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Theory of collective spin waves and microwave response of ferromagnetic nanowire arrays

Rodrigo Arias and D. L. Mills
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 14 November 2002; published 27 March 2003!

We formulate the theory of the collective spin wave modes and the microwave response of arrays of
ferromagnetic nanowires of cylindrical cross section, each magnetized parallel to the axis of symmetry. The
theory is based on a multiple scattering approach, and may be applied to the regime where the diameter of the
constituents is small enough that exchange enters the response importantly. The formalism can be applied to
ordered arrays, or disordered arrays of nanowires. We present explicit results for the spin wave normal mode
frequencies of a pair of nanowires, and for a linear array. The dispersion curves for the collective modes in the
latter case show a dispersive collective mode which crosses and hybridizes with resonances in the individual
cylinders. For a nanowire pair, and in the magnetostatic limit, we obtain a closed form expression for the
collective spin wave modes in the limit as the wavevector parallel to the symmetry axis vanishes. Interestingly,
the resonance does not split as the wires are brought together, but just shifts downward in frequency, from the
valueg(H012pMs) appropriate to the isolated wire at large separations, tog@H0(H014pMs)#1/2 when the
wires just touch.

DOI: 10.1103/PhysRevB.67.094423 PACS number~s!: 75.75.1a, 75.30.Ds, 75.50.2y
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I. INTRODUCTION

For well over a decade now, ultrathin films of ferroma
netic material, and multilayers which incorporate such film
have been the topic of intense experimental and theore
study. The physics in these structures has proved most i
esting indeed, and one encounters unique properties
found in bulk magnetic matter. The phenomenon of gi
magnetoresistance is perhaps the most commonly discu
such property. But in addition the multilayers offer magne
response characteristics~hysteresis loops, exotic magnet
structures, microwave response, . . .! that are both unique
and readily subject to modification through variations
growth conditions, film thickness, and other factors as w
Applications abound, particularly in magnetic recording a
data storage, and others are anticipated.

More recently, interest has arisen in other forms of sm
magnetic structures which, generally speaking, may be
scribed as textured media. For example, two-dimensiona
rays of dots exhibit fascinating properties,1 and the collective
excitations of arrays of magnetic stripes show complex
interesting behavior.2 Our interest in ferromagnetic nano
wires has been stimulated by ferromagnetic resona
studies3 of wires sufficiently small that the resonance spe
trum explores modes strongly influenced by exchange
well as by the Zeeman and magnetic dipole interacti
which control the nature of spin waves in larger sampl
Our theory4 of the exchange/dipole modes of such nano
ires, along with their microwave response, offers a quant
tive explanation of the very interesting doublets observed
the FMR spectra.3 These have their origin in an exchang
induced level crossing between the main FMR mode,
standing spin waves which are driven up in frequency as
wire diameter decreases. The two modes are mixed
boundary conditions at the surface, and as the wire diam
is decreased the frequency of the standing spin wav
driven up through that of the uniform FMR mode. Th
boundary condition induced hybridization between the t
0163-1829/2003/67~9!/094423~15!/$20.00 67 0944
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produces the doublet, for diameters near that where cros
occurs. Very recently, a most interesting study5 of spin waves
in a nanowire array by the method of Brillouin light scatte
ing ~BLS! provides very clear, quantitative data regarding t
dependence of the spin wave frequencies on nanowire d
eter, in accord with the expectations in Ref. 4.

Our previous paper was concerned only with properties
an isolated ferromagnetic nanowire. The purpose of this
per is to address the theory of the interactions between
romagnetic nanowires of cylindrical cross section, when th
are incorporated into dense arrays. The issue of interest is
following. First, consider the much studied ferromagne
film, magnetized parallel to its surface. As the spins prec
in the uniform mode normally excited in FMR, they genera
a demagnetizing field with origin in ‘‘magnetic charges
present on the surfaces. These demagnetizing fields ar
sponsible for upshifting the resonance frequency of the fi
from the precession frequencygH0 of free spins, to the well
known resultg@H0(H014pMs)#1/2. HereH0 is the applied
dc magnetic field, andMs the saturation magnetization of th
film. However, the dipole fields so generated are entir
confined to within the film itself. Thus, in a multilaye
sample formed of ideal films, the dipolar interactions play
role in coupling adjacent films. If, however, the mode excit
has wave vectork parallel to the surface~in BLS experi-
ments, modes with wave vector in the range 105 cm21 are
excited!, then the spin motions generate fields outside
film whose influence scales as 4pMskdexp(2kz) in the thin
film limit, where d is the film thickness, andz the distance
from its surface.6 Such fields are quite weak whenkd!1,
with dipolar interfilm coupling negligible.

However, the uniform mode of a ferromagnetic cylind
generates a field of dipolar character outside its surfa
which falls off inversely with the square of the distance fro
the film center.4 Under such circumstances, one expects
preciable interactions between nearby nanowires. This s
gests that suitable nanowire arrays will offer interesting c
lective modes, and microwave properties subject to con
©2003 The American Physical Society23-1
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by design. It is the purpose of this paper to present the the
of such modes, for nanowires whose diameter is sm
enough that both exchange and dipolar coupling enter im
tantly in the response of the individual constituents. We th
present numerical studies of selected systems. We provid
well a formulation of the theory of the response of nanow
arrays to spatially uniform applied microwave fields. Mo
vation for our studies arises from the fact that the exp
ments in Ref. 3 employed random arrays of ferromagn
nanowires, so a question regarding the role of interwire
teractions on the spectra arises. Also, the most interes
recent experiment cited above5 which explores the influence
of exchange on the spin wave spectra of nanowires,
employed a reasonably dense nanowire structure.

Our basic approach employs multiple scattering theory
a form adapted to earlier discussions of two-dimensio
photonic crystals.7 Of course, in previous work the applica
tion is to dielectric structures which exhibit a scalar dielect
response, whereas here we require an extension to struc
composed of ferromagnetic media, whose response is g
tropic in character. The approach is a real space formulat
and can thus be applied to diverse structures, ranging f
those with periodicity similar to photonic crystals, or to di
ordered structures if desired.

The numerical studies reported here explore two
amples. First we discuss a nanowire pair. This serves
quantify the character of the interwire interactions which,
fact to judge by this case, are rather weak. The numer
studies are demanding for the following reason. We cons
collective modes characterized by a wave vectork parallel to
the symmetry axes of the two cylinders. Ask→0, in our
multiple scattering theory, we encounter modified Bes
functions of the formKm(kd) andKm(kR), with d andR the
distance between the two wires, and their radii, respectiv
The functionKm(x) diverges asx2m asx→0, so the ques-
tion of achieving numerical convergence is delicate in
long wavelength limit. We do find we can achieve accur
results for long wavelength modes with modest comput
power. Also, we present a scaling argument which allows
to extract equations specific to the limitk[0 from our gen-
eral formulation. We have a test of our numerical results
the long wavelength limit. Below, we derive an exact, clos
form expression for thek50 coupled mode frequencies o
the nanowire pair, in the magnetostatic limit. The formu
itself is most interesting in character in our view, and a
provides us with the means of testing the numerical result
long wavelength by studying wires of substantial diame
then comparing numerical results to our exact formula. Af
detailed study of the nanowire pair we turn our attention t
linear array of nanowires. These calculations are motiva
by the BLS studies of linear arrays of magnetic stripe2

While our nanowire arrays are very different than the strip
studied by Demokritovet al.,2 we are motivated by issue
raised in these studies. Most strikingly, in the data a m
very similar in character to the well known Damon Eshba
mode of the thin ferromagnetic film is observed. This mo
crosses and hybridizes with the standing wave excha
modes of the individual constituents of the array. We fi
results strikingly similar to these in our study of the on
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dimensional line of cylinders. It is the case, incidentally, th
linear ferromagnetic nanowire arrays can be grown on cry
surfaces. When magnetic ions are deposited on stepped
faces, they may migrate to step edges thus forming a lin
array of ferromagnetic nanowires with nanoscale diamete8

The outline of this paper is as follows. Section II is d
vided into two parts. We first, through use of multiple sc
tering theory, develop an approach to the description of
spin wave excitations of an array of parallel nanowires, e
assumed of cylindrical cross section, and magnetized par
to its symmetry axis. In the second part, we develop a
scription of the response of such an array to an exte
driving field. Both of these treatments fully incorpora
~within long wavelength phenomenology! the influence of
exchange, and of surface anisotropy fields on the respons
the individual constituents in the array. It should be remark
that in this section, we borrow from results and conce
introduced in our earlier paper4 on the spin excitations and
microwave response of the isolated nanowire. Our numer
results are presented in Sec. III, and concluding comme
are in Sec. IV. In an Appendix we present the analytic de
vation of the resonance frequency of two nanowires wh
centers are separated by the distanced, for the case where
their diameters are large enough for magnetostatic theor
apply.

