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Gapless line for the anisotropic Heisenberg spin-1
2 chain in a magnetic field and the quantum axial

next-nearest-neighbor Ising chain
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We study the anisotropic Heisenberg (XYZ) spin-1/2 chain placed in a magnetic field pointing along thex
axis. We use bosonization and a renormalization group analysis to show that the model has a nontrivial fixed
point at a certain value of theXY anisotropya and the magnetic fieldh. Hence there is a line of critical points
in the (a,h) plane on which the system is gapless, even though the Hamiltonian has no continuous symmetry.
The quantum critical line corresponds to a spin-flip transition; it separates two gapped phases in one of which
the Z2 symmetry of the Hamiltonian is broken. Our study has a bearing on one of the transitions of the axial
next-nearest neighbor Ising chain in a transverse magnetic field. We also discuss the properties of the model
when the magnetic field is increased further, in particular, the disorder line on which the ground state is a direct
product of single spin states.
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I. INTRODUCTION

One-dimensional quantum spin systems have been stu
extensively ever since the problem of the isotropic Heis
berg spin-1/2 chain was solved exactly by Bethe. Baxter la
used the Bethe ansatz to solve the anisotropic Heisen
(XYZ) spin-1/2 chain in theabsenceof a magnetic field1; the
problem has not been analytically solved in the presence
magnetic field. Experimentally, quantum spin chains and l
ders are known to exhibit a wide range of unusual propert
including both gapless phases with a power-law decay of
two-spin correlations and gapped phases with an expone
decay.2,3 There are also two-dimensional classical statisti
mechanics systems~such as the axial next-nearest neighb
Ising ~ANNNI ! model! whose finite temperature propertie
can be understood by studying an equivalent quantum s
1/2 chain in a magnetic field. The ANNNI model has be
studied by several techniques, and it was believed for a l
time to have a floating phase of finite width in which th
system is gapless.4

Among the powerful analytical methods now available
studying quantum spin-1/2 chains is the technique
bosonization.2,5 Recently, theXXZ chain in a transverse
magnetic field6 and the quantum ANNNI model7 have been
studied using bosonization. In this paper, we will study
anisotropicXYZ model in a magnetic field pointing alon
the x axis. For small values of theXY anisotropya and the
magnetic fieldh, we will show in Sec. II that there is a
non-trivial fixed point ~FP! of the renormalization group
~RG! in the (a,h) plane; the system is gapless on a quant
critical line of points which flow to this FP. In Sec. III, one o
the transitions of the ANNNI model will be shown to be
special case of our results in which thezz coupling is equal
to zero. Our results are complementary to earlier studie
the ANNNI model, which indicated a gapless phase of fin
width. We will present the complete zero temperature ph
diagram of the ANNNI model which has both a gaple
phase of finite width as well as a gapless line.
0163-1829/2003/67~9!/094435~7!/$20.00 67 0944
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The gapless line is somewhat unusual because theXY
anisotropy and the magnetic field both break the continu
symmetry of rotations in thex-y plane. In Sec. IV, we will
provide a physical understanding of the gapless line by go
to the classical~largeS) limit of the model; this helps us to
identify it as a spin-flip transition line. In Sec. V, we wi
discuss a disorder line which lies at a larger value of
magnetic field. In Sec. VI, we will briefly comment on th
Ising transition which occurs at an even larger value of
magnetic field.

II. BOSONIZATION AND RENORMALIZATION
GROUP ANALYSIS

We consider the anisotropic Hamiltonian defined on
chain of sites,

H5(
n

@~11a!Sn
xSn11

x 1~12a!Sn
ySn11

y 1DSn
zSn11

z 2hSn
x#,

~1!

where theSn
a are spin-1/2 operators. We will assume that t

XY anisotropya and thezz coupling D satisfy 21<a,
D<1. We can assume without loss of generality that
magnitude of thezzcoupling is smaller than theyy coupling
~i.e., uDu,12a), and that the magnetic field strengthh
>0. The Hamiltonian in Eq.~1! is invariant under the globa
Z2 transformationSn

x→Sn
x ,Sn

y→2Sn
y ,Sn

z→2Sn
z .

