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Gapless line for the anisotropic Heisenberg spir-chain in a magnetic field and the quantum axial
next-nearest-neighbor Ising chain
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We study the anisotropic HeisenbergY 2) spin-1/2 chain placed in a magnetic field pointing alongxhe
axis. We use bosonization and a renormalization group analysis to show that the model has a nontrivial fixed
point at a certain value of th€Y anisotropya and the magnetic field. Hence there is a line of critical points
in the (a,h) plane on which the system is gapless, even though the Hamiltonian has no continuous symmetry.
The quantum critical line corresponds to a spin-flip transition; it separates two gapped phases in one of which
the Z, symmetry of the Hamiltonian is broken. Our study has a bearing on one of the transitions of the axial
next-nearest neighbor Ising chain in a transverse magnetic field. We also discuss the properties of the model
when the magnetic field is increased further, in particular, the disorder line on which the ground state is a direct
product of single spin states.
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[. INTRODUCTION The gapless line is somewhat unusual becauseXt¥ie
anisotropy and the magnetic field both break the continuous

One-dimensional quantum spin systems have been studieymmetry of rotations in the&-y plane. In Sec. IV, we will
extensively ever since the problem of the isotropic Heisenprovide a physical understanding of the gapless line by going
berg spin-1/2 chain was solved exactly by Bethe. Baxter latefo the classicallarge S) limit of the model; this helps us to
used the Bethe ansatz to solve the anisotropic Heisenbeigentify it as a spin-flip transition line. In Sec. V, we will
(XY 2) spin-1/2 chain in thabsencef a magnetic fiel4 the discuss_ a _disorder line which Iigs at a larger value of the
problem has not been analytically solved in the presence of @agnetic field. In Sec. VI, we will briefly comment on the
magnetic field. Experimentally, quantum spin chains and lad!Sing transition which occurs at an even larger value of the
ders are known to exhibit a wide range of unusual propertiednagnetic field.
including both gapless phases with a power-law decay of the
two-spin correlations and gapped phases with an exponential ~ |l. BOSONIZATION AND RENORMALIZATION
decay?® There are also two-dimensional classical statistical GROUP ANALYSIS
mechanics systemsuch as the axial next-nearest neighbor  \ve consider the anisotropic Hamiltonian defined on a
Ising (ANNNI) mode) whose finite temperature properties chain of sites,
can be understood by studying an equivalent quantum spin-

1/2 chain in a magnetic field. The ANNNI model has been

studied by several techniques, and it was believed for a Ion@"zEn: [(1+a)SiSh+ 1T (1- ) S 1 T ASISH L —h S,
time to have a floating phase of finite width in which the 1)
system is gapless.

Among the powerful analytical methods now available forwhere theS{j are spin-1/2 operators. We will assume that the
studying quantum spin-1/2 chains is the technique ofXY anisotropya and thezz coupling A satisfy —1=<a,
bosonizatior?:®> Recently, theXXZ chain in a transverse A<1. We can assume without loss of generality that the
magnetic field and the quantum ANNNI modehave been magnitude of thez coupling is smaller than they coupling
studied using bosonization. In this paper, we will study the(i.e., |A|<1—a), and that the magnetic field strength
anisotropicXY Z model in a magnetic field pointing along =0. The Hamiltonian in Eq(l) is invariant under the global
the x axis. For small values of th¥Y anisotropya and the  Z, transformationS;— S,/ ——S),Sf——S..
magnetic fieldh, we will show in Sec. Il that there is a Fora=h=0, the model is symmetric under rotations in
non-trivial fixed point (FP) of the renormalization group the x-y plane and is gapless. The low-energy and long-
(RG) in the (a,h) plane; the system is gapless on a quantumwavelength modes of the system are then described by the
critical line of points which flow to this FP. In Sec. lIl, one of bosonic Hamiltoniah®
the transitions of the ANNNI model will be shown to be a
special case of our results in which the coupling is equal v ) )
to zero. Our results are complementary to earlier studies of Ho:zf dX[(940)“+ (x$)7], 2
the ANNNI model, which indicated a gapless phase of finite
width. We will present the complete zero temperature phaseherev is the velocity of the low-energy excitatiofghich
diagram of the ANNNI model which has both a gaplesshave the dispersiom=uv|k|); v is a function ofA. (The
phase of finite width as well as a gapless line. continuous space variableand the site labeh are related
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throughx=nd, whered is the lattice spacing.The bosonic

