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Universal angular magnetoresistance and spin torque in ferromagneticÕnormal metal hybrids
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The electrical resistance of ferromagnetic/normal-metal (F/N) heterostructures depends on the nature of the
junctions that may be tunnel barriers, point contacts, or intermetallic interfaces. For all junction types, the
resistance of disorderedF/N/F perpendicular spin valves as a function of the angle between magnetization
vectors is shown to obey a simple universal law. The spin-current induced magnetization torque can be
measured by the angular magnetoresistance of these spin valves. The results are generalized to arbitrary
magnetoelectronic circuits.
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Magnetoelectronics achieves new functionalities by inc
porating ferromagnetic materials into electronic circuits. T
giant magnetoresistance, i.e., the dependence of the elec
resistance on the relative orientation of the magnetization
two ferromagnets in a ferromagnetic/normal/ferromagne
(F/N/F) metal structure or ‘‘spin valve,’’ is applied in rea
heads of high information density magnetic storage system1

Usually, such a device is viewed as a single bit, the mag
tization vectors being either parallel or antiparallel. Ea
seminal contributions by Slonczewski2 and Berger3 revealed
fundamentally new physics and technological possibilities
noncollinearity, which triggered a large number of expe
mental and theoretical research. An important example is
nonequilibrium spin-current induced torque~briefly, spin
torque!, which one ferromagnet can exert on the magneti
tion vector of a second magnet through a normal metal. T
torque can be large enough to dynamically tu
magnetizations,4 which is potentially interesting as a low
power switching mechanism for magnetic random acc
memories.5 The spin torque is also essential for magne
devices such as the spin-flip transistor,6–8 detection of spin
precession,9 the Gilbert damping of the magnetization d
namics in thin magnetic films,10 and spin injection induced
by ferromagnetic resonance.11 In this paper, we report a uni
versal analytic formula for the angular magnetoresistanc
arbitrary spin valves, which allows direct determination
the spin torque via a one-parameter fit of experimen
curves.12

Recently, two theoretical approaches have been develo
which address charge and spin transport in diffuse non
linear magnetic hybrid structures. The magnetoelectro
‘‘circuit theory’’ 6 is based on the division of the system in
discrete resistive elements over which the applied poten
drops, and low-resistance nodes at quasiequilibrium@as in
Fig. 1~a!#. The electrical properties are then governed
generalized Kirchhoff rules in Pauli spin space and can
computed easily. Each resistor is thereby characterized
four material parameters, the spin-up and spin-down cond
tancesg↑(↓)5(nm(dnm2ur nm

↑(↓)u2) as known from the scatter
ing theory of transport,13 as well as the real and imaginar
parts of the ‘‘mixing conductance’’ g↑↓5(nm@dnm

2r nm
↑ (r nm

↓ )* #, where r nm
s is the reflection coefficient be

tweennth th andmth transverse modes of an electron w
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spin s in the normal metal at the contact to a ferromagn
Waintal et al.14 studied the random-matrix theory of tran
port in noncollinear magnetic systems as sketched in F
1~b!. Their formalism did not require the assumption
highly resistive elements, but the algebra of the 434 scat-
tering matrices in spin space seemed so complex that
lytical results were obtained in limiting cases only.

Both theories are not valid in the limit of intermetalli
interfaces in a diffuse environment@see Fig. 1~c!# like the
perpendicular spin valves, studied thoroughly by Pratt a
Bass c.s.15 and others.16,17 These studies provided a larg
body of evidence for the two-channel~i.e., spin-up and spin-
down! series resistor model and a wealth of accurate tra
port parameters such as the interface resistances for va
material combinations. Transport through transparent in
faces in a diffuse environment has been studied forcollinear
magnetizations by Schepet al.18 Under the condition of isot-
ropy of scattering by disorder, it was found that the bu
resistances, which are proportional to the layer thicknes
are in series with interface resistances for each spins,

1

g̃s

5
1

gs
2

1

2 S 1

Ns
F

1
1

NN
D , ~1!

where Ns
F and NN are the number of modes of the bu

materials on both sides of theF/N contact. Physically, in Eq.
~1! a spurious Sharvin resistance is subtracted from the re
of scattering theory. This correction is large for transpar
interfaces and essential to obtain agreement between ex
mental results and first-principles calculations.18–20