II. THEORY OF THE SPIN EXCITATIONS
AND THE MICROWAVE RESPONSE

OF FERROMAGNETIC NANOWIRE ARRAYS

We consider an array of nanowires of cylindrical cro
section, each with radiusR, each with symmetry axis paralle
to thez axis, and each magnetized along the symmetry a
with magnetization per unit volumeMs . Our formulation of
the response of the array is a real space formulation, and
it is not necessary to assume the wires form a tw
dimensionally periodic array or any other special structu
While we suppose here all wires in the array are identica
radii and properties, in fact it is straightforward to incorp
rate variations in radii and magnetization from wire to wi
into the analysis if desired. The extension to the case wh
the applied dc magnetic field has a transverse compone
nontrivial, however.

If we consider the motion of the magnetization in o
particular wire, then as discussed in our earlier paper4 a
dynamic magnetic dipole field is generated in the spatial
gion outside the wire by the precession of the magnetizat
If the nanowires are separated by distances greater than
atomic length scale, then the interaction between the w
will be controlled by this dynamic dipole field, as opposed
interwire exchange interactions of microscopic origin. O
treatment includes, in the description of the response of
array, the influence of intra-wire exchange, and also the
of surface anisotropy fields on the response of a single en
in the array. We confine our attention to the limit where t
separation between adjacent wires is sufficiently large
interactions between them occur only via the dipolar mec
nism.
3-2
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THEORY OF COLLECTIVE SPIN WAVES AND . . . PHYSICAL REVIEW B67, 094423 ~2003!
A. Theory of the collective spin wave excitations of an array
of cylindrical nanowires

Suppose we have an array of nanowires such as desc
in the previous two paragraphs. Translational symmetry
the z direction insures that the collective excitations of t
array are characterized by a wave vector parallel to theẑ axis
we may callk. Thus, the dipolar field generated by the pr
cession of the magnetization vectors in the various w
may be written everywhere ashW d(rW,t)5hW d(x,y)exp@ikz
2iVa(k)t#, where Va(k) is the frequency of the mode o
wave vectork. The subscripta is a branch index, since
for each choice ofk one finds a hierarchy of branches.
will suffice, for the small arrays of interest here to calcula
the dipole field in the magnetostatic approximation, wh
retardation effects are ignored. Thus, we will havehW d(rW,t)
52¹wM(rW,t) where wM(rW,t)5FM(x,y)exp@ikz2iVa(k)t#
is the magnetic scalar potential.

Now in the vacuum region between nanowires, the m
netic potential obeys Laplace’s equation, so for the funct
FM(x,y) everywhere outside the nanowires we have

S ]2

]x2
1

]2

]y2D FM~x,y!2k2FM~x,y!50. ~1!

Before we turn to the nanowire array, let us conside
simpler problem, the response of a single nanowire cente
at the origin of the coordinate system in thexy plane to an
externally applied driving field, itself described by the ma
netostatic approximation just discussed. We may express
function FM

(ext) from which the external field is described
terms of polar coordinates (r,f) in the xy plane. We may
expressFM

(ext)(r,f) as an expansion in modified Bess
functions:

FM
(ext)~r,f!5 (

n52`

`

An~0!I n~kr!exp~ inf!. ~2!

Since the external potential is generated by sources ou
the near vicinity of the origin of the coordinate system, t
potential must be nonsingular there.

The external potential in Eq.~2! will excite the magneti-
zation of the nanowire at the origin. The resulting precess
will generate a dynamic dipole field outside this object. T
external field may be calculated through use of a v
straightforward extension of the formalism described in S
II A of Ref. 4. We do not present the details here in t
interest of brevity. The field outside the wire may be gen
ated from the potential

FM
(0)~r,f!5 (

n50

`

An~0!SnKn~kr!exp~ inf! ~3a!

or

FM
(0)~r,f!5 (

n52`

`

Bn~0!Kn~kr!exp~ inf!. ~3b!
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We haveBn(0)5SnAn(0), whereSn , equivalent to theS
matrix of scattering theory, describes the response of
nanowire to a driving field with azimuthal variatio
exp(inf). In Eqs.~3!, Kn(x) is the modified Bessel function
of the second kind. Since, for largex, we have Kn(x)
;exp(2x)/x1/2, the field generated by the motion of the ma
netization falls off exponentially as we move away from t
nanowire, with range controlled by the magnitude of t
wave vector. As the wave vectork vanishes, the behavior o
the scalar potential is controlled by the small argument fo
of Kn(x). Since for nonzero values ofn, Kn(x) is propor-
tional to x2n we have a power law fall off of the field. In
FMR studies of the isolated cylinder, them51 mode is
excited,4 so for this case the magnetic potential falls off i
versely with the distance from the center of the cylinder, a
the dipole field itself falls off inversely with the square o
this distance.

In Ref. 4, one finds the formalism for constructingSn
within a framework that includes exchange effects inside
nanowire, and which includes the role of surface anisotro
as well. The latter is incorporated into the boundary con
tions satisfied by the transverse magnetization. We find t

Sn52
@GnI n~kR!2kGnI n~kR!8#

@GnKn~kR!2kGnKn~kR!8#
, ~4a!

where in the magnetostatic limit one has

Gn
(mag)5F S nm2

R D I n~ k̃R!2m1
1/2kKn~ k̃R!8G ~4b!

and

Gn
(mag)52I n~ k̃R!. ~4c!

For the case exchange and surface anisotropy are
present, we have

Gn
(ex)5(

j 51

3

k jAj
nF2pMsH Jn11~k jR!

D~k j
21k2!1H01V

2
Jn21~k jR!

D~k j
21k2!1H02V

J 2Jn~k jR!8G ~4d!

and

Gn
(ex)52(

n

3

Aj
nJn~k jR!. ~4e!

In Eqs. ~4a!–~4c!, I n(x) is the modified Bessel function
of the first kind, and the prime on the various Bessel fun
tions denotes derivatives with respect to their argume
The quantity m15(VBVH2V2)/(VH

2 2V2) while m2

524pVMV/(VH
2 2V2), where VH5gH0 , VM5gMs ,

andVB5g(H014pMs), with g the gyromagnetic ratio~its
modulus!, andH0 the strength of the dc magnetic field a
plied parallel to the cylinder axis. Finally,k̃5k/m1

1/2. In Eqs.
~4d! and~4e!, thek j are the roots of Eq.~16! of Ref. 4, and
D is the exchange stiffness. The coefficientsAj

n , analogous
3-3
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RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 67, 094423 ~2003!
to the coefficientsAi in Eq. ~17! of Ref. 4 are determined a
follows. First setA1

n to unity, and determine the two remain
ing coefficients by requiring the two boundary conditions
Eq. ~21a! and Eq.~21b! of Ref. 4 to be satisfied. WithA1

n set
to unity, these can be arranged to be two inhomogene
equations for the two remaining coefficients.

