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We formulate the theory of the collective spin wave modes and the microwave response of arrays of
ferromagnetic nanowires of cylindrical cross section, each magnetized parallel to the axis of symmetry. The
theory is based on a multiple scattering approach, and may be applied to the regime where the diameter of the
constituents is small enough that exchange enters the response importantly. The formalism can be applied to
ordered arrays, or disordered arrays of nanowires. We present explicit results for the spin wave normal mode
frequencies of a pair of nanowires, and for a linear array. The dispersion curves for the collective modes in the
latter case show a dispersive collective mode which crosses and hybridizes with resonances in the individual
cylinders. For a nanowire pair, and in the magnetostatic limit, we obtain a closed form expression for the
collective spin wave modes in the limit as the wavevector parallel to the symmetry axis vanishes. Interestingly,
the resonance does not split as the wires are brought together, but just shifts downward in frequency, from the
value y(H,+27M,) appropriate to the isolated wire at large separationsg] téo(Ho+47Mg)]Y? when the
wires just touch.
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[. INTRODUCTION produces the doublet, for diameters near that where crossing
occurs. Very recently, a most interesting stuidf/spin waves
For well over a decade now, ultrathin films of ferromag- in a nanowire array by the method of Brillouin light scatter-
netic material, and multilayers which incorporate such films,ing (BLS) provides very clear, quantitative data regarding the
have been the topic of intense experimental and theoreticalependence of the spin wave frequencies on nanowire diam-
study. The physics in these structures has proved most integter, in accord with the expectations in Ref. 4.
esting indeed, and one encounters unique properties not Our previous paper was concerned only with properties of
found in bulk magnetic matter. The phenomenon of giant@n isolated ferromagnetic nanowire. The purpose of this pa-
magnetoresistance is perhaps the most commonly discusspér is to address the theory of the interactions between fer-
such property. But in addition the multilayers offer magneticromagnetic nanowires of cylindrical cross section, when they
response characteristidhysteresis loops, exotic magnetic are incorporated into dense arrays. The issue of interest is the
structures, microwave response) that are both unique, following. First, consider the much studied ferromagnetic
and readily subject to modification through variations infilm, magnetized parallel to its surface. As the spins precess
growth conditions, film thickness, and other factors as wellin the uniform mode normally excited in FMR, they generate
Applications abound, particularly in magnetic recording anda demagnetizing field with origin in “magnetic charges”
data storage, and others are anticipated. present on the surfaces. These demagnetizing fields are re-
More recently, interest has arisen in other forms of smallsponsible for upshifting the resonance frequency of the film
magnetic structures which, generally speaking, may be degrom the precession frequengy, of free spins, to the well
scribed as textured media. For example, two-dimensional aknown resulty[Hq(Ho+ 47MJ) 1Y% HereH, is the applied
rays of dots exhibit fascinating propertieand the collective dc magnetic field, an¥ the saturation magnetization of the
excitations of arrays of magnetic stripes show complex andilm. However, the dipole fields so generated are entirely
interesting behavidt.Our interest in ferromagnetic nano- confined to within the film itself. Thus, in a multilayer
wires has been stimulated by ferromagnetic resonanceample formed of ideal films, the dipolar interactions play no
studie$ of wires sufficiently small that the resonance spec-role in coupling adjacent films. If, however, the mode excited
trum explores modes strongly influenced by exchange, aBas wave vectok parallel to the surfacgin BLS experi-
well as by the Zeeman and magnetic dipole interactionsnents, modes with wave vector in the rangé &t ! are
which control the nature of spin waves in larger samplesexcited, then the spin motions generate fields outside the
Our theory of the exchange/dipole modes of such nanow-film whose influence scales asr kdexp(—k2) in the thin
ires, along with their microwave response, offers a quantitafilm limit, where d is the film thickness, and the distance
tive explanation of the very interesting doublets observed irfrom its surfacé. Such fields are quite weak whéwl<1,
the FMR spectrd. These have their origin in an exchange with dipolar interfilm coupling negligible.
induced level crossing between the main FMR mode, and However, the uniform mode of a ferromagnetic cylinder
standing spin waves which are driven up in frequency as thgenerates a field of dipolar character outside its surface,
wire diameter decreases. The two modes are mixed bwhich falls off inversely with the square of the distance from
boundary conditions at the surface, and as the wire diametéhe film centef. Under such circumstances, one expects ap-
is decreased the frequency of the standing spin wave ipreciable interactions between nearby nanowires. This sug-
driven up through that of the uniform FMR mode. The gests that suitable nanowire arrays will offer interesting col-
boundary condition induced hybridization between the twolective modes, and microwave properties subject to control
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by design. It is the purpose of this paper to present the theorgimensional line of cylinders. It is the case, incidentally, that
of such modes, for nanowires whose diameter is smallinear ferromagnetic nanowire arrays can be grown on crystal
enough that both exchange and dipolar coupling enter impoisurfaces. When magnetic ions are deposited on stepped sur-
tantly in the response of the individual constituents. We therfaces, they may migrate to step edges thus forming a linear
present numerical studies of selected systems. We provide asray of ferromagnetic nanowires with nanoscale dianfeter.
well a formulation of the theory of the response of nanowire The outline of this paper is as follows. Section Il is di-
arrays to spatially uniform applied microwave fields. Moti- vided into two parts. We first, through use of multiple scat-
vation for our studies arises from the fact that the experitering theory, develop an approach to the description of the
ments in Ref. 3 employed random arrays of ferromagnetigpin wave excitations of an array of parallel nanowires, each
nanowires, so a question regarding the role of interwire inassumed of cylindrical cross section, and magnetized parallel
teractions on the spectra arises. Also, the most interesting jts symmetry axis. In the second part, we develop a de-
recent experiment cited ath|Ch eXpIOI’eS the influence Scription of the response of such an array to an external
of exchange on the spin wave spectra of nanowires, alsgriving field. Both of these treatments fully incorporate
employed a reasonably dense nanowire structure. _(within long wavelength phenomenologshe influence of
Our basic approach employs multiple scattering theory, inexchange, and of surface anisotropy fields on the response of
a form adapted to earlier discussions of two-dimensionajhe individual constituents in the array. It should be remarked
photonic crystal$.Of course, in previous work the applica- that in this section, we borrow from results and concepts
tion is to dielectric structures which exhibit a scalar dielectricintroduced in our earlier pagkon the spin excitations and
response, whereas here we require an extension to structur@gcrowave response of the isolated nanowire. Our numerical
composed of ferromagnetic media, whose response is gyrQasuits are presented in Sec. Ill, and concluding comments
tropic in character. The approach is a real space formulationy e in Sec. IV. In an Appendix we present the analytic deri-
and can thus be applied to diverse structures, ranging froRation of the resonance frequency of two nanowires whose
those with periodicity similar to photonic crystals, or to dis- centers are separated by the distadcéor the case where

ordered structl_Jres if de_sired. their diameters are large enough for magnetostatic theory to
The numerical studies reported here explore two eXapply.

amples. First we discuss a nanowire pair. This serves to
quantify the character of the interwire interactions which, in
fact to judge by this case, are rather weak. The numerical
studies are demanding for the following reason. We consider
collective modes characterized by a wave vektparallelto

the symmetry axes of the two cylinders. &As-0, in our
multiple scattering theory, we encounter modified Bessel We consider an array of nanowires of cylindrical cross
functions of the fornK,,(kd) andK ,(kR), with d andRthe  section, each with radiuR, each with symmetry axis parallel
distance between the two wires, and their radii, respectivelyto the z axis, and each magnetized along the symmetry axis
The functionK,(x) diverges ax” ™ asx—0, so the ques- with magnetization per unit volumigl. Our formulation of

tion of achieving numerical convergence is delicate in thethe response of the array is a real space formulation, and thus
long wavelength limit. We do find we can achieve accuratdt is not necessary to assume the wires form a two-
results for long wavelength modes with modest computingdimensionally periodic array or any other special structure.
power. Also, we present a scaling argument which allows u§Vhile we suppose here all wires in the array are identical in
to extract equations specific to the linkii=0 from our gen-  radii and properties, in fact it is straightforward to incorpo-
eral formulation. We have a test of our numerical results inrate variations in radii and magnetization from wire to wire
the long wavelength limit. Below, we derive an exact, closednto the analysis if desired. The extension to the case where
form expression for thé&k=0 coupled mode frequencies of the applied dc magnetic field has a transverse component is
the nanowire pair, in the magnetostatic limit. The formulanontrivial, however.

