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Domain wall distribution and magnetoresistance of a zigzag magnetic wire

Zhi-Yong Zhang* and Shi-Jie Xiong†

Department of Physics, Nanjing University, Nanjing 210093, China
~Received 4 November 2002; published 19 March 2003!

The domain wall~DW! distribution and the resultant magnetoresistance~MR! of a zigzag ferromagnetic
wire in nanometer scale are investigated. The DW structure is determined by numerically locating the minima
of the total free energy and the conductance is calculated via the transfer matrix method from the obtained
magnetic configurations. With the in-plane external field parallel or perpendicular to the axis of the wire, the
single or multiple domain pattern is formed in the remanent structure. The DW contribution to the MR
undergoes a transition from positive to negative with their thicknesses reduced and the position of the transition
determines the MR behavior of a practical structure. The obtained results are consistent with the recent
experiment on cobalt zigzag wires and the seemingly contradictory results of previous experiments can be
explained in a unified manner from the present picture.
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I. INTRODUCTION

The properties of ferromagnetic structures in nanome
scale have attracted a lot of interest due to the developm
of nanotechnology and the need in the magnetoelectronic
spintronics.1 In a uniformly magnetized ferromagnetic meta
the magnetoresistance~MR! is produced mainly from two
factors: the anisotropic MR~AMR! and the Lorentz MR.2

The former depends on the relative orientation between
current j and the magnetizationM . The later is due to the
Lorentz force of the internal magnetic fieldH in acting on the
moving charges. However, except ferromagnetic ellipsoid
saturation,M is generally nonuniform. In a stable or met
stable state the distribution ofM should locate in one mini-
mum of the free energy and the competition of the magne
static, magnetocrystalline and exchange energies resul
the formation of domains.3 Inside domainsM is in a single
direction, but in domain walls~DW!, M varies rapidly, lead-
ing to the precessional behavior of electronic spins.4 The
question about how the DW’s contribute to the MR is s
open.5

The existing experimental results suggest both
positive6–8 and negative9,10 contributions of DW’s to the
MR. Gregget al. found giant MR~GMR! effect in thin co-
balt films and attributed it to the mechanism that the car
scattering is corresponding to the admixture with the min
ity spin states and hence leads to the deviation of spin or
tations from the spin quantization axis.6 This positive MR
can be explained with the same Hamiltonian used to un
stand the GMR of magnetic multilayers11 in terms of the
admixture of two spin channels due to spin flip scattering
the walls. The experiments on magnetic superlattices7 and
submicron ferromagnetic structures8 supported this theory
With another approach, the negative MR was detected in
epitaxially grown Fe wires with striped domain structure9

In these experiments, the authors eliminated the contr
tions to the MR from conventional sources by choosing
compensation temperature. The negative MR was also fo
in cobalt zigzag wires where the domain patterns are ar
cially controlled by changing the direction ofHex.10 A theo-
retical calculation based on the linear response the
showed that the DW’s cause the decoherence of the con
0163-1829/2003/67~9!/094412~8!/$20.00 67 0944
r
nt
or

e

in

-
in

e

r
r-
n-

r-

n

e

u-
a
nd
-

ry
c-

tion electrons that destroys the weak localization and lead
the negative MR.12 In the meantime, van Gorkomet al. de-
scribed a band bending effect which could justify eith
negative or positive MR.13

Up to the date a detailed theoretical treatment for the D
contribution to the MR still lacks. This treatment should i
clude the determination of the domain patterns in the m
netization processes of a real structure from the free ene
minima, by taking three competing factors, the nonunifo
exchange interaction, the anisotropy, and the magnetos
energies, into account. It should also include the calcula
of the conductance from the structure with the obtained
main patterns. In this paper we present an effective met
to do such calculations. This is illustrated by an calculat
on a zigzag wire with nanometer scale for which the MR w
investigated in a recent experiment by Taniyamaet al.10 In
the investigation the width of the wire is much larger than
thickness, the easy axis and the external fieldHex lie in the
plane formed by the zigzag structure. These characteris
suggest the two-dimensional~2D! feature and prevent u
from the time-consuming 3D calculations. In the zigz
structure the domain patterns can be artificially adjusted
changing the orientation ofHex relative to the zigzag axis.10