Now consider an array of nanowires, with the origin
the coordinate system placed at the center of one sele
wire. If a collective excitation is excited in the array, th
magnetization of the wire at the origin is driven by the d
namic dipolar fields generated by the other wires in the ar
We shall obtain a self-consistent set of equations for the
plitude of the motion in any particular wire by casting th
driving field from the remainder of the array in a suitab
form. This is our next task.

In Fig. 1, we show the cylinder at the origin, and one
the cylinders in the array, cylinderj. The magnetization of
the cylinder at the origin is driven by the field calculat
from the magnetic potential

F̃M~x,y!5(
j Þ0

(
n52`

1`

Bn~ j !Kn~kr j !exp~ inf j !. ~5!

We will manipulate Eq.~5! to cast it in a form which
allows contact with our discussion of the isolated cylind
driven by an external field. One begins with Graf’s identi
which reads9

eivcZv~kR!5 (
n52`

`

Zv1n~kr !Jn~kr!einw. ~6!

In Eq. ~6!, rW andrW are vectors, withr5urW u,r 5urWu, w is
the angle between these two vectors,c is the angle opposite
to rW , in a triangle formed byrW , rW and a line drawn betwee
the tips of these two vectors, whileR5(r 21r2

22rr cos(w))1/2. The functionZv(x) can be any of the stan
dard Bessel functions~ Bessel, Neuman, and Hankel!. Upon
choosingZv to be the Hankel function of the first kind,Hv

(1) ,
and then lettingk→ ik, one finds that

FIG. 1. An illustration of the coordinate system and variab
employed in the formal development in Sec. II.
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eivcKv~kR!5 (
n52`

1`

Kv1n~kr !I n~kr!einw. ~7!

Upon consulting Fig. 1, and identifyingR with r j of that
figure, we have the relation

eivf jKv~kr j !5~21!v (
n52`

1`

ei (v2n)c jKv2n~kdj !I n~kr!einf.

~8!

The quantities which appear in Eq.~8! are all defined in Fig.
1. To obtain Eq. ~8! from Eq. ~7!, note that K2v(x)
5Kv(x). When Eq.~8! is combined with Eq.~5!, we have

F̃M~x,y!5 (
n52`

1`

Ãn~0!I n~kr!einf, ~9!

where

Ãn~0!5(
j Þ0

(
m52`

`

~21!mei (m2n)c jBm~ j !Km2n~kdj !.

~10!

Now the driving potential displayed in Eq.~9! excites the
magnetization in the cylinder at the origin, and it produce
disturbance outside the cylinder at the origin described
the magnetic potential given in Eq.~3b!, with

Bn~0!5SnÃn~0!, ~11!

so we have a set of equations that link the amplitudesBn( j ):

Sn
21Bn~0!5(

j Þ0
(

m52`

`

~21!mei (m2n)c jKm2n~kdj !Bm~ j !.

~12!

The statement in Eq.~12! is the principal result of the
present section. For the isolated cylinder, the frequencie
the spin wave eigenmodes associated with the azimu
quantum numbern are found by locating the poles ofSn , or
equivalently the zeros ofSn

21 . In the limit the cylinders are
infinitely far apart, Eq.~12! provides this criterion. For an
array of cylinders, the modes cannot be characterized by
azimuthal quantum number, and become mixed in chara
One finds the frequencies of the various modes of the a
with the wave vectork by locating the zeros of the determ
nant formed from Eq.~12!. In practice, one takes a finit
range ofn in the sum, ranging from2N to 1N so the size of
the determinant whose zeros must explore is 2N11 multi-
plied by the number of cylinders in the sample. Of course
one has a periodic array, the coefficientsBn( j ) will have a
Bloch form, i.e.,Bn( j )5Bn(0)exp(ikW'•dW j), so for each wave
vectorkW' one explores a determinant whose size is 2N11.

For many purposes, it is of interest to explore the s
wave excitations for which the wave vectork is zero. If we
consider a true nanoscale sized array of wires excited
FMR or in BLS, the modes of interest will have wavelengt
very long compared to the length scales of the structure,
thus the limit of vanishingk is of primary interest. The ma
trix formed from Eq.~12! whose determinant is evaluate

s

3-4
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THEORY OF COLLECTIVE SPIN WAVES AND . . . PHYSICAL REVIEW B67, 094423 ~2003!
numerically is very tricky to evaluate at very small values
the wave vector, since as noted beforeKn(x) diverges asx2n

asx→0. If one truncates the matrix with a large value ofN,
then the matrix will contain modified Bessel functions
very large order. For small values of the wave vector, th
will be very large entries in the matrix, and by and lar
these are associated with partial waves that play a minor
in the final result, ifN is large enough to insure excelle
convergence. Despite this concern, in the calculations
ported in Sec. III, in our studies of the normal modes of t
cylinders we have had no difficulty achieving accurate
sults for withN530, andkR as small as 1023. It is surpris-
ing to us that high accuracy can be obtained at such v
small values ofkR, in view of the behavior of the modified
Bessel functions in the limit of small argument.

In case where the response of the individual wires is
equately described by magnetostatic theory, with the in
ence of exchange ignored@thus Sn is given by Eq.~4!#, as
k→0, through appropriate scaling arguments it is possible
extract the limiting behavior of the various quantities th
enter Eq.~12!, and reduce it to a form which may be used
compute thek50 mode frequencies directly. Since the
equations allow direct calculation of the mode frequenc
without the issue just discussed, we conclude with a der
tion of the resulting equation. We assume thatSn is given by
Eq. ~4! and that we havekR!1 andkdj!1 as well. Recall-
ing that whenkdj!1, we have, forn.0,

K2n~kdj !5Kn~kdj !'
2n21~n21!!

~kdj !
n

, ~13!

while in the same limit,K0(kdj )' ln(2/kdj ). After some al-
gebra, one may show that whenkR!1, one has, fornÞ0,

Sn'
2unu~kR!2unu

4unu~n! !2

@11m2sgn~n!2m1#

@12m2sgn~n!1m1#
5snk2unu, ~14!

while again in the same limit,S0' 1
32 @(1/m1)21#(kR)4

5s0k4.
These forms suggest that the coefficientsBn( j ) should

exhibit a power law scaling with the wave vector, in the lo
wavelength limit. We make the ansatz

Bn~ j !5kunubn~ j !. ~15!

When these various limiting forms are inserted into Eq.~12!,
the result may be arranged to read, fornÞ0,

bn~0!5snkunu(
j Þ0

H ~21!nkunulnS 2

kdj
Dbn~ j !

1 (
m5n11

`

~21!m
Lm2n

kum2nu
kumubm~ j !

1 (
m52`

n21

~21!m
Lm2n

kum2nu
kumubm~ j !J , ~16a!

where
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Lm2n5
2(um2nu21)~ um2nu21!!

~dj !
um2nu

ei (m2n)c j . ~16b!

If one writes out the equation satisfied byb0(0) then
takes the limitk→0, then one findsb0(0)50. Since there is
nothing special about the nanowire located at the origin
the coordinate system, it follows that for allj, b0( j )50.

To proceed further, one must separate two cases,n.0
and n,0. When this is done, and the limit of vanishin
wave vector is taken, then we obtain two sets of coup
equations in which the wave vector is absent:

bunu~0!5sunu(
j Þ0

(
m51

`

~21!me2 i (m1unu)c j

3
2unu1m21~ unu1m21!!

~dj !
unu1m

b2umu~ j ! ~17a!

and

b2unu~0!5s2unu(
j Þ0

(
m51

`

~21!mei (unu1m)c j

3
2unu1m21~ unu1m21!!

~dj !
unu1m

bunu~ j !. ~17b!