For a5h50, the model is symmetric under rotations
the x-y plane and is gapless. The low-energy and lon
wavelength modes of the system are then described by
bosonic Hamiltonian2,5

H05
v
2E dx@~]xu!21~]xf!2#, ~2!

wherev is the velocity of the low-energy excitations~which
have the dispersionv5vuku); v is a function ofD. ~The
continuous space variablex and the site labeln are related
©2003 The American Physical Society35-1
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AMIT DUTTA AND DIPTIMAN SEN PHYSICAL REVIEW B 67, 094435 ~2003!
throughx5nd, whered is the lattice spacing.! The bosonic
theory contains another parameter calledK which is related
to D by2,5

K5
p

p12 sin21~D!
. ~3!

K takes the values 1 and 1/2 forD50 ~which describes
noninteracting spinless fermions! andD51 ~the isotropic an-
tiferromagnet! respectively, asD→21 andK→`. We thus
have 1/2<K,`.

In terms of the fieldsf andu introduced in Eq.~2!, the
spin operators can be written as6

Sn
z5Ap

K
]xf1~21!nc1 cos~2ApKf!,

Sn
x5@c2 cos~2ApKf!1~21!nc3#cosSAp

K
u D , ~4!

where theci are constants given in Ref. 8. TheXY anisot-
ropy term is given by

Sn
xSn11

x 2Sn
ySn11

y 5c4 cosS 2A
p

K
u D , ~5!

wherec4 is another constant.
For convenience, let us define the three operators

O15cos~2ApKf!cosSA p

K
u D ,

O25cosS 2Ap

K
u D , and O35cos~4ApKf!. ~6!

Their scaling dimensions are given byK11/4K, 1/K, and
4K, respectively. Using Eqs.~4! and ~5!, the terms corre-
sponding toa andh in Eq. ~1! can be written as

Ha1Hh5E dx@ac4O22hc2O1#, ~7!

where we have dropped rapidly varying terms proportio
to (21)n since they will average to zero in the continuu
limit. @We will henceforth absorb the factorsc4 (c2) in the
definitions ofa (h).# We will now study how the parameter
a andh flow under the RG.

The operators in Eqs.~6! are related to each other throug
the operator product expansion; the RG equations for t
coefficients will therefore be coupled to each other.9 In our
model, this can be derived as follows. Given two operat
A15exp(ia1f1ib1u) andA25exp(ia2f1ib2u), we write the
fieldsf andu as the sum of slow fields~with wave numbers
uku,Le2dl) and fast fields~with wave numbersLe2dl

,uku,L), whereL is the momentum cutoff of the theory
and dl is the change in the logarithm of the length sca
Integrating out the fast fields shows that the product ofA1
and A2 at the same space-time point gives a third opera
A35ei (a11a2)f1 i (b11b2)u with a prefactor which can be
schematically written as
09443
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A1A2;e2(a1a21b1b2)dl/2pA3 . ~8!

If l i( l ) denote the coefficients of the operatorsAi in an
effective Hamiltonian, then the RG expression fordl3 /dl
will contain the term (a1a21b1b2)l1l2/2p. Using this,
we find that if the three operators in Eqs.~6! have coeffi-
cientsh, a, andb, respectively, then the RG equations are

dh

dl
5S 22K2

1

4K Dh2
1

K
ah24Kbh,

da

dl
5S 22

1

K Da2S 2K2
1

2K Dh2,

db

dl
5~224K !b1S 2K2

1

2K Dh2,

dK

dl
5

a2

4
2K2b2, ~9!

where we have absorbed some factors involvingv in the
variablesa, b, andh. ~We will ignore the RG equation forv
here.! It will turn out that K renormalizes very little in the
regime of RG flows that we will be concerned with. Equ
tions ~9! appeared earlier in the context of some oth
problems.10,11 However, the last two terms in the expressi
for dh/dl were not presented in Ref. 10; these two terms t
out to be crucial for what follows. Note that Eqs.~9! are
invariant under the duality transformationK↔1/4K and
a↔b.

