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Critical thickness for high-remanent single-domain configurations
in square ferromagnetic thin platelets
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By means of three-dimensional micromagnetic finite element modeling, zero-field magnetization patterns of
ferromagnetic thin film elements of square shape are simulated and energetically compared. The geometry of
the samplgedge lengtha, thicknessD) and its intrinsic material parameteftsardnessQ) are systematically
varied. Based on the results the corresponding phase diagram is set up which identifies a quasihomogeneous
single-domain phasgC, S, and flower statgsind a vortex phas@g.andau state For the transition between the
two phases a material- and edge-length-dependent critical film thickness is found. The numerical results can be
confirmed qualitatively using a simple analytical model calculation.
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[. INTRODUCTION energy by limiting inhomogeneities in the magnetic structure
to small regions. In general, the magnetization pattern with
An important prerequisite for all kinds of magnetic re- the smallest total sum of the energy contributions is the en-
cording media are homogeneously magnetized small paergetically most favorable configuration.
ticles or thin platelets of ferromagnetic and ferrimagnetic To optimize the quasihomogeneous magnetization pat-
materials with uniaxial anisotropy, in which two stable direc-terns for magnetic data storage it is essential to know about
tions of the magnetization may occur. Between these twdhe stability criteria responsible for the single-domain behav-
ground states the particle/platelet can be switched reproduéer. Naturally, a very coarse approximation can be derived
ibly by applying an external magnetic field. Depending on itsfrom the simple consideration that the critical size of the
positive or negative magnetization orientation each elemergpecimen must be of the order of the domain wall width to
can store information as one single §id” or "1” ) defining  avoid domain formation. Furthermore, analytical calculations
the binary number system. Whereas the conventional dat@vhich however can only solve a few problems rigorously
storage and the magneto-optical recording are based on ifrave provided useful estimations of the critical size of mag-
plane or vertical orientations of the magnetic bilespec-  netic particles of sphericat®and prolate spheroidal shapks
tively, single-domain thin film elements are currently in greatunder which the magnetic domain formation should be com-
demand for new integrated magnetoelectronic devices sugbletely suppressed, resulting in uniformly magnetized nano-
as nonvolatile magnetic memory and spin-valve magnetienagnets which behave as single giant spins. From an experi-
field sensoré-* The magnetization pattern in thin film ele- mental point of view, Elmor€ discovered the single-domain
ments represents a compromise between the minimization dfehavior in small magnetite particles. Furthermore, Cowburn
the different competing contributions to the total energy, i.e.and co-workers"**previously studied the magnetization pat-
stray field energy, magnetocrystalline anisotropy energy, antern of submicron disc shaped supermalloy nanomagnets by
exchange energy. Besides the geometry of the elementssing a high-sensitivity magneto-optical method, and delin-
(shape, size, thicknestheir magnetic structure also dependseated an experimental phase diagram. This phase diagram
on the material, microstructure and magnetic prehistory.  derived in diameter and thickness contained a vortex phase
Based on experimental and numerical investigafiins and a single-domain phase. For discs of diameters of 100 nm
soft magnetic thin films of square shape, the different maga critical thickness of 15 nm was found.
netization patterns found at zero magnetic field can be as- Recent numerical computations by Raateal.> and Her-
signed to two main types which are schematically shown irtel and Kronmiler,'® based on the finite element method
Fig. 1. The high-remanent statéS state, S state, and flower (FEM) determined the single-domain limit of ferromagnetic
statg are characterized by a high average magnetization witlsubes. This problem was treated by th®AG micromag-
quasiclosure domains formed at the front sides of the platenetic standard problertNo. 3 (Ref. 17 for achieving reli-
let. The main feature of the low-remanent statertex stat¢  able tests of numerical algorithms. The finite element method
is the vanishing average magnetization resulting from the

|15

flux closure domain pattern composed of four domains high-remanent low-remanent
which are separated from each other by 90%Nealls. In quasihomogeneous / single-domain structures  multidomain structure
thin film elements of rectangular sh&pBthe vortex can be \ /' —
shifted, leading to an asymmetric Landau structure. Furthe — — —

low-remanent domain patterns occurring exclusively in rect-| / __, . . T 1
angular platelets are the more complex Landau structure with /' \ —

a cross-tie wall and the diamond structure composed o
seven domains, where two vortices eXigt All magnetiza-
tion arrangements efficiently minimize the magnetic surface FIG. 1. Schematic representation of possible domain configura-
poles with a low cost of exchange energy and anisotropyions in a square soft magnetic thin platelet.