Once again, if the nanowires are arranged in the form o
periodic structure, one may seek solutions of Eqs.~17! of the
Bloch form. There is considerable interest in propagat
perpendicular to the magnetization in arrays such as con
ered here, since in this geometry, nonreciprocal propagat
characteristics are exhibited by the system. In tw
dimensionally periodic arrays, Eqs.~17! may be used to ex-
plore such issues. We have found the limiting forms in E
~17! most useful in the calculations reported in Sec. III.

The derivation of Eqs.~17a! is valid only when intrawire
exchange is ignored, and the response of the individual w
is described adequately by magnetostatics as discussed
lier. One may apply the scaling argument to the case wh
intra wire exchange is included as well. One notes that of
roots k j , one of these which we may denote byk1 will
vanish linearly withk in the limit k→0 while the other two
roots remain finite. We do not present the details of the d
vation here. We have found Eqs.~17! most useful in our
numerical work, whereas the scaled equations with intraw
exchange were not so easy to explore. We obtained exce
long wavelength results, as reported below, with the full
of equations and the wave vectork set to a small value in the
calculations which include intrawire exchange.

B. Response of nanowire arrays to microwave excitation fields

In this section, we present the theory of the response o
array of nanowires to a microwave exciting field, for the ca
where the magnetic field associated with the incident mic
waves lies in thexy plane, perpendicular to the axis of sym
3-5
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RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 67, 094423 ~2003!
metry of the wires in the array. As above, we assume
elements in the array are magnetized parallel to their axe
symmetry.

As in Ref. 4, it is particularly convenient to describe t
fields in the externally generated microwaves through us
a vector potentialAW (x,y;t)5 ẑA(x,y)exp(2iVt). The mag-
netic field then lies in the plane, and in addition we have
electric field associated with the incident field parallel to t
axis of symmetry. The choice

A(ext)~x,y!5
h0

ik0
exp~ ikW0•rW !, ~18a!

with kW05k0(cosu0x̂1sinu0ŷ) andk05V/c, describes a mi-
crowave field with strengthh0. The magnetic field in the
wave is given by

BW (ext)5HW (ext)5¹W 3AW

5h0@ x̂ sin~u0!2 ŷ cos~u0!#exp~ ikW0•rW2 iVt !,

~18b!

with, as noted above, an electric fieldEW (ext)5 ik0AW parallel to
the ẑ axis. Note that the functionA(x,y) in Eq. ~18! may be
written in the form, withr and f polar coordinates in the
plane:

A(ext)~x,y!5
h0

ik0
exp@ ik0r cos~f2u0!#

5
h0

ik0
(

n52`

`

~ i !nJn~k0r!exp@ in~f2u0!#.

~19!

This section presents the theory of the response of
nanowire array to the microwave exciting field just d
scribed. In Ref. 4, the theory of the response of a sin
nanowire to such a field was presented, and here, using l
similar to that in the previous section, we expand the disc
sion to an array of interacting nanowires. Primary inter
resides in the case where the wavelength of the exciting fi
is very long compared to the length scales of the sample
after generating the general theory, using scaling argum
similar to those presented above, we also derive equat
appropriate to the limitk0→0, with the frequencyV kept
finite ~formally, one achieves this limit by allowing the ve
locity of light c to become infinite!. To achieve this limit,
some rather subtle issues are encountered. Thus, we
want to generalize the expression in Eq.~19! to read

Aext~r,f!5
h0

ik0
(

n52`

`

~ i !nlnJn~k0r!exp@ in~f2u0!#.

~20!

We recover response to a plane wave by setting all par
etersln to unity, but as we take the limitk0→0 another
choice will be dictated by physical considerations describ
below.
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We again focus our attention on the cylinder located at
origin of the coordinate system, as depicted in Fig. 1. T
magnetization of this cylinder is driven by the external fie
just described, but we must add to this the magnetic fie
generated by the precession of the magnetization wi
other cylinders of the array. The field generated by the p
cession of the magnetization in a given cylinder has, in
language of scattering theory, the character of an outgo
wave. It is the case that the magnetic fields associated
these waves all lie in thexy plane, and the associated vect
potential is thus parallel to thez direction, and is given by
AW 5 ẑÃ, where

Ã5(
j 50

(
m52`

`

bm~ j !~ i !meimf jHm
1 ~k0r j !, ~21!

where Hm
1 (x) is the Hankel function of the first kind

Through appropriate use of Graf’s identity once again@Eq.
~6! above#, we may cast this in a form which describes
driving field similar in structure to that in Eq.~20!. The total
vector potential which drives the magnetization of the cyl
der located at the origin can then be cast in the form

A(tot)~r,f!5 (
n52`

` F h0

ik0
lne2 inu01(

j Þ0
(

m52`

`

bm~ j !

3~ i !m2ne1 i (m2n)c jHn2m
1 ~k0dj !G

3~ i !nJn~k0r!einf. ~22!

If the cylinder at the origin is subjected to a driving fie
generated from a vector potential of the form

A( in)5 (
n52`

`

an~0!~ i !nJn~k0r!einf, ~23!

the precession of its magnetization produces the outgo
field

A(out)5 (
n52`

`

bn~0!~ i !nHn
1~k0r!einf, ~24!

wherebn(0)5Znan(0), where the response functionZn is
that of a single nanowire. A prescription for constructingZn
is found in Ref. 4, within the framework of a description th
included the influence of both exchange, and uniaxial surf
anisotropy on the response characteristics of the nanow
We shall discuss the structure of this response function
low, since we will need to understand its behavior as we
k0→0.

By combining Eq.~22! with the definition ofZn , we ob-
tain a set of equations from which the amplitudesbn( j ) of
the various cylinders may be determined:

bn~0!5ZnF h0

ik0
lne2 inu01(

j Þ0
(

m52`

`

bm~ j !

3~ i !m2nei (m2n)c jHn2m
1 ~k0dj !G . ~25!
3-6
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THEORY OF COLLECTIVE SPIN WAVES AND . . . PHYSICAL REVIEW B67, 094423 ~2003!
If there areN nanowires in the array, then we may generateN
inhomogeneous equations of the type given in Eq.~25! for
the amplitude of the response of each nanowire. Inversio
the matrix formed from this set of equations provides us w
a description of the microwave response of the system.
size of this matrix isN(2M11), whereM is the cutoff cho-
sen for the indexm in bm( j ).

However, as noted above, there will be considerable
terest in the long wavelength limiting form of the response
the wavelength of the exciting field is very long compared
the physical length scales in the system. While Eqs.~25! are
surely exact, it can be a numerical challenge to perform
inversion, since in the limit of small arguments,Hm

1 (x) di-
verges asx2m. Thus, as in our discussion of the collectiv
excitations of the system, it is very useful to have in han
set of equations applicable to the limitk0[0.

For this purpose, we need to understand the structur
the response functionZn in the limit k0R!1. We should
comment again on the nature of the limit we shall take.
interest is the case where the wavelength of the exci
radiation is very long compared to all length scales in
structure. However, it is important for the frequencyV to
remain finite and arbitrary, since clearly we are interes
in the resonant response of the structure. Thus, upon no
thatk05V/c, we have in mind the limitc→` with V fixed.
In the previous section on collective excitations, we ma
statements about the structure ofSn in this limit but only
in the magnetostatic limit, i.e., we did not include the infl
ence of exchange on the response of the isolated nano
in the discussion presented there. In the present insta
we can derive the long wavelength limiting form of th
equations in the general case, and they prove most us
First, as discussed in Sec. II B of Ref. 4, the various fiel
along with the magnetization components inside a giv
nanowire can be determined from the vector potential wit
the wire. We write this in the form, with the nanowire
the origin of the coordinate system in mind,AW ,(r,f)
5 ẑA,(r,f)exp(2iVt) where here we write the most gen
eral structure forA, in the form, selecting out just the piec
with angular variation characterized by the azimuthal qu
tum numbern,

An
,~r,f!5an

,H (
i 51

3

Ln
i Jn~k ir!einfJ . ~26!