Let us now consider the fixed points of Eqs.~9!. For any
value of K5K* , a trivial FP is (a* ,b* ,h* )5(0,0,0). Re-
markably, it turns out that there is a nontrivial FP for a
value ofK* lying in the range 1/2,K* ,11A3/2; we will
henceforth restrict our attention to this range of values.~The
upper bound onK* comes from the condition 22K*
21/4K* .0.! The nontrivial FP is given by

h* 5
A2K* ~22K* 21/4K* !

2K* 11
,

a* 5S K* 1
1

2Dh* 2 and b* 5
a*

2K*
. ~10!

The system is gapless at this FP as well as at all points w
flow to this FP. One might object that Eqs.~9! can only be
trusted ifa, b, andh are not too large, otherwise one shou
go to higher orders. We note that the FP approaches
origin as K* →11A3/2.1.866; from Eq.~3!, this corre-
sponds to the zz coupling D52sin@p(A323/2)#
.20.666. Thus the RG equations can certainly be trus
for K* close to 1.866. ForK* 51, the FP is at
(a* ,b* ,h* )5(1/4,1/8,1/A6).

We have numerically studied the RG flows given by Eq
~9! for various starting values of (K,a,b,h). Since the
Hamiltonian in Eq.~1! does not contain the operatorO3, we
setb50 initially. We takea andh to be very small initially,
and see which set of values flows to a nontrivial FP. F
5-2
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GAPLESS LINE FOR THE ANISOTROPIC HEISENBERG . . . PHYSICAL REVIEW B67, 094435 ~2003!
instance, starting withK51, b50, anda,h very small, we
find that there is a line of points which flow to a FP
(K* ,a* ,b* ,h* )5(1.020, 0.246, 0.122, 0.404). This lin
projected on to the (a,h) plane is shown in Fig. 1. We se
that K changes very little during this flow; if we start with
larger value ofK initially, then it changes even less as we
to the nontrivial FP. It is therefore not a bad approximation
ignore the flow ofK completely.

We can characterize the set of points (a,h) lying close to
the origin which flow to the nontrivial FP. Numerically, w
find that there is a unique flow line in the (a,h) plane for
each starting value ofK andb50, provided thata andh are
very small initially. This means thata( l ) andh( l ) given by
Eqs.~9! must follow the same line regardless of the start
values ofa,h. From Eqs.~9!, we see that ifh!a1/2, then
h( l );h(0)exp(22K21/4K) l while a( l );exp(221/K) l .
Henceh must initially scale witha as

h;a(22K21/4K)/(221/K), ~11!

as we have numerically verified forK51. However, Eq.~11!
is only true if (22K21/4K)/(221/K).1/2, i.e., if K,(1
1A2)/251.207. ForK>1.207~i.e.,D<20.266), the initial
scaling form is given byh;a1/2.

We now examine the stability of small perturbations aw
from the fixed points. The trivial FP at the origin has tw
unstable directions (a andh), one stable direction (b), and
one marginal direction (K). The nontrivial FP has two stabl
directions, one unstable direction and a marginal direct
@which corresponds to changingK* and simultaneouslya* ,
b* andh* to maintain the relations in Eqs.~10!#. The pres-
ence of two stable directions implies that there is a tw
dimensional surface of points@in the space of parameter
(a,b,h)] which flows to this FP; the system is gapless
that surface. A perturbation in the unstable direction p
duces a gap in the spectrum. For instance, at the FP

(K* ,a* ,b* ,h* )5(1, 1/4, 1/8, 1/A6), the four RG eigenval-
ues are given by 1.273~unstable!, 0 ~marginal!, and
21.15261.067i ~both stable!. The positive eigenvalue cor
responds to an unstable direction given by (dK,da,db,dh)
5da(0.113,1,20.092,20.239). A small perturbation of siz

FIG. 1. RG flow diagram in the (a,h) plane. The solid line
shows the set of points which flow to the FP ata* 50.246, h*
50.404 marked by an asterisk. The dotted lines show the RG fl
in the gapped phasesA andB ~see the text!.
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da in that direction will produce a gap in the spectrum whi
scales asDE;udau1/1.2735udau0.786; the correlation length is
then given byj;v/DE;udau20.786.