C-state S-state Flower-state Vortex-state
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has been proven to be a rather effective and flexible method TABLE I. Material parameters, hardnesy, and exchange
from  first  principles in the framework of lengthslgandly of different magnetic materials.
micromagnetisn®~27 It allows the calculation of magnetic :
ground states including their spin configurations, as well adaterial  Js (T) Ky (InP) A(Im  Q  Is(nm) Iy (nm)
the magnetization processes and co_rrespondlng hysteregﬁsol:ez0 10 5.0¢1 13 00013 5.7 161.2
loops of small particles, complex particle systems and thi
. S . 215 4.&10° 25 0.025 3.7 23.3

platelets. Examples of such investigations are papers by FI%

o1 g . : ; 1.8 4.Xx10° 13 0.310 3.2 5.7
cher et al“* where the critical diameters of single domain NdFe.B 161 4.310° 27 4300 27 13
soft magnetic spheres embedded within a hard matrix have 2 4 ) ' ' ) ) )
been determined, and by Hertfl al?® where the existence

of sheared Landau structures in thick permalloy films has ) o
been found. Magnetization processes and spin configuratiorlyStem, andr describes the angle between the polarization

in nanocrystalline systems depending on particle sizes ands @nd the easy direction of the layer. The stray fielis
grain sizes are investigated by Schreflal.?* Fischer et the magnetic field which results from the magnetic moments

al.?> Novosadet al.?® and Guslienkeet al?’ In the case of of the material. It should be noted that FEM utilizes, only at

rectangular platelets it has been shown in the framework o€ nodes, the valueg(6,¢) andHs (by means o or A;

the standard problerfisthat the energies of C, S, and flower S€€ below for the minimization, whereas the intermediate

states are very similar. Consequently, the determination ofalues are determined by a linear interpolation. The minimi-
the stray field requires a careful consideration because theation |t:2%If is performed using the conjugate gradient
critical thickness depends sensitively on the stray field ent€Chnique: , , o ,

ergy. It is the aim of this paper to investigate by means of Thg range of the different interactions is described by the
micromagnetic FEM simulations the influence of the thick-following two exchange lengthS:

ness of a square thin platelet on the total energy of the dif-

ferent domain configurations, whereby the edge length of the

L I X ) 2 A A
platelet and its intrinsic material parameters are systemati- ls= =\ 2)
cally modified. J2 Ky

Il. MICROMAGNETIC FINITE ELEMENT MODELING These critical length&in particular the smallest ohgovern

the extension of regions with strong spin inhomogeneity, as,
.g., domain walls or singularities of vortices, under the in-
uence of the stray field energy4 and crystal anisotropy

To calculate the magnetic structures and energies of th
squared platelets the global energy of the sample is directlﬁ
minimized by means of micromagnetic FEM, which dis-

cretizes the specimen by a three-dimensional mesh of irreg (o, and therefore the magnetic structure itself. The ex-
lar tetrahedra. In the following the basics of the algorithm are hange lengths sensitively depend on the magnetic hardness

: Q (Q=2uoK;/J2) and consequently on the intrinsic mag-
presentedfor details, see Ref. 28 netic parameterk ;, Js andA of the material. According to
Table |, the larger the hardne€¥ the smaller are the ex-
change lengths. In the case of permalloy the smallest ex-

