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Critical thickness for high-remanent single-domain configurations
in square ferromagnetic thin platelets

D. Goll, G. Schu¨tz, and H. Kronmu¨ller
Max-Planck-Institut fu¨r Metallforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

~Received 29 July 2002; revised manuscript received 2 January 2003; published 20 March 2003!

By means of three-dimensional micromagnetic finite element modeling, zero-field magnetization patterns of
ferromagnetic thin film elements of square shape are simulated and energetically compared. The geometry of
the sample~edge lengtha, thicknessD) and its intrinsic material parameters~hardnessQ) are systematically
varied. Based on the results the corresponding phase diagram is set up which identifies a quasihomogeneous
single-domain phase~C, S, and flower states! and a vortex phase~Landau state!. For the transition between the
two phases a material- and edge-length-dependent critical film thickness is found. The numerical results can be
confirmed qualitatively using a simple analytical model calculation.

DOI: 10.1103/PhysRevB.67.094414 PACS number~s!: 75.50.Bb, 75.60.Ch, 75.70.Ak, 75.70.Kw
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I. INTRODUCTION

An important prerequisite for all kinds of magnetic r
cording media are homogeneously magnetized small
ticles or thin platelets of ferromagnetic and ferrimagne
materials with uniaxial anisotropy, in which two stable dire
tions of the magnetization may occur. Between these
ground states the particle/platelet can be switched repro
ibly by applying an external magnetic field. Depending on
positive or negative magnetization orientation each elem
can store information as one single bit~’’0’’ or ’’1’’ ! defining
the binary number system. Whereas the conventional
storage and the magneto-optical recording are based o
plane or vertical orientations of the magnetic bit,1 respec-
tively, single-domain thin film elements are currently in gre
demand for new integrated magnetoelectronic devices s
as nonvolatile magnetic memory and spin-valve magn
field sensors.2–4 The magnetization pattern in thin film ele
ments represents a compromise between the minimizatio
the different competing contributions to the total energy, i
stray field energy, magnetocrystalline anisotropy energy,
exchange energy. Besides the geometry of the elem
~shape, size, thickness! their magnetic structure also depen
on the material, microstructure and magnetic prehistory.

Based on experimental and numerical investigations5 in
soft magnetic thin films of square shape, the different m
netization patterns found at zero magnetic field can be
signed to two main types which are schematically shown
Fig. 1. The high-remanent states~C state, S state, and flowe
state! are characterized by a high average magnetization w
quasiclosure domains formed at the front sides of the pl
let. The main feature of the low-remanent state~vortex state!
is the vanishing average magnetization resulting from
flux closure domain pattern composed of four doma
which are separated from each other by 90° Ne´el walls. In
thin film elements of rectangular shape6–8 the vortex can be
shifted, leading to an asymmetric Landau structure. Fur
low-remanent domain patterns occurring exclusively in re
angular platelets are the more complex Landau structure
a cross-tie wall and the diamond structure composed
seven domains, where two vortices exist.6–8 All magnetiza-
tion arrangements efficiently minimize the magnetic surfa
poles with a low cost of exchange energy and anisotr
0163-1829/2003/67~9!/094414~8!/$20.00 67 0944
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energy by limiting inhomogeneities in the magnetic structu
to small regions. In general, the magnetization pattern w
the smallest total sum of the energy contributions is the
ergetically most favorable configuration.

To optimize the quasihomogeneous magnetization p
terns for magnetic data storage it is essential to know ab
the stability criteria responsible for the single-domain beh
ior. Naturally, a very coarse approximation can be deriv
from the simple consideration that the critical size of t
specimen must be of the order of the domain wall width
avoid domain formation. Furthermore, analytical calculatio
~which however can only solve a few problems rigorous!
have provided useful estimations of the critical size of ma
netic particles of spherical9,10 and prolate spheroidal shapes11

under which the magnetic domain formation should be co
pletely suppressed, resulting in uniformly magnetized na
magnets which behave as single giant spins. From an exp
mental point of view, Elmore12 discovered the single-domai
behavior in small magnetite particles. Furthermore, Cowb
and co-workers13,14previously studied the magnetization pa
tern of submicron disc shaped supermalloy nanomagnet
using a high-sensitivity magneto-optical method, and de
eated an experimental phase diagram. This phase diag
derived in diameter and thickness contained a vortex ph
and a single-domain phase. For discs of diameters of 100
a critical thickness of 15 nm was found.