Figure 1 shows that the set of points which do not flow
the nontrivial FP belong to either regionA or regionB. These
regions can be reached from the nontrivial FP by moving
the unstable direction, withda.0 for region A, andda,0
for regionB. In regionA, the points flow toa5`; this cor-
responds to a gapped phase in which the thexx coupling is
larger than theyy andzz couplings. In regionB, botha and
h flow to 2`; this is a gapped phase in which theyy cou-
pling is larger than thexx andzzcouplings. We will now see
that the difference between these two phases lies in the
in which theZ2 symmetry of the Hamiltonian is realized. A
order parameter which distinguishes between the two ph
is the staggered magnetization in they direction, defined in
terms of a ground state expectation value as

my5@ lim
n→`

~21!n^S0
ySn

y&#1/2. ~12!

This is zero in phase A; hence theZ2 symmetry is unbroken.
In phaseB, my is nonzero, and theZ2 symmetry is broken.
The scaling ofmy with the perturbationda can be found as
follows.6 At a5h50, the leading term in the long-distanc
equal-time correlation function ofSy is given by

^S0
ySn

y&;
~21!n

unu1/2K
. ~13!

Hence the scaling dimension ofSn
y is 1/4K. In a gapped

phase in which the correlation length is much larger than
lattice spacing,my will therefore scale with the gap asmy

;(DE)1/4K. If we assume that the scaling dimension ofSn
y at

the nontrivial FP remains close to 1/4K, then the numerical
result quoted in the previous paragraph forK51 implies that
my;udau0.196 for da small and negative.

The nature of the transition on the gapless line will
discussed in Sec. IV. We will argue there that this is a sp
flip transition line.~Spin-flip transitions in one-dimensiona
spin-1/2 chains have been studied earlier.12–14!

III. QUANTUM ANNNI MODEL

We will now apply our results to the one-dimension
spin-1/2 quantum ANNNI model,4,7 with nearest neighbor
ferromagnetic and next-nearest neighbor antiferromagn
Ising interactions and a transverse magnetic field. T
Hamiltonian is given by

HA5(
n

F22J1Tn
xTn11

x 1J2Tn
xTn12

x 1
G

2
Tn

yG , ~14!

whereJ1 , J2.0, and theTn
a are spin-1/2 operators; we ca

assume without loss of generality thatG>0. The quantum
Hamiltonian in Eq.~14! is related to the transfer matrix o
the two-dimensional classical ANNNI model; the finite tem
perature critical points of the latter are related to the grou
state quantum critical points of Eq.~14!, with the tempera-
ture T being related to the magnetic fieldG.

s

5-3
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AMIT DUTTA AND DIPTIMAN SEN PHYSICAL REVIEW B 67, 094435 ~2003!
Some earlier studies showed that the model has a floa
phase of finite width which is gapless.4 A recent bosonization
study reached the same conclusions.7 ~Recent numerica
studies of the two-dimensional classical ANNNI model
finite temperature have led to contradictory results for
width of the floating phase.15! All these studies~both analyti-
cal and numerical! indicate that the phase transition is of th
Kosterlitz-Thouless type~with j diverging exponentially!
from the high-temperature side~i.e., from regionB in Fig. 1
for the quantum ANNNI model!, and is of the Pokrovsky-
Talapov type16 ~with j diverging as a power-law! from the
low-temperature side~i.e., from regionA in Fig. 1!.

We will now apply our results to the quantum ANNN
model. Consider a Hamiltonian which is dual to Eq.~14! for
spin-1/2; this will turn out to be a special case of our ear
model. The dual Hamiltonian is given by4,17

HD5(
n

@J2Sn
xSn11

x 1GSn
ySn11

y 2J1Sn
x#, ~15!

whereSn
a are the spin-1/2 operators dual toTn

a ~for instance,
Sn

x52Tn
xTn11

x andTn
y52Sn21

y Sn
y). After scaling this Hamil-

tonian by an appropriate factor, we see that it has the s
form as in Eq.~1!, with

a5
J22G

J21G
,

h5
2J1

J21G
,

D50. ~16!