The equilibrium configuration of the magnetization usu-change length islg=5.7 nm, whereas in the case of
ally is obtained from a minimization of the Gibbs free energyNd,Fe;,B the smallest exchange length is given by
composed of exchange ener@y,, magnetocrystalline en- =1.3 nm. Obviously, in soft magnetic materials the stray
ergy Gg, stray field energyGs, and magnetostatic energy field energy mainly determines the spin-configuration
Gy (the latter, so-called Zeeman, term can be omitted bywhereas in hard magnetic materials the magnetocrystalline
considering remanent magnetic structures without any exteenergy becomes dominant.
nal field with respect to the angular arrangement of the
spontaneous polarizatialy= uoMg (Mg: is the spontaneous
magnetizationunder the constraiftlg = Jg=const. The to-
tal Gibbs free energy for a uniaxial crystal in the remanent To handle the nonlocal nature of the long-range stray field
state with the easy axis oriented in-plane and parallel to onterm in the case of an irregular discretization mesh, two al-
edge is given by ternative variational approaches are used for the numerical

calculation of upper and lower bounds of the stray field
energy—the vector potential method and the scalar potential
G:GA+GK+GSZJ {AZ [Vy(9,)1° methgoyd. These metﬁods are based on the two Bro?/vn’s in-
equalities or functional®'>2 which contain only local vari-
ables. To achieve the exact value for the stray field energy,
the former method minimizes the functioril,

A. Micromagnetism

B. Stray field energy

1
+ Ky sirfa(d,¢)— SHs Js|aV, (1)

where A denotes the exchange constant &hdthe anisot- 1
ropy constanty; are the direction cosines ag_. ¥ ande are Ge= f (B—Jg2dV="1", 3)
the polar and azimuthal angles&fin a spherical coordinate 20) o
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with constraintV XxB=0, i.e.,B=V XA with respect to the BRI
vector potentialA=(A,,A,,A,). The latter method maxi- ra) 150nm e~
mizes the functionadp, s 4650 veslBrpctent]
=
G- 22 HSZdV—J Hg JeV =, @ :
- v 9 analytically
with constraintV X Hg=0, i.e., Hs=— VU with respect to T200b T i
the scalar potential. Hereby, the integrals extend either © 9 . °
over the magnets volum¥ or the total volume(including i scalar-potential 150nm |
the nonmagnetic area outside the sample finite-element size in outer space
To avoid the open boundary problem the bijective or par- ol v v e 1
allelepiped shell transformatiGh® is applied. This spatial 0 50 100 150
transformation maps the external space into six non- finite-element size in the layer [nm]

magnetic finite segments encapsulating the ferromagnetic
layer, consequently, changing the open boundary problem BN
into a closed one. In addition, the platelet is embedded in two 300'_b) ]
nonmagnetic layers to improve the edge ratio of the inner
space. For the FEM calculations not only the inner sptiee
magnetic layer but also the outer spad¢he two nonmag-

=t
o

netic layers and the six nonmagnetic finite segmemse to s

()

S

vector-potential

analytically

. . . . scalar-potential
be discretized by the three-dimensional mesh of tetrahedra.

A stable solution for the stray field energy is found much
faster using the functional’. The reason for this is that in
the vector potential method the minimization with increasing
numbers of iterations leads to a monotonous approach to the I ]
true equilibrium values off and¢ whereas in the case of the e

. LT o - 0 50 100 150 200
scalar potential method the maximization with increasing

. . . . finite element size in the outer space [nm]
numbers of iterations leads to(decreasing fluctuation of FIG. 2. Test of th o f1h | dth . .
the variablesy and ¢.2* . 2. Test of the precision of the scalar and the vector poten-

In order to test the precision obtained by using the twot'al for the case of a homogeneously magnetized quadratic platelet

. ' 1 umXx1 um X20 nm as a function of the size of the finite ele-
functionals ¥ or ® the stray field energy of a homoge- . . .
. ments in the layefa) and outer spacé) and comparison with the
neously magnetized3,,=0, Gx=0) square of edge length