FIG. 1. Different realizations of perpendicular spin valves.~a!
Highly resistive junctions such as point contacts and tunneling b
riers limit the conductance.~b! Spin valve in a geometrical constric
tion amenable to the scattering theory of transport.~c! Magnetic
multilayers with transparent interfaces.u is the angle between mag
netization directions.
©2003 The American Physical Society21-1
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In exchange-biased spin valves, it is possible to meas
the electric resistance as a function of the angle betw
magnetizations, which has been analyzed experimentally
theoretically.12,21,22The present study has been motivated
Pratt’s observation that experimental magnetoresista
curves12 could accurately be fitted by the form6

R~u!2R~0!

R~p!2R~0!
5

12cosu

x~11cosu!12
~2!

with one free parameterx that is given by circuit theory

x5
1

12p2

uhu2

Reh
21 ~3!

in terms of the normalized mixing conductanceh
52g↑↓ /g, the polarizationp5(g↑2g↓)/g, and the average
conductanceg5g↑1g↓ . This was surprising, since the ci
cuit theory, as mentioned above, was not designed for me
lic multilayers, and, indeed, the numerical value of fitt
parameters did not make sense, also after including effec
bulk scattering in the ferromagnetic layers.23

In the following we develop a theory of transport in di
ordered magnetoelectronic circuits and devices in the diff
regime, which unifies and extends previous theoretical
proaches. We find simple analytical results with parame
that are accessible to realistic electronic-structure calc
tions. The angular magnetoresistance for perpendicular
valves has the universal form@Eq. ~2!# in agreement with
measurements,12 and is used to determine the mixing co
ductance and spin torque. The theory is valid under two c
ditions:~i! the system should be diffuse, i.e., the elastic me
free path, ~including scattering at interfaces! should be
smaller than typical sample scales and~ii ! the ferromagnetic
elements should have an exchange splittingD, which is large
enough that the magnetic coherence length,c5\/A2mD
,min(,dF), wheredF is the thickness of the ferromagnet
layer. These conditions are usually fulfilled in transitio
metal systems: Deviations from diffuse behavior, such
quantum-size effects and breakdown of the series res
model, are small or controversial,20,24 whereas the magneti
coherence length is of the same order as the lattice con
in high-Tc transition-metal ferromagnets.10,25 We obtain
identical results by two methods: The first one is a combi
tion of the Boltzmann-like method of Schepet al.18 for col-
linear systems and the random-matrix theory of Wain
et al.14 The second one is an extension of magnetoelectro
circuit theory6 to arbitrary resistors.

Let us consider planar spin-valve structures as show
Fig. 1. We assume the existence of a distribution function
a certain positionx in the sample~a ‘‘node’’!, which in spin-
polarized systems has eight elementsf ss8

6 (x). We arrange

them into a 431 vector fW65( f ↑↑
6 , f ↑↓

6 , f ↓↑
6 , f ↓↓

6 )T as well as
into a 232 matrix, denoted by a hat:

f̂ 6~x!5S f ↑↑
6 ~x! f ↓↑

6 ~x!

f ↑↓
6 ~x! f ↓↓

6 ~x!
D . ~4!
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The superscript denotes that the distribution is in gene
anisotropic in reciprocal space,1 for right moving and2
for left moving, indicating that, in contrast to Refs. 6 and 1
the current density in the nodes is not negligible. The dis
bution functions at different nodes are matched via bound
conditions

fW1~xB!5ŤA→BfW1~xA!1ŘB→BfW2~xB!, ~5a!

fW2~xA!5ŘA→AfW1~xA!1ŤB→AfW2~xB!, ~5b!

where the 434 transmission and reflection probability m
trices ~indicated by the caret! have elements like14

@ ŤA→B# i j 5
1

Ni
B (

nm
~ tWnm

A→B! i~ tWnm
A→B! j

† , ~6!