Hence it follows that the quantum ANNNI model has a li
of points in the (J2 /J1 ,G/J1) plane on which the system i
gapless. From Eq.~11!, we see that the shape of this line
given byJ1;(J22G)3/4 asJ1→0.

The analysis in Sec. II indicates that as the transition l
is approached,j should diverge as a power law from bo
sides. We now have to reconcile this with some of the ear
analytical4,7 and numerical15 studies which showed that a
one approaches the floating phase,j diverges as a power-law
from phaseB but exponentially from phaseA. The important
point is that these earlier studies were carried out at value
J2 /J1 which are close to 1, while our RG results are e
pected to be valid only ifa,h are small, i.e., ifJ2 /J1 is large.
If J2 /J1 is close to 1, the situation is quite different for th
following reason. Exactly atJ2 /J151 andG50, the Hamil-
tonian in Eq.~15! can be written in the form

HMC5J2(
n

S Sn
x2

1

2D S Sn11
x 2

1

2D . ~17!

This is a multicritical point with a ground state degenera
growing exponentially with the system size, since any st
in which every pair of neighboring sites (n, n11) has at
least one site withSx51/2 is a ground state. We can no
study what happens when we go slightly away from t
multicritical point. To lowest order, this involves doing pe
turbation theory within the large space of degenerate sta
09443
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An argument of Villain and Bak4 showed that ifJ22J1 and
G are nonzero but small, then the low-energy propert
of Eq. ~15! do not change ifGSn

ySn11
y is replaced by

(G/2)(Sn
ySn11

y 1Sn
zSn11

z ). ~This is because the difference b
tween the two kinds of terms is given by operators whic
acting on one of the degenerate ground states, take it ou
the degenerate space to a higher excited state in which a
of neighboring sites haveSx521/2.! Thus the fully aniso-
tropic model becomes equivalent to a different model wh
is invariant under the U~1! symmetry of rotations in they-z
plane. The U~1! symmetric model has been studied earl
using bosonization;2,11,18it has a gapless phase of finite wid
which lies between two gapped phases. Thus the differe
between our study~in which J22G andJ1 are small! and the
earlier studies~in which J22J1 andG are small! is that they
have different symmetries away from the transition lin
namely,Z2 and U~1! respectively. Our study and the earlie
studies are therefore complimentary to each other; a com
nation of the two leads to a complete understanding of
model over the entire parameter range.

To summarize, the transition from phaseA to phaseB can
occur either through a gapless line~if a, h are small!, or
through a gapless phase of finite width~if a, h are large!.
The complete phase diagram of the ground state of Eq.~15!
is shown in Fig. 2.4 The three major phases shown are d
tinguished by the following properties of the expectation v
ues of the different components of the spins. In the anti
romagnetic phase, the spins point alternately along thex̂ and
2 x̂ directions. In the spin-flip phase, they point alternate
along theŷ and 2 ŷ directions, with a uniform tilt towards
the x̂ direction. In the ferromagnetic phase, all the spins po
predominantly in thex̂ direction. The antiferromagnetic an
spin-flip phases are separated by a floating phase of fi
width for J2 /J1 close to 1/2, and by a spin-flip transition lin
for large values ofJ2 /J1. We conjecture that the floating
phase and the spin-flip transition line are separated by a
shitz point as indicated in Fig. 2. The disorder line and
Ising transition are discussed in Secs. V and VI, respectiv

We should point out here that in terms of the origin
Hamiltonian in Eq.~14!, some of the phases shown in Fig.
have somewhat different names.4 The spin-flip phase is

FIG. 2. Schematic phase diagram of the model described in
~15!. The various phases and transition lines are explained in
text. The initials FP, KT, and PT stand for floating phase, Kosterl
Thouless, and Pokrovsky-Talapov respectively.
5-4
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GAPLESS LINE FOR THE ANISOTROPIC HEISENBERG . . . PHYSICAL REVIEW B67, 094435 ~2003!
called the paramagnetic phase; this is further divided i
two phases by the disorder line, namely, a commensu
phase to the left and an incommensurate phase on the rig
the disorder line. The antiferromagnetic phase is called
antiphase.

