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Cluster Monte Carlo study of the antiferromagnetic Z(q) model
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A cluster Monte CarlaMC) updating algorithm is presented for the antiferromagng{ig) model, into
which Ising variables are embedded. Using MC simulations combined with the histogram technique, we were
able to study the-state clock model, fog=5 andq=7, ind=2 andd=3 dimensions. The two-dimensional
system exhibits a phase transition at temperaiured for bothq=5 andg=7 system states. The critical
exponents were derived as well as the ground state entropy=f@. Our results for thg=5 and theq=7
three-dimensional systems show that they exhibit a phase transition at nonzero temperature.
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[. INTRODUCTION countered in the Metropolis algorithm is the phenomenon of
critical slowing down at a second-order phase transititin.
The antiferromagnetiAF) g-state Potts model, which is leads to a long relaxation time, which is related to the
a special case of thg(g) model, has been intensively stud- critical exponent (z=2 in the single-spin-flip algorithirby
ied forq=3 andg=4. It has been shown that these models7eL? at the critical temperature. Since then, a great deal of
possess interesting and unusual properties since it is energegiffort has been devoted to reduce considerably the dynamic
cally favorable for two neighboring sites to be in distinct critical exponent, developing cluster-flip-type algoritims
spin states. As a consequence, the residual entropy of tHer the aim of improving the accuracy of MC data.
ground state alT=0 of thegq>2 model on bipartite lattices Since the MKRG method gives neither precise critical
does not vanish and is bounded from below by a nonvanishexponents nor the correct nature of phase diagrams, we de-
ing valuel However following the argument given by veloped a sophisticated numerical method. We performed a
Wannier? one concludes that a transition to a phase with ageneral cluster-flip algorithm for the AE(q) model, which
long-range order will not arise. From rescaling arguménts,enables us to study its phase diagram and derive interesting
such systems may present a distinctive low-temperatureesults, especially for odd values gf about the critical ex-
phase, with an algebraic decay of correlations. Therefore thigonents and the nature of phase transitions. To this end, we
conclusion was criticized, suggesting that it is an artifact ofelaborated on a MC cluster updating that generalizes the
the method. Using different methods, it has been shown thatmethod used by Wang, Swendsen, and KotécKigeir algo-
the critical behavior of the three-state Potts model belongs tathm was a generalization of the Swendsen-Wang
the universality class of th&Y model in three dimensions proceduré, which was based on an idea of WolfEmbed-
and the four-state Potts model belongs to the universalitgled Ising variables were used in the three-state Potts model.
class of the Heisenberg model, if the transitions areTheir algorithm consists of updating, in each step, two ran-
continuous:® The magnetization does not vanish, unlike thedom Potts states in the usual Swendsen-Wang procedure by
behavior suggested by Berker and Kadarioffew results constructing clusters of sites connected by antibonds and
about the AFZ(q) model, which is a generalization of a flipping them with probabilitys, while sites containing spins
large class of models, are presented in the literature. Using @f the other state remain frozen during the actual step. The
Migdal-Kadanoff renormalization groufMKRG) technique process is repeated in the same way for the next step by
it was shown that the model exhibits a rich variety of phasdaking two other states.
diagrams for even values of while for odd values it does Nowadays considerable effort has been given to develop
not exhibit a phase transition on a square lattice except atew alghorithms to reduce the relaxation time and then im-
T=0.% This difference comes from the fact that for even prove the MC simulation results. Recently, using the embed-
values ofq the Z(q) group, which describes the different ded cluster formalism, a probabilistic M&changing algho-
spin orientations, may be a subgroup of th€2) group rithm was extended in order to study the ferromagnitic
while for odd values it is not. Consequently, for even valuesand g-state clock modef* The Kosterlitz-Thouless transi-
of g the model possesses the symmetry of the Ising modetjons and the correlation decay expongnivere determined.
which exhibits a phase transition in two-dimensional bipar- In this paper, we propose a generalization of the cluster-
tite lattices, whereas for odd valuesit does not. Since the flip algorithm for the AFZ(q) model for arbitrary values of
AF Z(q) models havey spin variables, many configurations the number of stateg using the same idea of embedding
are allowefl and a nonzero ground state entropy is obtainedlsing sign variables into the model. Using this method, we
In three dimensions, the AE(q) model, for odd values of simulated the critical point of thg-state AFZ(q) model for
g>5, presents phase transitions between the disordereg=5 and 7 and calculated the associated critical quantities.
phase and AF phases or between the ordered phase and M¥e showed that the critical point of the model on a square
phases. lattice is located aff=0 while in three dimensions it is
Monte Carlo(MC) simulations have played an important located at finite temperature. The critical exponents were
part in investigating the AF Potts model. The difficulty en- also calculated for the two-dimensional system. In order to
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determine accurately the location and the height of very nar.:yi(”‘n)1 for the purpose of Eq(6). Note also that thel{" part of
row peaks associated with the transition, as well as to plothe Hamiltonian is unchanged under the transformation
continuous scaling curves and calculate the residual entropy(") —, — o(" .

