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Cluster Monte Carlo study of the antiferromagnetic Z„q… model
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A cluster Monte Carlo~MC! updating algorithm is presented for the antiferromagneticZ(q) model, into
which Ising variables are embedded. Using MC simulations combined with the histogram technique, we were
able to study theq-state clock model, forq55 andq57, in d52 andd53 dimensions. The two-dimensional
system exhibits a phase transition at temperatureT50 for both q55 andq57 system states. The critical
exponents were derived as well as the ground state entropy forT50. Our results for theq55 and theq57
three-dimensional systems show that they exhibit a phase transition at nonzero temperature.
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I. INTRODUCTION

The antiferromagnetic~AF! q-state Potts model, which i
a special case of theZ(q) model, has been intensively stud
ied for q53 andq54. It has been shown that these mod
possess interesting and unusual properties since it is ene
cally favorable for two neighboring sites to be in distin
spin states. As a consequence, the residual entropy o
ground state atT50 of theq.2 model on bipartite lattices
does not vanish and is bounded from below by a nonvan
ing value.1 However following the argument given b
Wannier,2 one concludes that a transition to a phase wit
long-range order will not arise. From rescaling argumen3

such systems may present a distinctive low-tempera
phase, with an algebraic decay of correlations. Therefore
conclusion was criticized, suggesting that it is an artifact
the method.4 Using different methods, it has been shown th
the critical behavior of the three-state Potts model belong
the universality class of theXY model in three dimension
and the four-state Potts model belongs to the universa
class of the Heisenberg model, if the transitions
continuous.1,5 The magnetization does not vanish, unlike t
behavior suggested by Berker and Kadanoff.3 Few results
about the AFZ(q) model, which is a generalization of
large class of models, are presented in the literature. Usi
Migdal-Kadanoff renormalization group~MKRG! technique
it was shown that the model exhibits a rich variety of pha
diagrams for even values ofq, while for odd values it does
not exhibit a phase transition on a square lattice excep
T50.6 This difference comes from the fact that for ev
values ofq the Z(q) group, which describes the differen
spin orientations, may be a subgroup of theZ(2) group
while for odd values it is not. Consequently, for even valu
of q the model possesses the symmetry of the Ising mo
which exhibits a phase transition in two-dimensional bip
tite lattices, whereas for odd values ofq it does not. Since the
AF Z(q) models haveq spin variables, many configuration
are allowed6 and a nonzero ground state entropy is obtain
In three dimensions, the AFZ(q) model, for odd values of
q.5, presents phase transitions between the disord
phase and AF phases or between the ordered phase an
phases.

Monte Carlo~MC! simulations have played an importa
part in investigating the AF Potts model. The difficulty e
0163-1829/2003/67~9!/094415~4!/$20.00 67 0944
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countered in the Metropolis algorithm is the phenomenon
critical slowing down at a second-order phase transition.7 It
leads to a long relaxation timet, which is related to the
critical exponentz (z'2 in the single-spin-flip algorithm! by
t}Lz at the critical temperature. Since then, a great dea
effort has been devoted to reduce considerably the dyna
critical exponent, developing cluster-flip-type algorithms8,9

for the aim of improving the accuracy of MC data.
Since the MKRG method gives neither precise critic

exponents nor the correct nature of phase diagrams, we
veloped a sophisticated numerical method. We performe
general cluster-flip algorithm for the AFZ(q) model, which
enables us to study its phase diagram and derive interes
results, especially for odd values ofq, about the critical ex-
ponents and the nature of phase transitions. To this end
elaborated on a MC cluster updating that generalizes
method used by Wang, Swendsen, and Kotecky´.1 Their algo-
rithm was a generalization of the Swendsen-Wa
procedure,8 which was based on an idea of Wolff.9 Embed-
ded Ising variables were used in the three-state Potts mo
Their algorithm consists of updating, in each step, two r
dom Potts states in the usual Swendsen-Wang procedur
constructing clusters of sites connected by antibonds
flipping them with probability1

2 , while sites containing spins
of the other state remain frozen during the actual step.
process is repeated in the same way for the next step
taking two other states.

Nowadays considerable effort has been given to deve
new alghorithms to reduce the relaxation time and then
prove the MC simulation results. Recently, using the emb
ded cluster formalism, a probabilistic MC10 changing algho-
rithm was extended in order to study the ferromagneticXY
and q-state clock model.11 The Kosterlitz-Thouless transi
tions and the correlation decay exponenth were determined.