itself is most interesting in character in our view, and also If we consider the motion of the magnetization in one
provides us with the means of testing the numerical results gtarticular wire, then as discussed in our earlier pAper,
long wavelength by studying wires of substantial diameterdynamic magnetic dipole field is generated in the spatial re-
then comparing numerical results to our exact formula. Aftegion outside the wire by the precession of the magnetization.
detailed study of the nanowire pair we turn our attention to df the nanowires are separated by distances greater than the
linear array of nanowires. These calculations are motivatedtomic length scale, then the interaction between the wires
by the BLS studies of linear arrays of magnetic stripes. will be controlled by this dynamic dipole field, as opposed to
While our nanowire arrays are very different than the stripesnterwire exchange interactions of microscopic origin. Our
studied by Demokritowet al,> we are motivated by issues treatment includes, in the description of the response of the
raised in these studies. Most strikingly, in the data a modarray, the influence of intra-wire exchange, and also the role
very similar in character to the well known Damon Eshbachof surface anisotropy fields on the response of a single entity
mode of the thin ferromagnetic film is observed. This modein the array. We confine our attention to the limit where the
crosses and hybridizes with the standing wave exchanggeparation between adjacent wires is sufficiently large that
modes of the individual constituents of the array. We findinteractions between them occur only via the dipolar mecha-
results strikingly similar to these in our study of the one-nism.

Il. THEORY OF THE SPIN EXCITATIONS
AND THE MICROWAVE RESPONSE
OF FERROMAGNETIC NANOWIRE ARRAYS
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A. Theory of the collective spin wave excitations of an array We haveB,(0)=S,A,(0), whereS,, equivalent to thes
of cylindrical nanowires matrix of scattering theory, describes the response of the

Suppose we have an array of nanowires such as describ@@n0Wire to a driving field with azimuthal variation
in the previous two paragraphs. Translational symmetry iffXP(n¢). In Egs.(3), Ky(x) is the modified Bessel function
the z direction insures that the collective excitations of the®f the second kind. Since, for large we haveK,(x)

R 1/2 ; ; _
array are characterized by a wave vector parallel tazthes , the field generated by the motion of the mag

~exp(—x)/x
we may callk. Thus, the dipolar field generated by the pre_net|zat|on falls off exponentially as we move away from the
cession of the magnetization vectors in the various wires

nanowire, with range controlled by the magnitude of the
) S - ) wave vector. As the wave vectlrvanishes, the behavior of
may be written everywhere afy(r,t)=hu(x,y)exdikz  he scalar potential is controlled by the small argument form
—iQ,(K)t], where (k) is the frequency of the mode of of  (x). Since for nonzero values af. K,(x) is propor-

wave vectork. The subscripte is a branch index, since iignal tox~" we have a power law fall off of the field. In
for each choice ok one finds a hierarchy of branches. It FMR studies of the isolated cylinder, the=1 mode is

will suffice, for the small arrays of interest here to calculateexcitedz} so for this case the magnetic potential falls off in-

the dipole field in the magnetostatic approximation, whergersely with the distance from the center of the cylinder, and
retardation effects are ignored. Thus, we will haygr,t)  the dipole field itself falls off inversely with the square of
=—Vou(r,t) where oy(r,t)=dy(xy)exdikz—iQ.Kt]  this distance.
is the magnetic scalar potential. In Ref. 4, one finds the formalism for constructigy
Now in the vacuum region between nanowires, the magwithin a framework that includes exchange effects inside the
netic potential obeys Laplace’s equation, so for the functiornanowire, and which includes the role of surface anisotropy
®(x,y) everywhere outside the nanowires we have as well. The latter is incorporated into the boundary condi-
tions satisfied by the transverse magnetization. We find that
2 2
L by Kby (xy)=0. (1) (Gl (KR KTyl o(KR)']
axz gy Sh=-— - (43
[GnKn(kR) =K'y K (kR)"]
Before we turn to the nanowire array, let us consider avhere in the magnetostatic limit one has
simpler problem, the response of a single nanowire centered

at the origin of the coordinate system in thg plane to an (mag _| [ MM2|, = 12 ~
externally applied driving field, itself described by the mag- Gn = R In(KR) = 11 "KKq(kR) (4b)
netostatic approximation just discussed. We may express the
function ®{&X? from which the external field is described in @nd
terms of polar coordinatesp(¢) in the xy plane. We may (mag) ~
expresstb(hjf“)(p,d)) as an expansion in modified Bessel a5 == 14(kR). (40)
functions: For the case exchange and surface anisotropy are both
. present, we have
(ex®) _ : 3
Cp. )= 2 AdO)ln(kp)exing). () o ) Inea(kR)
G, —E kiAj| 2mM CIE
. - . j=1 D(k{+k%)+Hg+Q
Since the external potential is generated by sources outside J
the near vicinity of the origin of the coordinate system, the _
. . Jn-1( K]R)
potential must be nonsingular there. - IR —Jn(xjR)’ (4d)
The external potential in Eq2) will excite the magneti- D(kj+k9)+Ho—Q
zation of the nanowire at the origin. The resulting precessio%nd
will generate a dynamic dipole field outside this object. This
external field may be calculated through use of a very 3
straightforward extension of the formalism described in Sec. I#=—> AM(xR). (4e)
n

IIA of Ref. 4. We do not present the details here in the
interest of brevity. The field outside the wire may be gener

In Egs. (4a—(4c), | is th ifi B | functi
ated from the potential n Egs. (4a8—-(40), |,(x) is the modified Bessel function

of the first kind, and the prime on the various Bessel func-
tions denotes derivatives with respect to their argument.
The quantity w;=(QgQy—Q2/(Q3—Q% while u,
=—47QuQ/(Q4—0?), where Qy=yHy, Qu=7yMs,
andQg=y(Ho+47My), with v the gyromagnetic ratiéits
modulug, andH, the strength of the dc magnetic field ap-
plied parallel to the cylinder axis. Finallg=k/u1?. In Egs.