Recent numerical computations by Raveet al.15 and Her-
tel and Kronmu¨ller,16 based on the finite element metho
~FEM! determined the single-domain limit of ferromagne
cubes. This problem was treated by themMAG micromag-
netic standard problem~No. 3! ~Ref. 17! for achieving reli-
able tests of numerical algorithms. The finite element meth

FIG. 1. Schematic representation of possible domain config
tions in a square soft magnetic thin platelet.
©2003 The American Physical Society14-1
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has been proven to be a rather effective and flexible met
from first principles in the framework o
micromagnetism.18–27 It allows the calculation of magneti
ground states including their spin configurations, as wel
the magnetization processes and corresponding hyste
loops of small particles, complex particle systems and t
platelets. Examples of such investigations are papers by
cher et al.21 where the critical diameters of single doma
soft magnetic spheres embedded within a hard matrix h
been determined, and by Hertelet al.23 where the existence
of sheared Landau structures in thick permalloy films h
been found. Magnetization processes and spin configurat
in nanocrystalline systems depending on particle sizes
grain sizes are investigated by Schreflet al.,24 Fischer et
al.,25 Novosadet al.,26 and Guslienkoet al.27 In the case of
rectangular platelets it has been shown in the framewor
the standard problems17 that the energies of C, S, and flow
states are very similar. Consequently, the determination
the stray field requires a careful consideration because
critical thickness depends sensitively on the stray field
ergy. It is the aim of this paper to investigate by means
micromagnetic FEM simulations the influence of the thic
ness of a square thin platelet on the total energy of the
ferent domain configurations, whereby the edge length of
platelet and its intrinsic material parameters are system
cally modified.

II. MICROMAGNETIC FINITE ELEMENT MODELING

To calculate the magnetic structures and energies of
squared platelets the global energy of the sample is dire
minimized by means of micromagnetic FEM, which di
cretizes the specimen by a three-dimensional mesh of irre
lar tetrahedra. In the following the basics of the algorithm
presented~for details, see Ref. 28!.

A. Micromagnetism

The equilibrium configuration of the magnetization us
ally is obtained from a minimization of the Gibbs free ener
composed of exchange energyGA , magnetocrystalline en
ergy GK , stray field energyGS, and magnetostatic energ
GH ~the latter, so-called Zeeman, term can be omitted
considering remanent magnetic structures without any ex
nal field! with respect to the angular arrangement of t
spontaneous polarizationJS5m0MS (MS: is the spontaneou
magnetization! under the constraintuJSu5JS5const. The to-
tal Gibbs free energy for a uniaxial crystal in the reman
state with the easy axis oriented in-plane and parallel to
edge is given by

G5GA1GK1GS5E FA(
i

@¹g i~q,w!#2

1K1 sin2a~q,w!2
1

2
HS•JSGdV, ~1!

whereA denotes the exchange constant andK1 the anisot-
ropy constant.g i are the direction cosines ofJS. q andw are
the polar and azimuthal angles ofJS in a spherical coordinate
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system, anda describes the angle between the polarizat
JS and the easy direction of the layer. The stray fieldHS is
the magnetic field which results from the magnetic mome
of the material. It should be noted that FEM utilizes, only
the nodes, the valuesg i(u,w) andHS ~by means ofU or A;
see below! for the minimization, whereas the intermedia
values are determined by a linear interpolation. The minim
zation itself is performed using the conjugate gradie
technique.29

The range of the different interactions is described by
following two exchange lengths:30

l S5A2m0A

JS
2

, l K5A A

K1
. ~2!