IV. CLASSICAL LIMIT

In this section, we would like to provide a physical pi
ture of the gapless line in the (a,h) plane by looking at the
classical limit of Eq.~1!. Consider the Hamiltonian

HS15(
n

@~11a!Sn
xSn11

x 1~12a!Sn
ySn11

y 1DSn
zSn11

z

22ShSn
x#, ~18!

where the spins satisfySn
25S(S11), and we are intereste

in the classical limitS→`.17 @We have multiplied the mag
netic field by a factor of 2S in Eq. ~18! so that we recover
Eq. ~1! for spin-1/2.# We assume as before that thezz cou-
pling is smaller in magnitude than theyy coupling. Then the
classical ground state of Eq.~18! is given by a configuration
in which all the spins lie in thex-y plane, with the spins on
odd and even numbered sites pointing respectively at
angle ofa1 and2a2 with respect to thex axis. The ground
state energy per site is

e~a1 ,a2!5S2@2h~cosa11cosa2!1cos~a11a2!

1a cos~a12a2!#. ~19!

Minimizing this with respect toa1 anda2, we discover that
there is a special line given byh254a on whichall solutions
of the equation

h cosS a12a2

2 D52 cosS a11a2

2 D ~20!

give the same ground state energy per site,e052(1
1a)S2. The solutions of Eq.~20! range from a15a2
5cos21(h/2) to a15p,a250 ~or vice versa!; in the ground
state phase diagram of the ANNNI model, these two confi
rations correspond respectively to a antiferromagnetic al
ment of the spins with respect to they axis ~with a small tilt
toward thex axis if h is small!, and an antiferromagneti
alignment of the spins with respect to thex axis. The curve
h254a is therefore a phase transition line, and the form
the ground states on the two sides shows that there is a
flip transition across that line. Further, we see that forh2

54a, there is a one-parameter set of classical ground st
@characterized by, say, the value ofa1 which can go all the
way from 0 to 2p in the solutions of Eq.~20!# which are all
degenerate. Hence the symmetry is enhanced from aZ2 sym-
metry away from the line to a U~1! symmetry~of rotations in
the x-y plane! on the line. We therefore expect a gaple
mode in the excitation spectrum corresponding to the Go
stone mode of the broken continuous symmetry. We can
this gapless mode explicitly by going to the next order in
1/S expansion.17
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The above arguments provide some understanding of
one may also expect such a gapless line in the spin
model. Note however that the bosonization analysis gives
scaling form in Eq.~11! for h versusa; this agrees with the
classical form only ifD<20.266. Further, in the classica
limit, the transition across the gapless line is of first ord
whereas it is of second order in the spin-1/2 case. Ther
probably a critical value of the spinS above which the tran-
sition is of first order.@For the U~1! symmetric model de-
scribed by Eq.~21! below, it is known that the transition is o
first order if S>1.14!

The classical limit also makes it clear why our model h
a different behavior from the U~1! symmetric model gov-
erned by the Hamiltonian

HS25(
n

@~11a!Sn
xSn11

x 1~12a!Sn
ySn11

y

1~12a!Sn
zSn11

z 22ShSn
x#. ~21!

In the limit S→`, there is now atwo-parameterset of de-
generate ground states on the lineh254a; these are obtained
by taking the one-parameter family of configurations giv
in Eq. ~19! and rotating them by an arbitrary angle about t
x axis. Hence, the symmetry of this model is enhanced fr
U~1! to SU~2! on the lineh254a, and there are now two
Goldstone modes instead of one. Considering this differe
in symmetry for largeS, it is not surprising that even the
spin-1/2 models with U~1! symmetry andZ2 symmetry re-
spectively exhibit very different behaviors at the spin-fl
transition line.

V. DISORDER LINE

We have seen that as the magnetic fieldh is increased
from zero for the spin-1/2 model described by Eq.~1!, there
is a spin-flip transition at a critical fieldhc whose value
depends ona andD. One might wonder what happens if th
field is increased well beyondhc .

It turns out that abovehc , there is an interesting value o
the field h5hd where the ground state of the model is e
actly solvable.19,20 This field is given by

hd5A2~11a1D!. ~22!