The wave vectorsk i , which are functions of the frequenc
V ~and notk05V/c) are found by solving Eq.~31! of Ref.
4. The coefficientsLn

i are found as follows. First, setLn
1 to

unity. Then the remaining two coefficients may be det
mined from the two boundary conditions on the transve
magnetization stated Eqs.~21! of Ref. 4. These are both ho
mogeneous boundary conditions, but become two inhomo
neous equations in two unknowns, if one setsLn

1 to unity.
After this is done, Eq.~26! contains the one free paramet
an

. . The electromagnetic boundary conditions remain. T
continuity of the vector potential atr5R insures the conti-
nuity of the tangential electric field~the z component! at the
surface, and the radial component of the magnetic induc
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Br5(1/r)(]A/]f). We then have continuity of the tangen
tial component ofHW , Hf . The azimuthal component ofHW
inside the wire is generated by calculatingBf from the vec-
tor potential, then using Eq.~33b! of Ref. 4 to obtainmf ,
the azimuthal component of magnetization. The solutions
side are then matched to the linear combination

An
.~r,f!5@anJn~k0r!1bnHn

1~k0r!#einf ~27!

outside the wire. Then the response functionZn is found
from the ratiobn /an .

This procedure yields the following form:

Zn52
@GnJn~k0R!2Gnk0Jn~k0R!8#

@GnHn
1~k0R!2Gnk0Hn

1~k0R!8#
. ~28!

In Eq. ~28!, the quantitiesGn and Gn are functions of fre-
quencyV, but are independent ofk0. Thus, all the depen-
dence ofZn on k0 is displayed explicitly in Eq.~28!. Explicit
expressions forGn andGn are as follows:

Gn5(
i 51

3

Ln
i Jn~k iR! ~29a!

and

Gn5(
i 51

3

k iLn
i H Jn~k iR!812pMs

3F Jn11~k iR!

B̃01Dk i
21V

2
Jn21~k iR!

B̃01Dk i
22V

G J . ~29b!

In Eq. ~29b!, D is the spin wave exchange stiffness, andB̃0 is
defined in Ref. 4.

It’s now a straightforward matter to take the limitk0→0
in the expression forZn . We must distinguish betweenn
Þ0 and n50. For the case wherenÞ0, in the limit that
k0→0 we find

Zn5
p

i

unu~k0R!2unu

4unu~ unu! !2
zn , ~30a!

with

zn5S RGn2unuGn

RGn1unuGn
D , ~30b!

where in the same limit we have

Z052
ip

2

1

ln~1/k0R!
. ~30c!

Now we encounter a tricky issue. If we set allln to unity
in Eq. ~20! then take the limitk0→0, the externally applied
vector potential reduces to the formẑ(h0 / ik0)exp(iVt). This
describes a spatially uniformelectric field parallel to thez
axis, and in fact the magnetic field vanishes. We thus hav
physically incorrect limit. We address this by settingl050
everywhere, and all otherln to unity. Then ask0→0 the
3-7
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RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 67, 094423 ~2003!
vector potential, parallel toẑ of course, has amplitude give
by the expressionh0r cos(f2u0)exp(2iVt). This describes
an externally applied magnetic field in thexy plane as de-
sired, given by h0( x̂ sinu02ŷcosu0)exp(2iVt), and the
strength of the electric field vanishes in the limitk0→0. In
the limit, the coefficientsbm( j ) in Eq. ~25! exhibit the scal-
ing behavior

bm~ j !5~k0R! umubm~ j !. ~31!

When we take the limitk0→0, the equation satisfied b
b0(0) reduces to

b0~0!1(
j Þ0

b0~ j !50, ~32!

so we may chooseb0( j )50 for all j. We then find, in the
limit k0→0, for n.0

bn~0!52
ph0R

4
e2 iu0z1dn,12

~2 i !nnzn

2n~n! !2

3(
j Þ0

(
m51

` S R

dj
D n1m

e2 i (n1m)c j

3~n1m21!! ~22i !mb2m~ j !, ~33a!

whereas forn,0 we find

b2unu~0!52
ph0R

4
e2 iu0z21d unu,12

~2 i ! unuunuzunu

2unu~ unu! !2

3(
j Þ0

(
m51

` S R

dj
D unu1m

ei (unu1m)c j

3~ unu1m21!! ~22i !mbm~ j !. ~33b!

The expressions in Eqs.~33! allow the analysis of the re
sponse of the array of nanowires to a spatially uniform m
netic field of frequencyV, applied in thexy plane.

III. NUMERICAL STUDIES OF SPIN EXCITATIONS
IN INTERACTING CYLINDER ARRAYS

In this section we present studies of the spin excitation
interacting arrays of cylinders. Two examples are conside
First, we consider two cylinders whose centers are separ
by the distanced. This allows us to make contact with th
exact treatment of the long wavelength magnetostatic mo
presented in the Appendix, and to study some features o
interwire interactions for a simple system. Then, as a sec
example, we consider a linear array of ferromagnetic cy
ders.

A. Interactions between two ferromagnetic cylinders

In what follows, we examine the spin excitations in tw
ferromagnetic cylinders, each with radiusR and with their
axes of symmetry separated by the distanced. All the nu-
merical calculations employ a basis set where the azimu
quantum numberm extends from230 to 130.
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When the wave vectork is zero, the scaled equations ma
be used to calculate the spin wave normal modes of the
inder pair, in the magnetostatic limit. Of course, this is p
cisely the limit in which the exact formula derived in th
Appendix applies as well. We have tested Eqs.~17! by cal-
culating the long wavelength spin wave frequencies of
cylinder pair, to find they indeed reproduce the result of
analytic formula very well.

The eigenvectors associated with thek50 magnetostatic
modes of the cylinder pair are very interesting. First, n
from the discussion in the Appendix that for any given se
ration, we have two degenerate modes associated with
positive frequency solution given in Eq.~A8!. One is asso-
ciated with a positive value of the quantum numberm.0,
and one is associated with its negative2m. ~Here we refer
to the azimuthal quantum numbers in the bipolar coordin
system used in the Appendix, not to the azimuthal quant
number of the basis functions in polar coordinates used
Sec. II.! In the Appendix, it is noted that since reflections
the yz plane are not a good symmetry operation for the f
romagnetic cylinder pair by virtue of the axial vector cha
acter of the magnetization, the eigenvectors do not have
defined parity under this reflection. However, it is the ca
that theproductof two reflections we may write asRxzRyz is
a good symmetry operation.Ryz interchanges the two cylin
ders and reverses the sign of the magnetization, whileRxz
reverses the magnetization again to restore it to its orig
state. Thus, the product operation exchanges the two cy
ders, and leaves the magnetization in its original state.
product RyzRxz applied to the eigenvector of the positiv
frequency mode with quantum number1umu will generate
the eigenvector associated with the mode2umu. We illus-
trate this in Fig. 2, where we reproduce the lines of const
magnetic potential outside the cylinder pair as well as the
plane magnetization inside the cylinders, when the mo
with umu561 are excited, for the cased/R52.5. The asym-
metry in each eigenvector is striking, with most of the ex
tation energy concentrated on one of the two cylinders
each case. Also, it is clear that as the two cylinders
brought together, the excitation localizes in the near vicin
of the points of closest contact between the two cylinders.
d/R approaches 2, the value where contact is established
excitation becomes very localized indeed. In contrast, asd/R
becomes very large, them561 ~of bipolar coordinates!
modes evolve into tom51 modes~local polar coordinates!
of single cylinders, centered at the left and right cylinde
respectively.

