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Evaluation of the low-lying energy spectrum of magnetic Keplerate molecules
using the density-matrix renormalization group technique

Matthias Exler* and Ju¨rgen Schnack†

Universität Osnabrück, Fachbereich Physik, D-49069 Osnabru¨ck, Germany
~Received 10 December 2002; published 31 March 2003!

We apply the density-matrix renormalization-group~DMRG! technique to magnetic molecules in order to
evaluate the low-lying energy spectrum. In particular, we investigate the giant Keplerate molecule$Mo72Fe30%
@A. Müller et al. Angew Chem. Int. Ed. Engl.38, 3238 ~1999!#, where 30 Fe31 ions ~spins 5/2! occupy the
sites of an icosidodecahedron and interact via nearest-neighbor antiferromagnetic Heisenberg exchange. The
aim of our investigation is to verify the applicability and feasibility of DMRG calculations for complex
magnetic molecules. To this end we first use a fictitious molecule with the same structure as$Mo72Fe30% but
with spins 1/2 as a test system. Here we investigate the accuracy of our DMRG implementation in comparison
to numerically exact results@J. Schnacket al., Eur. Phys. J. B24, 475 ~2001!#. Then we apply the algorithm
to $Mo72Fe30% and calculate an approximation of the lowest-energy levels in the subspaces of total magnetic
quantum number. The results prove the existence of a lowest rotational band, which was predicted in J.
Schnacket al., Europhys. Lett.56, 863 ~2001!.

DOI: 10.1103/PhysRevB.67.094440 PACS number~s!: 75.50.Xx, 75.10.Jm
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I. INTRODUCTION

The rapid progress in polyoxometalate chemistry gen
ates larger and larger magnetic molecules. The most pro
nent example of recent times is the molecular mag
$Mo72Fe30%, where 30 Fe31 paramagnetic ions~spin 5/2! oc-
cupy the sites of an icosidodecahedron, see Fig. 1, and i
act via isotropic nearest-neighbor antiferromagnetic Heis
berg exchange.1,4 Whereas the statistical and dynamic
properties of smaller molecules can be evaluated by num
cally exact diagonalization,2 the huge dimension of the Hil
bert space of magnetic macromolecules prohibits such
tempts. In the case of$Mo72Fe30% this dimension amounts to
630'1023, which is beyond the power of any computer.

Many attempts have been undertaken in order to
proximate the energy eigenvalue spectrum of large magn
systems. Among these the density-mat
renormalization-group5 ~DMRG! technique is one of the
most powerful, at least in the field of one-dimensional s
systems, where, for instance, questions concerning Halda
conjecture6,7 could be answered with great accuracy.8–10 It is
as well a powerful tool for studyingT50 quantum phase
transitions,11 since it delivers accurate results for grou
states. The DMRG method was also applied to spin ring
‘‘ferric wheels’’—which are quasi-one-dimensional magne
molecules.12 Here the aim was to evaluate low-lyin
magnetic levels and the related low-temperature spin dyn
ics in order to understand macroscopic quantum cohe
phenomena.

Another method of approximating the energy spectrum
stimulated by the observation that in many Heisenberg s
systems the low-lying energy levelsEmin(S) form a rota-
tional band,13 i.e., they depend approximately quadratica
on the total spin quantum numberS. Experimentally this
property has been described as ‘‘following the Lande´ interval
rule.’’14–17 For spin ring systems the low-energy spectru
consists of a sequence of rotational bands, which allow
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address questions of spin tunneling and other transiti
without diagonalizing the full Hamiltonian.18

The purpose of this paper is twofold. We show th
DMRG can be used in order to approximate the low-lyi
energy levels of magnetic macromolecules such
$Mo72Fe30%, and we prove numerically that the lowest leve
as a function of total spinS form indeed a rotational band
The latter observation strengthens the predictions mad
Ref. 3.