In this paper, we propose a generalization of the clus
flip algorithm for the AFZ(q) model for arbitrary values of
the number of statesq using the same idea of embeddin
Ising sign variables into the model. Using this method,
simulated the critical point of theq-state AFZ(q) model for
q55 and 7 and calculated the associated critical quantit
We showed that the critical point of the model on a squ
lattice is located atT50 while in three dimensions it is
located at finite temperature. The critical exponents w
also calculated for the two-dimensional system. In order
©2003 The American Physical Society15-1
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determine accurately the location and the height of very n
row peaks associated with the transition, as well as to
continuous scaling curves and calculate the residual ent
at T50, we used a multiple-histogram analysis.12

II. A CLUSTER UPDATING FOR AF Z„q… MODELS

Z(q) models are defined by the following Hamiltonian

H52(̂
i j &

(
^m51&

[q/2]

JmcosS 2p

q
m~s i2s j ! D , ~1!

where s i51,2, . . . ,q. The first sum runs over all neare
neighbors and@q/2# represents the integer part ofq/2. In
what follows, we useu52p/q. The Jm are the nearest
neighbor coupling constants. IfJm50 for everym.1, the
Z(q) model reduces to the clock model. The ground state
the AF Z(q) model, whoseJm are negative, is characterize
by a lattice where every two neighboring sites are in differ
statess iÞs j and the Hamiltonian~1! takes its minimum
value.

Now, consider an arbitrary staten and accordingly, split
the Hamiltonian~1! into two parts

H1
(n)1H2

(n) , ~2!

where

H1
(n)52(̂

i j &
(

^m51&

[q/2]

Jmcos@u~ms i2n!#cos@u~ms j2n!#

~3!

and

H2
(n)52(̂

i j &
(

^m51&

[q/2]

Jmsin@u~ms i2n!#sin@u~ms j2n!#.

~4!

Let us focus on the second partH2
(n) and set

a i ,m
(n) 5sgn$sin@u~ms i2n!#%. ~5!

Equation~4! can be rewritten as follows:

H2
(n)52(̂

i j &
Ji j

(n)a i ,1
(n)a j ,1

(n) ~6!

with effective nearest-neighbor couplings

Ji j
(n)5J1usin@u~s i2n!#sin@u~s j2n!#u

1 (
^m52&

[q/2]

Jm

sin@u~ms i2n!#sin@u~ms j2n!#

a i ,1
(n)a j ,1

(n)
. ~7!

The couplingJi j
(n) can be positive or negative dependin

on the sites it connects, anda i ,m
(n) 561 are Ising variables

embedded into the state variables. The particular case o
clock models (Jm50 for all m.1) corresponds to negativ
values ofJi , j

(n) and Eq.~6! becomes that of an effective A
Ising model. It is also possible to use other values ofm in
09441
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a i ,m
(n) for the purpose of Eq.~6!. Note also that theH1

(n) part of
the Hamiltonian is unchanged under the transformat
a i ,m

(n)→2a i ,m
(n) .

At this stage, we can give a typical cycle of our clust
updating procedure as follows:

~a! First, start with an arbitrary initial configuration.
~b! Randomly choose a staten from the set$1,2, . . . ,q%.
~c! Ignore all sites occupied by the staten and make

bonds between neighboring sites occupied by states diffe
from n with probability pi j

(n)512exp(22buJij
(n)u). @For the

Z(q) models, the Ising variables on these sites do not nee
be different asJi j

(n) can take any sign.# At the end of this step,
the lattice is partitioned into Ising ‘‘clusters’’ that are, in fac
interconnected sites where the effective Ising variablesa i ,m

(n)

have the same sign forJi j
(n) positive and different signs oth

erwise. But, as it was noted before, only bonds between
ferent states and compatible with the ground state energy
formed for the case of the clock model we have simula
here.

~d! The independent clusters are flipped with probabil
1
2 . This operation corresponds to the transformationa i ,m

(n)

→2a i ,m
(n) , which is equivalent tos i→2s i12n(modq) for

the state variable@see Eq.~5!#, for all sites of the clusters
selected to be flipped.

~e! Generate a new configuration and repeat from step~b!.
This completes one cluster updating of one updating cy

of our algorithm. It is straightforward to show that the pr
cedure adopted by Wanget al.1 for the AF three-state Pott
model is rather a simple case of the actual more gen
algorithm. In addition, when Eq.~7! is applied to the case o
the antiferromagnetic three-state Potts model, it gives o
negative values forJi j

(n) , and the updating reduces to that
a simple AF effective Ising model.