These critical lengths~in particular the smallest one! govern
the extension of regions with strong spin inhomogeneity,
e.g., domain walls or singularities of vortices, under the
fluence of the stray field energy (l S) and crystal anisotropy
( l K), and therefore the magnetic structure itself. The
change lengths sensitively depend on the magnetic hard
Q (Q52m0K1 /JS

2) and consequently on the intrinsic ma
netic parametersK1 , JS andA of the material. According to
Table I, the larger the hardnessQ the smaller are the ex
change lengths. In the case of permalloy the smallest
change length isl S55.7 nm, whereas in the case o
Nd2Fe14B the smallest exchange length is given byl K
51.3 nm. Obviously, in soft magnetic materials the str
field energy mainly determines the spin-configurati
whereas in hard magnetic materials the magnetocrysta
energy becomes dominant.

B. Stray field energy

To handle the nonlocal nature of the long-range stray fi
term in the case of an irregular discretization mesh, two
ternative variational approaches are used for the nume
calculation of upper and lower bounds of the stray fie
energy—the vector potential method and the scalar poten
method. These methods are based on the two Brown’s
equalities or functionals,31,32 which contain only local vari-
ables. To achieve the exact value for the stray field ene
the former method minimizes the functionalC,

GS<
1

2m0
È ~B2JS!2dV5C, ~3!

TABLE I. Material parameters, hardnessQ, and exchange
lengthsl S and l K of different magnetic materials.

Material JS ~T! K1 (J/m3) A ~pJ/m! Q lS ~nm! l K ~nm!

Ni80Fe20 1.0 5.03102 13 0.0013 5.7 161.2
Fe 2.15 4.63104 25 0.025 3.7 23.3
Co 1.8 4.03105 13 0.310 3.2 5.7
Nd2Fe14B 1.61 4.33106 7.7 4.300 2.7 1.3
4-2
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with constraint¹3B50, i.e.,B5¹3A with respect to the
vector potentialA5(Ax ,Ay ,Az). The latter method maxi-
mizes the functionalF,

GS>2
m0

2 È HS
2dV2E

V
HS•JSdV5F, ~4!

with constraint¹3HS50, i.e., HS52¹U with respect to
the scalar potentialU. Hereby, the integrals extend eith
over the magnets volumeV or the total volume~including
the nonmagnetic area outside the sample!.

To avoid the open boundary problem the bijective or p
allelepiped shell transformation28,33 is applied. This spatia
transformation maps the external space into six n
magnetic finite segments encapsulating the ferromagn
layer, consequently, changing the open boundary prob
into a closed one. In addition, the platelet is embedded in
nonmagnetic layers to improve the edge ratio of the in
space. For the FEM calculations not only the inner space~the
magnetic layer! but also the outer space~the two nonmag-
netic layers and the six nonmagnetic finite segments! have to
be discretized by the three-dimensional mesh of tetrahed

A stable solution for the stray field energy is found mu
faster using the functionalC. The reason for this is that in
the vector potential method the minimization with increas
numbers of iterations leads to a monotonous approach to
true equilibrium values ofq andw whereas in the case of th
scalar potential method the maximization with increas
numbers of iterations leads to a~decreasing! fluctuation of
the variablesq andw.21

In order to test the precision obtained by using the t
functionals C or F the stray field energy of a homoge
neously magnetized (Gex50, GK50) square of edge lengt
1 mm and thickness 20 nm has been calculated for differ
numbers of finite elements in inner and outer space. Th
numerical results have been compared with the precise
lytical result, GS5(1/2)Nm0MS

2 , using Aharoni’s
calculation34 for the effective demagnetization factor,N, of
parallelepipeds (p5D/a; D is the film thickness anda the
edge length of the square!,

N5
1

2
2

1

2p F S p2
1

pD lnS Ap21211

Ap21221
D 1

2

p
ln~A211!