theory contains another parameter calledvhich is related
to A by?®

w

ot 2snia) ®

K takes the values 1 and 1/2 fdr=0 (which describes
noninteracting spinless fermionendA = 1 (the isotropic an-
tiferromagnel respectively, as\ — —1 andK—c«. We thus
have 1/2<K <.

In terms of the fieldsp and 6 introduced in Eq(2), the
spin operators can be written®as

Si= \/éaxm(—l)“cl cog 27K g),

Sﬁ=[c2cos(zﬁ¢>+<—1>”c3]cos( \/ge) @)

where thec; are constants given in Ref. 8. Th€Y anisot-
ropy term is given by

aw
R R EXE BT

wherec, is another constant.
For convenience, let us define the three operators

Ol=cos(2\/ﬁ¢)cos( \/ %0)

0,= 2\/;
»=CO R@

Their scaling dimensions are given b+ 1/4K, 1K, and
4K, respectively. Using Eq94) and (5), the terms corre-
sponding toa andh in Eq. (1) can be written as

, and O3=cog4\/7K¢). (6)

Ha+ Hh: J dX[aC402_hC201], (7)
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A1A2~e—(a1a2+B1B2)dl/27rA3_ (8)

If \i(I) denote the coefficients of the operatdks in an
effective Hamiltonian, then the RG expression tby;/dl
will contain the term @ a,+ B1B2)N1\o/27. Using this,
we find that if the three operators in Eq$) have coeffi-
cientsh, a, andb, respectively, then the RG equations are

dh— 2 h ! h—4Kbh
@127 ~ - 4Kbh,

_R)

db—z 4K)b+| 2K ! h?

dK a?
ar =z K ©)

where we have absorbed some factors involvingn the
variablesa, b, andh. (We will ignore the RG equation far
here) It will turn out that K renormalizes very little in the
regime of RG flows that we will be concerned with. Equa-
tions (9) appeared earlier in the context of some other
problemst®** However, the last two terms in the expression
for dh/dl were not presented in Ref. 10; these two terms turn
out to be crucial for what follows. Note that Eq®) are
invariant under the duality transformatiok« 1/4K and
a<h.

Let us now consider the fixed points of E¢S). For any
value of K=K*, a trivial FP is @*,b*,h*)=(0,0,0). Re-
markably, it turns out that there is a nontrivial FP for any
value of K* lying in the range 1/2 K* <1+ /3/2; we will
henceforth restrict our attention to this range of val&be
upper bound onK* comes from the condition 2K*
—1/4K* >0.) The nontrivial FP is given by

e V2K* (2—K* — 1/4K*)
2K* +1 ’

where we have dropped rapidly varying terms proportional

to (—1)" since they will average to zero in the continuum

limit. [We will henceforth absorb the factocs (c,) in the

definitions ofa (h).] We will now study how the parameters

a andh flow under the RG.

*

a*= h*2 and b* =

(10

K*+1
2

K*

The system is gapless at this FP as well as at all points which

The operators in Eqs$6) are related to each other through flow to this FP. One might object that E¢®) can only be
the operator product expansion; the RG equations for theiffusted ifa, b, andh are not too large, otherwise one should

coefficients will therefore be coupled to each othém. our

go to higher orders. We note that the FP approaches the

model, this can be derived as follows. Given two operator®rigin as K* —1+/3/2=1.866; from Eq.(3), this corre-

A;=expla;d+iB0) andA,=expla,d+iB,0), we write the
fields ¢ and 6 as the sum of slow fieldavith wave numbers
|[k|<Ae 9) and fast fields(with wave numbersAe ¢

sponds to the zz coupling A=—sinm(y3—3/2)]
=—0.666. Thus the RG equations can certainly be trusted
for K* close to 1.866. ForK*=1, the FP is at

<|k|<A), whereA is the momentum cutoff of the theory, (a*,b*,h*)=(1/4,1/8,146).

anddl is the change in the logarithm of the length scale.