In Fig. 3~a!, for the cased52.3R, we show the dispersion
relation of the two lowest lying magnetostatic spin wa
branches of the cylinder pair, as a function of wave vec
parallel to their axes. These have been calculated through
of Eq. ~12! applied to this circumstance. We explored valu
of kR as small as 1023, again with a basis set where th
azimuthal quantum number ranged from230 to 130. It is
remarkable in our view that accurate results can be obta
in the numerical work, when as noted above it is realized t
for small values of its argument,Km(x) diverges asx2m. In
the determinant whose zeros one seeks to find the spin w
frequencies, the order of the modified Bessel function
3-8
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THEORY OF COLLECTIVE SPIN WAVES AND . . . PHYSICAL REVIEW B67, 094423 ~2003!
creases as one moves in the direction perpendicular to
diagonal. These objects become very large indeed in
outer portion of the entries, but in the end they influence
results very little when the basis set is sufficiently large
insure convergence. Again we find excellent agreement
tween the long wavelength limiting frequencies obtain
from the full multiple scattering description of the cylind
pair, and the exact formula in the Appendix.

We see that each branch becomes twofold degenera
k→0, whereas for finite wave vector the modes split. Fr
the lower branch, it is evident that the splitting is large
whenkd;1, to decrease and eventually vanish in the lim
kd@1. The interactions between the cylinders is control
by modified Bessel functions whose argument iskd and
these vanish exponentially for large values of this variab
so at large wave vectors the cylinders are essentially de
pled. Notice the splitting of the second branch is very sm
much smaller than that realized in the lowest branch. T
angular variation of the magnetization in each cylinder h
largely m52 character for the second branch, while that
the lowest branch has largelym51 character. Thus, at lon
wavelengths, when the lower branch is excited the in
cylinder interaction has the character of a two-dimensio
dipolar interaction, whereas the second branch is the n
higher moment in the spirit of a multipole expansion. O
interesting feature of Fig. 3~a! in our view is that the inter-
action between the cylinders, as judged from the splitting
the dispersion relation, is very modest in magnitude. T
separation between the two is only 15% of their radius,
the calculations in Fig. 3~a!. In Fig. 3~b!, we show dispersion
curves of the lowest two branches when the cylinders ne

FIG. 2. For the cased/R52.5, we show the eigenvectors of th
k50 magnetostatic mode of the cylinder pair for the case~a! m
51 and ~b! m521: the lines of constant potential outside th
cylinders and the in plane magnetization inside them. The
quantum numbers refer to the eigenvector expressed in the bip
coordinates used in the Appendix. We have chosenh5H0/4pMs

50.19.
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touch, with d52.05R. Note the interesting structure an
crossings in the dispersion curves of the second branch.

The influence of exchange can be characterized by
dimensionless parameterp5(D/4pMsR

2)1/2, with D the ex-
change stiffness. The system is exchange dominated w
p@1. In Fig. 4~a!, with the influence of surface anisotrop
ignored and when the cylinders are almost touchingd
52.05R), we show the two lowest lying spin wave branch
of the cylinder pair forp50.5. Again we see that as th
wave vector vanishes, we have a two fold degeneracy,
splitting at finite wave vector. It is evident that exchan
strongly suppresses interactions between the cylinders; in
lowest branch the splitting is very much smaller that evid
in Fig. 3~b!, and on the scale of the graph, the splitting
difficult to discern in the second branch, though it is inde
present for nonzero wave vectors. As before, the splitting
maximum in the region wherekd;1. In Fig. 4~b!, we show
the dispersion curve for the lowest branch whenp52, again
with surface anisotropy ignored. Only the lowest branch

o
lar

FIG. 3. For two cases,~a! d/R52.3 and ~b! d/R52.05, we
show the dispersion relation of the two lowest magnetostatic s
wave branches of the two nanowire cylinders. The calculations
sumeH0/4pMs50.19, and the frequencies are given in units
4pMs .
3-9
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RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 67, 094423 ~2003!
illustrated because now the exchange is strong enough
the second branch lies outside the frequency range cov
in the plot. We see that increasing the strength of the
change decreases the strength of the intercylinder inte
tions. In Fig. 5, for p50.5 and wave vector such tha
log(kR)520.2, we plot the splitting realized in the lowe
spin wave branch as a function of separation between
centers of the two cylinders. We see a rather slow decreas
the splitting withd; the interaction between the pair has
origin in long ranged magnetostatic interactions and thu
falls off slowly with separation.

The calculations presented in Fig. 3 show that as the
dius of the ferromagnetic nanowire decreases, to the p
where the spin wave spectrum is importantly influenced
exchange, the interactions between nanowires is suppre
The physical origin of this behavior can be appreciated fr
the eigenvector plots in Fig. 2. We see that as the cylind
are brought close together, the excitation concentrates aro
the points of closest contact between the cylinder pair. As

FIG. 4. We show the influence of exchange on the dispers
relations, for~a! p50.5 and~b! p52.0, p5(D/4pMsR

2)1/2 with D
the exchange stiffness. Both calculations are for the choiced/R
52.05 where the cylinders almost touch. Again we have choseh
5H0/4pMs50.19.
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‘‘turn on’’ exchange, this tendency will be opposed, with th
consequence that the magnetic poles responsible for
magnetic fields which produce the coupling are spread
over a wider angular range. This decreases the strength o
magnetostatic interaction between nearby nanowires. We
mark that all calculations reported here assume that the
face anisotropy vanishes. We have carried out calculati
which incorporate rather strong surface anisotropy, to fi
that the interwire interactions remain modest in the limit
strong exchange. This conclusion is expected from the
soning just given, of course.

B. Linear array of ferromagnetic cylinders

We now turn our attention to a periodic, linear array
ferromagnetic cylinders. The distance between the center
two nearest neighbors isd.2R. We shall confine our atten
tion to propagation perpendicular to the magnetizations
the cylinders. For the case of a uniform ferromagnetic fil
this propagation geometry is of particular interest, becaus
is here that the much studied Damon Eshbach mode is r
ized. We note also that the BLS studies of collective exc
tions in a linear array of magnetic stripes2 was carried out in
this geometry as well.

For a period array of cylinders such as that just describ
the coefficients Bn( j ) have the Bloch form Bn( j )
5Bn(0)exp(ik'dj), where2(p/d),k',p/d. In the calcu-
lations below, when intrawire exchange is considered,
employ Eq. ~12! with kR chosen very small, 1023. The
scaled equations displayed as Eqs.~17! have proved most
convenient for the discussion of the magnetostatic limit.

We begin with the limit where the intrawire exchange
appreciable, with the dimensionless parameterp50.5. In
Fig. 6~a!, for the case where the cylinders are very clo
together withd/R52.05, we show dispersion curves for th

n

FIG. 5. Forp50.5 and log(kR)520.2 we show the splitting in
the lowest spin wave branch as a function of distance between
centers of the two cylinders. We haveh5H0/4pMs50.19.
3-10
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THEORY OF COLLECTIVE SPIN WAVES AND . . . PHYSICAL REVIEW B67, 094423 ~2003!
two lowest lying spin wave branches. As before, we ha
taken h05H0/4pMs50.19, and the frequencies are e
pressed in terms of the dimensionless ratioV/4pMs . The
upper branch in the figure is almost dispersionless, while
can see appreciable dispersion in the lowest branch. In
6~b!, we show an expanded view of the dispersion cu
associated with the lowest lying branch. Clearly we hav
collective mode of the array of cylinders which in a qualit
tive, but surely not quantitative sense, reminds us of the
mon Eshbach mode of the uniform ferromagnetic film.10 In
the latter case, the mode exhibits a linear variation with w
vector at small wave vectors very much as we see in
dispersion curve in Fig. 6~b!, but for the cylinders we see
maximum in the dispersion curve in the regionk'd;1. For
the uniform film, the dispersion relation is a monotonica
increasing function of the wave vector.