At this point, the ground state has a very simple direct pr
uct form in which all the spins lie in thex-y plane, with the
spins on even and odd sublattices pointing at the anglea
and2a, respectively, with respect to thex-axis, where

a5cos21S hd

2 D . ~23!

To show that this configuration is the ground state of
Hamiltonian, we observe that the Hamiltonian can be w
ten, up to a constant, as the sum

H5(
n

@H2n,2n111H2n,2n21#,
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H2n,2n615S cosaS2n
x 1sinaS2n

y 2
1

2D
3S cosaS2n61

x 1sinaS2n61
y 2

1

2D
1S cosaS2n

x 2sinaS2n
y 2

1

2D
3S cosaS2n61

x 2sinaS2n61
y 2

1

2D
1DF1

4
2~cosaS2n

x 1sinaS2n
y !

3~cosaS2n61
x 2sinaS2n61

y !

2~sinaS2n
x 2cosaS2n

y !

3~sinaS2n61
x 1cosaS2n61

y !1S2n
z S2n61

z G , ~24!

where a is given in Eqs.~22! and ~23!. We now use the
theorem that the ground state energy ofH is greater than or
equal to the sum of the ground state energies ofH2n,2n61,
with equality holding if and only if there is a state which
simultaneously an eigenstate of all theH2n,2n61. Now, each
of the HamiltoniansH2n,2n61 in Eq. ~24! is a sum of three
operators whose eigenvalues are non-negative ifD>0.20

The state described in Eq.~23!, in which all the spins on the
even sublattice satisfy cosaS2n

x 1sinaS2n
y 51/2 and all the

spins on the odd sublattice satisfy cosaS2n11
x 2sinaS2n11

y

51/2, is the ground state of all the Hamiltonians in Eq.~24!
with zero eigenvalue. We can actually show, by looking a
two-site system governed by a single HamiltonianH2n,2n11,
that even ifD,0, the state described above is its grou
state provided that 12a>2D, i.e., as long as the magnitud
of the zz coupling is smaller than theyy, which is what we
have assumed already.

For a given value ofD, the line in the (a,h) plane de-
scribed by Eq.~22! is called a disorder line because the dire
product form of the ground state implies that the two-s
correlation function^Sn

aSm
b &2^Sn

a&^Sm
b & ~with a,b5x,y,z)

is exactly zero ifmÞn. Hence the correlation length is ex
tremely short. The disorder line exists even for values of
spin larger than 1/2. Starting with the Hamiltonian in E
~18!, one finds a disorder line at the same value of h given
Eq. ~22!. The proof that it is a disorder line is similar to th
proof given above for the spin-1/2 case ifD>0. We will not
study here how far the proof can be extended to nega
values ofD; for spin S, this requires an examination of th
spectrum of a two-site problem governed by a (2S11)
3(2S11) dimensional Hamiltonian matrix.

VI. ISING TRANSITION

If the magnetic fieldh is increased even further, the sy
tem undergoes an Ising transition.4 If the yy and zz cou-
plings are equal~i.e., 12a5D), this occurs at a saturatio
field hs52, where there is transition to a state in which
09443
a

t

e
.
n

e

l

the spins point along thex axis. But if theyy and zz cou-
plings are not equal, there is no saturation of the spins
any finite value of the field although the ground state exp
tation value ofSn

x approaches 1/2@as (12a2D)2/h2] as h
goes to infinity.~This can be shown by considering a two-s
system and doing perturbation theory in the limith→`.!
However, there is still a transition fieldhs beyond which aZ2
symmetry of a different kind is broken. To see this, we co
sider a HamiltonianH̃ which is dual to the Hamiltonian
given in Eq.~1!. This is given by

H̃5(
n

F ~11a!Tn
xTn12

x 1
12a

2
Tn

y22DTn21
x Tn

yTn11
x

22hTn
xTn11

x G . ~25!

This Hamiltonian is invariant under the globalZ2 transfor-
mation Tn

x→2Tn
x ,Tn

y→Tn
y ,Tn

z→2Tn
z . For D50, this Z2

symmetry is known to be broken ifh is larger than a critical
valuehs .4 We expect that this is will be true even ifDÞ0.
The order parameter for this symmetry is

mx5@ lim
n→`

^T0
xTn

x&#1/2. ~26!