Integrating out the fast fields shows that the producAef

We have numerically studied the RG flows given by Eqgs.
(9) for various starting values ofK(,a,b,h). Since the

and A, at the same space-time point gives a third operatoHamiltonian in Eq.(1) does not contain the operat®¥, we
Ag=egllarta)¢ti(B1t )0 \with a prefactor which can be setb=0 initially. We takea andh to be very small initially,

schematically written as

and see which set of values flows to a nontrivial FP. For
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~h da in that direction will produce a gap in the spectrum which
scales ad E~|da|Y1?7%=| 5a|%7® the correlation length is
then given byé~uv/AE~|5a| %788
Figure 1 shows that the set of points which do not flow to
the nontrivial FP belong to either regidnor regionB. These
regions can be reached from the nontrivial FP by moving in
the unstable direction, witha>0 for region A, andéa<0
for regionB. In regionA, the points flow toa=oe; this cor-
responds to a gapped phase in which thextkeoupling is
larger than theyy andzz couplings. In regiorB, botha and
, h flow to —«; this is a gapped phase in which tiig cou-
0,0) a pling is larger than the&x andzz couplings. We will now see
that the difference between these two phases lies in the way
. ; in which theZ, symmetry of the Hamiltonian is realized. An
shows the set of points which flow to the FPalt=0.246,h" 4o harameter which distinguishes between the two phases
_=O.404 marked by an asterisk. The dotted lines show the RG flow 5 the staggered magnetization in telirection, defined in
in the gapped phasésandB (see the text .
terms of a ground state expectation value as

FIG. 1. RG flow diagram in thea,h) plane. The solid line

i_nstance, startin_g Witlf_(zl, bzp, anda_,h very small, we m,=[ lim (_1)n<5365¥>]1/2. (12)
find that there is a line of points which flow to a FP at
(K*,a* ,b* h*)=(1.020, 0.246, 0.122, 0.404). This line _ . . . ,
projected on to thed,h) plane is shown in Fig. 1. We see This is zero in phase A; hence tlg symmetry is _unbroken.
thatK changes very little during this flow; if we start with a N PhaseB, m, is nonzero, and th&, symmetry is broken.
larger value oK initially, then it changes even less as we go | '€ sc%hng oiny_thh the perturbatiorsa can be found as
to the nontrivial FP. It is therefore not a bad approximation to/@lloWs.” At a=h=0, the leading term in the long-distance

n—oo

ignore the flow ofk completely. equal-time correlation function & is given by
We can characterize the set of poingsH) lying close to (—1)"
the origin which flow to the nontrivial FP. Numerically, we (K~ —— (13

find that there is a unique flow line in the,h) plane for
each starting value df andb=0, provided that andh are . . . .
very small initially. This means that(l) andh(l) given by Hﬁnce.theh§crzlillﬂg d|me|ns.|onlﬁ 'i .1/4K' Lnl a gapﬁed h
Egs.(9) must follow the same line regardless of the startinglp asein whic the c;ltl)rrr(]a au?n engtl IS r_nrl]Jch arger than the
values ofa,h. From Egs.(9), we see that ih<al? then 'attice spacingm, will therefore scale with the gap as,

|n|1/2K'

—~ 1/4K . . .
h(|)~h(0)exp(2—K—1/4K)| while a(|)~exp(2— 1/K)| ) (AE) o If we aSSUme that the Scallng d|men3|0r%f'at
Henceh must initially scale witha as the nontrivial _FP remains close to K4then th_e nl_JmerlcaI

result quoted in the previous paragraphkor 1 implies that
h~ g2~ K—1/4K)/(2- 1K) (11) m,~| 8a|®*%€for sa small and negative.

The nature of the transition on the gapless line will be
as we have numerically verified fést=1. However, Eq(11)  discussed in Sec. IV. We will argue there that this is a spin-
is only true if (2—K—1/4K)/(2—1/K)>1/2, i.e., ifK<(1 flip transition line.(Spin-flip transitions in one-dimensional
+2)/2=1.207. FoK=1.207(i.e., A<—0.266), the initial ~SPIN-1/2 chains have been studied earffef)
scaling form is given byn~a*?