1p lnS Ap21121

Ap21111
D 12arctanS 1

pAp212
D

1
2~12p2!

3p
Ap2121

2~12p3!

3p
2

2A2

3p
1

2

3
Ap211

3S 2p2
1

pD G , ~5!

which can be simplified for thin films (p<0.15) by means of
various Taylor series:

N'
1

2p F22p ln p1S 22 ln
A211

2
12A221D pG . ~6!

According to Fig. 2 the scalar potential method undere
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mates throughout the stray field energy, whereas the ve
potential method overestimates it. To achieve the corr
~analytical! results for the stray field energy a doubl
extrapolation process has to be performed. In a first step
stray field energy is extrapolated for a given finite elem
size in the outer space to an infinite number of elements
the magnetic layer. In a second step the stray field energ
extrapolated for the optimized finite element size in the la
('0 nm) to an infinite number of elements in the out
space. From this second extrapolation step it becomes
dent, that for any given finite element size in the outer sp
and infinite small finite elements in the layer the analytic
value for the strayfield energy is just given as the average
the energy values obtained by the vector-potential met
and the scalar-potential method. Here it should be noted
such an extrapolation has to be performed for each thickn
of the platelet. When the stray field of the magnetic struct
has been determined numerically, the affiliated arrangem
of the magnetization with minimum energy can be calc
lated. The alternate determination of the magnetization p
tern and its stray field has to be repeated iteratively as lon
the process results in a self-consistent solution.

FIG. 2. Test of the precision of the scalar and the vector pot
tial for the case of a homogeneously magnetized quadratic pla
1 mm31 mm 320 nm as a function of the size of the finite el
ments in the layer~a! and outer space~b! and comparison with the
precise analytical result. Even when the number of finite eleme
in the magnetic layer has been optimized, the exact~analytical!
value is only obtained after additional optimization of the numb
of finite elements outside the platelet.
4-3
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C. Adaptive mesh refinement

In order to calculate the different energy contributions
the total energy of the magnetization patterns precisely
the regions of high gradients of the magnetization direct
the mesh length should be smaller than the exchange len
(< l S for soft magnetic materials, and< l K for hard magnetic
materials!. To resolve the details of the magnetization in r
gions of strong inhomogeneities the mesh length of the th
dimensional FEM grid is adjusted to the changes of the
rection of JS by the method of the so-called adaptive me
refinement.28 This is performed either by bisectioning th
tetrahedra by adding new nodal points on the edges of
tetrahedra (h-type refinement! or by moving the nodal points
toward the regions of higher gradients of the magnetiza
directions (r -type refinement!.35–37 The details of the appli-
cation of these two methods for the local increase of
discretization density were described in Ref. 28. Especi
theh-type refinement method is well suited for a descripti
of spin singularities where the magnetization is perpend
lar to the surface. On the other hand, the regions of a mor
less homogeneous arrangement of the magnetization ca
calculated with high accuracy even for a comparativ
coarse mesh. As an example, Fig. 3 shows the mesh re
ment of a square permalloy thin film element for the vort
state near the 90° domain walls and the singular point. A
each construction of a new mesh the magnetization has t
calculated from the minimization of the magnetic Gibbs fr
energy. This procedure is repeated until the change of
total Gibbs free energy approaches a fixed limit. With ad
tive meshing methods reliable calculations of the magn
structure has become possible whose sizes are conside
larger than the smallest exchange length of the material.