III. SIMULATION ANALYSIS AND RESULTS

Before analyzing the behavior of the AFZ(q) model, let
us give expressions for thermodynamic quantities of inter
Since theZ(q) model possess@q/2# order parameters tha
can define all the pure phases of the system, the stagg
magnetizations, i.e., the order parameters, relative to the s
l, wherel 51,2, . . . ,q, are given for ad-dimensional lattice
by

M d~ l !5
2

~Ld!
F(

i

A

cos@du~s i2 l !#2(
i

B

cos@du~s i2 l !#G ,

~8!

whered51,2, . . . ,@q/2#. The first and the second summ
tions are restricted to theA and B sublattices, respectively
such that the sites on the sublatticeA have their neares
neighbors on the sublatticeB andL is the linear lattice size.
The order parameters that are expected to break subla
symmetry are

^M d&5
1

q (
k51

q

^uM d~k!u&. ~9!
5-2
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The susceptibility corresponding to each order paramete
the disordered phase can be given by

xd5
Ld

q (
k51

q

^uM d
2~k!u&. ~10!

Although the preceding algorithm is valid for gener
Z(q) models, we will restrict ourselves, for the purpose
this work, to the clock model (Jm50 for m.1). Then the
order parameters reduce to those that characterize the
phase of the system~for the clock model,d52 and 3 forq
55 and 7, respectively!. In order to compare the perfor
mance and the efficiency of our algorithm for the model,
plot, in Fig. 1, the variation of the magnetization autocor
lation functionC(t)5^M (t8)M (t81t)& with the MC timet
given in MC steps per spin forq55 andL533. The time
dependence is, to a very good approximation, exponen
C(t)}exp(2t/t) . The autocorrelation timet is then deter-
mined from the log-log plot ofC(t) versus the timet. By
fitting the dependence of the autocorrelation time, with
spect to the linear sizeL, to the equationt;Lz, we obtain

FIG. 1. Autocorrelation functionC(t) vs MC time@Monte Carlo
steps~MCS!# for d52, ,q55 andL533.

FIG. 2. Log-log plot of the zero-temperature magnetizat
^M (T5 0)& as a function of lattice sizeL for d52 andq55.
09441
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the dynamic critical exponentz. While the standard Metropo
lis algorithm gives a valuez'2,12 our algorithm reduces
drastically the critical slowing down and leads to a corre
tion time value,t'9 MC steps per spin for lattice sizes up
L564. The effective value ofz was too small to be measure
from our data. This means that critical slowing down ess
tially disappears and much more accurate results can be
tained. Using this algorithm, we performed simulations
T50 for five-state and seven-state clock models ind52.

The log-log plot of the zero-temperature magnetizat
^M & and the susceptibilityx versus linear sizeL, for d52
and q55, are presented in Fig. 2 and Fig. 3, respective
The two curves are practically straight, indicating a pha
transition atT50 as was suggested by the renormalizat
group method.6

We found, in one hand, that theT50 critical exponents
are b/n50.201460.004 andg/n51.626460.005 forq55
and, in the other hand,b/n50.102860.003 and g/n
51.793760.001 forq57. Assuming scaling relations, thi
yields h522g/n50.373660.005 andh50.206360.001
for q55 andq57, respectively. Note also that the hype
scaling relationg/n12b/n5d is satisfied within statistica
errors.

FIG. 3. Log-log plot of the zero-temperature susceptibil
x(T50) as a function of lattice sizeL for d52 andq55.

FIG. 4. Temperature variation of the magnetization^M (T)& of
the d53 system for different system sizes.
5-3
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In addition, Z(q) models present a highly degenera
ground state with a residual entropy at temperatureT50.
We used the multiple histogram method12 to derive the zero-
temperature entropy for thed52 system, using information
combined from 10 simulations forL53 and L59 and 13
simulations for L59 and L517, each simulation has
length of 106 MC configurations. The results obtained a
extended with the equationS(L)5S(`)1bL2d to derive the
infinite size limit of the ground state entropy:S(`)
50.4605 for the five-state model andS(`)50.4584 for the
seven-state one. The coefficientb derived from our calcula-
09441
tions is not compatible with the logarithm of the number
phases as stated by Borgs and Imbrie13 for models with well-
defined barriers between phases. These values are clo
each other and slightly higher than those found for the thr
state Potts model.1

Our preliminary results concerning the three-dimensio
systems are compatible with a phase transition at a temp
ture different from zero. This is particularly evident whe
considering the temperature variation of the magnetiza
shown in Fig. 4 forq57. Work is still in progress in this
direction to derive more results.
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