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Domain wall distribution and magnetoresistance of a zigzag magnetic wire

Zhi-Yong Zhang and Shi-Jie Xion§
Department of Physics, Nanjing University, Nanjing 210093, China
(Received 4 November 2002; published 19 March 2003

The domain wall(DW) distribution and the resultant magnetoresistaM®) of a zigzag ferromagnetic

wire in nanometer scale are investigated. The DW structure is determined by numerically locating the minima
of the total free energy and the conductance is calculated via the transfer matrix method from the obtained
magnetic configurations. With the in-plane external field parallel or perpendicular to the axis of the wire, the
single or multiple domain pattern is formed in the remanent structure. The DW contribution to the MR
undergoes a transition from positive to negative with their thicknesses reduced and the position of the transition
determines the MR behavior of a practical structure. The obtained results are consistent with the recent
experiment on cobalt zigzag wires and the seemingly contradictory results of previous experiments can be
explained in a unified manner from the present picture.
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[. INTRODUCTION tion electrons that destroys the weak localization and leads to
the negative MR? In the meantime, van Gorkot al. de-
The properties of ferromagnetic structures in nanometescribed a band bending effect which could justify either
scale have attracted a lot of interest due to the developmemiegative or positive MR3
of nanotechnology and the need in the magnetoelectronics or Up to the date a detailed theoretical treatment for the DW
spintronics! In a uniformly magnetized ferromagnetic metal, contribution to the MR still lacks. This treatment should in-
the magnetoresistand® R) is produced mainly from two clude the determination of the domain patterns in the mag-
factors: the anisotropic MRAMR) and the Lorentz MR.  netization processes of a real structure from the free energy
The former depends on the relative orientation between thginima, by taking three competing factors, the nonuniform
currentj and the magnetizatioM. The later is due to the exchange interaction, the anisotropy, and the magnetostatic
Lorentz force of the internal magnetic fielt}, acting on the  energies, into account. It should also include the calculation
moving charges. However, except ferromagnetic ellipsoids irof the conductance from the structure with the obtained do-
saturation,M is generally nonuniform. In a stable or meta- main patterns. In this paper we present an effective method
stable state the distribution ® should locate in one mini- to do such calculations. This is illustrated by an calculation
mum of the free energy and the competition of the magnetoen a zigzag wire with nanometer scale for which the MR was
static, magnetocrystalline and exchange energies results investigated in a recent experiment by Taniyaetal ! In
the formation of domaind.Inside domainaV is in a single  the investigation the width of the wire is much larger than its
direction, but in domain wall$DW), M varies rapidly, lead- thickness, the easy axis and the external flald lie in the
ing to the precessional behavior of electronic sfifthe  plane formed by the zigzag structure. These characteristics
guestion about how the DW'’s contribute to the MR is still suggest the two-dimensiondé2D) feature and prevent us
open® from the time-consuming 3D calculations. In the zigzag
The existing experimental results suggest both thestructure the domain patterns can be artificially adjusted by
positivé~® and negative'® contributions of DW's to the changing the orientation dfi., relative to the zigzag axi¥.
MR. Gregget al. found giant MR(GMR) effect in thin co-  This allows us to isolate the DW contribution from other
balt films and attributed it to the mechanism that the carrieffactors, and consequently, there is no need to adopt the com-
scattering is corresponding to the admixture with the minorpensation temperatufe.
ity spin states and hence leads to the deviation of spin orien- Our numerical calculations demonstrate that the wide
tations from the spin quantization aXisThis positve MR ~ DW's produce a positive contribution to the MR, but if their
can be explained with the same Hamiltonian used to undethicknesses are reduced to a certain value, a transition from
stand the GMR of magnetic multilayétsin terms of the positive to negative occurs. We attribute this transition to the
admixture of two spin channels due to spin flip scattering inmixture among channels with different wavelengths, which
the walls. The experiments on magnetic superlatfiGesd  is affected by the DW thicknesses relative to the wave
submicron ferromagnetic structufesupported this theory. lengths. This is a possible mechanism different from those
With another approach, the negative MR was detected in thdiscussed previoush 3 The position of this transition de-
epitaxially grown Fe wires with striped domain structutes. termines the MR behavior in a practical ferromagnetic struc-
In these experiments, the authors eliminated the contribueure. The DW thicknesses in the experiment on the cobalt
tions to the MR from conventional sources by choosing azigzag wired’ fall into the range where the DW contribution
compensation temperature. The negative MR was also founi the MR is negative. This is consistent with the experimen-
in cobalt zigzag wires where the domain patterns are artifital results. The transition is a robust behavior to the existence
cially controlled by changing the direction bf.,.'° Atheo-  of disorder. The effect of disorder is only in the variation of
retical calculation based on the linear response theoryhe position of the transition. The position of the transition is
showed that the DW'’s cause the decoherence of the condudifferent for various ferromagnetic structures, leading to dif-
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Fem whereH,, is assumed to be uniform in space.