<1>,(\§|))(p,¢)= 2 B,(0)K,(kp)exging). (3b) (4(_1) and(4e), the x| are the roots of Ec(:1_6) of Ref. 4, and
n=—o D is the exchange stiffness. The coefﬁmeAﬁé, analogous

@&ﬁ”(p,@:goAn<0>snKn<kp>exp<in¢> (39

or
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y I
K (kR = X Ky in(kDly(kp)e™. — (7)

Upon consulting Fig. 1, and identifyin® with p; of that
figure, we have the relation

=
)

X

P,
p_ P J o
p d €K, (kp))=(=1)" 2 eCTViK, (kd))lq(kp)e"?,
n=—wx
7 \ 8
/ ¢ 17, Cylinderj . _ _ L (_)
0 The quantities which appear in E®) are all defined in Fig.
1. To obtain Eq.(8) from Eq. (7), note thatK_,(x)
=K,(x). When Eq.(8) is combined with Eq(5), we have
+ o
FIG. 1. An illustration of the coordinate system and variables Dy(xy)= _2 An(0)1(kp)e"?, 9
employed in the formal development in Sec. Il. n=-
where

to the coefficientd\; in Eq. (17) of Ref. 4 are determined as .

follows. First setA] to unity, and determine the two remain- ~ _ Ay mai(m—n)y; :

ing coefficients by requiring the two boundary conditions in A“(O)_JZO m;m (=1)% Brn(1)Km-n(kd;).
Eg. (213 and Eq.(21b) of Ref. 4 to be satisfied. WitA! set (10

to untllty, tr}eseihcatn be arra'm.ged to ﬁ?e. tV\fEO Inhornogeneouﬁow the driving potential displayed in Eq9) excites the
equations Tor the two remaining coetlicients. magnetization in the cylinder at the origin, and it produces a

Now cqn5|der an array of nanowires, with the origin Ofdi turbance outside the cylinder at the origin described by
the coordinate system placed at the center of one selecte[ e magnetic potential given in E€gb), with

wire. If a collective excitation is excited in the array, the
magnetization of the wire at the origin is driven by the dy- B.(0)=S.A (0 11
namic dipolar fields generated by the other wires in the array. n(0)=SAn(0), (D
We shall obtain a self-consistent set of equations for the anso we have a set of equations that link the amplitusle$):
plitude of the motion in any particular wire by casting the

driving field from the remainder of the array in a suitable __ . y—— .
form.ql'his is our next task. ’ S lB”(O):j;o m;x (= )T MK (k) Br])-
In Fig. 1, we show the cylinder at the origin, and one of (12

the cylinders in the array, cylindgr The magnetization of . . o
the cylinder at the origin is driven by the field calculated The statement in Eq(12) is the principal result of the

from the magnetic potential present section. For the isolated cylinder, the frequencies of
the spin wave eigenmodes associated with the azimuthal
+oo quantum numben are found by locating the poles &f,, or

@M(x,y)= Z 2 Bn(j)Kn(kp)exping;).  (5) equivalently the zeros (ﬁgl. In the limit the cylinders are
j#0 n=—o infinitely far apart, Eq.(12) provides this criterion. For an
array of cylinders, the modes cannot be characterized by this
We will manipulate Eq.(5) to cast it in a form which azimuthal quantum number, and become mixed in character.
allows contact with our discussion of the isolated cylinderOne finds the frequencies of the various modes of the array
driven by an external field. One begins with Graf’s identity, with the wave vectok by locating the zeros of the determi-

which read3 nant formed from Eq(12). In practice, one takes a finite
range ofn in the sum, ranging from-N to + N so the size of
* the determinant whose zeros must explore N&+2L multi-
e'v’zZ, (kR)= > Z, . n(kr)J,(kp)ee. (6)  plied by the number of cylinders in the sample. Of course, if
n=-—ow

one has a periodic array, the coefficieBtgj) will have a
o . ) . Bloch form, i.e.,B,(j)=B,(0)exp(k, -d;), so for each wave

In Eq. (6), p andr are vectors, wittp=[p|<r=|r|, ¢ IS yectork, one explores a determinant whose size §&21.
the angle between these two vectofsis the angle opposite  £or many purposes, it is of interest to explore the spin
to p, in a triangle formed by, r and a line drawn between wave excitations for which the wave vectois zero. If we
the tips of these two vectors, whileR=(r?+p? consider a true nanoscale sized array of wires excited in
—2rp cos))¥2 The functionZ,(x) can be any of the stan- EMR or in BLS, the modes of interest will have wavelengths
dard Bessel function§Bessel, Neuman, and HankeUpon  very long compared to the length scales of the structure, and
choosingZ, to be the Hankel function of the first kinHtf)l’, thus the limit of vanishind is of primary interest. The ma-
and then lettink— ik, one finds that trix formed from Eq.(12) whose determinant is evaluated
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numerically is very tricky to evaluate at very small values of 2(\m—n|—1)(|m_ n|—1)!
the wave vector, since as noted befirgx) diverges ax™ " Ap_n=
asx—0. If one truncates the matrix with a large valueNyf (dp'm=!
then the matrix will contain modified Bessel functions of
very large order. For small values of the wave vector, there If one writes out the equation satisfied tny(0) then
will be very large entries in the matrix, and by and largetakes the limitk— 0, then one findgy(0)=0. Since there is
these are associated with partial waves that play a minor roleothing special about the nanowire located at the origin of
in the final result, ifN is large enough to insure excellent the coordinate system, it follows that for @llby(j)=0.
convergence. Despite this concern, in the calculations re- To proceed further, one must separate two cases)
ported in Sec. I, in our studies of the normal modes of twoand n<0. When this is done, and the limit of vanishing
cylinders we have had no difficulty achieving accurate re-wave vector is taken, then we obtain two sets of coupled
sults for withN=30, andkR as small as 10°. It is surpris-  equations in which the wave vector is absent:
ing to us that high accuracy can be obtained at such very
small values okR, in view of the behavior of the modified o
Bessel functions in the limit of small argument. b|n\(0>=s|n|2 > (—1)Me imEinhy;

In case where the response of the individual wires is ad- j#0 m=1
equately described by magnetostatic theory, with the influ- In[+m-1 Y
ence of exchange ignordthus S, is given by Eq.(4)], as 2 (Inf+m-1)!
k— 0, through appropriate scaling arguments it is possible to (dj)"“+m
extract the limiting behavior of the various quantities that
enter Eq.(12), and reduce it to a form which may be used toand
compute thek=0 mode frequencies directly. Since these
equations allow direct calculation of the mode frequencies o0
without the issue just discussed, we conclude with a deriva- b (0)=5_n >, > (—1)mel(nl+my;
tion of the resulting equation. We assume t8ais given by j#0 m=1
Eq. (4) and that we hav&R<1 andkd;<1 as well. Recall-

M=y (16h)

b_im(j) (173

2+m=1(n| + m—1)!

ing that whenkd; <1, we have, fom>0, b (). (17D
(dj)lnHm
2" Y (n—1)!
K- n(kdj)=Kn(kdj)~ W (13 Once again, if the nanowires are arranged in the form of a

periodic structure, one may seek solutions of Ejg) of the
while in the same limitKq(kd;) ~In(2/kd;). After some al-  Bloch form. There is considerable interest in propagation

gebra, one may show that wh&R<1, one has, fon#0, perpendicular to the magnetization in arrays such as consid-
ered here, since in this geometry, nonreciprocal propagations
2|n|(kR)ZM [1+ m,sgr(n) — u4q] characteristics are exhibited by the system. In two-

=s,k?", (14 dimensionally periodic arrays, Eq&L7) may be used to ex-
4ln‘(”!)2 (1= pasgrin)+ s, plore such issues. We have found the limiting forms in Eqgs.
while again in the same limitSy~ [ (1/w;)—1](kR)* (17) most qseful in the calculgtions_ reported in Sec. .
= 5ok, The der_lvgmon of Egs(1739 is valid only Whe_:n |_nt_raW|re_
These forms suggest that the coefficieBts(j) should _exchang_e is ignored, and the response of the |nd|_V|duaI wires
exhibit a power law scaling with the wave vector, in the long'S described adequately by magnetostatics as discussed ear-

wavelength limit. We make the ansatz lier. One may apply the scaling argument to the case where
intra wire exchange is included as well. One notes that of the

B,(j)=k"b,(j). (15  roots «;, one of these which we may denote ky will
vanish linearly withk in the limit k— 0 while the other two
When these various limiting forms are inserted into 8®),  roots remain finite. We do not present the details of the deri-
the result may be arranged to read, fot 0O, vation here. We have found Eq&l7) most useful in our
numerical work, whereas the scaled equations with intrawire

i ol 2 ] exchange were not so easy to explore. We obtained excellent
bn(0) = sk ;O (= 1)"K™In| 45| bali) long wavelength results, as reported below, with the full set
. ) of equations and the wave vectoset to a small value in the
o calculations which include intrawire exchange.
Amfn .
+ 2 (D" ()
m=n+1 KIm=nl