at T=0, we used a multiple-histogram analy&is. At this stage, we can give a typical cycle of our cluster
updating procedure as follows:
Il. A CLUSTER UPDATING FOR AF Z(q) MODELS (a) First, start with an arbitrary initial configuration.

(b) Randomly choose a statefrom the sef{1,2, ... g}.
(c) Ignore all sites occupied by the stateand make
[q/2] 5 bonds between neighboring sites occupied by states different
H=—S > Jmco%_ﬂ-m(o-i_o-j)>, (1)  from n with probability p{V=1—exp(=2p")). [For the
(ij) (m=1) q Z(q) models, the Ising variables on these sites do not need to
where o;=1,2,... 0. The first sum runs over all nearest be diﬁgren_t aS]i(in). can ta!<e any sig“ihAt the ?nd of this step,
neighbors and q/2] represents the integer part qf2. In f[he lattice is partl_tloned into Ising clu§ters _that are, in fact,
what follows, we useu=2/q. The J,, are the nearest- interconnected sites where the effective Ising vanabl@%
neighbor coupling constants. J,=0 for everym>1, the have the same sign fo]fj“) positive and different signs oth-

Z(q) model reduces to the clock model. The ground state Oprwise. But, as it was not.ed be_fore, only bonds between dif-
the AF Z(q) model, whoseJ,, are negative, is characterized ferent states and compatible with the ground state energy are

by a lattice where every two neighboring sites are in differenfo'med for the case of the clock model we have simulated
stateso;#o; and the Hamiltonian(1) takes its minimum "€'®

Z(q) models are defined by the following Hamiltonian:

(dj The independent clusters are flipped with probability

value.
Now, consider an arbitrary stateand accordingly, split 2. This operation corresponds to the transformatielf},
the Hamiltonian(1) into two parts —— a,(”r% which is equivalent tar;— — o+ 2n(modq) for
the state variablg¢see Eq.(5)], for all sites of the clusters
HW+ RO, (2)  selected to be flipped.
(e) Generate a new configuration and repeat from dbgp
where This completes one cluster updating of one updating cycle
[9/2] of our algorithm. It is straightforward to show that the pro-

cedure adopted by Wargg al® for the AF three-state Potts

model is rather a simple case of the actual more general
(3)  algorithm. In addition, when Ed7) is applied to the case of

the antiferromagnetic three-state Potts model, it gives only

H=—3 3 3ycoguime—n]cogu(mo, ~n)
ij) (m=

and negative values foﬂi(j“), and the updating reduces to that of
(/2] a simple AF effective Ising model.
H(Z“)=—Z > JnsiMu(me;—n)]sifu(mo;—n)].
(ij) (m=1) 4) ll. SIMULATION ANALYSIS AND RESULTS

Before analyzing the behavior of the AHq) model, let

Let us focus on the second p&th” and set . ; . iy .
us give expressions for thermodynamic quantities of interest.

ai(f‘%=sgr{sir[u(mai—n)]}. (5) Since theZ(q) model possespq/2] order parameters that
can define all the pure phases of the system, the staggered
Equation(4) can be rewritten as follows: magnetizations, i.e., the order parameters, relative to the state
I, wherel=1,2, ... qg, are given for ad-dimensional lattice
HYY == 3 30 a(af? ©
a , A 5
with effective nearest-neighbor couplings Ma(l)=— > codsu(oi—1)]— 2, coddu(ai—1)]],
(LS i
I =13yfsinlu(e;—m]sinu(o;—n)]| ®)
[9/2] sifu(mao;—n)Jsinu(mo;—n)] where 6=1,2,...[qg/2]. The first and the second summa-
+ <mZZ> Im OO - (7) " tions are restricted to th& and B sublattices, respectively,
= i1a51

such that the sites on the sublattiéehave their nearest
neighbors on the sublattid® andL is the linear lattice size.
The order parameters that are expected to break sublattice
Eymmetry are