. . precise analytical result. Even when the number of finite elements
1 um and thickness 20 nm has been calculated for differeny, o magnetic layer has been optimized, the exacalytica)

numbers of finite elements in inner and outer space. Thesg e is only obtained after additional optimization of the number
numerical results have been compared with the precise angt finite elements outside the platelet.

lytical  result, GS=(1/2)N,uOM§, using Aharoni’s
calculatiori* for the effective demagnetization factdi, of
parallelepipedsf=D/a; D is the film thickness and the
edge length of the square

-

——]ln
P/ \Vyp?+2-1

[ finite-element size in the layer
— 0nm

mates throughout the stray field energy, whereas the vector
potential method overestimates it. To achieve the correct
(analytica) results for the stray field energy a double-

2 extrapolation process has to be performed. In a first step the
+ B'”(\/E“Ll) stray field energy is extrapolated for a given finite element
size in the outer space to an infinite number of elements in

1 1

N=2" 24

\/m_ 1 ’( 1 the magnetic layer. In a second step the stray field energy is
+pIn| —=———| +2arctan ——— extrapolated for the optimized finite element size in the layer
Vpotl+1 pVp +2 (=0 nm) to an infinite number of elements in the outer
P 3 space. From this second extrapolation step it becomes evi-
+Mm+ M - & + 2 p2+1 dent, that for any given finite element size in the outer space
3p 3p 3p 3 and infinite small finite elements in the layer the analytical
value for the strayfield energy is just given as the average of
x| 2p— 1)] (5) the energy values obtained by the vector-potential method
and the scalar-potential method. Here it should be noted that

such an extrapolation has to be performed for each thickness
of the platelet. When the stray field of the magnetic structure
has been determined numerically, the affiliated arrangement
of the magnetization with minimum energy can be calcu-
+2\/§—1> IO}- (6)  lated. The alternate determination of the magnetization pat-
tern and its stray field has to be repeated iteratively as long as
According to Fig. 2 the scalar potential method underestithe process results in a self-consistent solution.

which can be simplified for thin filmsp=0.15) by means of
various Taylor series:

=2plnp+{—2In

N 1
e 2
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FIG. 3. Finite element me_sh of a quadratic perma_lloy platglet in PR .
the vortex state showing the increase of the nodal point density near b)
domain walls and the singular point. As the mesh refinement is S S~ — ~ S
performed predominantly in the narrow inhomogeneous regions and NN~ -
not in_the _vvidely ex_tended homogeneous regions of the domains, -
CPU time is dramatically saved.
N -
C. Adaptive mesh refinement - -
In order to calculate the different energy contributions to - e
the total energy of the magnetization patterns precisely, in ~-~ o 7
the regions of high gradients of the magnetization direction -y
the mesh length should be smaller than the exchange lengths
(=I4for soft magnetic materials, ardl for hard magnetic -
materialg. To resolve the details of the magnetization in re- A L2
gions of strong inhomogeneities the mesh length of the three- D .

dimensional FEM grid is adjusted to the changes of the di-

rection of Js by the method of the so-called adaptive mesh  F|G. 4. High-remanent state of C-state configuration obtained
refinement® This is performed either by bisectioning the by FEM calculations for a square permalloy plateket=(1 x«m) of
tetrahedra by adding new nodal points on the edges of th@icknesses 2 nnta) and 20 nm(b).

tetrahedral-type refinementor by moving the nodal points

toward the regions of higher gradients of the magnetizatiorexist in square thin platelets at zero magnetic field. Hereby,
directions ¢-type refinement® 3" The details of the appli- the transition between the configurations in order to trans-
cation of these two methods for the local increase of thdorm into one with a lower Gibbs free energy often is pre-
discretization density were described in Ref. 28. Especiallwented by large energy barriers. However, in real materials
the h-type refinement method is well suited for a descriptionwith defects a large number of nucleation centers exist with
of spin singularities where the magnetization is perpendiculocally reduced energy barriers which promote the transition
lar to the surface. On the other hand, the regions of a more anto the lowest energy configuration. In the following, it will
less homogeneous arrangement of the magnetization can be shown that the transition depends on the thickness and
calculated with high accuracy even for a comparativelyedge length of the platelet and on its material parameters.
coarse mesh. As an example, Fig. 3 shows the mesh refine-