This allows us to isolate the DW contribution from oth
factors, and consequently, there is no need to adopt the c
pensation temperature.9

Our numerical calculations demonstrate that the w
DW’s produce a positive contribution to the MR, but if the
thicknesses are reduced to a certain value, a transition f
positive to negative occurs. We attribute this transition to
mixture among channels with different wavelengths, wh
is affected by the DW thicknesses relative to the wa
lengths. This is a possible mechanism different from tho
discussed previously.11–13 The position of this transition de
termines the MR behavior in a practical ferromagnetic str
ture. The DW thicknesses in the experiment on the cob
zigzag wires10 fall into the range where the DW contributio
to the MR is negative. This is consistent with the experime
tal results. The transition is a robust behavior to the existe
of disorder. The effect of disorder is only in the variation
the position of the transition. The position of the transition
different for various ferromagnetic structures, leading to d
©2003 The American Physical Society12-1
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ferent behavior of the DW contribution to the MR. From th
picture the seemingly contradictory results of the previo
experiments mentioned above can be explained in a un
manner.

II. MODEL AND CALCULATION TECHNIQUES

A. Determination of magnetic structure

We investigate the DW contribution to the MR in a zigz
ferromagnetic wire whose width is much larger than t
thickness. Every unit with the ‘‘G ’’ shape in the zigzag struc
ture can be divided into two arms by a diagonal plane of
corner@see Fig. 1~a!#. The longitudinal directions of two suc
cessive arms are perpendicular to each other and form a
plane. As in the experiment,10 we suppose that all the ob
tained planes for the units coincide and consequently
system is a planar one. The easy axis for the uniaxial ani
ropy is assumed in the longitudinal direction in all arms
the ‘‘G ’’ shaped units. The anisotropic energy in the diago
lines of the corners is set to be zero.

The total free energy, including the nonuniform intera
tion, the anisotropic and magnetostatic energies, can be
ten as3,14

F5E H J

2
M2~¹m!22

K

2
M2~m•ea!22Mm•~Hex1H in!

2UHex1H inU2/~8p!J dr , ~1!

where the integration is over all space. The magnetizatio
denoted asM[Mm with m being the orientation unit vecto
andM the magnitude which is position independent for fe
romagnetic materials at temperatures low enough beneat
Curie temperature. In fact, here we only consider the sit
tion at zero temperature.J andK are the stiff and anisotropy
coefficients and they are nonzero constants everywhere
cept on the diagonal planes whereK50. ea is a unit vector
parallel to the easy axis.Hex and H in are the external and
internal fields, respectively.H in is determined by Maxwell’s
equations

FIG. 1. Schematic illustration of~a! the wire structure in the
zigzag plane and~b! the procedure of the calculation for the coe
ficients in the corner area.
09441
s
d

e

D

e
t-

f
l

-
it-

is

-
the
-

x-

H ¹•~H in /M14pm!50,

¹3H in50,
~2!

whereHex is assumed to be uniform in space.
To determine the magnetic structure under an exte

field Hex, a two-step scheme is usually taken. When we
termine the free energy minima, the variation is respect tom
with H in being specified in position. At this step the last ter
in the total free energy~1! can be omitted, and the integratio
is taken over the zigzag structure.H in is determined from the
magnetic charge distribution 4p¹•m according to the Max-
well’s equations~2!. This two-step procedure should be r
peated until the self-consistency betweenm andH in is satis-
fied. But a set of coupled 3D nonlinear vectorial equatio
have to be solved. To reduce the calculation volume, so
approximations should be taken.

When the thickness of the zigzag structure is mu
smaller than its width,m is mostly in the zigzag plane ifHex
is applied in that plane also. In fact, in Ref. 10 the cob
zigzag wire is 30 nm in thickness and 250 nm in width, an
as shown in the experiment, a considerable deviation om
from that plane can emerge only ifHex has a large vertica
component. Here we only consider the case with in-pla
Hex. Thus, m is a planar vector. Due to the nonuniform
interaction in the total free energy~1!, this planar unit vector
can not have a significant variation in the vertical direction
so thin a film and can be viewed as a 2D variable. As a res
H in should also be taken as a 2D planar vector to satisfy
demand of self-consistency. This is possible, because we
determinem from the functional minima withH in specified
and at this step,H in outside the zigzag structure is irrelevan

Consequently, the minima of the free energy are de
mined by

J¹2u1
K

2
sin@2~a2u!#1

Hex

M
sin~bex2u!