B. Response of nanowire arrays to microwave excitation fields
n—-1
N E (—1ym Am-n Kb, (j) (168 In this section, we present the theory of the response of an
me= e KIm=n| m() (s array of nanowires to a microwave exciting field, for the case
where the magnetic field associated with the incident micro-
where waves lies in thexy plane, perpendicular to the axis of sym-
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metry of the wires in the array. As above, we assume all We again focus our attention on the cylinder located at the
elements in the array are magnetized parallel to their axes afrigin of the coordinate system, as depicted in Fig. 1. The
symmetry. magnetization of this cylinder is driven by the external field
As in Ref. 4, it is particularly convenient to describe the just described, but we must add to this the magnetic fields
fields in the externally generated microwaves through use ofenerated by the precession of the magnetization within

a vector potentialA(x,y;t) =ZA(X,y)exp(=iQt). The mag- other cylinders of the array. T_he fiel_d gener_ated by th(_e pre-
netic field then lies in the plane, and in addition we have arfession of the magnetization in a given cylinder has, in the

electric field associated with the incident field parallel to thelanguage of scattering theory, the character of an outgoing
axis of symmetry. The choice wave. It is the case that the magnetic fields associated with

these waves all lie in they plane, and the associated vector
potential is thus parallel to the direction, and is given by

he - -
(ext) - ; . o A
with ko= ko(cosfpx+sin 6py) andko=Q/c, describes a mi- - - o
crowave field with strengtth,. The magnetic field in the A:,Zo m;_m () (1)™Me™PIH (Kop)), (21)
wave is given by
where Hlm(x) is the Hankel function of the first kind.

BEX)=H(EN=Fx A Through appropriate use of Graf’s identity once agdiq.
R ~ o (6) abovd, we may cast this in a form which describes a
=hg[xsin(y) —y co bp) Jexp(iky-r —idt), driving field similar in structure to that in E¢20). The total

(18b) vector potential which drives the magnetization of the cylin-
der located at the origin can then be cast in the form
with, as noted above, an electric fid =ik A parallel to

7 axi i i o | ho c :
the_z axis. Note that th_e functioA(x,y) in Eq. (_18) may be At py= T)\”e |n60+2 S b))
written in the form, withp and ¢ polar coordinates in the n=—o | IKg 70 m=—w
plane:

h X (i)™ et MTWEHT . (kod))
A(EXI)(X,y) - %exqikop cog¢p—0p)]
0

X (i) (kop)e"?. (22
ho . SN ; If the cylinder at the origin i bjected t driving field
__° K _ _ y gin is subjected to a driving fie
ik n—zoc () 3n(kop)exHin(¢— o) generated from a vector potential of the form
(19 *
AliM = an(0)(i)"Jn(kop)eM?, (23
This section presents the theory of the response of the n;oc (0)(1)n(kop)

hanowire array to the microwave exciting field just 'de- the precession of its magnetization produces the outgoing
scribed. In Ref. 4, the theory of the response of a smglefield

nanowire to such a field was presented, and here, using logic

similar to that in the previous section, we expand the discus- o

sion to an array of interacting nanowires. Primary interest ACY=>" b (0)(i)"Hi(kop)e"?, (24)
resides in the case where the wavelength of the exciting field n=—e

is very long compared to the length scales of the sample, sQnere b,(0)=Z,a,(0), where the response functic, is
after generating the general theory, using scaling argumentgy; of 5 single nanowire. A prescription for constructifig
similar to those presented above, we also derive equations fong in Ref. 4, within the framework of a description that
appropriate to the limik,—0, with the frequency() kept  jncjyded the influence of both exchange, and uniaxial surface
finite (formally, one achieves this limit by allowing the ve- 4nisqtropy on the response characteristics of the nanowire.
locity of light ¢ to become infinitg To achieve this limit, \we shall discuss the structure of this response function be-
some rather subtle issues are encountered. Thus, we Willy, since we will need to understand its behavior as we let

want to generalize the expression in Ef9) to read ko—0.
ho® By combining Eq.(22) with the definition ofZ,, we ob-
A )= 0 NI (kep)exd in(db— 01, tain a set of equations from which the amplitudggj) of
r.9) iko n=2co ()" ndn(kop)eXHIN (¢ 6o)] the various cylinders may be determined:
(20 .
P ho —ing P
We recover response to a plane wave by setting all param- bn(0)=Zp 7 =Nne 0+ _20 2 bm(])
eters\, to unity, but as we take the limiy,—0 another 0 70 m="=
choice will be dictated by physical considerations described .
below. X(i)m el (MMl (kod)) | (25)
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If there areN nanowires in the array, then we may genefdte B,=(1/p)(dA/d¢$). We then have continuity of the tangen-

inhomogeneous equations of the type given in &%) for  tial component o, H,. The azimuthal component ¢
the amplitude of the response of each nanowire. Inversion gfside the wire is generated by calculatiBg from the vec-
the matrix formed from this set of equations provides us withyor potential, then using Eq33b) of Ref. 4 to obtainm,,

a description of the microwave response of the system. Thgye azimuthal component of magnetization. The solutions in-
size of this matrix iN(2M +1), whereM is the cutoff cho-  sjde are then matched to the linear combination

sen for the indexmin b(j).

However, as noted above, there will be considerable in- A?(p,(ﬁ):[an\]n(kop)—l—anﬁ(kop)]ein‘ﬁ (27
terest in the long wavelength limiting form of the response, if . . )
the wavelength of the exciting field is very long compared toPUtside the wire. Then the response functign is found
the physical length scales in the system. While EgS) are  Tom the ratiob, /a;, . _
surely exact, it can be a numerical challenge to perform the This procedure yields the following form:

inversion, since in the limit of small argumenlf‘.rln(x) di- G I (KaR) =T -ked (KaR)’
verges ax~ ™. Thus, as in our discussion of the collective Z,=— G :( oR)~T'nko ”1( Al _ (28)
excitations of the system, it is very useful to have in hand a [GnHR(koR) = I'1koH(KoR) ']

set of equations applicable to the linkig=0.

For this purpose, we need to understand the structure
S ot v sl v, OFENCe O, onky s displayed xpicly n E(25. Explc
. rag " .~ expressions foG, andI',, are as follows:
interest is the case where the wavelength of the exciting
radiation is very long compared to all length scales in the 3
structure. However, it is important for the frequenQyto =2 ALJL(kiR) (293
remain finite and arbitrary, since clearly we are interested i=1
in the resonant response of the structure. Thus, upon notinéhd
thatky=Q/c, we have in mind the limit— o with Q fixed.

In the previous section on collective excitations, we made 3

statements about the structure $f in this limit but only Gnh=2, KiAin{ In(kiR)" +27M4

in the magnetostatic limit, i.e., we did not include the influ- =1

ence of exchange on the response of the isolated nanowire
in the discussion presented there. In the present instance,
we can derive the long wavelength limiting form of the
equations in the general case, and they prove most useful. ~
First, as discussed in Sec. |1 B of Ref. 4, the various fields|n Eq. (29b), D is the spin wave exchange stiffness, dhds
along with the magnetization components inside a giverdefined in Ref. 4.

nanowire can be determined from the vector potential within It's now a straightforward matter to take the linkig— O
the wire. We write this in the form, with the nanowire at in the expression foZ,. We must distinguish betweem
the origin of the coordinate system in minéf(p,(ﬁ) #0 andn=0. For the case where+#0, in the limit that

=7A=(p, $)exp(—~iQt) where here we write the most gen- Ko—0 we find
eral structure foA= in the form, selecting out just the piece 20n|
with angular variation characterized by the azimuthal quan- _m n[(koR) (303

n=-"

In Eqg. (28), the quantitiesG,, andI",, are functions of fre-
OcFuencyQ, but are independent df,. Thus, all the depen-

Jn+1(kiR) _ Jn-1(xR)
§0+DKi2+Q §0+DKi2—Q

(29b)

tum numbem, i 4|n\(|n|g)2 n
3 with
A (p.d)=ayi >, ALJdn(kip)e?;. 26
5 (p. &) n[; hJn(ip) (26) RG.—|nlr.