ment of a square permalloy thin film element for the vortex A. Soft magnet material: permalloy

state near the 90° domain walls and the singular point. After . . .
each construction of a new mesh the magnetization has to be The quasihomogeneous C- and S-state configurations are

calculated from the minimization of the magnetic Gibbs freeaChieved by suitable modifications of the basic single-

energy. This procedure is repeated until the change of thgomam starting configuration. In fact, the C state forms if the

total Gibbs free enerav approaches a fixed limit. With ada Initial state is sym.metrical to the symmetry axis Whereas_the
dy app b state develops in the case of a broken symmetry. In Fig. 4

tive meshing methods reliable calculations of the magneti C stat din Fio. 5 the S state of I
structure has become possible whose sizes are considera state and in Fig. € > state ol a square permalloy
platelet @=1 um) can be seen for two different thick-

larger than the smallest exchange length of the material nesses. Both C and S states are developed significantly more
distinctly in the case of the thicker layer &=20 nm in
thickness, showing in the magnetization distribution at the
front sides of the platelet the quasi-closure end domains of
The FEM calculations show that four different metastablethe typical C or S forms within a region of widthg
magnetic structuresC, S, flower, and vortex statesnay =161 nm. In contrast, for a layer thickness of 2 nm the

IIl. THICKNESS DEPENDENCE OF MAGNETIZATION
STRUCTURES

094414-4



CRITICAL THICKNESS FOR HIGH-REMANENT SINGLE. .. PHYSICAL REVIEW B 67, 094414 (2003

-y e mp = = = = = ! | ! | '
a) -y mp mp = = = = = = I Dcrit Flower—state |
- oy mp mp mp E = >
- oy - mp W = > > = ,:20_ S—s’(ate
- m E s S = > = = = = © L
() r C-state ]
- o o o = = = = wm = = = — L d
e
- e e e = = = = > = = = L -
acs
- e m w w = = = = = 10 + -
- - mb mp =y mp =y mp mp r \ —
- > = > = m = m B M 1
- - > = = = me r ]
L : Vortex-state |
B A G . . Y A 0 f i | L 1 !
P e s e w v J . .
FIG. 6. Total energie® obtained by the FEM method for the
x> - - e A different types of spin configurations in a square permalloy thin
P SRR ¢ platelet of edge length &m as a function of the layer thickneBs
- D" denotes the critical thickness for which a phase transition be-
- o > e .
tween the quasihomogeneous state and the vortex state takes place.
P o > > w
A g principle, the energies of all configurations increase with in-
VA R 4 creasing thickness. Moreover, for all configurations the stray
e . . .. .3 fleld energy is the dominating energy contrlbut_lon, a_nd even
in the case of the low-remanent type Il configuration, the
P T T o m me me e m o

stray field energy exceeds the increased exchange energy. As
a consequence of the high stray field energy resulting from
FIG. 5. High-remanent state of S-state configuration obtained byhe surface charges, the four domain state for thicker plate-
FEM calculations for a square permalloy platelet<1 um) of |ets has the lowest total Gibbs free energy. With the decreas-
thicknesses 2 nntg) and 20 nm(b). ing thickness of the platelet, however, the magnetostatic
stray field energy decreases more rapidly than the wall en-
magnetization deviates only slightly from the direction of thegrgy. Therefore, at a certain critical thickness the total energy
easy axis, nevertheless still showing a C-like/S-like magnepf the quasihomogeneous states becomes lower than that of
tization pattern with a marginal flower contribution. The the four domain state, so that the quasihomogeneous states
flower state which forms directly from the high-field satu- hecome the energetically most favorable configurations. The
rated (single-domaih state as a further quasihomogeneousnymerical calculations show that the transition for permalloy
spin configuration is represented in FigaBfor the permal-  takes place at 1.8 nm. For this layer thickness the three types
loy platelet of dimensions umX1 umx2 nm. Here the of quasihomogeneous states are energetically degenerated
inhomogeneous spin regions occur symmetrically in all foutyithin the numerical errors of107 2 J. The degeneration
edges of the platelet. With increasing layer thickness, thes removed for layers thicker than 3 nm, where the C state
distinction of the inhomogeneous areas visibly increases as3s the lowest energy minimum of the quasihomogeneous
in the case of the C or S state. However, if the thickness otates, followed by the S state. The reason for this could be
the platelet becomes larger than 6 nm the flower state ighat in the C-state configuration the distance between the
found to be unstable. _ ~ attracting positive and negative surface charges is signifi-
The low-remanent Landau-type state is obtained if theantly smaller than in the S-state structure. The flower state,
starting configuration corresponds to a two domain state withinally, is the energetically most unfavorable quasihomoge-
two domains magnetized parallel and antiparallel to eacheous configuration because its increased exchange energy