1
H in

M
sin~b in2u!50, ~3!

where ¹25]x
21]y

2 , u, a, bex and b in are the azimuthal
angles of the planar polar coordinates ofm, ea , Hex andH in ,
Hex, and H in are the magnitudes ofHex and H in , respec-
tively. This nonlinear equation can also be viewed as that
the steady state solutions of the Landau-Lifshitz-Gilb
equation.15 The boundary condition is expressed as¹u•n
50 where the unit vectorn is in the structure plane an
normal to the boundary of the zigzag structure. On the ot
hand, becauseH in is a rotationless field, it is the gradient o
a scalar potentialH in52¹F, where¹5(]x ,]y). The mag-
netic charge distribution can be related to this potential b
Poisson equation¹2F/M54p¹•m. With the help of the
Green’s functionG(r2r 8)52(1/2p)ln(1/ur2r 8u), F/M5
22*¹8•m(r 8)ln(1/ur2r 8u)dr 8, where r5(x,y), ¹8
5(]x8 ,]y8), anddr 85dx8dy8. Then
2-2
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H in

M
522 R r2r 8

ur2r 8u2
m~r 8!•ds8

12E m~r 8!•¹8
r2r 8

ur2r 8u2
dr 8. ~4!

For a 2D system of planar vectors, the surface integratio
just a loop integration along the boundary, where the dir
tion of ds8 is parallel ton and outward.

To solve the coupled equations~3! and ~4!, we adopt the
following self-consistent scheme: First Eq.~3! for m is
solved by the Newton iteration method from an initial fie
H in , then, the obtainedm is substituted into the Eq.~4! to
yield the correctedH in . These two steps are repeated un
the difference between the values ofm obtained from two
successive iterations are globally less than a given tolera
of error um2m8umax<eerr. We start the calculation from a
strong enough external fieldHex for which a uniform m
along the direction of field can be used as the initial value
the iteration. ThenHex is reduced step by step with a sma
enough interval, and theH in andm obtained in one calcula
tion are used as the initial values in the subsequent calc
tion for the changedHex. This procedure ensures quick co
vergence of the iteration. It can be continued until a glo
magnetization reversal happens, which corresponds to an
stable point of the magnetization.

In this calculation, a finite difference treatment is tak
with a being the difference units. Then the width of the wi
can be denoted asLwa with Lw an integer.~Note thatm,
H in , and ea are all position dependent andK is a constant
except at the diagonal lines whereK50.! Equation~3! be-
comes a set of coupled nonlinear equations

f i , j5
J

a2
~u i 21,j1u i 11,j1u i , j 211u i , j 1124u i , j !

1
K

2
sin@2~a i , j2u i , j !#1

Hex

M
sin~bex2u i , j !

1
H in

M
sin~b in; i , j2u i , j !50, ~5!

where (i , j ) are the site index of the difference lattice. Wh
we use the Newton iteration method to solve them, we w
meet a linear equation set, which can be written as

(
i 8 j 8

] f i , j

]u i 8 j 8
I

$u i , j
(0)%

Du i 8 j 852 f i , j i $u i , j
(0)% , ~6!

where$u i , j
(0)% means the set ofu i , j in the last iteration. Be-

cause the corresponding matrix of this linear equation se
large and sparse, we use the Lanczos method to solve it
obtain the new set ofu i , j , which areu i , j

(1)5u i , j
(0)1Du i , j . On

the other hand, on the difference lattice, the integrations
Eq. ~4! reduce to two sums of integrations on segments,
ear and areal, respectively, in each of whichm is assumed
uniform and can be moved out of the integration sign.~Of
course, its vectorial character should be taken into accou!
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Here we have to suppose the corners of the ‘‘G ’’ shape are
smooth, otherwise the integral is divergent. In our numeri
calculation, we simply take a truncation to guarantee the
tegral convergence at the corners and supposeH in /M<105

at the corners.