III. THICKNESS DEPENDENCE OF MAGNETIZATION
STRUCTURES

The FEM calculations show that four different metasta
magnetic structures~C, S, flower, and vortex states! may

FIG. 3. Finite element mesh of a quadratic permalloy platele
the vortex state showing the increase of the nodal point density
domain walls and the singular point. As the mesh refinemen
performed predominantly in the narrow inhomogeneous regions
not in the widely extended homogeneous regions of the doma
CPU time is dramatically saved.
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exist in square thin platelets at zero magnetic field. Here
the transition between the configurations in order to tra
form into one with a lower Gibbs free energy often is pr
vented by large energy barriers. However, in real mater
with defects a large number of nucleation centers exist w
locally reduced energy barriers which promote the transit
into the lowest energy configuration. In the following, it wi
be shown that the transition depends on the thickness
edge length of the platelet and on its material parameter

A. Soft magnet material: permalloy

The quasihomogeneous C- and S-state configurations
achieved by suitable modifications of the basic sing
domain starting configuration. In fact, the C state forms if t
initial state is symmetrical to the symmetry axis whereas
S state develops in the case of a broken symmetry. In Fi
the C state and in Fig. 5 the S state of a square perma
platelet (a51 mm) can be seen for two different thick
nesses. Both C and S states are developed significantly m
distinctly in the case of the thicker layer ofD520 nm in
thickness, showing in the magnetization distribution at
front sides of the platelet the quasi-closure end domains
the typical C or S forms within a region of widthl K
5161 nm. In contrast, for a layer thickness of 2 nm t

n
ar
is
nd
s,

FIG. 4. High-remanent state of C-state configuration obtain
by FEM calculations for a square permalloy platelet (a51 mm) of
thicknesses 2 nm~a! and 20 nm~b!.
4-4
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magnetization deviates only slightly from the direction of t
easy axis, nevertheless still showing a C-like/S-like mag
tization pattern with a marginal flower contribution. Th
flower state which forms directly from the high-field sat
rated ~single-domain! state as a further quasihomogeneo
spin configuration is represented in Fig. 8~a! for the permal-
loy platelet of dimensions 1mm31 mm32 nm. Here the
inhomogeneous spin regions occur symmetrically in all fo
edges of the platelet. With increasing layer thickness,
distinction of the inhomogeneous areas visibly increase
in the case of the C or S state. However, if the thickness
the platelet becomes larger than 6 nm the flower stat
found to be unstable.

The low-remanent Landau-type state is obtained if
starting configuration corresponds to a two domain state w
two domains magnetized parallel and antiparallel to e
other along the easy axis. In the case of permalloy the vo
state is the highest symmetrically, with a well developed v
tex in its center in which the magnetization is oriented p
pendicular to the layer@see Fig. 7~a!#. This flux-closure con-
figuration is invariant with respect to the layer thickness.
Fig. 6 the different magnetization patterns possibly appea
in the (131 mm2) permalloy platelet are energetically com
pared with each other as a function of the layer thickness

FIG. 5. High-remanent state of S-state configuration obtained
FEM calculations for a square permalloy platelet (a51 mm) of
thicknesses 2 nm~a! and 20 nm~b!.
09441
-

s

r
e
as
f
is

e
th
h
x
-
-

g

In

principle, the energies of all configurations increase with
creasing thickness. Moreover, for all configurations the st
field energy is the dominating energy contribution, and ev
in the case of the low-remanent type II configuration, t
stray field energy exceeds the increased exchange energ
a consequence of the high stray field energy resulting fr
the surface charges, the four domain state for thicker pl
lets has the lowest total Gibbs free energy. With the decre
ing thickness of the platelet, however, the magnetost
stray field energy decreases more rapidly than the wall
ergy. Therefore, at a certain critical thickness the total ene
of the quasihomogeneous states becomes lower than th
the four domain state, so that the quasihomogeneous s
become the energetically most favorable configurations.
numerical calculations show that the transition for permal
takes place at 1.8 nm. For this layer thickness the three ty
of quasihomogeneous states are energetically degene
within the numerical errors of,10219 J. The degeneration
is removed for layers thicker than 3 nm, where the C st
has the lowest energy minimum of the quasihomogene
states, followed by the S state. The reason for this could
that in the C-state configuration the distance between
attracting positive and negative surface charges is sig
cantly smaller than in the S-state structure. The flower st
finally, is the energetically most unfavorable quasihomo
neous configuration because its increased exchange en
and inefficiently reduced surface charges are stable only
to a sample thickness of 6 nm.