where Ni
B5N↑

B(d i ,11d i ,2)1N↓
B(d i ,31d i ,4), Ns

B is the num-

ber of modes for spins in B, and tWnm
A→B is a vector of the

transmission coefficients in spin space.
Let us calculate the electrical charge current in a symm

ric two-terminal spin valve with relative magnetization ang
u ~Fig. 1!. xL andxR are within left and right ferromagnets a
a distance from the interface equal to the spin-diffus
length in the ferromagnet,sd

F @ ,c , and thus define the mag
netically active region. In the coordinate systems defined
the magnetization directions, the transverse component
the spin accumulation in the ferromagnets vanish6,25 and the
distributions in the magnets depend on the local spin-cur
densitiesgs and ~spin-independent! chemical potentialsm
only:

fW6~x!5„~6g↑1m!~x!,0,0,~6g↓1m!~x!…. ~7!

In symmetric junctions the spin current is symmetric as w
gs(xL)5gs(xR). The charge currenti c5(e/h)(sNs

Fgs di-
vided by the chemical potential drop equals the electri
conductanceG5eic /Dm. Equations~5! and~7! then lead to

G5
2e2

h (
i 51,4
j 51,4

$Ni
F@ 1̌2ŤL→R1ŘR→R#21ŤL→R% i j . ~8!

In principle, the matricesŤ andŘ do not need to be approxi
mate.

In dirty systems, more nodes may be introduced at c
venient locations in the sample and Eqs.~5! imply that total
transport probability matrices can be composed in terms
those of individual elements by semiclassical concatena
rules.26 For instance, the transmission through
F(0)/N/F(u) double heterojunction as in Fig. 1~without
bulk scattering! takes the form:

Ť~u![ŤN→F~u!@ 1̌2ŘN→N~0!ŘN→N~u!#21ŤF→N~0!.
~9!

These rules have been derived from the~phase-coherent!
scattering theory by averaging over random matrices14 and
found to be valid to leading order inNN

21 , whereNN is the
1-2
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number of transport channels in the normal metal. Bulk i
purity scattering can be represented by diagonal matrices14,18

~ ŤB!ss85S 11
1

Ns
B

1
e2

h

rs
BdB

AB
D 21

dss8 , ~10!

where rs
B , dB , AB are the single-spin bulk resistivities

thickness, and cross section of the bulk materialB, respec-
tively.

The problem can be simplified by transformations into
coordinate systems defined by the magnetization direct
of the ferromagnets. In terms of the spin rotation

Û5S cos
u

2
2sin

u

2

sin
u

2
cos

u

2

D ~11!

and projection matrices (s561)

ûs~u!5
1

2 S 11scosu s sinu

s sinu 12s cosu D , ~12!

the interface scattering matrices~omitting the mode indices
for simplicity! are transformed as6 tss8

F→N
5Uss8ts8

cF , tss8
N→F

5ts
cNUss8

† r̂ N→N5(sûsr s
cN , and r ss8

F→F
5r s

cFdss8 , where the
superscriptc indicates that the matrices should be evalua
in the reference frame of the local magnetization and sp
flip scattering in the contacts has been disregarded.

The angular magnetoresistance can now be evaluated
lytically for our spin valve in terms of the three interfac
conductancesg↑ , g↓ , g↓↑ defined above, the bulk number o
modesNs

F , NN, and ~single-spin! bulk resistancesrs
F , rN,

whereas the magnetization angle and layer thicknesses
the variables. Surprisingly, the form Eq.~2! is recovered, but
with renormalized parameters. The spin-dependent inter
conductances are identical to Eq.~1!, whereas, including also
bulk scattering in one-half of the spacer thicknessd/2,

1

g̃↑↓
5

1

g↑↓
1

1

2 S e2

h

rNdN

AN
2

1

NN
D . ~13!

By letting Ns
F→` we are in the regime of Ref. 14. Th

circuit theory is recovered when, additionally,NN→`. The
bare mixing conductance is bounded not only from bel
Reg↑↓>g/2,6 but also from aboveug↑↓u2/Reg↑↓<2NN . The
polarization and relative mixing conductances are also re
malized, with 0,uh̃u,`.