We now examine the stability of small perturbations away ll. QUANTUM ANNNI MODEL
from the fixed points. The trivial FP at the origin has two

o L We will now I r resul he one-dimensional
unstable directionsa( andh), one stable directionh), and ° ow apply our results to the one-dimensiona

spin-1/2 quantum ANNNI modét! with nearest neighbor
ferromagnetic and next-nearest neighbor antiferromagnetic
rising interactions and a transverse magnetic field. The
Hamiltonian is given by

directions, one unstable direction and a marginal directio
[which corresponds to changii* and simultaneouslg*,

b* andh* to maintain the relations in Eq§10)]. The pres-
ence of two stable directions implies that there is a two- r
dimensional surface of pointsn the space of parameters Ha=> | =23, TXTX,  + JZT’;T);+2+§T%’ . (19
(a,b,h)] which flows to this FP; the system is gapless on n

that surface. A perturbation in the unstable direction PrOwhered;, J,>0, and theT® are spin-1/2 operators; we can
duces a gap in the spectrum. For instance, at the FP WitQs,me without loss of generality tha&0. The quantum
(K*,a*,b* ,h*)=(1, 1/4, 1/8, 1:(/6), the four RG eigenval- Hamiltonian in Eq.(14) is related to the transfer matrix of
ues are given by 1.273unstable, 0 (margina), and the two-dimensional classical ANNNI model; the finite tem-
—1.152+1.067 (both stabl@ The positive eigenvalue cor- perature critical points of the latter are related to the ground
responds to an unstable direction given #K(éda, sb, sh) state quantum critical points of E¢lL4), with the tempera-
=6a(0.113,1;-0.092,-0.239). A small perturbation of size ture T being related to the magnetic field
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Some earlier studies showed that the model has a floating .
phase of finite width which is gaple$# recent bosonization . Disorder line
study reached the same conclusién€Recent numerical
studies of the two-dimensional classical ANNNI model at
finite temperature have led to contradictory results for the
width of the floating phas®) All these studiegboth analyti-
cal and numericalindicate that the phase transition is of the
Kosterlitz-Thouless typgwith ¢ diverging exponentially Ferromagnetic
from the high-temperature sidee., from regionB in Fig. 1 Phase
for the quantum ANNNI modg] and is of the Pokrovsky-

Spin-flop Phase

T/, Trans%tion o

Spin-flop
Transition

KT Transition
Lifshitz
point
PT Transition
Antiferromagnetic
Phase

Talapov typé® (with ¢ diverging as a power-lawfrom the 0 1 1,03,
low-temperature sidé.e., from regionA in Fig. 1).
We will now apply our results to the quantum ANNNI FIG. 2. Schematic phase diagram of the model described in Eq.

model. Consider a Hamiltonian which is dual to Ety4) for (15). The various phases and transition lines are explained in the
spin-1/2; this will turn out to be a special case of our earliertext. The initials FP, KT, and PT stand for floating phase, Kosterlitz-

model. The dual Hamiltonian is given by Thouless, and Pokrovsky-Talapov respectively.
An argument of Villain and Bakshowed that ifJ,—J; and
— X QX VQy X 2 1
Ho En: (925541t TSSh 0= 1S0), (19 I' are nonzero but small, then the low-energy properties

. _ of Eg. (15 do not change ifl’'S'S),, is replaced b
thereSXﬁ ?re the spin-1/2 operators duaITq (for !nstanc_e, (F/2)q(Sﬁ(S?1’11+S§S§+1). (Tgis is ber;:anu+51e the di?ference E)/e-
Sﬂ:.ZTnTn+1 and Tﬁ=_28ﬁ_183,§). After scaling .th|s Hamil- tween the two kinds of terms is given by operators which,
tonian by an appropriate factor, we see that it has the samging on one of the degenerate ground states, take it out of
form as in Eq.(1), with the degenerate space to a higher excited state in which a pair
J,—T of neighboring sites have*= —1/2.) Thus the fully aniso-
=, tropic model becomes equivalent to a different model which
Jo+ T is invariant under the (1) symmetry of rotations in thg-z
23 plane. The W1) symmetric model has been studied earlier
_ o using bosonizatioR;!*8it has a gapless phase of finite width
Jo+ I which lies between two gapped phases. Thus the difference
between our studgin whichJ,—T" andJ; are small and the
A=0. (16 earlier studiesin which J,—J; andI" are small is that they