The couplingJi(j“) can be positive or negative depending

on the sites it connects, ang\=+1 are Ising variables
embedded into the state variables. The particular case of A
clock models §,,=0 for all m>1) corresponds to negative L
values ofJ(") and Eq.(6) becomes that of an effective AF

. J . i Mg=— M s(K)|). 9
Ising model. It is also possible to use other valuesroiin (Ms) q IZl (M) ©
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HMCS) FIG. 3. Log-log plot of the zero-temperature susceptibility

FIG. 1. Autocorrelation functio€(t) vs MC time[Monte Carlo ~ X(T=0) as a function of lattice size for d=2 andq=5.
steps(MCS)] for d=2, ,q=5 andL =33. the dynamic critical exponemt While the standard Metropo-
The susceptibility corresponding to each order parameter iﬂs algonthm gives a valug~2, our algorithm reduces
the disordered phase can be given by rastically the critical slowing down and leads to a correla-

tion time value,r~9 MC steps per spin for lattice sizes up to
Ld d L =64. The effective value afwas too small to be measured
xs=— 2 (IMAK)]). (10)  from our data. This means that critical slowing down essen-
a4 k=1 tially disappears and much more accurate results can be ob-

_ ) ) . tained. Using this algorithm, we performed simulations at
Although the preceding algorithm is valid for general t_ g for five-state and seven-state clock modelslin2.

Z(_q) models, we will restrict ourselves, for the purpose of 114 log-log plot of the zero-temperature magnetization
this work, to the clock modelX,=0 for m>1). Then the \1y ang the susceptibility versus linear sizé, for d=2
order parameters reduce to those that characterize the p fidq=5, are presented in Fig. 2 and Fig. 3, respectively.

phase of the systertfor the clock models=2 and 3 forq  The two curves are practically straight, indicating a phase

=5 and 7, respectively In order to compare the perfor- yangjtion atT=0 as was suggested by the renormalization
mance and the efficiency of our algorithm for the model, we,

=X ) o group method.

plot, in Fig. 1, the variation of the magnetization autocorre-" \ve found. in one hand. that tHe=0 critical exponents
lation functionC(t)=(M(t")M(t"+1)) with the MC timet 5.0 5/,,— 0 2014+ 0.004 andy/v=1.6264+0.005 forq=5
given in MC steps per spin foq=5 andL=33. The time o4 iy the other handB/r=0.1028-0.003 and /v
dependence is, to a very good approximation, exponential. 1 7937+ 0.001 forg="7. Assuming scaling relations, this
C(t)mexp(—tlr) . The autocorrelation time is thgn deter- yields 7=2—y/»=0.3736:0.005 and =0.2063+0.001
mined from the log-log plot oC(t) versus the tim&. By o q—5 andq=7, respectively. Note also that the hyper-
fitting the dependenpe of the autocqrrelatlon time, W't_h re'scaling relationy/v+2B/v=d is satisfied within statistical
spect to the linear sizk, to the equationr~L? we obtain

errors.
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FIG. 2. Log-log plot of the zero-temperature magnetization FIG. 4. Temperature variation of the magnetizat{d(T)) of
(M(T= 0)) as a function of lattice sizke for d=2 andq=5. the d= 3 system for different system sizes.
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In addition, Z(q) models present a highly degeneratetions is not compatible with the logarithm of the number of
ground state with a residual entropy at temperaflire0. phases as stated by Borgs and Imbifer models with well-
We used the multiple histogram methétb derive the zero-  defined barriers between phases. These values are close to
temperature entropy for thé=2 system, using information each other and slightly higher than those found for the three-
combined from 10 simulations fdr=3 andL=9 and 13 state Potts modél.
simulations forL=9 and L=17, each simulation has a  Our preliminary results concerning the three-dimensional
length of 16 MC configurations. The results obtained are systems are compatible with a phase transition at a tempera-
extended with the equatid®(L) = S()+bL "% to derive the ture different from zero. This is particularly evident when
infinite size limit of the ground state entropyS(«) considering the temperature variation of the magnetization

=0.4605 for the five-state model aiB{«)=0.4584 for the
seven-state one. The coefficidmterived from our calcula-

shown in Fig. 4 forg=7. Work is still in progress in this
direction to derive more results.
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