As the strength of the exchange is weakened, the hig
lying exchange branches decrease in frequency, until t

FIG. 6. For the periodic linear array of cylinders, and for t
case whered/R52.05 and with the exchange parameterp50.5, we
show~a! the dispersion relation of the two lowest collective mod
and ~b! an expanded view of the dispersion relation of the low
mode. We haveh5H0/4pMs50.19.
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enter the frequency domain of the lowest lying collecti
mode branch. When they reach this regime, we see hyb
ization between the higher lying, rather flat branches and
highly dispersive lowest lying branch. We see this in F
7~a! and 7~b!. For p50.09@Fig. 7~a!#, the second branch ha
quite not entered the frequency domain of the low lying c
lective mode, but by decreasing the strength of the excha
only slightly to p50.08 we see clear hybridization betwee
the two modes. By the time the exchange is lowered top
50.05 we see several exchange branches mixing with
low lying collective mode, whose dispersion curve is clea
perceived as it passes through the hierarchy of excha
modes. We illustrate this in Fig. 8. In our view, the results
this figure bear a striking qualitative resemblance to
mode structures studied by BLS,2 for a linear periodic array
of magnetic stripes. The data showed a collective mo
rather similar in nature to the Damon Eshbach mode
the uniform film, which crossed and hybridized with th
standing wave exchange/dipole modes of the individ
constituents.

,
t

FIG. 7. Again for d/R52.05 we show the two lowest lying
branches for~a! p50.09 and~b! p50.08. We haveh5H0/4pMs

50.19.
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In the limit where the radius of the individual wires
sufficiently large that exchange may be ignored, and als
the limit where the wave vector parallel to the axis of sy
metry of the cylinder vanishes, the surface magnetost
modes of the isolated cylinder approach the limiting f
quencyH012pMs . These modes are characterized by
azimuthal quantum numberm, and in the limit of zero wave
vector parallel to the axis, we have an infinite number
degenerate modes at this frequency. In the long wavele
limit, the dispersion relation of these modes in Eqs.~6! of
Ref. 4. Them51 mode is the mode excited in FMR studi
of ferromagnetic cylinders. As the cylinders are brought
gether, these modes interact, and we find a spectrum of
lective modes outside and above the frequency@H0(H0
14pMs#

1/2, below which one encounters standing sp
waves. Ford/R52.05 and forH0/4pMs50.19, in Fig. 9~a!
we show the dispersion relation of the first few branches
these collective modes, for propagation perpendicular to
magnetization. As the cylinders are separated, the long w
length limiting frequencies move up toward the limitH0
12pMs , and the bandwidths of the various modes are
duced. We illustrate this in Fig. 9~b!, where we show the
dispersion relations of the low lying collective modes f
d/R52.2, with all other parameters the same as used for
9~a!.

We see that the linear array of ferromagnetic cylind
exhibits an array of collective modes; for the case where
wire diameter is sufficiently small that intrawire exchan
drives the lowest standing exchange wave well above
magnetostatic mode spectral region, we have a highly dis
sive low lying branch with behavior similar to, but noneth
less different in detail from the well know Damon Eshba
wave of the uniform film. As exchange is decreased
strength, we find hybridization between this collective mo
and the standing wave exchange modes of the individ
constituents of the array, very similar in a qualitative sens
the behavior found in Brillouin light scattering studies
magnetic stripes.

FIG. 8. For d/R52.05 andp50.05, we show the low lying
collective modes of a linear array of ferromagnetic cylinders.
haveh5H0/4pMs50.19.
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IV. CONCLUDING REMARKS

In this paper, we have presented a theoretical formula
of the response characteristics of arrays of interacting fe
magnetic nanowires, for the case where the wires have m
netization parallel to their symmetry axis, and their cro
section is cylindrical. The formalism we have developed i
real space formalism based on multiple scattering theory,
as a consequence can be applied to disordered as we
ordered arrays of nanowires. We have developed both
theory of the collective excitations of such arrays, and th
response to a microwave field. In the numerical calculatio
presented here, we have confined our attention to the na
of the collective excitations of selected systems, since at
time of this writing we do not have in hand experimen
studies of the microwave response of suitable arrays.

We have explored two cases. One is the nature of
collective excitations of a pair of nanowires, of radiusR
separated by the distanced.2R. We have explored the na
ture of the collective exciations of such a pair of cylinders,

e

FIG. 9. In the magnetostatic limit, and forh5H0/4pMs

50.19, we show the dispersion curves for the collective mode
the linear cylinder array for~a! d/R52.05 and~b! d/R52.2. The
propagation direction is perpendicular to the axes of the cylind
3-12
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a function of wave vector parallel to their symmetry axis.
addition, in the Appendix, we have obtained a closed fo
expression for the FMR frequency of such a pair, as a fu
tion of the distance between their centers. The message
tained in our results is that the two nanowires have to
rather close together before their interactions become ap
ciable.

We have also examined the collective excitations o
periodic linear array of nanowires, for the case where
wave vector of the excitation is perpendicular to the axis
symmetry. We find results which are most striking in o
view, which may be interpreted as a dispersive collect
mode not unlike the well known Damon Eshbach mode
the uniform film, which crosses and hybridizes with t
exchange/dipole resonances of the individual cylinders.
dispersions relations we obtain are quite similar in a qual
tive sense to the modes of a linear array of magnetic stri
studied through use of Brillouin light scatterin
spectroscopy.2 Of course, in the experiments, the samp
were very different in character than the model system s
ied here, in that the individual constituents were not cyl
ders, but rather magnetic stripes of rectangular cross sec
with width very large compared to their height. Unfort
nately, the formalism developed here cannot be extende
such structures in a straightforward way.

Our calculations of the collective excitations of the line
array of cylinders show that such structures posses a s
trum of collective modes that may be altered easily
changing the lattice constant of the array. It would be
interest to explore the spectrum of modes in a two dim
sionally periodic array as well. In recent years, magne
multilayers have been studied intensively, and these exh
most interesting response characteristics that can be des
or altered by changes in microstructure. Ferromagnetic na
wire arrays may offer another very interesting class of s
tems that also may be synthesized in diverse forms, and
formalism developed here will allow the study of both the
collective spin wave excitations and their response to a
crowave field. It should be remarked that, through suita
adaptation, our description of the microwave response
forms the basis for a theory of the Brillouin light scatterin
spectrum.
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APPENDIX: ANALYTIC FORMULA FOR THE LONG
WAVELENGTH MAGNETOSTATIC MODES

OF TWO FERROMAGNETIC WIRES

Consider two ferromagnetic wires of cylindrical cro
section, each of radiusR separated by the distanced. Each
has its axis of symmetry parallel to thez direction, one has
its symmetry axis located on thex axis atx51d/2, and the
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other has its symmetry axis located on thex axis as well, at
x52d/2. The geometry is thus different than that illustrat
in Fig. 1.

We shall carry out the discussion in bipolar coordinates
the xy plane.11 These are described in terms of two dime
sionless coordinates (j,u) and a lengtha, related tox andy
by the statements

x5
a sinh~j!

cosh~j!1cos~u!
~A1a!

and

y5
a sin~j!

cosh~j!1cos~u!
. ~A1b!

A contour of constantj is described by the statement, fo
j.0

~x2a coth~j!!21y25a2/sinh~j!2, ~A2!

and is thus a cylinder with axis on thex axis located atx
5a coth(j), with radiusa/sinh(j). As the angular variableu
is swept from 0 to 2p, one executes a walk around th
circumference of the cylinders just described. Ifj.0 the
cylinder lies entirely in the half planex.0, while it lies
entirely in the half planex,0 whenj,0.

The two cylinders of interest are both contours of const
j. If we let R5a/sinh(j0) andd52a coth(j0), then in bipo-
lar coordinates the right hand cylinder is described by
statementj5j0, while the left hand cylinder is described b
j52j0. The interior of the right hand cylinder is the regio
j.j0, the interior of the left hand cylinder isj,2j0, while
the remainder of thexy plane is covered by the range2j0
,j,1j0.