B. Variation of the magnetic hardness

The critical thickness for which the energetical switchi
between the quasihomogeneous configurations and the
domain state occurs also depends on the magnetic hard

y

FIG. 6. Total energiesF obtained by the FEM method for th
different types of spin configurations in a square permalloy t
platelet of edge length 1mm as a function of the layer thicknessD.
Dcrit denotes the critical thickness for which a phase transition
tween the quasihomogeneous state and the vortex state takes
4-5
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Q of the material. As presented in Fig. 7~a!, the high-
symmetric vortex state is only developed for very s
uniaxial magnetic materials like permalloy. Actually, wi
increasing hardnessQ, as for Co according to Fig. 7~b!, the
domain walls are pressed more and more in the directio
the easy axis of the layer whereby the central vortex incre
ingly loses importance. In other words, for sufficiently ha
magnetic materials, e.g., for Nd2Fe14B, the four 90° Ne´el
walls have changed to one 180° Ne´el wall and the vortex has
disappeared. It is noteworthy that the transformation
served only occurs for uniaxial magnetic materials. In
case of cubic anisotropy the low-remanent vortex-state
mains high-symmetric up to highestQ values.

A very similar behavior is observed for the flower sta
illustrated in Fig. 8 for permalloy and Co. With increasin
hardnessQ the extensions of the inhomogeneous spin
gions at the corners are significantly reduced, reflecting
reduction of the exchange lengthl K with increasing magne
tocrystalline anisotropy. Here it should be mentioned that
hard magnetic materials, as, e.g., for Co and Nd2Fe14B, the
flower state is the only stable quasihomogeneous magn
structure. In fact, it turns out that the C and S states in h

FIG. 7. Low-remanent state of Landau configuration~multido-
main state! achieved by FEM calculations for a square thin plate
(a51 mm, D52 nm) of different materials:~a! permalloy and~b!
cobalt.
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magnetic materials are unstable arrangements for the ma
tization. The larger the hardnessQ of the material, the larger
the critical thicknessDcrit for which the quasihomogeneou
~flower! state becomes energetically unfavored for a giv

t
FIG. 8. High-remanent state of flower state configuration

ceived by FEM calculations for a square thin platelet (a51 mm,
D52 nm) of different materials:~a! permalloy and~b! cobalt.

FIG. 9. Numerically determined (Q–Dcrit) phase diagram of the
lowest-energy magnetization distribution in square thin platelets
edge length 1mm. Q50.15 corresponds to a fictitious magnet
material (K15240000 J/m3, A520 pJ/m, andJs52.0 T).
4-6
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geometry of the platelet. This becomes obvious from Fig
where the phase diagram of the lowest-energy magnetiza
distribution for a square (131 mm2) platelet is shown to
depend on the platelet hardness and critical thickness. Be
the phase boundary vortex nucleation becomes imposs
and the quasihomogeneous state has the lowest total en
The phase transition takes place spontaneously as a firs
der phase transition, whereby for largerQ the flower state
becomes dominant and for smallerQ (<0.02) the C state
dominates.

C. Variation of the edge length

An analogous phase diagram can be set up as a fuctio
the edge lengtha of the square platelet~see Fig. 10!. Accord-
ingly, for a given material the critical thickness is clear
shifted to larger values when the edge length is appropria
diminished. The magnetization pattern itself is independ
of the scaling.

