IN  {Mo;,Fesq} DMRG data and the predicted quadratic dependence. From

) ) ) the fit of our data we obtaid=6.17 andy=1.05. These
Since the DMRG technique has proven applicable for the;ajues are very close to the valuBs=6.23 andy=1.07

s=1/2 case of the icosidodecahedron, we use our algorithrgiven in Ref. 3, which were inferred from magnetization
to approximate energy eigenvalues of the magnetic Kepleratgeasurements.

molecule {Mo;,Fe;}. In Ref. 3 it was predicted that the
low-lying energy eigenstates ¢fMo,,Fe;qt form “rotational
bands,” i.e., the sequence of ground-state energies of the
subspaced{(S) is expected to have a quadratic dependence The major result of our investigation is that the DMRG
on the total spin quantum numb8r A spectrum with rota- approach delivers acceptable results for 2D systems. There-
tional bands usually arises in antiferromagnets if the spirfore, we assume that our numerical approximation of low-
system can be divided into sublattices. The most prominerlying energy levels fof Mo,,Feyq} is reliable. Thus, we have
example is bipartite rings or chains which consist of twoobtained good confidence that the prediction of a lowest ro-

V. SUMMARY
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