Let us consider a spin wave excitation with wave vectok
parallel to thez axis, andFM(j,u) describe the variation o
the magnetic scalar potential in thexy plane, when a norma
mode of the coupled pair of cylinders is excited. Equati
~1!, when transformed to bipolar coordinates, reads

F ]2

]j2
1

]2

]u2GFM~j,u!2h~j,u!2k2FM~j,u!50, ~A3!

whereh(j,u)5a/@cosh(j)1cos(u)#.
If we confine our attention to excitations of infinite wav

length with k50, we have Laplace’s equation in the var
ables (j,u) and we have separable solutions of the gene
form @A exp(2aj)1Bexp(1aj)#exp(iau); since any solution
of interest must be single valued inu we must choosea
5m, an integer. We seek a solution in the form~assuming
that m.0)

FM~j,u!5Amexp~2mj!exp~ imu!, j.j0 , ~A4a!

FM~j,u!5Bmexp~mj!exp~ imu!, j,j0 ~A4b!

and

FM~j,u!5@Cmcosh~mj!1Dmsinh~mj!#exp~ imu!,

2j0,j,1j0 . ~A4c!
3-13
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The choices in Eqs.~A4a! and ~A4b! are dictated by the
requirement that the potential be nonsingular at the cente
the two cylinders~at j51` and j52`). As we move
infinitely far from the origin, Eq.~4c! approaches, with
(r,f) polar coordinates in the plane,

FM→~21!mFCm1
2ma

r
$2 iCmsin~f!1Dmcos~f!%G .

~A5!

Far from the cylinder pair, the magnetic fields generated
the precession of the magnetizations thus have the char
of dipole fields in two dimensions, since they fall off asr22

as r→`. The dipole is anisotropic, since in generalCm
ÞDm .

The boundary conditions on the cylinder surface are t
tangential components ofHW are conserved, while norma
components ofBW are conserved. We have

HW 52¹W FM52
ĵ

h

]FM

]j
2

û

h

]FM

]u
, ~A6!

while for conservation of normalBW inside the cylinders we
haveBj5m1Hj1 im2Hu , where if the cylinders are ferro
magnets,m1 and m2 are defined in the main text just afte
Eq. ~4!. ~As we shall note below, our treatment applies
antiferromagnetic and dielectric cylinders as well.!

The boundary conditions just stated lead us to four hom
geneous equations for the coefficients in Eqs.~A4!. Upon
setting the appropriate determinant to zero, one obtains
implicit dispersion relation for the normal modes of the c
inder. This may be cast into the form

~m1111m2!~m1112m2!524m1S 1

exp~4umuj0!21D ,

~A7!

where cosh(j0)5d/2R.
For the case where the two cylinders are ferromagn

and m1 and m2 are given by the expressions which follo
Eq. ~4! of the main text, it is possible to find explicit expre
sions for the frequencies of the modes. We find two frequ
cies for each value ofm:

Vm56H 1

4
@VB1VH#224p2VM

2 exp~24umuj0!J 1/2

.

~A8!

The result in Eq.~A8! is most striking in our view. First,
as the cylinders are separated by a large distance, (j0→0),
we recover the well known expression for the magnetost
mode frequencies of the cylinder. When the wavelengtk
→0, these are all degenerate with the frequencyVm
56(1/2)(VB1VH)56g(H012pMs). It is the m51
mode that is excited in ferromagnetic resonance,4 so this last
expression is also the FMR frequency of the isolated cy
der.

As the two cylinders are brought together, remarkably
do not see a splitting of the FMR mode, but rather jus
frequency shift. The reason why this is so may be appr
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ated from our discussion of thek→0 limit in Sec. II A. Con-
sider them51 mode~the FMR mode! of an isolated cylin-
der, for instance. We have one mode,m511 at the
frequency VFMR5g@H012pMs#, and we have them
521 mode at the frequency2VFMR . Now bring the two
such cylinders together, supposing they are sufficiently
apart thatd@2R to make the discussion simple. Equatio
~17! show that them511 mode of the right hand cylinde
couples only to them521 mode of the left hand cylinder
Also them511 mode of the left hand cylinder couples on
to them521 mode of the right hand cylinder. One obtain
four new modes, but the two positive frequency modes n
essarily have exactly the same frequency, and the two n
tive frequency modes also have exactly the same freque
as each other, and a frequency equal in magnitude to tha
the positive frequency. Only two frequencies are displayed
Eq. ~A8!; if one considers the casem,0, one obtains two
additional frequencies identical in value to those in Eq.~8!.

Another remarkable feature of the result in Eq.~A8! is its
behavior in the limitd→2R, where the cylinders just touch
Then j0→0, and all frequencies approach the FMR fr
quency of afilm, the well known formula (VBVH)1/2.

It is the case as well that interactions between the t
cylinders are remarkably weak, until they are very close
gether indeed. As an example, supposeVB53VH , so the
FMR frequency of the isolated cylinder is then 2VH . If we
haved52.1R, so that the separation between the two cyl
ders is only 5% of their diameters, one has for them51
mode of the pair a frequency of 1.93VH , i.e., a downshift
from the frequency of the isolated cylinder of only 3%. Th
is surprising to us in view of the fact, as discussed in Se
and in Ref. 4, the FMR mode of the isolated cylinder gen
ates a magnetic dipole field outside the cylinder.

We conclude with two comments. First, it is interestin
that the expression for the magnetic potential in Eq.~A4c!
has no well defined parity under reflection through they axis.
It consists of a linear combination of an even parity pie
@cosh(mj)# and an odd parity piece@sinh(mj)#. This has its
origin in the gyrotropic nature of the response of the cyl
der. Upon settingm2 to zero, one finds solutions of we
defined parity, even or odd. One understands this as follo
In the case of the ferromagnet,m2 is nonzero by virtue of the
presence of the spontaneous magnetizationMW 5 ẑMs . If we
reflect such cylinders in theyz plane, we must realize tha
the magnetization is an axial vector and changes sign u
reflection. Thus, reflection in theyz plane is not a good
symmetry operation of the system.

We may apply Eq.~A7! to the discussion of the norma
modes of antiferromagnets, as well as ferromagnets, by m
ing the appropriate choice ofm1 andm2. The antiferromag-
net in zero external field hasm250, so here we have mode
of well defined parity. Also, the result in Eq.~A7! may be
applied to the discussion of the normal modes of cylind
which contain conduction electrons which exhibit a plas
response, possibly placed in an external magnetic field.
study this case, one replacesm1 and m2 by the appropriate
frequency dependent elements of the dielectric tensor«1 and
3-14
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«2. An interesting case is the simple plasma response, w
«250 and«15«`2(Vp /V)2.12

Quite in contrast to the case of two ferromagnetic cyl
ders brought together, the plasmon modes of the cylin
pair display a splitting, with frequencies

Vm~6 !25
Vp

2

~«`11!21«` f ~ umuj0!
F«`111

1

2
f ~ umuj0!

6H f ~ umuj0!1
1

2
f ~ umuj0!2J 1/2G , ~A9!
la,

. N

K.

.
e

09442
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where f (x)51/@exp(4x)21#. When the two cylinders are
very far apart (f (mj0)→0), we have two degenerate mod
at the plasma resonance frequency of the isolated cylin
Vp /(«`11)1/2, and when they are brought together so th
just touch@ f (mj0)→`#, one mode is driven up in frequenc
to Vp /«`

1/2, which is the bulk plasma frequency of the m
terial from which the cylinders are fabricated. The seco
mode is driven down to zero frequency, and becomes a l
wavelength acoustic mode of the cylinder pair. These t
modes each have a well defined parity.
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