To determine the magnetic structure under an external
field Hgy, a two-step scheme is usually taken. When we de-

—60a—.

@ @ termine the free energy minima, the variation is respeact to
30 with H;, being specified in position. At this step the last term
- o in the total free energyl) can be omitted, and the integration

is taken over the zigzag structutéy, is determined from the
FIG. 1. Schematic illustration ofa) the wire structure in the maqnetlc charge distributionV - m according to the Max-
zigzag plane andb) the procedure of the calculation for the coef- Well's equations(2). This two-step procedure should be re-
ficients in the corner area. peated until the self-consistency betweerandH;, is satis-
fied. But a set of coupled 3D nonlinear vectorial equations

ferent behavior of the DW contribution to the MR. From this Nave to be solved. To reduce the calculation volume, some
picture the seemingly contradictory results of the previou@PProximations should be taken.

experiments mentioned above can be explained in a unified When the thickness of the zigzag structure is much
manner. smaller than its widthm is mostly in the zigzag plane H .,

is applied in that plane also. In fact, in Ref. 10 the cobalt

zigzag wire is 30 nm in thickness and 250 nm in width, and,
Il. MODEL AND CALCULATION TECHNIQUES as shown in the experiment, a considerable deviatiom of
from that plane can emerge only K., has a large vertical
component. Here we only consider the case with in-plane

We investigate the DW contribution to the MR in a zigzag Hex. Thus, m is a planar vector. Due to the nonuniform

ferromagnetic wire whose width is much larger than theinteraction in the total free enerdg), this planar unit vector
thickness. Every unit with thel"” shape in the zigzag struc- can not have a significant variation in the vertical direction in
ture can be divided into two arms by a diagonal plane of theso thin a film and can be viewed as a 2D variable. As a resullt,
corner{see Fig. 13)]. The longitudinal directions of two suc- Hj, should also be taken as a 2D planar vector to satisfy the
cessive arms are perpendicular to each other and form a 2@emand of self-consistency. This is possible, because we first
plane. As in the experimef?,we suppose that all the ob- determinem from the functional minima wittH;, specified
tained planes for the units coincide and consequently thand at this stepH;, outside the zigzag structure is irrelevant.
system is a planar one. The easy axis for the uniaxial anisot- Consequently, the minima of the free energy are deter-
ropy is assumed in the longitudinal direction in all arms ofmined by
the “I"” shaped units. The anisotropic energy in the diagonal
lines of the corners is set to be zero.

A. Determination of magnetic structure

The total free energy, including the nonuniform interac- ) ) Hey .
tion, the anisotropic and magnetostatic energies, can be writ- Jveo+ ES”"[Z(“_ )]+ Vsm(ﬂex— 0)
ten ad*
Hin .
+ 5 SiNBin—6)=0, )

J K
sz [EMZ(Vm)Z— EMZ(mea)z— Mm- (Hegt Hin)

where V2= 92+ &f, 0, a, Bex and B;, are the azimuthal
2/(877)] dr, (1)  angles of the planar polar coordinateswfe, , He, andH;,,