other along the easy axis. In the case of permalloy the vortexnq inefficiently reduced surface charges are stable only up
state is the highest symmetrically, with a well developed vor{g 3 sample thickness of 6 nm.

tex in its center in which the magnetization is oriented per-
pendicular to the laydisee Fig. 7a)]. This flux-closure con-
figuration is invariant with respect to the layer thickness. In
Fig. 6 the different magnetization patterns possibly appearing The critical thickness for which the energetical switching
in the (1x 1 um?) permalloy platelet are energetically com- between the quasihomogeneous configurations and the four
pared with each other as a function of the layer thickness. Illomain state occurs also depends on the magnetic hardness

B. Variation of the magnetic hardness
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FIG. 7. Low-remanent state of Landau configuratiamultido- FIG. 8. High-remanent state of flower state configuration re-

main statg¢ achieved by FEM calculations for a square thin plateletceived by FEM calculations for a square thin platel@t=(L xm,

(a=1 um, D=2 nm) of different materialsia) permalloy andb) =~ D=2 nm) of different materialsta) permalloy andb) cobalt.

cobalt.

magnetic materials are unstable arrangements for the magne-
tization. The larger the hardne&sof the material, the larger

the critical thicknesD®™ for which the quasihomogeneous
(flower) state becomes energetically unfavored for a given

Q of the material. As presented in Fig.(ay, the high-

symmetric vortex state is only developed for very soft
uniaxial magnetic materials like permalloy. Actually, with
increasing hardnes®, as for Co according to Fig.(8), the

domain walls are pressed more and more in the direction of
the easy axis of the layer whereby the central vortex increas- X . .
ingly loses importance. In other words, for sufficiently hard 20F thualgiomaln
magnetic materials, e.g., for biée ,B, the four 90° Nel !

25_llll|llll|lll|||

Co

walls have changed to one 180° élevall and the vortex has £15 - -
disappeared. It is noteworthy that the transformation ob- — I ]
served only occurs for uniaxial magnetic materials. In the T 10f ]

o f ]

case of cubic anisotropy the low-remanent vortex-state re-
mains high-symmetric up to highe& values. 5 .
A very similar behavior is observed for the flower state,
illustrated in Fig. 8 for permalloy and Co. With increasing Py
hardnessQ the extensions of the inhomogeneous spin re- 0 0.1 0.2 0.3
gions at the corners are significantly reduced, reflecting the
reduction of the exchange length with increasing magne- Q
tocrystalline anisotropy. Here it should be mentioned that for F|G. 9. Numerically determinedd—-D°™) phase diagram of the
hard magnetic materials, as, e.g., for Co angél,B, the  |owest-energy magnetization distribution in square thin platelets of
flower state is the only stable quasihomogeneous magnetigige length 1um. Q=0.15 corresponds to a fictitious magnetic
structure. In fact, it turns out that the C and S states in harehaterial K,=240000 J/m, A=20 pJ/m, andl;=2.0 T).