Hence it follows that the quantum ANNNI model has a line have different symmetries away from the transition line,
of points in the (,/J;,T'/J;) plane on which the system is namely,Z, and U1) respectively. Our study and the earlier
gapless. From Eq11), we see that the shape of this line is studies are therefore complimentary to each other; a combi-
given byJ;~(J,—TI')¥*asJ;—0. nation of the two I(_aads to a complete understanding of the
The analysis in Sec. Il indicates that as the transition lingnodel over the entire parameter range.
is approached¢ should diverge as a power law from both ~ To summarize, the transition from pha&¢o phaseB can
sides. We now have to reconcile this with some of the earliePccur either through a gapless litié a, h are small, or
analyticaf” and numericaf studies which showed that as through a gapless phase of finite widih a, h are large.
one approaches the floating phaseljverges as a power-law The complete phase diagram of the ground state of(Eg).
from phaseB but exponentially from phasé. The important IS shown in Fig. 2! The three major phases shown are dis-
point is that these earlier studies were carried out at values dfnguished by the following properties of the expectation val-
J,/J; which are close to 1, while our RG results are ex-U€s of the different components of the spins. In thAe antifer-
pected to be valid only i&,h are small, i.e., if},/J; is large.  romagnetic phase, the spins point alternately alongthed
If J,/J, is close to 1, the situation is quite different for the —x directions. In the spin-flip phase, they point alternately
following reason. Exactly al,/J;=1 andl'=0, the Hamil-  51ong they and —y directions, with a uniform tilt towards

tonian in Eq.(15) can be written in the form thex direction. In the ferromagnetic phase, all the spins point

. predominantly in thex direction. The antiferromagnetic and
Sn+1_§)- 17 spin-flip phases are separated by a floating phase of finite
width for J,/J; close to 1/2, and by a spin-flip transition line
This is a multicritical point with a ground state degeneracyfor large values ofl,/J;. We conjecture that the floating
growing exponentially with the system size, since any stat@hase and the spin-flip transition line are separated by a Lif-
in which every pair of neighboring sitesi(n+1) has at shitz point as indicated in Fig. 2. The disorder line and the
least one site witt§*=1/2 is a ground state. We can now Ising transition are discussed in Secs. V and VI, respectively.
study what happens when we go slightly away from this We should point out here that in terms of the original
multicritical point. To lowest order, this involves doing per- Hamiltonian in Eq.(14), some of the phases shown in Fig. 2
turbation theory within the large space of degenerate stateave somewhat different namésThe spin-flip phase is

a

h

1
HMc:Jzz (Sﬁ_ E)
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called the paramagnetic phase; this is further divided into The above arguments provide some understanding of why
two phases by the disorder line, namely, a commensuratene may also expect such a gapless line in the spin-1/2
phase to the left and an incommensurate phase on the right ofodel. Note however that the bosonization analysis gives the
the disorder line. The antiferromagnetic phase is called thecaling form in Eq.(11) for h versusa; this agrees with the
antiphase. classical form only ifA=<—0.266. Further, in the classical
limit, the transition across the gapless line is of first order,
IV. CLASSICAL LIMIT whereas it is of second order in the spin-1/2 case. There is
probably a critical value of the spi@above which the tran-

In this section, we would like to provide a physical pic- sition is of first order[For the U1) symmetric model de-
ture of the gapless line in the(h) plane by looking at the scribed by Eq(21) below, it is known that the transition is of
classical limit of Eq.(1). Consider the Hamiltonian first order if S=1.1%)

The classical limit also makes it clear why our model has

Hsf% [(1+a)S'S,  +(1-a)SLS), , + ASSE, er(]jéf;e[)eyn:ht;e::\é;(i)&o:i(;rg the (1) symmetric model gov