II. DMRG TECHNIQUE

The DMRG technique5 has become one of the standa
numerical methods for quantum lattice calculations in rec
years.19 Its basic idea is the reduction of Hilbert space wh
focusing on the accuracy of a target state. For this purp
the system is divided into subunits—blocks—which are re
resented by reduced sets of basis states. The dimensionm of
the truncated block Hilbert space is a major input parame
of the method and to a large extent determines its accur

DMRG is best suited for chainlike structures. Many acc

FIG. 1. Three-dimensional model of$Mo72Fe30%: the vertices
mark the sites of the Fe31 ions ~spin 5/2!, and the lines denote
nearest-neighbor interactions.
©2003 The American Physical Society40-1
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rate results have been achieved by applying DMRG to v
ous ~quasi-! one-dimensional systems.8–10 The best results
were found for the limit of infinite chains with open boun
ary conditions. It is commonly accepted that DMRG reach
maximum accuracy when it is applied to systems with
small number of interactions between the blocks, e.g., s
tems with only nearest-neighbor interaction.19

In order to carry out DMRG calculations for two
dimensional systems a mapping onto a one-dimensio
structure was proposed.19 We adopt this idea and derive
simple DMRG algorithm for two-dimensional~2D! spin sys-
tems in the Heisenberg model.20 Since the spin array consis
of a countable number of spins, any arbitrary numbering
already a mapping onto a one-dimensional structure. H
ever, even if the original system had only nearest-neigh
exchange, the new one-dimensional system has many l
range interactions depending on the way the spins are
merated, see, e.g., Fig. 2. Therefore, a numbering wh
minimizes long-range interactions is preferable.

The Hamiltonian of the Heisenberg model, which is a
propriate for the investigated magnetic molecules, can
written as

H> 52(
iÞ j

Ji j S>W i•S>W j522(
i . j

Ji j S>W i•S>W j , ~1!

whereJi j is the interaction matrix andS>W i are the spin opera
tors at the sitesi.

We use a block algorithm~including the sweeps! similar
to the setup in White’s original paper.5 Two blocks are con-
nected via two single spin sites, and these four parts form
superblock.

The Hamiltonian is invariant under rotations in sp
space. Therefore the total magnetic quantum numberM is a
good quantum number and we can perform our calculatio
each orthogonal subspaceH(M ) separately.

III. ACCURACY OF THE METHOD

Since it is difficult to predict the accuracy of a DMR
calculation, we apply our implementation to an exactly dia
onalizable system first. The most realistic test system for
use of DMRG for$Mo72Fe30% is the icosidodecahedron wit
spinss51/2. This fictitious molecule, which possibly ma
be synthesized with vanadium ions instead of iron ions,
the same structure as$Mo72Fe30%, but the smaller spin quan
tum number reduces the dimension of the Hilbert space
nificantly. Therefore a numerically exact determination
low-lying levels using a Lanczos method is possible and w
carried out by Richter, Schulenburg, and co-workers.2,21 We
use these results to analyze the principle feasibility and
accuracy of the method.

FIG. 2. One-dimensional projection of the icosidodecahedr
the lines represent interactions.
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The DMRG calculations were implemented using t
enumeration of the spin sites as shown in Figs. 2 and 3.
choose this enumeration because it minimizes the ave
interaction length between two sites. The interaction len
on the chain is measured as the distanceu j 2 i u of the two
interacting sitesi and j. The DMRG method favors system
with a minimal number of interactions between the bloc
Therefore, a short average interaction length helps to red
the number of interblock interactions. With our enumerati
we get an average length of 3 between two interacting si
However, the choice is not unique because of the vari
symmetries of the system. Our choice, Fig. 3, is rotationa
symmetric with a fivefold symmetry corresponding to t
fivefold symmetry of the central pentagon. The sites 1
form the unit cell.

In Fig. 4 our DMRG results~crosses! are compared to the
energy eigenvalues~circles! determined numerically with a
Lanczos method.2,21 We find very good agreement of bot
sequences, with a maximal relative error of less than 1
Although we don’t achieve the high accuracy of on
dimensional calculations~often with a relative error of the
order of 1026), the result demonstrates that DMRG is app
cable to finite 2D spin systems.

:

FIG. 3. Two-dimensional projection of the icosidodecahedr
the site numbers are those used in our DMRG algorithm.