B. Calculation of the zero temperature conductance

After obtaining the pattern of the magnetization, the ele
tronic properties in the zigzag structure can be described
taking M as an effective field for the electrons4,16,12

H5t (
^( i , j ),(i 8, j 8)&;d

~ci , j ;d
† ci 8, j 8;d1ci 8, j 8;d

† ci , j ;d!

1UMha2 (
i , j ;d,d8

mi , j•~ci , j ;d
† ŝd,d8ci , j ;d8!, ~7!

whereci , j ;d annihilates an electron with spind on site (i , j )
of the 2D lattice of the discretization with lattice spacinga,
^( i , j ),(i 8, j 8)& denotes the nearest-neighbor sites,t is the
hopping integral,Mh is the magnetic moment in a unit are
ŝ is the Pauli matrix, andU is the coupling strength betwee
the magnetic moments and the electron spin.12 The sites in
Eq. ~7! are within the zigzag structure. Because we inve
gate the zigzag wire with its width much larger than its thic
ness, in the above Hamiltonian, only one layer of lattice
considered. Including another one or two layers in the ve
cal direction can only slightly change the obtained valu
and can not change the qualitative conclusions.

One may take local spinor transformation4,11,12by rotating
ŝ to be parallel tom to obtain local spin eigenstates in th
uniformly magnetized domains. In the domain walls ele
trons undergoes spin-flip scattering and the eigenstates
mixed by the rapidly changing local spins. This treatmen
more suitable for a perturbation theory, but we would pre
a more strict method. We express a wave function of
electron as a linear combination of the basis functions

C5 (
i , j ;d

wi , j ;dci , j ;d
† u0&, ~8!

where u0& denotes the vacuum. By applying the abo
Hamiltonian onC, one gets the Schro¨dinger equation for
coefficientwi , j ;d

t~ŵi 11,j1ŵi 21,j1ŵi , j 111ŵi , j 21!1UMha2mi , j•ŝŵi , j

5Eŵi , j , ~9!

where

ŵi , j[S wi , j ;↑
wi , j ;↓

D
and

mi , j•ŝ5S 0 cosu i , j2ı sinu i , j

cosu i , j1ı sinu i , j 0 D

2-3
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with u i , j the azimuthal angle ofmi , j andı5A21. Here, the
z axis for the spinor representation is taken in the direct
vertical to the plane, and the hard-wall boundary condition
applied in the transverse direction.

We suppose that the zigzag structure is attached to
nonmagnetic leads, which have the same width of the w
Lwa and are along the longitudinal directions of the tw
outer segments@see Fig. 1~a!#. The Hamiltonian in the non-
magnetic leads is

HL5t0 (
^( i , j ),(i 8, j 8)&,d

~ci , j ;d
† ci 8, j 8;d1ci 8, j 8;d

† ci , j ;d!, ~10!

wheret0 is the hopping integral in the leads. We also ado
the hard-wall boundary condition in the transverse direct
for the leads. From the Schro¨dinger equations, for an elec
tron at Fermi energyEF one has equations for the coeffi
cients in the leads

t0@wj 11,d~k!1wj 21,d~k!#5@EF22t0cos~ka!#wj ,d~k!

[E'wj ,d~k!, ~11!

where j is the site index in the transverse direction,k is the
wave vector in the longitudinal direction, andE' is the trans-
verse part of the kinetic energy which should have 2Lw ei-
genvalues corresponding to 2Lw channels for the inciden
and outgoing plane waves, with the factor 2 coming from
spin degree of freedom in the leads. We denote theath ei-
genvector of Eq.~11! with a 2Lw-component vectorÛa ,
which has longitudinal wave vectorka satisfying EF
22t0cos(kaa)5E';a with E';a being the corresponding e
genvalue of the transverse kinetic energy. Note that th
eigenvectors are decoupled from each other within a lead
can be regarded as independent channels, but they are m
when the electron passing through the zigzag structure
obtain the conductance of the zigzag system, one should
calculate the 2Lw32Lw transmission matrixT̂ whose ele-
ment T̂a,b is the amplitude of the wave transmitted into t
ath channel in the right lead when a wave with unity amp
tude is incident only from thebth channel of the left lead. If
the wave is incident from all the channels in the left lea
with the amplitude in theb channel beingub , the amplitude
of the transmitted wave in theath channel of the right lead
va can be expressed with the transmission matrix as