IV. COMPARISON WITH ANALYTICAL MODEL
CALCULATIONS

In a first approximation the critical thicknessDcrit result-
ing from the numerical calculation can be determined from
simple analytical model calculation, which compares the
mogeneous magnetization state~where the total energy arise
from the stray field energy only! energetically with the four
domain state~where the total energy is determined by t
wall energy!, whereby the latter state is supposed to be co
posed of four 90° Ne´el walls. For thin platelets, the tota
energy of the homogeneous state obeys the equation

FS5
1

2m0
JS

2Na2D, ~7!

wherebyN is given by Eq.~6!. On the other hand, the tota
energy of the four domain state can be obtained from
following formula:

FIG. 10. Numerically determined (a–Dcrit) phase diagram of
the lowest-energy magnetization distribution in square thin plate
of iron and permalloy.
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Fg 52A2gN
90aD. ~8!

HeregN
90 denotes the wall energy of a 90° Ne´el wall which

can be derived from the bulk relation

gN
9050.32gN

180 ~9!

In turn, for gN
180 of a Néel wall in an infinite film with thick-

ness D according to Aharoni38 the following equation is
valid:

gN
1805

2pA

DN
~A221!1

pDNK1

2
1

pJS
2DN

4m0
F12

2DN

D

3 lnS 11
D

2DN
D G , ~10!

with the wall widthDN which obeys the relation

2A

DN
2 ~A221!5

K1

2
1

JS
2

2m0
F1

2
2

2DN

D
lnS 11

D

2DN
D

1
DN

2DN1DG . ~11!

For thin films (D,DN) Eqs.~10! and~11! can be simplified
by making use of different Taylor series resulting in

DN5A4A

K1
~A221!S 12

1

64~A221!

JS
2D2

m0A D , ~12!

gN
18052pAA221AAK11

pJS
2

16m0
D. ~13!

Based on this model the critical thickness is received wh
the total energies of the two states are identical, i.e., fr
FS5Fg and results inDcrit50.3 nm for a square permallo
platelet of edge length 1mm. In Fig. 11 this analytical resul
is compared to the corresponding numerical one. Obviou
the analytical calculation overstimates the stray fie

ts
FIG. 11. Determination of the critical thickness of a square p

malloy platelet (a51 mm) by means of an analytical model calcu
lation.
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energy of the~quasi!homogeneous state. This is not surpr
ing since the C, S, or flowerlike quasi-closure end doma
reduce the surface charges. This effect, however, has
been included in the analytical model. In contrast, the w
energy of the four domain state is considerably undere
mated by the analytical calculation. The reasons for this
that Eq.~9! is valid for bulk samples and has to be modifi
for thin platelets, and the vortex itself, which has not be
taken into account up to now in the analytical model. Ne
ertheless, from a qualitative point of view, the analytic
model calculation can explain the existence of a critical la
thickness, and also gives the right trends for the appeara
of the two phase diagrams illustrated above.

V. CONCLUSIONS

In conlusion, we have set up phase diagrams for a sq
ferromagnetic thin platelet depending on both thickn
B
J

d,

M

e-

d

em
in
l,

09441
-
s
ot
ll
ti-
re

n
-
l
r
ce

re
s

and edge length and thickness and magnetic hard
by means of micromagnetic numerical FEM calculatio
identifying a multidomain phase and a single-domain pha
The critical layer thickness for which the phase transiti
between the two phases takes place is shifted to significa
larger values when the hardnessQ increases, whereas a
increasing edge lengtha of the platelet reduces the critica
layer thickness. These results are fundamental for the de
opment of thin film elements in the magnetic recordi
industry.

ACKNOWLEDGMENT

The authors gratefully acknowledge the helpful discu
sions with Dr. R. Hertel and the demonstrations of the m
cromagnetic FEM software.
n.

Y.

a-

s

J.
1S. Tsunashima, J. Phys. D34, R87 ~2001!.
2S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R.

Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, SL
Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouillou
R. A. Wanner, and W. J. Gallagher, J. Appl. Phys.85, 5828
~1999!.

3S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and
DeHerrera, IEEE Trans. Magn.35, 2814~1999!.