2=\ RG, +|n[T,)" (30D

The wave vectors;, which are functions of the frequency n 4

Q (and notko=(2/c) are found by solving Eq31) of Ref. ~ where in the same limit we have

4. The coefficients\ |, are found as follows. First, set’ to )

unity. Then the remaining two coefficients may be deter- 7 I 1 (300
0=

mined from the two boundary conditions on the transverse 2 In(1kR)
magnetization stated Eq1) of Ref. 4. These are both ho-

mogeneous boundary conditions, but become two inhomoge- Now we encounter a tricky issue. If we set &jj to unity
neous equations in two unknowns, if one satsto unity.  in EQ.(20) then take the limik,—0, the externally applied
After this is done, Eq(26) contains the one free parameter vector potential reduces to the forzth,/iko)exp(Qt). This

a, . The electromagnetic boundary conditions remain. Thedescribes a spatially uniforrelectric field parallel to thez
continuity of the vector potential at=R insures the conti- axis, and in fact the magnetic field vanishes. We thus have a
nuity of the tangential electric fieltthe z componentat the  physically incorrect limit. We address this by setting=0
surface, and the radial component of the magnetic inductioeverywhere, and all othex,, to unity. Then ask,—0 the
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vector potential, parallel ta of course, has amplitude given ~ When the wave vectdc is_zero, the scaled equations may

by the expressiogp cosi@— fp)exp(—ifdt). This describes Pe used .to.calculate the spin \_Naye.normal modes _of .the cyl-

an externally applied magnetic field in the plane as de- inder pair, in the magnetostatic limit. Of course, this is pre-
[ [ X Si y i isely the limit in which the exact formula derived in the

sired, given by ho(X sinf,—ycoséy)exp(—iQt), and the CISEY I :

strength of the electric field vanishes in the lirkjg—~0. In ~ APPendix applies as well. We have tested Eds) by cal-

the limit, th fficientd. (i) in Ea. (25) exhibit th |. culating the long wavelength spin wave frequencies of the
ins l;renr;avioer coeflicientdn(j) in Eq. (25) exhibit the sca cylinder pair, to find they indeed reproduce the result of the

analytic formula very well.
bm(i) = (koR)™B (). (3D The eigenvectors associated with the 0 magnetostatic
. ) L modes of the cylinder pair are very interesting. First, note
When we take the limitk,—0, the equation satisfied DY {4y the discussion in the Appendix that for any given sepa-

Bo(0) reduces to ration, we have two degenerate modes associated with the
positive frequency solution given in EGA8). One is asso-
Bo(0)+ >, Bo(j)=0, (32)  ciated with a positive value of the quantum number 0,
j#0

and one is associated with its negativen. (Here we refer
so we may choos@,(j)=0 for all j. We then find, in the 0 the azimuthal quantum numbers in the bipolar coordinate

limit ko— 0, for n>0 system used in the Appendix, not to the azimuthal quantum
number of the basis functions in polar coordinates used in
mhoR (—i)"nz, Sec. II) In the Appendix, it is noted that since reflections in
Bn(0)=— e '%z,8,,— T theyz plane are not a good symmetry operation for the fer-
2%(n!) romagnetic cylinder pair by virtue of the axial vector char-
® R\N*M acter of the magnetization, the eigenvectors do not have well
% 2 2 (_) e i(n+m)y; defined parity under this reflection. However, it is the case
Fom=1d, that theproductof two reflections we may write &, R, is
B _oim . a good symmetry operatioR, , interchanges the two cylin-
X (nEm=DH =207 (), (333 ders and reverses the signyof the magnetization, WRjle
whereas fom<0 we find reverses the magnetization again to restore it to its original
state. Thus, the product operation exchanges the two cylin-
mhoR ., (—i)ln‘lnlzm\ ders, and leaves the magnetization in its original state. The
B-n(0)=— 2 °© 02—15\”|v1_W product R, ,R,, applied to the eigenvector of the positive
' frequency mode with quantum numberm| will generate
“ [R\In+m the eigenvector associated with the modém|. We illus-
><]_$0 le (d_,) glin+my; trate this in Fig. 2, where we reproduce the lines of constant

magnetic potential outside the cylinder pair as well as the in
X(In[+m=1)1(=20)"Bm(}). (33  plane magnetization inside the cylinders, when the modes
) ) ) with |m|= =1 are excited, for the caggR=2.5. The asym-
The expressions in Eq¢33) allow the analysis of the re- ety in each eigenvector is striking, with most of the exci-
sponse of the array of nanowires to a spatially uniform magation energy concentrated on one of the two cylinders in

netic field of frequency, applied in thexy plane. each case. Also, it is clear that as the two cylinders are
brought together, the excitation localizes in the near vicinity
lIl. NUMERICAL STUDIES OF SPIN EXCITATIONS of the points of closest contact between the two cylinders. As

IN INTERACTING CYLINDER ARRAYS d/R approaches 2, the value where contact is established, the

rgxcitation becomes very localized indeed. In contrast/&s

(pecomes very large, them==*1 (of bipolar coordinates
nodes evolve into tan=1 modes(local polar coordinates

of single cylinders, centered at the left and right cylinders,

spectively.

In this section we present studies of the spin excitations i
interacting arrays of cylinders. Two examples are considere
First, we consider two cylinders whose centers are separat
by the distanceal. This allows us to make contact with the g
exact treatment of the long wavelength magnetostatic mod : . .
presented in the Appendix, and to study some features of the " Fig- 3@, for the casel=2.3R, we show the dispersion

interwire interactions for a simple system. Then, as a seconff!ation of the two lowest lying magnetostatic spin wave
branches of the cylinder pair, as a function of wave vector

gz?gple, we consider a linear array of ferromagnetic cylin parallel to their axes. These have been calculated through use
of Eq. (12) applied to this circumstance. We explored values
of kR as small as 10°, again with a basis set where the
azimuthal quantum number ranged fron80 to +30. It is

In what follows, we examine the spin excitations in two remarkable in our view that accurate results can be obtained
ferromagnetic cylinders, each with raditsand with their  in the numerical work, when as noted above it is realized that
axes of symmetry separated by the distadc@ll the nu-  for small values of its argumenk ,(x) diverges ax™ ™. In
merical calculations employ a basis set where the azimuthahe determinant whose zeros one seeks to find the spin wave
guantum numbem extends from— 30 to +30. frequencies, the order of the modified Bessel function in-

A. Interactions between two ferromagnetic cylinders
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0.7
a) 2| a)
1
0 0.65 4
- = 0.6 b
-2l 5 ) D/R=2.3
-5 -
0.55 b
b) 0.5} :
-3 -2 -1 o] 1
log(kR)
5 b) o.es}
FIG. 2. For the casd/R=2.5, we show the eigenvectors of the 0.66
k=0 magnetostatic mode of the cylinder pair for the cémem o.6al
=1 and (b) m=—1: the lines of constant potential outside the o.62l
cylinders and the in plane magnetization inside them. The two )
quantum numbers refer to the eigenvector expressed in the bipola = 0.6
coordinates used in the Appendix. We have chadserH /47 Mg {?’ o.ssl
=0.19. S osel
D/R=2.05
. . i . o0.54fF
creases as one moves in the direction perpendicular to th o.s2]
diagonal. These objects become very large indeed in the )
outer portion of the entries, but in the end they influence the o-sf
results very little when the basis set is sufficiently large to 0.48¢
insure convergence. Again we find excellent agreement be -3 -2 -1 ° !
tween the long wavelength limiting frequencies obtained ]Og(kR)
from the full multiple scattering description of the cylinder
pair, and the exact formula in the Appendix. FIG. 3. For two casesia d/R=2.3 and(b) d/R=2.05, we