—2Shg], (18
Ho=2 [(1+a)SiSy, 1+ (1-a)SiSh.s
where the spins satisﬁ=S(S+ 1), and we are interested n

in the classical limitS— .’ [We have multiplied the mag- +(1-a)$S, ,—2shg]. 21)
netic field by a factor of 3 in Eq. (18) so that we recover ot
Eq. (1) for spin-1/2] We assume as before that the cou-  |n the limit S—, there is now @wo-parameterset of de-

pling is smaller in magnitude than tlyg coupling. Then the  generate ground states on the Infe=4a; these are obtained
classical ground state of E(L8) is given by a configuration by taking the one-parameter family of configurations given
in which all the spins lie in the-y plane, with the spins on in Eq.(19) and rotating them by an arbitrary angle about the
odd and even numbered sites pointing respectively at ap axis. Hence, the symmetry of this model is enhanced from
angle of; and — a, with respect to thex axis. The ground  U(1) to SU2) on the lineh?=4a, and there are now two

state energy per site is Goldstone modes instead of one. Considering this difference
) in symmetry for largeS, it is not surprising that even the
e(ay,ap)=ST—h(cosa; +Cosa,) +coga;+ ay) spin-1/2 models with (1) symmetry andZ, symmetry re-

B spectively exhibit very different behaviors at the spin-flip
Tacoda;—ap)] 19 ransition line.

Minimizing this with respect tax; and «,, we discover that

there is a special line given = 4a on whichall solutions V. DISORDER LINE

of the equation e
q We have seen that as the magnetic fiblds increased

a—a a+ ay from zero for the spin-1/2 model described by Et), there
hcos( 5 )=2 s( 5 ) (20 is a spin-flip transition at a critical fielth, whose value
depends om andA. One might wonder what happens if the
give the same ground state energy per sig=—(1  feld is increased well beyord.. _ .
+a)S?. The solutions of Eq.(20) range from =, It turns out that abové, there is an interesting value of
=cos Y(h/2) to a;=m,a,=0 (or vice versg in the ground  the fieldh=hy where the ground state of the model is ex-

9,20 Thic finld ic i
state phase diagram of the ANNNI model, these two configu@ctly solvable'>* This field is given by
rations correspond respectively to a antiferromagnetic align-
ment of the spins with respect to tyexis (with a small tilt hg=+v2(1+a+A). (22
toward thex axis if h is smal), and an antiferromagnetic
alignment of the spins with respect to thexis. The curve . . T X
h2=4a is therefore a phase transition line, and the form ofuc.t form in which all the spins I!e n thle'-y'plane, with the
the ground states on the two sides shows that there is a spiﬁp'gi on even a_nd Iodd.shublattlces po;)r:atlng at thhe angles
flip transition across that line. Further, we see thatligr ~2nd— . respectively, with respect to theaxis, where
=4a, there is a one-parameter set of classical ground states
[characterized by, say, the value @f which can go all the a=cos !
way from 0 to 27 in the solutions of Eq(20)] which are all
degenerate. Hence the symmetry is enhanced framsym- . i S
metry away from the line to a (1) symmetry(of rotations in To show_that this configuration is the _grognd state of the
the x-y plan@ on the line. We therefore expect a gaplessHam'ItO”'an' we observe that the Hamiltonian can be writ-
mode in the excitation spectrum corresponding to the Gold!€N: UP {0 a constant, as the sum
stone mode of the broken continuous symmetry. We can find
this gaples_s m7ode explicitly by going to the next order in a H :2 [Hanans1+Honon- 1],
1/S expansiort. .