Hex, andH,;, are the magnitudes dfl,, and H;,, respec-

tively. This nonlinear equation can also be viewed as that for
where the integration is over all space. The magnetization ithe steady state solutions of the Landau-Lifshitz-Gilbert
denoted a1 =Mm with m being the orientation unit vector equation> The boundary condition is expressed @8- n
andM the magnitude which is position independent for fer-=0 where the unit vecton is in the structure plane and
romagnetic materials at temperatures low enough beneath tl@rmal to the boundary of the zigzag structure. On the other
Curie temperature. In fact, here we only consider the situahand, becauskl, is a rotationless field, it is the gradient of
tion at zero temperaturd.andK are the stiff and anisotropy a scalar potentiat;,= —V®, whereV=(d,,d,). The mag-
coefficients and they are nonzero constants everywhere exetic charge distribution can be related to this potential by a
cept on the diagonal planes whéfe=0. e, is a unit vector ~Poisson equatioV?®/M =47V -m. With the help of the
parallel to the easy axidd., and H, are the external and Green’s functionG(r —r’)= —(1/2m)In(1/r—r']), ®/M=
internal fields, respectivel;, is determined by Maxwell's —2/V’'-m(r’)In(L/r—r’|)dr’, where r=(x,y), V'
equations =(dx,dy), anddr’=dx’'dy’. Then

_’Hex_"Hin
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m(r )-ds’ smooth, otherwise the integral is divergent. In our numerical
calculation, we simply take a truncation to guarantee the in-
tegral convergence at the corners and suppbgséM <10°

dr’ (4) at the corners.

ag Here we have to suppose the corners of the Shape are
Ir—

2 [ miery =
m(r-)-
[r=r'|?

For a 2D system of planar vectors, the surface integration is
just a loop integration along the boundary, where the direc- After obtaining the pattern of the magnetization, the elec-
tion of ds’ is parallel ton and outward. tronic properties in the zigzag structure can be described by
To solve the coupled equationi®) and(4), we adopt the takingM as an effective field for the electrdhé *?
following self-consistent scheme: First E(3) for m is
solved by the Newton iteration method from an initial field
Hi,, then, the obtainedh is substituted into the Eq4) to H=t E
yield the correctedH;,. These two steps are repeated until
the difference between the values rof obtained from two
successive iterations are globally less than a given tolerance
of error |m—m’|=€er. We start the calculation from a
strong enough external fieltio, for which a uniformm  wherec; ;. ;s annihilates an electron with spifion site (,])
along the direction of field can be used as the initial value oof the 2D lattice of the discretization with lattice spaciag
the iteration. TherH,, is reduced step by step with a small {(i,j),(i’,j’)) denotes the nearest-neighbor sitess the
enough interval, and the;, andm obtained in one calcula- hopping integralMh is the magnetic moment in a unit area,
tion are used as the initial values in the subsequent calculgy is the Pauli matrix, antl is the coupling strength between
tion for the changed,,. This procedure ensures quick con- the magnetic moments and the electron Spifihe sites in
vergence of the iteration. It can be continued until a globaleq. (7) are within the zigzag structure. Because we investi-
magnetization reversal happens, which corresponds to an uate the zigzag wire with its width much larger than its thick-
stable point of the magnetization. ness, in the above Hamiltonian, only one layer of lattice is
In this calculation, a finite difference treatment is takenconsidered. Including another one or two layers in the verti-
with a being the difference units. Then the width of the wire cal direction can only slightly change the obtained values
can be denoted as,a with L, an integer.(Note thatm,  and can not change the qualitative conclusions.
Hin, ande, are all position dependent aridis a constant One may take local spinor transformatfdf'?by rotating
except at the diagonal lines whee=0.) Equation(3) be- 5 5 pe parallel tam to obtain local spin eigenstates in the

comes a set of coupled nonlinear equations uniformly magnetized domains. In the domain walls elec-
3 trons undergoes spin-flip scattering and the eigenstates are
o= (0 i OontO O A—4O mixed by the rapidly changm_g local spins. This treatment is
2(O-1iF bieay+ 0-1F 61— 46,) more suitable for a perturbation theory, but we would prefer
K a more strict method. We express a wave function of the
. electron as a linear combination of the basis functions
5 SiN2(a; j— j Ij)]+ Sm(,Bex i j)