S v1

v2

. . .

v2Lw

D 5T̂S u1

u2

. . .

u2Lw

D ~12!

and, vice versa,

S u1

u2

. . .

u2Lw

D 5T̂21S v1

v2

. . .

v2Lw

D . ~13!
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If only the bth channel in the right lead has transmitted wa
with unity amplitude and all other channels have zero am
tudes, the incident wave should come from all the chann
of the left lead, with the amplitude in theath channel being

$T̂21)%a,b . From this we can calculate matrixT̂21 and then
get T̂ if we can obtain the amplitudes of the incoming wa
in all the channels of the left lead by setting the amplitude
the outgoing wave in one channel of the right lead to
unity and those in other channels to be zero. For the u
outgoing wave in thebth channel, the amplitudes on th
sites of the right lead are known and can be expressed
the bth eigenvector of Eq.~11!

wi , j ;d5$Ûb% j ,dexp~ikbia !, for ~ i , j !P right lead,
~14!

where $Ûb% j ,d is the component of eigenvectorÛb corre-
sponding to thej th site in the transverse direction and sp
d, and i is the site index in the longitudinal direction. Thu
the amplitudes of the wave function in the zigzag struct
and in the left lead can be calculated from the right to the
one bar by another by using Eq.~9! iteratively. ~Details are
given in the next section.! The obtained amplitudes in the le
lead are related to the incident and reflected waves and
be written as

wi , j ;d5 (
a51

2Lw

@$T̂21%a,bexp~ ıkaia !1R̂a,bexp~2ıkaia !#

3$Ûa% j ,d , for ~ i , j !P left lead, ~15!

whereR̂a,b is the corresponding reflection amplitude in th
ath channel of the left lead.

This procedure can be written globally in the form of th
transfer matrix

(
a51

2Lw S @$T̂21%a,bexp~2ıkaa!1R̂a,bexp~ ıkaa!#Ûa

~$T̂21%a,b1R̂a,b!Ûa
D

5M̂ S Ûb

Ûbexp~ ıkba!
D [S Âb

B̂b
D , ~16!

whereM̂ is the 4Lw34Lw transfer matrix of the zigzag wire
For a givenEF , there may exist some channels in which t
longitudinal wave vectorka of the electron becomes com
plex. The leads are not transparent for the motion of el
trons in these channels. Thus, only a set ofN (<2Lw) chan-
nels with real ka , denoted asS, contribute to the
conductance. In our calculation, the Fermi energyEF is set to
be zero, which corresponds to the situation where the ba
of the leads are half filled.

Now we describe the method of calculating the trans
matrix in the zigzag structure. For a straight segment
the zigzag wire, the sites can be divided into bars wh
are perpendicular to the axis of the segment. We
one of the coordinates (i , j ) of the sites, say,i, as the
index for the bars. Given the coefficients of the wa
function in barsi and i 21, (ŵi ,1

† , . . . ,ŵi , j
† , . . . ,ŵi ,Lw

† ) and
2-4
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(ŵi 21,1
† , . . . ,ŵi 21,j

† , . . . ,ŵi 21,Lw

† ), with Lwa the width of

the segment, the coefficients in bar i 11,
(ŵi 11,1

† , . . . ,ŵi 11,j
† , . . . ,ŵi 11,Lw

† ), can be obtained from the

Schrödinger equations. This is the basic spirit of the trans
matrix method. However, because of the existence of cor
in the zigzag structure, it is difficult to write the transf
matrix M̂ throughout the wire explicitly. To deal with thi
difficulty, we calculate the coefficients in bari 11 from
those in barsi and i 21 directly from the Schro¨dinger equa-
tions, instead of explicitly presenting the transfer matr
Suppose that the electron wave is incoming from the
~lower! lead and outgoing to the right~upper! lead illustrated
in Fig. 1~a!. As described above, the calculation is star
from the right lead and can be continued in the straight s
ment leftward without difficulty until the coefficients in th
bar containing the site 1 marked by a solid circle@Fig. 1~b!#
have been calculated. At this point the wire turns by 9
The coefficient on site 2 marked by a dotted circle canno
obtained directly because the Scho¨dinger equation centere
at site 1 with a solid circle contains the coefficients on site
with circles and rectangular box and sites 2 with solid a
dotted circles, but at this moment both the coefficients
sites 1 and 2 marked by dotted circles are unknown. Ho
ever, the coefficients of the sites in and above the diago
line can be obtained from the right to the left consecutiv
by using the Schro¨dinger equations. Then, the coefficient o
site Lw marked by a dotted circle can be obtained from
values of twoLw sites marked by solid circle and rectangu
box. So the coefficients of sites beneath the diagonal line
be calculated consecutively in the downward direction. T
procedure can be applied to all the segments and corners
finally one can obtain a transfer-matrix relation that conne
the coefficients of the first two bars of the outgoing lead
those of the incident lead.