At this point, the ground state has a very simple direct prod-

h

d
?) . (23
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1
H2n,2nil: COS&S;(n‘l‘ Sin aS%n— E)

X

1
cosaSy,.,+sinaSy,. 1 — 5)

+

1
cosaSy,—sin aS{n—E)

X

1
Cosas;nil_ Sinas)zlnil_ E)

1
+A yig (cosaS;,+sinaS),)

X (cosaSy,+1—SinaSy, 1)

—(sinaS;,—cosaS),)

X(sinaSy,. 1 +c0saSy, 1)+ S5,S5n-1], (29
where « is given in Egs.(22) and (23). We now use the
theorem that the ground state energytbfs greater than or
equal to the sum of the ground state energie$igf -1,
with equality holding if and only if there is a state which is
simultaneously an eigenstate of all tHg,, 5,+;. Now, each
of the HamiltoniansH,,, 5,+1 in Eq. (24) is a sum of three
operators whose eigenvalues are non-negativa #0.%°
The state described in ER3), in which all the spins on the
even sublattice satisfy cesS;,+sinaS),=1/2 and all the
spins on the odd sublattice satisfy eeS,,;—sinaS), .,
=1/2, is the ground state of all the Hamiltonians in E2f)

with zero eigenvalue. We can actually show, by looking at a

two-site system governed by a single Hamiltonkg), o4 1,

PHYSICAL REVIEW B 67, 094435 (2003

the spins point along the axis. But if theyy and zz cou-
plings are not equal, there is no saturation of the spins for
any finite value of the field although the ground state expec-
tation value ofS} approaches 1/fas (1-a—A)?/h?] ash
goes to infinity.(This can be shown by considering a two-site
system and doing perturbation theory in the lirhitso0.)
However, there is still a transition fietd, beyond which &,
symmetry of a different kind is broken. To see this, we con-

sider a HamiltonianH which is dual to the Hamiltonian
given in Eq.(1). This is given by

l-a
2

A-3

(1+a)TiTh ot Th—2ATH_ TiTRi 1

_ZhTE ﬁ+1 : (25
This Hamiltonian is invariant under the globa} transfor-
mation Ty— —Tx, T —T),T:——T:. For A=0, this Z,
symmetry is known to be broken lifis larger than a critical
value hg.* We expect that this is will be true evenAf#0.
The order parameter for this symmetry is

me=[ lim (T5TX)]Y2

n—oo

(26)

Note that in terms of the operato&, TyT) is equal to a
string of operators, (1/4)“m;10(2sxm). Similarly, the order
parameter ¢ 1)"SS) in Eqg. (12 is equal to the string of
operatorg (—1)"/4]11;,_,(2TY).

VII. DISCUSSION

We have shown in this paper that thé&' Z spin-1/2 chain

that even ifA<0, the state described above is its groundin a magnetic field exhibits a gapless phase on a particular

state provided thatZa=—A, i.e., as long as the magnitude
of thezz coupling is smaller than thgy, which is what we
have assumed already.

For a given value ofA, the line in the &,h) plane de-

line. It would be interesting to use numerical techniques like
the density-matrix renormalization group methbtb exam-

ine various ground state properties of this model, in particu-
lar, to study the behavior of the order parameter defined in

scribed by Eq(22) is called a disorder line because the directEq. (12), and to find out if there is indeed a Lifshitz point as
product form of the ground state implies that the two-spinconjectured in Fig. 2.

correlation function(S2SE)—(SEN(SE) (with a,8=X,y,2)
is exactly zero ifm#n. Hence the correlation length is ex-

Finally, the RG equations studied in this paper appear in
other strongly correlated systems, such as the problem of two

tremely short. The disorder line exists even for values of thespinless Tomonaga-Luttinger chains with both one- and two-

spin larger than 1/2. Starting with the Hamiltonian in Eq.

particle interchain hopping®,and one-dimensional conduc-

(18), one finds a disorder line at the same value of h given irtors with spin-anisotropic electron interactioi&’he gapless

Eq. (22). The proof that it is a disorder line is similar to the
proof given above for the spin-1/2 caseli=0. We will not

study here how far the proof can be extended to negative

values ofA; for spin S this requires an examination of the
spectrum of a two-site problem governed by aS¢2l)
X (2S+1) dimensional Hamiltonian matrix.

VI. ISING TRANSITION

If the magnetic fielch is increased even further, the sys-
tem undergoes an lIsing transitidrif the yy and zz cou-
plings are equali.e., 1-a=A), this occurs at a saturation

phase may therefore also appear in other systems.
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