B. Calculation of the zero temperature conductance

T T
(Ci'j;écir’jr;g"‘ci,’j,;5Ci'j;5)
((0).G"0")):6

+UMha? X mi (¢l ,055C .5, (D)
i,j;6,6

H; T=> w, .5 50), (8)
+Vmsm(ﬁin;i,j_0i,j):01 (5 e oS )
where |0) denotes the vacuum. By applying the above
Hamiltonian on¥, one gets the Schdinger equation for
coefficientw; ;. 5

where (,j) are the site index of the difference lattice. When
we use the Newton iteration method to solve them, we will
meet a linear equation set, which can be written as

~ ~ ~ ~ 2 ~n
t(WiJrl'j+Wi,1‘j+Wi,j+1+Wi’j,1)+UMha mi‘j'O'\Ni,j

i (€)

afi’j

iy’ ﬁairjr = IVJ”{H"J}

{ei(o.)}

=Ew

where{¢{}} means the set of, ; in the last iteration. Be- where
cause the corresponding matrix of this linear equation set is
large and sparse, we use the Lanczos method to solve it and W (Wi,m)
obtain the new set of; ;, which are6™)= 69+ A g, ; Y
the other hand, on the difference lattice, the mtegratlons in
Eq. (4) reduce to two sums of integrations on segments, lin@n
ear and areal, respectively, in each of whiohis assumed
uniform and can be moved out of the integration sigbf
course, its vectorial character should be taken into account.

R 0 cose; ;—1sing ;
b B COS@ilj‘f‘lSinai‘j 0
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with 6; ; the azimuthal angle ah; ; andi= J—1. Here, the If only the Bth channel in the right lead has transmitted wave
z axis for the spinor representation is taken in the directiorwith unity amplitude and all other channels have zero ampli-
vertical to the plane, and the hard-wall boundary condition igudes, the incident wave should come from all the channels
applied in the transverse direction. of the left lead, with the amplitude in theth channel being

We suppose that the zigzag structure is attached to twej 71)},13- From this we can calculate matrix * and then

nonmagnetic leads, which haye Fhe same ,W'dth of the W'reget'i' if we can obtain the amplitudes of the incoming wave
Lna and are along the longitudinal directions of the tWoj, 5 the channels of the left lead by setting the amplitude of
outer segmentgsee Fig. 1a)]. The Hamiltonian in the non- yhe outgoing wave in one channel of the right lead to be
magnetic leads is unity and those in other channels to be zero. For the unity
outgoing wave in thegth channel, the amplitudes on the
H =t E (c:j;gci,’j,;5+ Ci’f,’j,;éciyj;a), (10) sites of the right lead are known and can be expressed with
((.0),G",i").6 the Bth eigenvector of Eq(1l)
wheret, is the hopping integral in the leads. We also adopt e . . .
the hard-wall boundary condition in the transverse direction Wi j;s={U gty sexmekgia), for (i,j)e right Iead(,14)
for the leads. From the Schdimger equations, for an elec-
tron at Fermi energ\eg one has equations for the coeffi- Where{op}j,a is the component of eigenvecttﬁtﬁ corre-

cients in the leads sponding to thgth site in the transverse direction and spin
6, andi is the site index in the longitudinal direction. Thus,
Lol Wj+1,6(K) T W1 5(K) ]=[Ep—2tocogka) Jwj, o(k) the amplitudes of the wave function in the zigzag structure
=E, w; 5(K), (11) and in the left lead can be calculated from the right to the left

one bar by another by using E() iteratively. (Details are
wherej is the site index in the transverse directiéris the  given in the next sectionThe obtained amplitudes in the left
wave vector in the longitudinal direction, aiq is the trans- lead are related to the incident and reflected waves and can
verse part of the kinetic energy which should hatg,Z2i-  be written as
genvalues corresponding td_g channels for the incident

and outgoing plane waves, with the factor 2 coming from the v 1 . . .

spin degree of freedom in the leads. We denoteditte ei- Wi j;0= 0;1 {1 Fa gexp1kqia) + Ry gexp( — 1K ia)]
genvector of Eq(11) with a 2L,-component vectofJa, R

which has longitudinal wave vectok, satisfying Eg X{U,}j.s, for (i,j) e leftlead, (15