4G. A. Prinz, J. Magn. Magn. Mater.200, 57 ~1999!.
5A. Hubert and R. Scha¨fer, Magnetic Domains–The Analysis of

Magnetic Microstructures~Springer-Verlag, Berlin, 1998!.
6R. Hertel and H. Kronmu¨ller, J. Appl. Phys.85, 6190~1999!.
7H. Kronmüller and R. Hertel, inMagnetic Storage Systems B

yond 2000, edited by G. C. Hadjipanayis~Kluwer, Dordrecht,
2000!, p. 345.

8W. Rave and A. Hubert, IEEE Trans. Magn.36, 3886~2000!.
9W. F. Brown, Jr., J. Appl. Phys.39, 993 ~1968!.

10A. Aharoni, J. Appl. Phys.51, 5906~1980!.
11A. Aharoni, J. Appl. Phys.63, 5879~1988!.
12W. C. Elmore, Phys. Rev.54, 1092~1938!.
13R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, an

D. M. Tricker, Phys. Rev. Lett.83, 1042~1999!.
14R. P. Cowburn, J. Phys. D33, R1 ~2000!.
15W. Rave, K. Fabian, and A. Hubert, J. Magn. Magn. Mater.190,

332 ~1998!.
16R. Hertel and H. Kronmu¨ller, J. Magn. Magn. Mater.238, 185

~2002!.
17R. D. McMichael, Standard Problems Number 1–4, Probl

Specification and Reported Solutions, Micromagnetic Model
Activity Group, http://www.ctcms.nist.gov/ rdm/mumag.htm
1998
.
.

.

g

18M. E. Schabes and H. N. Bertram, J. Appl. Phys.64, 1347~1988!.
19D. R. Fredkin and T. R. Ko¨hler, IEEE Trans. Magn.26, 415

~1990!.
20H. Kronmüller, R. Fischer, R. Hertel, and T. Leineweber, J. Mag

Magn. Mater.175, 177 ~1997!.
21R. Fischer, T. Leineweber, and H. Kronmu¨ller, Phys. Rev. B57,

10 723~1998!.
22T. Schrefl, J. Magn. Magn. Mater.207, 45 ~1999!; 207, 66 ~1999!.
23R. Hertel and H. Kronmu¨ller, Phys. Rev. B60, 7366~1999!.
24T. Schrefl, J. Fidler, and H. Kronmu¨ller, Phys. Rev. B49, 6100

~1994!.
25R. Fischer and H. Kronmu¨ller, Phys. Rev. B54, 7284~1996!.
26V. Novosad, M. Grimsditch, K. Y. Guslienko, P. Vavassori,

Otani, and S. D. Bader, Phys. Rev. B66, 052407~2002!.
27K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fuk

michi, Phys. Rev. B65, 024414~2002!.
28R. Hertel and H. Kronmu¨ller, IEEE Trans. Magn.34, 3922

~1998!.
29NAG-FORTRAN library programs, Numerical Algorithm

Group, Ltd., Oxford, 1990.
30H. Kronmüller, Z. Phys.168, 478 ~1962!.
31W. F. Brown, Jr., J. Phys. Soc. Jpn.17, 540 ~1962!.
32A. Aharoni, IEEE Trans. Magn.27, 4793~1991!.
33X. Brunotte, G. Meunier, and J. F. Imhoff, IEEE Trans. Magn.28,

1663 ~1992!.
34A. Aharoni, J. Appl. Phys.83, 3432~1998!.
35A. Raizer, S. R. H. Hoole, G. Meunier, and J. L. Coulomb,

Appl. Phys.30, 5803~1990!.
36D. Lewis and E. Della Torre, IEEE Trans. Magn.33, 4161~1997!.
37T. Baker, Finite Elem. Anal. Design25, 243 ~1997!.
38A. Aharoni, Introduction to the Theory of Ferrmagnetism~Oxford

Science Publications, Clarendon Press, Oxford, 1996!.
4-8