Note that in terms of the operatorsSn
x , T0

xTn
x is equal to a

string of operators, (1/4))m50
n21 (2Sm

x ). Similarly, the order
parameter (21)nS0

ySn
y in Eq. ~12! is equal to the string of

operators@(21)n/4#)m51
n (2Tm

y ).

VII. DISCUSSION

We have shown in this paper that theXYZ spin-1/2 chain
in a magnetic field exhibits a gapless phase on a partic
line. It would be interesting to use numerical techniques l
the density-matrix renormalization group method21 to exam-
ine various ground state properties of this model, in parti
lar, to study the behavior of the order parameter defined
Eq. ~12!, and to find out if there is indeed a Lifshitz point a
conjectured in Fig. 2.

Finally, the RG equations studied in this paper appea
other strongly correlated systems, such as the problem of
spinless Tomonaga-Luttinger chains with both one- and tw
particle interchain hoppings,10 and one-dimensional conduc
tors with spin-anisotropic electron interactions.11 The gapless
phase may therefore also appear in other systems.
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gari, Zh. Éksp. Teor. Fiz.122, 624 ~2002! @JETP 95, 538
~2002!#; D. V. Dmitriev, V. Ya. Krivnov, and A. A. Ovchinnikov,
Phys. Rev. B65, 172409~2002!.

7D. Allen, P. Azaria, and P. Lecheminant, J. Phys. A34, L305
~2001!.

8T. Hikihara and A. Furusaki, Phys. Rev. B58, R583 ~1998!; S.
Lukyanov and A. Zamolodchikov, Nucl. Phys. B493, 571
~1997!.

9J. Cardy, Scaling and Renormalization in Statistical Physi
~Cambridge University Press, Cambridge, 1996!; I. Affleck, in
09443
Fields, Strings and Critical Phenomena, edited by E. Brezin and
J. Zinn-Justin~North-Holland, Amsterdam, 1989!.

10A. A. Nersesyan, A. Luther, and F. V. Kusmartsev, Phys. Lett
176, 363 ~1993!; V. M. Yakovenko, Pis’ma Zh. E´ksp. Teor. Fiz.
56, 523 ~1992! @JETP Lett.56, 510 ~1992!#.

11T. Giamarchi and H. J. Schulz, J. Phys.~Paris! 49, 819 ~1988!.
12J. Karadamoglou and N. Papanicolau, Phys. Rev. B60, 9477

~1999!; X. Wang , X. Zotos, J. Karadamoglou, and N. Papa
colau, ibid. 61, 14303~2000!.

13M. Kenzelmann, R. Coldea, D. A. Tennant, D. Visser, M. Ho
mann, P. Smeibidl, and Z. Tylczynski, Phys. Rev. B65, 144432
~2002!.

14T. Sakai and M. Takahashi, Phys. Rev. B60, 7295~1999!.
15T. Shirahata and T. Nakamura, Phys. Rev. B65, 024402~2001!;

A. Sato and F. Matsubara,ibid. 60, 10316~1999!.
16G. I. Dzhaparidze and A. A. Nersesyan, Pis’ma Zh. E´ksp. Teor.

Fiz. 27, 356~1978! @JETP Lett.27, 334~1978!#; V. L. Pokrovsky
and A. L. Talapov, Phys. Rev. Lett.42, 65 ~1979!.

17D. Sen, Phys. Rev. B43, 5939~1991!.
18D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. B58, 6241

~1998!.
19I. Peschel and V. J. Emery, Z. Phys. B: Condens. Matter43, 241

~1981!.
20J. Kurmann, H. Thomas, and G. Mu¨ller, Physica A112, 235

~1982!; G. Müller and R. E. Shrock, Phys. Rev. B32, 5845
~1985!.

21S. K. Pati, S. Ramasesha, and D. Sen, inMagnetism: Molecules to
Materials IV, edited by J. S. Miller and M. Drillon~Wiley-VCH,
Weinheim, 2002!, pp. 119–171.
5-7