— 2tgcosk,a)=E, ., with E, ., being the corresponding ei- L i _ i )

genvalue of the transverse kinetic energy. Note that thesWhereéR,, s is the corresponding reflection amplitude in the

eigenvectors are decoupled from each other within a lead an@th channel of the left lead. _

can be regarded as independent channels, but they are mixed This procedure can be written globally in the form of the

when the electron passing through the zigzag structure. THansfer matrix

obtain the conductance of the zigzag system, one should first A ~ N
[{T™ 1. gexp( —1k,a) + R, gexp(ik,a)]U a)

calculate the B, X 2L,, transmission matrixi whose ele-
({T_l}a,ﬁ+Ra,ﬁ)Ua

ment'AI'aﬁ is the amplitude of the wave transmitted into the a=1

ath channel in the right lead when a wave with unity ampli- -
Ag
Bg

2L,

Up
U gexplikga)

tude is incident only from th@th channel of the left lead. If
the wave is incident from all the channels in the left lead,
with the amplitude in thgg channel beingi;, the amplitude
of the transmitted wave in theth channel of the right lead whereM is the 4., X 4L, transfer matrix of the zigzag wire.

=M

: (16)

v, can be expressed with the transmission matrix as For a givenEg, there may exist some channels in which the
longitudinal wave vectok, of the electron becomes com-
U1 uz plex. The leads are not transparent for the motion of elec-
vy | ou, trons in these channels. Thus, only a seNdf<2L,,) chan-
=T (12 nels with real k,, denoted asS, contribute to the

conductance. In our calculation, the Fermi endfgyis set to

VoL, Uat, be zero, which corresponds to the situation where the bands
) of the leads are half filled.
and, vice versa, Now we describe the method of calculating the transfer
matrix in the zigzag structure. For a straight segment of
U1 V1 the zigzag wire, the sites can be divided into bars which
u, ~ P are perpendicular to the axis of the segment. We use
=71 . (13)  one of the coordinatesi,j) of the sites, sayj, as the
index for the bars. Given the coefficients of the wave
Uz, v, function in barsi andi—1, (‘7\’?,11 e ,\/Av;r’j e ,vAviT’,_W) and
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W_gq, oWy, oWy ), with Lya the width of
the segment, the coefficients in bari+1, i
(W 120 Wiqj, ... Wiy ), can be obtained from the

Schralinger equations. This is the basic spirit of the transfer
matrix method. However, because of the existence of corners
in the zigzag structure, it is difficult to write the transfer

matrix M throughout the wire explicitly. To deal with this
difficulty, we calculate the coefficients in bar1 from
those in bars andi—1 directly from the Schrdinger equa-
tions, instead of explicitly presenting the transfer matrix.
Suppose that the electron wave is incoming from the left
(lower) lead and outgoing to the riglippe) lead illustrated
in Fig. 1(a). As described above, the calculation is started
from the right lead and can be continued in the straight seg-
ment leftward without difficulty until the coefficients in the
bar containing the site 1 marked by a solid cirdiég. 1(b)]
have been calculated. At this point the wire turns by 90°.
The coefficient on site 2 marked by a dotted circle cannot be FIG. 2. Remanent domain structure of the zigzag wire in parallel
obtained directly because the Sdirmer equation centered (@ and perpendiculath) external field.(c) and (d) illustrate de-
at site 1 with a solid circle contains the coefficients on sites f2iled structures in the central corner of the wire far and (b),
with circles and rectangular box and sites 2 with solid and@SPectively. Herd/Ka®=20, K=100, andL,,=20.
dotted circles, but at this moment both the coefficients on
sites 1 and 2 marked by dotted circles are unknown. Howtypes of disorder is not included in the Hamiltoniéh, and
ever, the coefficients of the sites in and above the diagonave focus our attention on the influence of the domain wall
line can be obtained from the right to the left consecutivelyscattering on the MR in clean samples. The possible effects
by using the Schidinger equations. Then, the coefficient on Of other types of disorder are discussed in the next section.
site L,, marked by a dotted circle can be obtained from theHere we are only interested in the conductance at zero tem-
values of twd_w sites marked by solid circle and rectangu|a|’ perature. The difference between the Fermi levels of the two
box. So the coefficients of sites beneath the diagonal line cal§ads due to the bias voltage is very small and the density of
be calculated consecutively in the downward direction. Thiscurrent flowing through the wire is low. Consequently, the
procedure can be applied to all the segments and corners, affice acting on DW’s by the electronic current can be
finally one can obtain a transfer-matrix relation that connect&€glected® and the effects caused by the current induced
the coefficients of the first two bars of the outgoing lead todeviation ofm from the equilibrium distribution, such as the
those of the incident lead. band bending effett and the spin wave excitation, are also
By running the above procedure f8rfrom 1to 2,,, one  neglected.