We see that each branch becomes twofold degenerate aisow the dispersion relation of the two lowest magnetostatic spin
k— 0, whereas for finite wave vector the modes split. Fromwave branches of the two nanowire cylinders. The calculations as-
the lower branch, it is evident that the splitting is largestsumeHy/4mM¢=0.19, and the frequencies are given in units of
whenkd~1, to decrease and eventually vanish in the limit47Ms-

kd=>1. '!'_he interactions bgtween the cylinders is _Contm"edtouch, with d=2.05R. Note the interesting structure and
by modified Bessel functions whose argumentkis and ¢ oqqings in the dispersion curves of the second branch.
these vanish exponentially for large values of this variable, The influence of exchange can be characterized by the
so at large wave vectors the cylinders are essentially decoyimensionless parametpr= (D/47M (R?)Y2 with D the ex-
pled. Notice the splitting of the second branch is very smallchange stifiness. The system is exchange dominated when
mUCh Sma”er than that realized in the IOWest bl’anCh. Th?)»l In F|g 4a)7 W|th the inﬂuence Of Surface anisotropy
angular variation of the magnetization in each cylinder hasgnored and when the cylinders are almost touchimg (
largely m=2 character for the second branch, while that in=2.05R), we show the two lowest lying spin wave branches
the lowest branch has largeiy=1 character. Thus, at long of the cylinder pair forp=0.5. Again we see that as the
wavelengths, when the lower branch is excited the interwave vector vanishes, we have a two fold degeneracy, and
cylinder interaction has the character of a two-dimensionasplitting at finite wave vector. It is evident that exchange
dipolar interaction, whereas the second branch is the nextrongly suppresses interactions between the cylinders; in the
higher moment in the spirit of a multipole expansion. Onelowest branch the splitting is very much smaller that evident
interesting feature of Fig.(d) in our view is that the inter- in Fig. 3(b), and on the scale of the graph, the splitting is
action between the cylinders, as judged from the splitting indifficult to discern in the second branch, though it is indeed
the dispersion relation, is very modest in magnitude. Theresent for nonzero wave vectors. As before, the splitting is
separation between the two is only 15% of their radius, formaximum in the region whered~ 1. In Fig. 4b), we show

the calculations in Fig. (). In Fig. 3b), we show dispersion the dispersion curve for the lowest branch wipen2, again
curves of the lowest two branches when the cylinders nearlyith surface anisotropy ignored. Only the lowest branch is
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2.6 0.72
a) 2.4r i
2.2} p=0-5 ] 0.71} Log(kR)=—0.2
2} D/R=2.05
0.7}
= 1.8}
= 16} = oeo}
= =
1.4} =
| S oes)
1}
0.67}
0.8
—2 -1.5 -1 -0.5 [ 0.5 0.66|
log(kR
g( ) 0.65; 3 a4 5 6
D/R
b) ..} ]
e ] FIG. 5. Forp=0.5 and logkR =—0.2 we show the splitting in
pP=2.0 the lowest spin wave branch as a function of distance between the
centers of the two cylinders. We hatie=Hy/47M¢=0.19.
= 18} D/R=2.05
{F' 1.6} “turn on” exchange, this tendency will be opposed, with the
S Lal consequence that the magnetic poles responsible for the
magnetic fields which produce the coupling are spread out
1-2fF over a wider angular range. This decreases the strength of the
1} magnetostatic interaction between nearby nanowires. We re-
osl mark that all calculations reported here assume that the sur-
face anisotropy vanishes. We have carried out calculations
0.6

22 1.5 — —0.5 o which incorporate rather strong surface anisotropy, to find
that the interwire interactions remain modest in the limit of
log(kR) strong exchange. This conclusion is expected from the rea-

soning just given, of course.
FIG. 4. We show the influence of exchange on the dispersion

relations, for@ p=0.5 and(b) p=2.0, p=(D/47MR?)¥2 with D
the exchange stiffness. Both calculations are for the chdié¢e B. Linear array of ferromagnetic cylinders
=2.05 where the cylinders almost touch. Again we have chbsen

—Hy/47M,=0.19. We now turn our attention to a periodic, linear array of

ferromagnetic cylinders. The distance between the centers of
illustrated because now the exchange is strong enough thtwo nearest neighbors &>2R. We shall confine our atten-
the second branch lies outside the frequency range coverdi®n to propagation perpendicular to the magnetizations of
in the plot. We see that increasing the strength of the exthe cylinders. For the case of a uniform ferromagnetic film,
change decreases the strength of the intercylinder intera¢his propagation geometry is of particular interest, because it
tions. In Fig. 5, forp=0.5 and wave vector such that is here that the much studied Damon Eshbach mode is real-
log(kR=-0.2, we plot the splitting realized in the lowest ized. We note also that the BLS studies of collective excita-
spin wave branch as a function of separation between théons in a linear array of magnetic strigesas carried out in
centers of the two cylinders. We see a rather slow decrease 8fis geometry as well.
the splitting withd; the interaction between the pair has its ~ For a period array of cylinders such as that just described,
origin in long ranged magnetostatic interactions and thus ithe coefficients B,(j) have the Bloch form By(j)
falls off slowly with separation. =B,(0)expfk, dj), where— (7/d)<k, <=/d. In the calcu-
The calculations presented in Fig. 3 show that as the raations below, when intrawire exchange is considered, we
dius of the ferromagnetic nanowire decreases, to the poirgmploy Eq.(12) with kR chosen very small, 10°. The
where the spin wave spectrum is importantly influenced byscaled equations displayed as E{k7) have proved most
exchange, the interactions between nanowires is suppress@@nvenient for the discussion of the magnetostatic limit.
The physical origin of this behavior can be appreciated from We begin with the limit where the intrawire exchange is
the eigenvector plots in Fig. 2. We see that as the cylindergppreciable, with the dimensionless parameier0.5. In
are brought close together, the excitation concentrates arourhdg. 6(a), for the case where the cylinders are very close
the points of closest contact between the cylinder pair. As wéogether withd/R=2.05, we show dispersion curves for the
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FIG. 7. Again ford/R=2.05 we show the two lowest lying
FIG. 6. For the periodic linear array of cylinders, and for the branches fo&) p=0.09 and(b) p=0.08. We haveh=H/4mM
case wherel/R=2.05 and with the exchange paramgier0.5, we  — 0.19.
show(a) the dispersion relation of the two lowest collective modes,

and (b) an expanded view of the dispersion relation of the lowestanter the frequency domain of the lowest lying collective
mode. We havér=H/47M=0.19. mode branch. When they reach this regime, we see hybrid-

two lowest lying spin wave branches. As before, we havé'z_ation b_etwee_n the higher !ying, rather flat branch_es _and_the
taken ho=Hy/4mM¢=0.19, and the frequencies are ex- highly dispersive lowest Iy!ng branch. We see this in Fig.
pressed in terms of the dimensionless radgaM,. The 7(& and qb). Forp=0.09[Fig. 7(a)], the second branch has
upper branch in the figure is almost dispersionless, while wéluite not entered the frequency domain of the low lying col-
can see appreciable dispersion in the lowest branch. In Fidgective mode, but by decreasing the strength of the exchange
6(b), we show an expanded view of the dispersion curveonly slightly to p=0.08 we see clear hybridization between
associated with the lowest lying branch. Clearly we have dhe two modes. By the time the exchange is lowereg to
collective mode of the array of cylinders which in a qualita- =0.05 we see several exchange branches mixing with the
tive, but surely not quantitative sense, reminds us of the Dalow lying collective mode, whose dispersion curve is clearly
mon Eshbach mode of the uniform ferromagnetic fifhin ~ perceived as it passes through the hierarchy of exchange
the latter case, the mode exhibits a linear variation with wavenodes. We illustrate this in Fig. 8. In our view, the results in
vector at small wave vectors very much as we see in théhis figure bear a striking qualitative resemblance to the
dispersion curve in Fig.(®), but for the cylinders we see a mode structures studied by BI2Sor a linear periodic array
maximum in the dispersion curve in the regibnd~1. For  of magnetic stripes. The data showed a collective mode
the uniform film, the dispersion relation is a monotonically rather similar in nature to the Damon Eshbach mode of
increasing function of the wave vector. the uniform film, which crossed and hybridized with the

As the strength of the exchange is weakened, the highestanding wave exchange/dipole modes of the individual
lying exchange branches decrease in frequency, until thegonstituents.