By running the above procedure forb from 1 to 2Lw , one
can obtain all the elements$T̂21%a,b from Eq. ~16!

$T̂21%a,b5
Ûa

†B̂beıkaa2Ûa
†Âb

2ı sin~kaa!
. ~17!

In this derivation the orthogonality and normality of the s
of the eigenvectors$Ûa% are used. The 2Lw32Lw transmis-
sion matrix T̂ is just the inverse of matrixT̂21, and the
conductance at zero temperature can be obtained from
Landauer-Bu¨ttiker formula17

G5
e2

h (
a,bPS

u$T̂%a,bu2. ~18!

The transfer-matrix method and the Landauer-Bu¨ttiker
formula has been extensively used to investigate the p
nomena of localization in mesoscopic systems.18 In the
present paper we adopt this method to study the effec
domain walls on the magnetoresistance in the zigzag fe
magnetic wire. The influence of the rapid variation of m
ment orientations on the conductance in different dom
patterns is described in the Schro¨dinger equation~9!. Other
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types of disorder is not included in the Hamiltonian~7!, and
we focus our attention on the influence of the domain w
scattering on the MR in clean samples. The possible effe
of other types of disorder are discussed in the next sect
Here we are only interested in the conductance at zero t
perature. The difference between the Fermi levels of the
leads due to the bias voltage is very small and the densit
current flowing through the wire is low. Consequently, t
force acting on DW’s by the electronic current can
neglected19 and the effects caused by the current induc
deviation ofm from the equilibrium distribution, such as th
band bending effect13 and the spin wave excitation, are als
neglected.

III. RESULTS AND DISCUSSION

In Figs. 2~a! and 2~b!, we plot the remanent domain struc
ture for Hex parallel and perpendicular to the axis of th
zigzag wire. When the wire is first magnetized to saturat
with a large enough parallel field, a single domain is form
in the remanent structure. On the other hand, multi-dom
pattern is formed if the structure is first magnetized to sa
ration with a perpendicular field. In our calculations, we ta
Lw520 @see Fig. 1~a!#. If we plot m for all the sites, the
magnetization can not be distinguished by eyes. Con
quently, in these two figures we plotm on every four sites,
but in Figs. 2~c! and 2~d! the detailed remanent domai
structures in the central corner area are illustrated for b
parallel and perpendicular cases. The obtained struct
demonstrate the schematic features described in Ref.
Here we setJ/Ka2520 andK5100. Similar results are ob
tained for K not less than 20. WhenK is close to 20, the
domain pattern is altered in the perpendicular case. This
be understood from the competition between the anisotro
and magnetostatic energies,3 since forK;20, 4p/K;1, the
magnetostatic energy becomes comparable with the an

FIG. 2. Remanent domain structure of the zigzag wire in para
~a! and perpendicular~b! external field.~c! and ~d! illustrate de-
tailed structures in the central corner of the wire for~a! and ~b!,
respectively. HereJ/Ka2520, K5100, andLw520.
2-5
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tropic one and the formation of closure of domain patte
favors the reduction of the free energy. In the perpendicu
case,m has component normal to the boundaries in the c
ner area of the zigzag structure, and the pattern is then m
sensitive to the variation of the fraction of the anisotrop
and magnetostatic energies in the free energy. In fact, e
when K is near 30, some slight changes in the reman
magnetization already happen although the basic domain
tern does not alter. These changes are not easy to be det
by eyes from the figures, but their effect on the conducta
is noticeable: a maxima appears atK536.3 in theG-K curve
of Fig. 3.