It is not obvious how these results should be generali
to more complicated circuits and devices and to the prese
of spin-flip scattering in the normal metal. The magnetoel
tronic circuit theory6 does not suffer from these drawback
In the following, we demonstrate that above results can
obtained with less effort, proving that with the renormaliz
tion of the transport parameters by subtracting Sharvin re
tances, circuit theory remains valid for arbitrary contacts.
this end we construct the fictitious circuit depicted in Fig.
Consider a junction that in conventional circuit theory
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characterized by a matrix conductanceĝ, leading to a matrix
currentı̂ when the normal and ferromagnetic distributionsf̂ L

and f̂ R are not equal. When the distributions of the nodes
isotropic, we know from circuit theory that

ı̂5(
ss8

~ ĝ!ss8ûs~ f̂ L2 f̂ R!ûs8 , ~14!

where the projection matricesûs are defined in Eq.~12! and
(ĝ)ss5gs , (ĝ)s,2s5gs,2s . Introducing lead conductance
which modify the distributionsf̂ L→ f̂ 1 and f̂ 2← f̂ R , respec-
tively, we may define a~renormalized! conductance matrix
ĝ̃, which causes an identical currentı̂ for the reduced~ma-
trix! potential drop:

ı̂5(
ss8

~ ĝ̃!ss8ûs~ f̂ 12 f̂ 2!ûs8 . ~15!

When the lead conductances are now chosen to be twice
Sharvin conductances, and using~matrix! current conserva-
tion

ı̂52NN~ f̂ L2 f̂ 1! ~16!

5(
s

2Ns
Fûs~ f̂ 22 f̂ R!ûs , ~17!

straightforward matrix algebra leads to the result thatĝ̃ is
identical to the renormalized interface conductances fo
above@Eqs. ~1! and, without the bulk term, Eq.~13!#. By
replacing ĝ by ĝ̃ we not only recover results for the spi
valve obtained above, but we can now use the renormal
parameters also for circuits with arbitrary complexity a
transparency of the contacts. Also spin-flip scattering inN
can be included;6 it does not affect the form of Eq.~2! either,
but only reduces the parameterx̃.

Experimental values for the parameters for Cu/Perma
~Py! spin valves arex̃51.2 and p̃50.6.12 Disregarding a
very small imaginary component of the mixin
conductance,8 using the known values for the bulk resistiv
ties, the theoretical Sharvin conductance for Cu (0
31015V21 m22/ spin,18! and the spin-flip length of Py as th
effective thickness of the ferromagnet@,sd

F 55 nm ~Ref.

FIG. 2. Fictitious device that illustrates the generalization
circuit theory to transparent resistive elements as discussed in
text.
1-3
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15!#, we arrive at the bare Cu/Py interface mixing condu
tanceG↑↓50.39(3)31015V21 m22, which is close to that
of Co/Cu.8

The spin torque on a ferromagnet2,14 equals the spin cur
rent through the interface with vector component norma
the magnetization direction and its evaluation is closely
lated to the charge conductance.6,14 An analytical expression
for the spin valve reads (h̃ assumed real!8

L~u!5
p̃g̃

2

h̃ sinu

~h̃21!cosu111h̃

Dm

4p
, ~18!

in terms of parameters that can be measured as well as
puted from first principles. Previous results2,14 are recovered
in the limit thath̃→2 andp̃→1. Note that we cannot mean
ingfully compare our results with those of Zhanget al.,27

which are derived for weak ferromagnets and are not ap
cable to transition metals considered here.25 By the general-
ized circuit theory, it is now straightforward to compute t
torque on the base contact of the spin-flip transistor w
antiparallel source-drain magnetizations~three identical con-
tacts, but disregarding spin-flip scattering in the base!.8 In-
terestingly, it is larger and has a symmetric and flatter dep
dence on the angle of the base magnetization directionu:
.

et

ys

.W

ys

o

s

.A

09442
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Lb~u!5
p̃g̃h̃ sinu

~12h̃ !cos2u121h̃

Dm

4p
.

In conclusion, we reported analytical results for the ang
lar magnetoresistance of arbitrary spin valves, which,
comparison with experiments,12 leads to a value for the mix
ing conductance and spin torque for the Cu/Py interface
G↑↓50.39(3)31015 V21 m22. The associated generaliza
tion of magnetoelectronic circuit theory opens the way
engineer materials and device configurations to optim
switching properties of magnetic random access memori
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