094423-11



RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 67, 094423 (2003

0.7 0.68
a
) 0.66 /
0.65 . 0.64
/k o.62}
= o.s}
= 0.6f =2
B
&£ = o.58}
a G 0.56}
i ] D/R=2.
055 o.sal /R=2.05
p=0.05
0.52}
0.5F E o.5}
. . . . . . 0.48}
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 2.5 3

FIG. 8. Ford/R=2.05 andp=0.05, we show the low lying
collective modes of a linear array of ferromagnetic cylinders. We b) 0.68

haveh=Hy/47M =0.19. 0.66f
0.64
In the limit where the radius of the individual wires is
sufficiently large that exchange may be ignored, and also in o-ezr
the limit where the wave vector parallel to the axis of sym- = o6}
metry of the cylinder vanishes, the surface magnetostatic 5 o0.58}
modes of the isolated cylinder approach the limiting fre- 3 0.6} D/R=2.2
quencyHy+27Mg. These modes are characterized by an
azimuthal quantum numben, and in the limit of zero wave 0-541
vector parallel to the axis, we have an infinite number of 0.52f
degenerate modes at this frequency. In the long wavelengtl o5}t
limit, the dispersion relation of these modes in E(. of o.4sh ]
Ref. 4. Them=1 mode is the mode excited in FMR studies o .5 3 15 > P 3
of ferromagnetic cylinders. As the cylinders are brought to-
gether, these modes interact, and we find a spectrum of col kJ_D

lective modes outside and above the frequeifklp(Hg
+47Mg]Y?, below which one encounters standing spin FIG. 9. In the magnetostatic limit, and fdn=Hg/47M;
waves. Ford/R=2.05 and forH/47M¢=0.19, in Fig. 9a) =0.19, we show the dispersion curves for the collective modes of
we show the dispersion relation of the first few branches ofhe linear cylinder array fofa) d/R=2.05 and(b) d/R=2.2. The
these collective modes, for propagation perpendicular to thBropagation direction is perpendicular to the axes of the cylinders.
magneti.za.ti.on. As the cy]inders are separated, the ang wave- IV. CONCLUDING REMARKS
length limiting frequencies move up toward the lintit,
+27Mg, and the bandwidths of the various modes are re- In this paper, we have presented a theoretical formulation
duced. We illustrate this in Fig.(B), where we show the of the response characteristics of arrays of interacting ferro-
dispersion relations of the low lying collective modes for magnetic nanowires, for the case where the wires have mag-
d/R=2.2, with all other parameters the same as used for Fignetization parallel to their symmetry axis, and their cross
9(a). section is cylindrical. The formalism we have developed is a
We see that the linear array of ferromagnetic cylindersreal space formalism based on multiple scattering theory, and
exhibits an array of collective modes; for the case where thas a consequence can be applied to disordered as well as
wire diameter is sufficiently small that intrawire exchangeordered arrays of nanowires. We have developed both the
drives the lowest standing exchange wave well above théheory of the collective excitations of such arrays, and their
magnetostatic mode spectral region, we have a highly disperesponse to a microwave field. In the numerical calculations
sive low lying branch with behavior similar to, but nonethe- presented here, we have confined our attention to the nature
less different in detail from the well know Damon Eshbachof the collective excitations of selected systems, since at the
wave of the uniform film. As exchange is decreased intime of this writing we do not have in hand experimental
strength, we find hybridization between this collective mode studies of the microwave response of suitable arrays.
and the standing wave exchange modes of the individual We have explored two cases. One is the nature of the
constituents of the array, very similar in a qualitative sense t@ollective excitations of a pair of nanowires, of radiRs
the behavior found in Brillouin light scattering studies of separated by the distande>2R. We have explored the na-
magnetic stripes. ture of the collective exciations of such a pair of cylinders, as
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a function of wave vector parallel to their symmetry axis. Inother has its symmetry axis located on thexis as well, at
addition, in the Appendix, we have obtained a closed formx= —d/2. The geometry is thus different than that illustrated
expression for the FMR frequency of such a pair, as a funcin Fig. 1.

tion of the distance between their centers. The message con- We shall carry out the discussion in bipolar coordinates in
tained in our results is that the two nanowires have to behe xy plane!! These are described in terms of two dimen-
rather close together before their interactions become appreionless coordinatest{#) and a lengtha, related tox andy

ciable. by the statements
We have also examined the collective excitations of a )
periodic linear array of nanowires, for the case where the — asinh(§) (Ala)
wave vector of the excitation is perpendicular to the axis of cosh ¢) +cog 6)
symmetry. We find results which are most striking in our
view, which may be interpreted as a dispersive collectiveand )
mode not unlike the well known Damon Eshbach mode of _ asin(§) Alb
the uniform film, which crosses and hybridizes with the y= cosh(§)+cog0)’ (Alb)

exchange/dipole resonances of the individual cylinders. The

dispersions relations we obtain are quite similar in a qualita- A contour of constang is described by the statement, for
tive sense to the modes of a linear array of magnetic stripe€>0
studied through wuse of Brillouin light scattering 5 o o )
spectroscop§. Of course, in the experiments, the samples (x—acoth(¢))“+y“=a/sinh(£)*, (A2)
were very different in character than the model system studyng s thus a cylinder with axis on theaxis located ak

ied here, in that the individual constituents were not Cy|in'=acoth(§), with radiusa/sinh@). As the angular variablé
ders, but rather magnetic stripes of rectangular cross sectioy, swept from 0 to 2r, one executes a walk around the
with width very large compared to their height. Unfortu- circymference of the cylinders just described.él#0 the
nately, the formalism developed here cannot be extended Wilinder lies entirely in the half plane>0, while it lies
such structures in a straightforward way. entirely in the half plan&x<0 whené&<O0.

Our calculations of the collective excitations of the linear  The two cylinders of interest are both contours of constant
array of cylinders show that such structures posses a SPEE- |f we let R=alsinh() andd=2a coth(), then in bipo-

trum of collective modes that may be altered easily byjgr coordinates the right hand cylinder is described by the

changing the lattice constant of the array. It would be 0fstatemen§= &, while the left hand cylinder is described by

interest to explore the spectrum of modes in a two dimen—_ — &, The interior of the right hand cylinder is the region

sionally periodic array as well. In recent years, magnetic;—, the interior of the left hand cvlinder i< — &.. while
multilayers have been studied intensively, and these exhibi o y &=~ &o.