quasihomogeneous
Fe phase
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FIG. 10. Numerically determineda¢-D°™) phase diagram of FIG. 11. Determination of the critical thickness of a square per-
the lowest-energy magnetization distribution in square thin plateletgnalloy platelet @=1 «m) by means of an analytical model calcu-
of iron and permalloy. lation.
geometry of the platelet. This becomes obvious from Fig. 9, @yzz\/zyﬁloa[), )

where the phase diagram of the lowest-energy magnetization

distribution for a square (1 wm?) platelet is shown to Here yy. denotes the wall energy of a 90° &levall which
depend on the platelet hardness and critical thickness. Belosan be derived from the bulk relation

the phase boundary vortex nucleation becomes impossible, % 180

and the quasihomogeneous state has the lowest total energy. N = 0.32yy 9
The phase transition takes place spontaneously as a first or- . . s . .
der p?hase transition, where%y for E’:lrg@rthe flozver state 1N tum, for y* of a Neel wall in an infinite film with thick-
becomes dominant and for smallér (<0.02) the C state NeSSD according to Aharorif the following equation is

dominates. valid:
2mwA mAWK, mIEA 2A
iati 180. NN S=N N
=——(\J2—-1)+ + -
C. Variation of the edge length YN An (\/E 1) 5 A 1 D
An analogous phase diagram can be set up as a fuction of

the edge length of the square platelésee Fig. 1D Accord- <inl 1+ D ) (10)
ingly, for a given material the critical thickness is clearly 2AN)

shifted to larger values when the edge length is appropriatel
diminished. The magnetization pattern itself is independen
of the scaling.

ith the wall width A which obeys the relation

2A K, J3[1 2A, D
Aﬁ(ﬁ D=5 "2,z D M1,
IV. COMPARISON WITH ANALYTICAL MODEL Ay
CALCULATIONS + .
2Ay+D D

In a first approximation the critical thickne&"™ result-
ing from the numerical calculation can be determined from
simple analytical model calculation, which compares the ho-

or thin films ©<Ay) Egs.(10) and(11) can be simplified
y making use of different Taylor series resulting in

mogeneous magnetization stétéhere the total energy arises 22
from the stray field energy onlyenergetically with the four A= /ﬁ(\/i— 1) 1- 1 ﬂ (12
domain statgwhere the total energy is determined by the N K1 64( \/5_ 1) oA’
wall energy, whereby the latter state is supposed to be com-
posed of four 90° Nel walls. For thin platelets, the total NE
energy of the homogeneous state obeys the equation yi0=27 J2-1 AK,+ T D. (13
o
P =LJ2Na2D ) Based on this model the critical thickness is received when
S 2u" S ' the total energies of the two states are identical, i.e., from

dgs=>d,, and results i °'=0.3 nm for a square permalloy
wherebyN is given by Eq.(6). On the other hand, the total platelet of edge length &m. In Fig. 11 this analytical result
energy of the four domain state can be obtained from thés compared to the corresponding numerical one. Obviously,
following formula: the analytical calculation overstimates the stray field
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energy of the(quasjhomogeneous state. This is not surpris-and edge length and thickness and magnetic hardness
ing since the C, S, or flowerlike quasi-closure end domaindy means of micromagnetic numerical FEM calculations
reduce the surface charges. This effect, however, has n@dentifying a multidomain phase and a single-domain phase.
been included in the analytical model. In contrast, the wallThe critical layer thickness for which the phase transition
energy of the four domain state is considerably underestihetween the two phases takes place is shifted to significantly
mated by the analytical calculation. The reasons for this argyrger values when the hardne§sincreases, whereas an
that Eq.(9) is valid for bulk samples and has to be modified jncreasing edge length of the platelet reduces the critical
for thin platelets, and the vortex itself, which has not beengyer thickness. These results are fundamental for the devel-

taken into account up to now in the analytical model. Nev-gyment of thin film elements in the magnetic recording
ertheless, from a qualitative point of view, the analytlcalindustry
model calculation can explain the existence of a critical layer '
thickness, and also gives the right trends for the appearance
of the two phase diagrams illustrated above.
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