The total magnetizationM̄5u*Mdr u is plotted in Fig. 4
for both the parallel and perpendicular field. The hystere
behavior can be obviously seen. Here we focus on the ra
of Hex sweeping from a positive value to the unstable po
The value ofHex at this point represents the coercive forc
that is20.497M and20.495M for the parallel and perpen
dicular cases, respectively. In Fig. 4 we also plot the va
tion of the conductance in the same magnetization proc
With Hex decreasedG is reduced continuously and reaches
lowest point prior to the unstable point of magnetization
both parallel and perpendicular cases. After this pointG un-
dergoes a rapid enhancement by increasing the reversedHex.
At the unstable point where the magnetization would be
versed if a small perturbation was added,G shows a small
retraction.

FIG. 3. The conductance as a function ofK with J/Ka2520,
UMha2/t50.02, t0 /t51, and EF /t50 under the remanent do
main structure described in Fig. 2.

FIG. 4. The variations ofM̄ and G with parallel ~solid! and
perpendicular~dotted lines! Hex. Here J/Ka2520 and K5100.
The other parameters are the same as those in Fig. 3.
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As discussed above, the Lorentz MR effect is not imp
tant in this planar structure and is neglected in our calcu
tion. The dependence ofG on Hex is mainly due to the
mechanism of AMR. Because of the spin-orbit interactio
the local resistivity is anisotropic and determined by t
angleg betweenm and currentj asr5r i1(r'2r i)sin2g.20

For the transport dominated by electrons with minority sp
r i.r' . With Hex decreased, the system evolves from sa
ration andm is aligned towards the easy axis in every se
ment. Because the moving path of charge is along the e
axis, the localr increases andG decreases in this proces
After passing through the zero point,Hex drives m away
from the easy axis, leading to the increase ofG and the
appearance of a minimum. The deviation of this point fro
the position whereHex50 is finite, and its position depend
on the system parametersJ/Ka2 andK. This deviation may
come from the fact that the path of the moving charges
the local magnetization are not strictly parallel in the conn
tion regions between the straight segments and the co
areas because of the competition between the nonunif
interaction and the anisotropic energy.

At Hex50 the difference ofG between the parallel and
perpendicular cases is mostly caused by the domain walls
m is generally parallel to the easy axes of the segment
both cases. For the parallel case, the whole structure ca
approximated as a single domain, and the deviation from
structure only causes a small correction. For the perpend
lar case, the Ne´el walls are formed in the corners, pinned
the lines separating regions with different magnetic anis
ropy direction. The difference inG between two cases at zer
external field demonstrates that DW’s contribute a posit
MR for the adopted parameters. In the parallel case, w
J/Ka2 decreased the relative direction between the cha
moving and the magnetization is only slightly changed, le
ing to a small negative variation in the conductance. Ho
ever, in the perpendicular case, a remarkable increase in
conductance appears with the DW thickness decreased~see
Fig. 5!.

The DW contribution to the MR is due to the rapid vari
tion of the magnetization in the DW regions. This influenc
the spin-flip scattering of the charge carriers and admi
their spin states,6,11 leading to the positive MR as discusse

FIG. 5. The conductance as a function ofJ/Ka2 in the parallel
and perpendicular cases for different values ofK. Other parameters
are the same as those in Fig. 3.
2-6
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above. DW’s can also mix states of different channels via
electronic scattering.21 For a given energy there are seve
channels with different longitudinal wave lengthsla

51/ka , only those channels withla smaller than or compa
rable with the DW thickness can be effectively scatter
Consequently, the DW contribution to the MR is remarkab
affected by their thicknesses. When the DW thicknesses
reduced, the conductanceG of the multidomain structure is
increased, since the number of channels which are stro
scattered by DW’s is reduced. In Fig. 5 we plot the cond
tance as a function ofJ/Ka2 for both the parallel and per
pendicular cases. With the thicknesses diminished, the
contribution to the MR undergoes a positive to negative tr
sition. At Jc /Kca

2;14, the conductance curves of the pa
allel and perpendicular cases intersect. ChangingK or, in
other word, the fraction of the anisotropic and magnetost
energies in the free energy, only slightly shifts this cross
point, because in the range of the adopted parameters
variation of the fraction of anisotropic and magnetostatic
ergies is not important. At the same time, the scattering at
interfaces between the magnetic structure and the nonm
netic leads can also mix states of different channels, but
principal part of its contribution to the MR is identical for th
parallel and perpendicular cases.