FIG. 4. Eigenvalues and lowest rotational band of thes51/2
icosidodecahedron.
0-2
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Our results were obtained keepingm560 states per block
The number of states could easily be increased for ths
51/2 case, but we wanted to have a prediction
$Mo72Fe30%, wherem is limited by the available compute
resources because of the much larger spins55/2. The num-
ber of sweeps ranged from 5 to 20 depending on how quic
the algorithm ran into oscillations with no further improv
ment of accuracy. This oscillatory behavior of the sweep
gorithm is described in Ref. 19.

We also investigated the behavior of the accuracy of
DMRG energies when varying the value ofm. Unfortunately,
we found a very weak convergence of the relative error w
increasingm. In our calculations, the error relative to th
width of the spectrum

e~m!5
EDMRG~m!2E0

uE0
AF2E0

Fu
~2!

is approximately proportional to 1/m ~see Fig. 5!. Unfortu-
nately, such weak convergence is characteristic for tw
dimensional systems in contrast to one-dimensional ch
structures, where the relative error of the approximate ene
was reported to decay exponentially withm.5 Nevertheless,
the extrapolated ground-state energy fors51/2 deviates only
by e50.7% from the ground-state energy determined wit
Lanczos algorithm.

IV. ROTATIONAL BAND IN ˆMo72Fe30‰

Since the DMRG technique has proven applicable for
s51/2 case of the icosidodecahedron, we use our algori
to approximate energy eigenvalues of the magnetic Keple
molecule $Mo72Fe30%. In Ref. 3 it was predicted that th
low-lying energy eigenstates of$Mo72Fe30% form ‘‘rotational
bands,’’ i.e., the sequence of ground-state energies of
subspacesH(S) is expected to have a quadratic depende
on the total spin quantum numberS. A spectrum with rota-
tional bands usually arises in antiferromagnets if the s
system can be divided into sublattices. The most promin
example is bipartite rings or chains which consist of tw

FIG. 5. Dependence of the approximate ground-state energ
the DMRG parameterm. E0 is the true ground-state energy in th
cases51/2 and the extrapolated one fors55/2.
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sublattices with opposite sublattice magnetization. In
case of$Mo72Fe30% the spin system is decomposable in
three sublattices with sublattice spin quantum numbersSA ,
SB , and SC .3,13 Then the low-lying spectrum can be de
scribed by an approximate Hamilton operator

H> approx52J
D

N
@S>W 22g~S>W A

21S>W B
21S>W C

2 !#, ~3!

whereS>W is the total spin operator and the others are sublat
spin operators. At least in the case of bipartite systems
approximation has turned out to be a very good one.13,18

The minimal-energy eigenvalues ofH> approx as a function
of S form a rotational band by construction,

Emin~S!52J
D

N
S~S11!1Ea . ~4!

We use the DMRG method to approximate the lowest-ene
eigenvalues of the full Hamiltonian~1! and compare them to
those predicted by the rotational band hypothesis~4!. In our
calculation we obtain energy levels for the ground states
H(M ) subspaces. These states are equivalent to the gro
states of the subspacesH(S) with S5M . The proof for this
property rests on the monotonous increase of the sequ
E(M ) with M for 0<M<Ns.

Figure 6 shows our results and a fit to the lowest ro
tional band. Assuming the same dependence onm as in the
s51/2 case, the relative error~2! of our DMRG data should
also be less than 1%. We find good agreement between
DMRG data and the predicted quadratic dependence. F
the fit of our data we obtainD56.17 andg51.05. These
values are very close to the valuesD56.23 andg51.07
given in Ref. 3, which were inferred from magnetizatio
measurements.

V. SUMMARY

The major result of our investigation is that the DMR
approach delivers acceptable results for 2D systems. Th
fore, we assume that our numerical approximation of lo
lying energy levels for$Mo72Fe30% is reliable. Thus, we have
obtained good confidence that the prediction of a lowest

on

FIG. 6. DMRG eigenvalues and lowest rotational band of
s55/2 icosidodecahedron;m560 was used except for the lowe
and first exited levels which were calculated withm5120.
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tational band made in Ref. 3 is justified. The lowest band
$Mo72Fe30% indeed has a parabolic dependence onS. It re-
mains the task of forthcoming investigations to determ
whether also the higher-lying rotational bands appear w
the same distinctness or whether they are scattered due t
strong frustration effects. In any case such calculations
mand much higher precision and thus numerical effort.
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†Electronic address: jschnack@uos.de
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