can obtain all the elemen{d '}, 4 from Eq. (16)

v

T e——
[+S4dSSt a4
[N aana/1
——rrrrny
ey

(d)

S SR C R L LN

.

v S

~
X
0
3
X
}
X
\
H

PN A Ill. RESULTS AND DISCUSSION
T kpa_ 1t
~ U,Bge U Az ) .
T = ) . (17 In Figs. 2a) and 2b), we plot the remanent domain struc-
@ ture for He, parallel and perpendicular to the axis of the

In this derivation the orthogonality and normality of the setZi9zag wire. When the wire is first magnetized to saturation

. - , with a large enough parallel field, a single domain is formed
O_f the elgt_an\A/eF:to.r@U o} arg used. ThelZWX_ZAI__\,i transmis in the remanent structure. On the other hand, multi-domain
sion matrixT is just the inverse of matrid =, and the  pattern is formed if the structure is first magnetized to satu-

conductance at zero temperature can be obtained from thgiion with a perpendicular field. In our calculations, we take

Landauer-Bttiker formulat’ L, =20 [see Fig. 18)]. If we plot m for all the sites, the
) magnetization can not be distinguished by eyes. Conse-
G= € E H-]-} 2. (18) quently, in these two figures we plat on every four sites,
h +.5es «h but in Figs. Zc) and 2d) the detailed remanent domain

structures in the central corner area are illustrated for both
The transfer-matrix method and the LandauettiRar  parallel and perpendicular cases. The obtained structures
formula has been extensively used to investigate the phelemonstrate the schematic features described in Ref. 10.
nomena of localization in mesoscopic systéfhsn the  Here we setl/Ka?=20 andK =100. Similar results are ob-
present paper we adopt this method to study the effect dfained forK not less than 20. WheK is close to 20, the
domain walls on the magnetoresistance in the zigzag ferrcdomain pattern is altered in the perpendicular case. This can
magnetic wire. The influence of the rapid variation of mo-be understood from the competition between the anisotropic
ment orientations on the conductance in different domairand magnetostatic energigsince fork ~20, 47/K~1, the
patterns is described in the ScHinger equatio(9). Other  magnetostatic energy becomes comparable with the aniso-
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37.2901 37.404:. perpendicular |~ K=36.3
\\.‘«,.‘ ------------ K=50
% 37.275] — paralel 37381 e
s | perpendicular _’E\
No 37.324
37.260 5 parallel
] e Y N
40 60 80 100 S
K 37.241 i i ,
5 10 15 20
FIG. 3. The conductance as a function ofwith J/Ka?= 20, (K 2
UMha?/t=0.02, to/t=1, andEg/t=0 under the remanent do- J ( a )

main structure described in Fig. 2. FIG. 5. The conductance as a functiond¥Ka? in the parallel