In the experiment on the cobalt zigzag wire,10 the wire
width is 250 nm, the DW thickness is 15 nm and their ra
is 0.06. In our theoretical calculation, the wire width
Lwa520a, whereas the DW thickness at the transition po
is A(Jc /Kc)a;3.7a and their ratio is 0.185. Consequentl
the zigzag wire in Ref. 10 corresponds to the situation wh
DW’s have ‘‘small’’ thicknesses and should contribute
negative MR. This is just the fact shown by the experime
Thus, the results of our theoretical calculation is qualitativ
consistent with the experimental data. In the above calc
tion, we only study the influence of the spatial variation
the magnetization and do not consider the effect of ot
types of disorder. To test whether the above results can
obtained from the disordered zigzag wires, we carry ou
calculation with disordered site energy introduced in
Hamiltonian~7!. Such a calculation can give some insight
the change of behavior of the MR due to the disorder. I
found that the disorder reduces the conductance cons
ably, but the existence of the transition from the positive
negative MR is robust, and the introduction of disorder c
only change the critical point. Our preliminary treatment
the disorder shows that the disorder increases the cri
ratio for this transition. So the basic conclusion obtain
from the comparison between our theoretical calculation
the experimental results is not changed by the introductio
disorder. The inclusion of another one or two layers in
vertical direction and the inclusion of the influence ofHex
and H in in Eq. ~7! can only cause a small correction in th
critical ratio.

From this picture we can explain the previous seemin
contradictory experimental results in a unified manner. W
is important in the experiments is the position of the tran
tion from the positive contribution of the DW’s for the MR
to the negative contribution. This transition is specified b
critical ratio of the DW thickness to a characteristic leng
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which is the wire width in our case. The critical ratio d
pends on the parameters of the structure, such as the m
netic configuration, the Fermi energy, etc. Since these par
eters are different for various systems, the critical ratio
structures used in various experiments is also different. T
leads to the seemingly contradictory phenomenon that D
can produce either a positive or a negative contribution to
MR.

IV. CONCLUSIONS

We investigate the influence of the domain wall scatter
on the magnetoresistance in a planar zigzag structure
the width of the wire much larger than the thickness. W
suppose that the easy axis for the magnetization is lying
the zigzag plane. At first we numerically calculate the d
main patterns by seeking the location of minima of the to
free energy. From this we calculate the conductance of
structure by the combination of the Landauer-Bu¨ttiker for-
mula and the transfer matrix method where the obtain
magnetization provides an effective field for the motion
the conduction carriers. The calculated results shows tha
remanent domain structure relies on the magnetization
tory. It is a single or multidomain pattern depending
whether the system is firstly magnetized to saturation w
the in-plane external field parallel or perpendicular to t
zigzag direction. This feature allows us to distinguish t
DW contribution to the MR from those due to the oth
origins. We find that the wide DW’s can produce positi
contribution to the MR, but with their thicknesses decreas
a transition from the positive to the negative contributi
occurs. This behavior is due to a type of scattering by
DW’s that has not been discussed previously: the mixture
channels with different longitudinal wave vectors. The inte
sity of this mixture depends on the longitudinal wave leng
of the channels. With the DW thicknesses decreased,
number of channels which is effectively scattered by DW’s
also decreased, leading to the positive to negative trans
for the DW contribution.

The DW thickness in the experiment10 falls into the range
where DW’s should contribute a negative MR, which is co
sistent with the observed results. What is important in exp
ments is the position of the transition point because it de
mines whether a ferromagnetic structure has a positive
negative MR. The position of the critical point is different
various ferromagnetic structures, leading to different types
the MR behavior. From this picture the previous contrad
tory experimental results can be explained in a unified m
ner. The occurrence of the transition is robust to the int
duction of other types of disorder. The disorder can vary
position of the transition, but this can not qualitatively alt
the basic conclusion from our theoretical calculation.
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