; ; o . remainder of they plane is covered by the ran
most interesting response characteristics that can be de&gng% <+& yp y geco

or altered by changes in microstructure. Ferromagnetic nano- Let
wire arrays may offer another very interesting class of sys-

;ems tlhat %ISO rlnay :ﬁ] synth$|5|zlled n:hdlv?rze fofrrSs£hatr;1d .t e magnetic scalar potential in thg plane, when a normal
ormalism developed here will aflow the study OT Ot NN 4 f the coupled pair of cylinders is excited. Equation

collective spin wave excitations and their response to a mi - ;
\ : 1), when transformed to bipolar coordinates, reads
crowave field. It should be remarked that, through sunable( ) P

us consider a spin wave excitation with wave ve&tor
arallel to thez axis, and® (&, 6) describe the variation of

adaptation, our description of the microwave response also 2 5
forms the basis for a theory of the Brillouin light scattering —t— D y(€,0)—h(&,0)%k*D\(£,6)=0, (A3)
Spectrum. &« a6
whereh(¢, 6) =al[ cosh§)+cos@)].
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APPENDIX: ANALYTIC FORMULA FOR THE LONG DPy(€,0)=Amexp—mé)expime), £>&, (Add)

WAVELENGTH MAGNETOSTATIC MODES .
OF TWO FERROMAGNETIC WIRES (€ 0)=Brexpmé)expimo), £<&o  (Adb)

. . : . . n
Consider two ferromagnetic wires of cylindrical cross 2 d

section, each of radiuR separated by the distande Each ® 0)=[C...cosimé) + D ..sinh( mé)Texnim @
has its axis of symmetry parallel to tledirection, one has u(£,6)=[Crcostime) mSINA(ME) Jexp )

its symmetry axis located on theaxis atx=+d/2, and the —Eg<E<HE. (Adc)
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The choices in Egs(A4a) and (A4b) are dictated by the ated from our discussion of the—0 limit in Sec. Il A. Con-
requirement that the potential be nonsingular at the centers gider them=1 mode(the FMR modg of an isolated cylin-
the two cylinders(at é=+% and {=—=). As we move der, for instance. We have one modm=+1 at the
infinitely far from the origin, Eq.(4c) approaches, with frequency Qgpyr=v[Ho+t27Mg], and we have them

(p, ) polar coordinates in the plane, =—1 mode at the frequency Qryg. Now bring the two
oma such cylinders together, supposing they are sufficiently far
Dy—(—1)™ Cpyt ——{—iCpsin(p) + D ycog é)}H|. apart thatd>2R to make the discussion simple. Equations
p (17) show that them=+1 mode of the right hand cylinder

(AS) couples only to then=—1 mode of the left hand cylinder.

Far from the cylinder pair, the magnetic fields generated byAlso them= +1 mode of the left hand cylinder couples only
the precession of the magnetizations thus have the characterthem= —1 mode of the right hand cylinder. One obtains
of dipole fields in two dimensions, since they fall off as? four new modes, but the two positive frequency modes nec-
as p—o. The dipole is anisotropic, since in gene@), essarily have exactly the same frequency, and the two nega-
#Dm. tive frequency modes also have exactly the same frequency

The boundary conditions on the cylinder surface are thags each other, and a frequency equal in magnitude to that of
tangential components dfi are conserved, while normal the positive frequency. Only two frequencies are displayed in

components oB are conserved. We have Eqg. (A8); if one considers the caga<0, one obtains two
additional frequencies identical in value to those in(Bg.
- - Eoby 0 ody Another remarkable feature of the result in EA8) is its
H=-Vdy=- h 96 h a6 (AB)  pehavior in the limitd— 2R, where the cylinders just touch.

_ Then ¢,—0, and all frequencies approach the FMR fre-
while for conservation of normaB inside the cylinders we quency of afilm, the well known formula QgQ )2
haveBg=u;H+iu,Hy, where if the cylinders are ferro- It is the case as well that interactions between the two
magnets,u; and u, are defined in the main text just after cylinders are remarkably weak, until they are very close to-
Eq. (4). (As we shall note below, our treatment applies together indeed. As an example, supp@sg= 3, so the
antiferromagnetic and dielectric cylinders as well. FMR frequency of the isolated cylinder is the®2 . If we
The boundary conditions just stated lead us to four homop 5 ed=2.1R so that the separation between the two cylin-
geneous equations for the coefficients in E@s4). Upon ders is only 5% of their diameters, one has for the-1

_setti_ng the appropriate_ determinant to zero, one obtains Mode of the pair a frequency of 193, i.e., a downshift
implicit dispersion relation for the normal modes of the cyl- from the frequency of the isolated cylinder of only 3%. This
inder. This may be cast into the form . - L . o
is surprising to us in view of the fact, as discussed in Sec. |
1 and in Ref. 4, the FMR mode of the isolated cylinder gener-
(pat1+po)(pat+1—pp)= —4M1(W>, ates a magnetic dipole field outside the cylinder.

0 We conclude with two comments. First, it is interesting
that the expression for the magnetic potential in Eic)
where coshy)=d/2R. _ has no well defined parity under reflection throughytais.

For the case where the two cylinders are ferromagnet§ consists of a linear combination of an even parity piece

and uq, and w, are given by the expressions which follow [coshfé)] and an odd S i : . :

X . . ) - parity piecesinh(mé)]. This has its
Eq. (4) of the main text, itis possible to find e_pr|C|t EXPIeS- yrigin in the gyrotropic nature of the response of the cylin-
sions for the frequencies of the modes. We find two frequenaer. Upon settingu, to zero, one finds solutions of well

cies for each value af defined parity, even or odd. One understands this as follows.
1 12 In the case of the ferromagnet, is nonzero by virtue of the
Q== 7[Qs+ QuPP-4m*Qhexp —4|ml&) | presence of the spontaneous magnetizaliionzM. If we
(A8) reflect such cylinders in thgz plane, we must realize that
the magnetization is an axial vector and changes sign upon
The result in Eq(A8) is most striking in our view. First, reflection. Thus, reflection in thgz plane is not a good
as the cylinders are separated by a large distarige; 0), symmetry operation of the system.
we recover the well known expression for the magnetostatic We may apply Eq(A7) to the discussion of the normal
mode frequencies of the cylinder. When the wavelerigth modes of antiferromagnets, as well as ferromagnets, by mak-
—0, these are all degenerate with the frequeri@y, ing the appropriate choice @f; and u,. The antiferromag-
=+ (1/2)(Qg+Qy)=xy(Hy+27Mg). It is the m=1 net in zero external field has,=0, so here we have modes
mode that is excited in ferromagnetic resonahse,this last  of well defined parity. Also, the result in E¢A7) may be
expression is also the FMR frequency of the isolated cylinapplied to the discussion of the normal modes of cylinders
der. which contain conduction electrons which exhibit a plasma
As the two cylinders are brought together, remarkably weresponse, possibly placed in an external magnetic field. To
do not see a splitting of the FMR mode, but rather just astudy this case, one replacgs and w, by the appropriate
frequency shift. The reason why this is so may be apprecifrequency dependent elements of the dielectric teag@nd
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£,. An interesting case is the simple plasma response, wherghere f(x) =1/[exp(4)—1]. When the two cylinders are
£,=0 ande =g, — (Q,/Q)2.1 very far apart {(mé&,)—0), we have two degenerate modes
Quite in contrast to the case of two ferromagnetic cylin-at the plasma resonance frequency of the isolated cylinder,
ders brought together, the plasmon modes of the cylinde{)p/(gx+ 1)2, and when they are brought together so they
pair display a splitting, with frequencies just touch[ f (mé&y)—], one mode is driven up in frequency
02 1 to Q, /&2, which is the bulk plasma frequency of the ma-
= e.+1+ =f(|m|&) terial from which the cylinders are fabricated. The second
(£t 1)?+ef(Im|&) 2 mode is driven down to zero frequency, and becomes a long
wavelength acoustic mode of the cylinder pair. These two
modes each have a well defined parity.

Qm(i)zz

1 12
* f(|m|§o)+§f(|m|§o)2} }: (A9)
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