tropic one and the formation of closure of domain pattern?nd perpendicular case§ f0|.' different value&ofOther parameters
favors the reduction of the free energy. In the perpendiculaf™® the same as those in Fig. 3.
casem has component normal to the boundaries in the cor-  aAs discussed above, the Lorentz MR effect is not impor-
ner area of the zigzag structure, and the pattern is then mokgnt in this planar structure and is neglected in our calcula-
sensitive to the variation of the fraction of the anisotropiCtion. The dependence o on H,, is mainly due to the
and magnetostatic energies in the free energy. In fact, evéiechanism of AMR. Because of the spin-orbit interaction,
when K is near 30, some slight changes in the remanenihe |ocal resistivity is anisotropic and determined by the
magnetization already happen although the basic domain pajy, ley betweerm and currenf asp=p|+(p, _pH)SinZ%ZO
tern does not alter._ These changgs are not easy to be detecieg] the transport dominated by electrons with minority spin
py eyes from the ﬂg.ures, but their effect on the conductanc%”> p, . With H,, decreased, the system evolves from satu-
is noticeable: a maxima appearskat 36.3 in theG-K curve  ration andm is aligned towards the easy axis in every seg-
of Fig. 3. . ment. Because the moving path of charge is along the easy
The total magnetizatioM =|fMdr| is plotted in Fig. 4 axis, the localp increases an decreases in this process.
for both the parallel and perpendicular field. The hysteresig\fter passing through the zero poirifi., drives m away
behavior can be obviously seen. Here we focus on the rangeom the easy axis, leading to the increase@®fand the
of He, sweeping from a positive value to the unstable pointappearance of a minimum. The deviation of this point from
The value ofH,, at this point represents the coercive force,the position wheréH .= 0 is finite, and its position depends
that is—0.49™ and —0.495M for the parallel and perpen- on the system parameteiska? andK. This deviation may
dicular cases, respectively. In Fig. 4 we also plot the variacome from the fact that the path of the moving charges and
tion of the conductance in the same magnetization procesghe local magnetization are not strictly parallel in the connec-
With H,, decreased is reduced continuously and reaches ation regions between the straight segments and the corner
lowest point prior to the unstable point of magnetization forareas because of the competition between the nonuniform
both parallel and perpendicular cases. After this p@inin-  interaction and the anisotropic energy.
dergoes a rapid enhancement by increasing the revetged At Hq,=0 the difference ofG between the parallel and
At the unstable point where the magnetization would be reperpendicular cases is mostly caused by the domain walls, as
versed if a small perturbation was addé&ishows a small  m is generally parallel to the easy axes of the segments in
retraction. both cases. For the parallel case, the whole structure can be
approximated as a single domain, and the deviation from this
structure only causes a small correction. For the perpendicu-
lar case, the Nal walls are formed in the corners, pinned at
the lines separating regions with different magnetic anisot-
ropy direction. The difference i@ between two cases at zero
external field demonstrates that DW’s contribute a positive
1374 %o MR for the adopted parameters. In the parallel case, with
J/IKa? decreased the relative direction between the charge
1373 moving and the magnetization is only slightly changed, lead-
ing to a small negative variation in the conductance. How-
2000 -~ ; ; 372 ever, in the perpendicular case, a remarkable increase in the
0 2 4 conductance appears with the DW thickness decreéess=l
H /M Fig. 5.
The DW contribution to the MR is due to the rapid varia-
FIG. 4. The variations oM and G with parallel (solid) and  tion of the magnetization in the DW regions. This influences
perpendicular(dotted lineg H,,. Here JJKa?=20 andK=100.  the spin-flip scattering of the charge carriers and admixes
The other parameters are the same as those in Fig. 3. their spin state&! leading to the positive MR as discussed

5000 137.6

137.5

/h)

G/(
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above. DW’s can also mix states of different channels via thevhich is the wire width in our case. The critical ratio de-

electronic scattering: For a given energy there are several pends on the parameters of the structure, such as the mag-

channels with different longitudinal wave lengths,  netic configuration, the Fermi energy, etc. Since these param-

=1k, , only those channels with, smaller than or compa- €ters are different for various systems, the critical ratio for
a a

rable with the DW thickness can be effectively scatteredStructures used in various experiments is also different. This
Consequently, the DW contribution to the MR is remarkably]eads to the seemingly contradictory phenomenon that DW's

affected by their thicknesses. When the DW thicknesses ar%Ian produce either a positive or a negative contribution to the
reduced, the conductanéz of the multidomain structure is '

increased, since the number of channels which are strongly IV. CONCLUSIONS
scattered by DW’s is reduced. In Fig. 5 we plot the conduc- _ _ _ _ _
tance as a function al/Ka? for both the parallel and per- We investigate the influence of the domain wall scattering

pendicular cases. With the thicknesses diminished, the DV@n the magnetoresistance in a planar zigzag structure with
contribution to the MR undergoes a positive to negative tranthe width of the wire much larger than the thickness. We
sition. At J./K.a2~14, the conductance curves of the par-SUPPOSe that the easy axis for the magnetization is lying in
allel and perpendicular cases intersect. Changdingr, in the zigzag plane. At first we numerically calculate the do-

other word, the fraction of the anisotropic and magnetostati an patternsty S?ﬁ.k'ng the Iloclattlor}[hof m|n|(|j’natof the t?tt?]l
energies in the free energy, only slightly shifts this crossin ree energy. rrom this we cajculate the conquctance of the

; . ructure by the combination of the Landaueittiker for-
p0|.nt,. because in the range of thg adopted paramet(_ars t ula and the transfer matrix method where the obtained
variation of the fraction of anisotropic and magnetostatic en-

o . At th X h : hmagnetization provides an effective field for the motion of
ergies Is not important. At the same time, the scattering at thg, o o qyction carriers. The calculated results shows that the

interfaces between the magnetic structure and the nonmagsanent domain structure relies on the magnetization his-
ne_tlc_leads can _also mix states of dlfferer_1t _chan_nels, but thﬁ)ry_ It is a single or multidomain pattern depending on
principal part of its co_ntr|but|on to the MR is identical for the \yhether the system is firstly magnetized to saturation with
parallel and perpendicular cases. the in-plane external field parallel or perpendicular to the
In the experiment on the cobalt zigzag wifethe wire  zigzag direction. This feature allows us to distinguish the
width is 250 nm, the DW thickness is 15 nm and their ratioDW contribution to the MR from those due to the other
is 0.06. In our theoretical calculation, the wire width is origins. We find that the wide DW’s can produce positive
L,a=20a, whereas the DW thickness at the transition pointcontribution to the MR, but with their thicknesses decreased
is V(J./Ky)a~3.7a and their ratio is 0.185. Consequently, a transition from the positive to the negative contribution
the zigzag wire in Ref. 10 corresponds to the situation wher@ccurs. This behavior is due to a type of scattering by the
DW's have “small” thicknesses and should contribute aDW'’s that has not been discussed previously: the mixture of
negative MR. This is just the fact shown by the experimentchannels with different longitudinal wave vectors. The inten-

Thus, the results of our theoretical calculation is qualitativelySity Of this mixture depends on the longitudinal wave lengths
consistent with the experimental data. In the above calcula®f the channels. With the DW thicknesses decreased, the

tion, we only study the influence of the spatial variation of "Umber of channels which is effectively scattered by DW's is
the magnetization and do not consider the effect of othe Iso decreased, leading to the positive to negative transition

types of disorder. To test whether the above results can be" the DW contribution.

. : . . The DW thickness in the experiméhfalls into the range
obtained from the disordered zigzag wires, we carry out Yvhere DW's should contributeg negative MR, which isgcon-
calculation with disordered site energy introduced in the !

Hamiltonian(7). Such lculati . insiaht sistent with the observed results. What is important in experi-
amiltonian(7). Such a calculation can give some insight on o4 is the position of the transition point because it deter-

the change of behavior of the MR due to the disorder. It iSyines whether a ferromagnetic structure has a positive or a
found that the disorder reduces the conductance considéfgative MR. The position of the critical point is different in
ably, but the existence of the transition from the positive toyarious ferromagnetic structures, leading to different types of
negative MR is robust, and the introduction of disorder canhe MR behavior. From this picture the previous contradic-
only change the critical point. Our preliminary treatment oftory experimental results can be explained in a unified man-
the disorder shows that the disorder increases the criticaler. The occurrence of the transition is robust to the intro-
ratio for this transition. So the basic conclusion obtainedduction of other types of disorder. The disorder can vary the
from the comparison between our theoretical calculation angosition of the transition, but this can not qualitatively alter
the experimental results is not changed by the introduction othe basic conclusion from our theoretical calculation.
disorder. The inclusion of another one or two layers in the

vertical direction and the inclusion of the influence ACKNOWLEDGMENTS
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