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Thermodynamic quantities of metals investigated by an analytic statistical moment method
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The thermodynamic properties of metals are studied by including explicitly the anharmonic effects of the
lattice vibrations going beyond the quasiharmonic approximations. The free energy, thermal lattice expansion
coefficients, mean-square atomic displacements, and specific heats at the constant volume and those at the
constant pressuré;, andC,, are derived in closed analytic forms in terms of the power moments of the
atomic displacements. The analytical formulas give highly accurate values of the thermodynamic quantities,
which are comparable to those of the molecular dynamics or Monte Carlo simulations for a wide temperature
range. The present formalism is well suited to calculate the thermodynamic quantities of metals and alloys by
including the many body electronic effects and by combining it with the first-principles approaches.
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I. INTRODUCTION for genetic studies of trends among a given class of metallic
materials. Therefore, they do not account for mostly impor-
The first-principles determination of the thermodynamictant many-body electronic effects in metallic systems, and
guantities of metals and alloys are now of great importanceéhey cannot be relied on for properties of real materials.
for the understanding of structural phase transformations as A number of theoretical approaches have been proposed
well as for the phase diagrams computatibmsSo far, the to overcome the limitations of the QH theories. The first
first-principles density functional theorfe€ have been used calculation of the lowest-order anharmonic contributions to
extensively for the calculations of the ground state propertiethe atomic mean-square displacemént) or the Debye-
of various metal systems at the absolute zero temperature. Waller factor was done by Maradudin and Fffiin the
the phase transformations occurring in metals and alloys deading-term approximation for a nearest-neighbor central-
finite temperaturegunder pressur®), the thermal lattice vi- force model. Since then, many anharmonic calculations in-
brations(anharmonicity effecisplay an essentially important cluding the lowest-order anharmonic contributions have been
role >1° However, most of the first-principles calculations for performed for metal systent&?° The method requires ac-
the structural phase transformations and alloy phase diagrakmowledge of a number of Brillouin-zone suthsand the
computations have been done with the use of the lattice viealculations are performed for the central-force model crys-
bration theory in the quasiharmonidQH) approx- tals. Recently, some attempts have been made to take into
imation!~1°For the alloy phase diagram calculations, thereaccount the bond length dependence of bond stiffness tensors
have been difficulties in accounting for the anharmonicity ofin the calculations of the free energy of the substitutional
thermal lattice vibrations, especially for the higher temperaalloys?!?2 The anharmonic effects of lattice vibrations on
ture region than the Debye temperature because the thermile thermodynamic properties of the materials have also
lattice expansion plays an important role and cannot be neseen studied by employing the first-order quantum-statistical
glected. The martensitic phase transformation in substituperturbation theod’2° as well as by the first-order self-
tional alloys such as the M\l; _, system has also been stud- consistentSC) phonon theorie€®~3!The theories have been
ied with the QH approximation, and the temperature regiorused to analyze, e.g., the temperature dependence of ex-
treated by the QH theory is usually lower than the Debyetended x-ray absorption fine-structuteXAFS) spectra and
temperaturé® the phonon frequencies. However, the previous anharmonic-
The systems considered at high temperatures and higky theories are still incomplete and have some inherent
pressures require the allowance for anharmonic effects whictirawbacks and limitations.
are very essential in these regions. The simplest way is to use In the present study, we use the finite-temperature mo-
the QH Debye-Groeisen theory® However, the results ob- ment expansion technique to derive the Helmholtz free ener-
tained in such a way are not always satisfactory. It is notedjies of metal systems, going beyond the QH approximations.
that the Debye form of the harmonic approximation is rathefThe thermodynamic quantities, mean-square atomic dis-
crude theory. The applicability of the QH method to the placements, specific heats, and elastic moduli are determined
study of particular metals is often restricted by the isotropicfrom the explicit expressions of the Helmholtz free energies.
Debye mode and the assumption of the mean sound velociffhe Helmholtz free energy of the system at a given tempera-
v.1" The temperature dependence of the lattice constant artdre T will be determined self-consistently with the equilib-
the linear thermal expansion coefficient are calculated byium thermal lattice expansions of the crystal.
minimizing the free energy with respect to the volume of the We will use the electronic many-body potentials, i.e.,
system. Due to their simplicity, pair potentials are often usedsecond-moment tight-bindingTB) potentials>>~*° for the
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evaluation of the internal energy of the system. In metals th@ormal-mode frequencigghonon spectruif® This scheme
long-range Coulomb interaction and the partially filled va-is called as the QH approximation.
lence bands lead to interatomic forces that are inherently Inthe present study the thermodynamic quantities are cal-
many-body in nature. For more than a decade, theulated with the use of the electronic many-body potentials
embedded-atom methgBAM)*'~**and the second-moment or the potentials derived by EAM. We note that the present
approximation(SMA) of the TB scheme have been the two analytic formulation is quite useful when we combine it with
most common approaches, able to overcome the major limithe ab initio theoretical scheme by numerically evaluating
tations of two-body pair potential§:*®*’The physical basis the harmonick and anharmonig; andy, parameters which
of EAM models makes them valid, especially for normal orwill be defined in the subsequent derivations. The SMA TB
noble metals, whereas SMA &priori well suited for tran- scheme is well suited to describe the cohesion of transition
sition elementgwith narrowd-band bonding metals since they are elements with a partially filled narrow
In Sec. I, we will make a general derivation of the ther- d band superimposed on a broad free-electron4digeband.
mal lattice expansion and Helmholtz free energy of theThe narrowness of the band, especially in the®Bseries, is
monoatomic cubic metals based on the fundamental prina consequence of the relative constriction of therbitals
ciples of quantume-statistical mechanics. The thermodynamicompared with the outes and p orbitals. As one moves
quantities of the metals are then derived in terms of theacross the periodic table, tideband is gradually being filled.
power moments of the atomic displacements from the HelmMost of the properties of the transition metals are character-
holtz free energy of the system. Section Ill includes our mairized by the filling of thed band and ignoring thepelectrons.
calculation results of the thermodynamic quantities of somé his constitutes Friedel'sl-band model which further as-
cubic metals. Finally, Sec. IV summarizes the present studysumes a rectangular approximation for the density of states
pi(E) such that the bonding energy of the solid is primarily
due to the filling of thed band and proportional to its width.

In the SMA, the bonding energy is then proportional to the
We derive the thermodynamic quantities of metals, takingoot of the second momemé;im. In metals, an important
into account the highefourth-) order anharmonic contribu- contribution to the structure comes from the repulsive term
tions in the thermal lattice vibrations going beyond the QHrepresented as a sum of pair potentials accounting for the
approximation. The basic equations for obtaining thermodyshort-range behavior of the interaction between ions. There-

namic quantities of the given crystals are derived in a fol-fore, the cohesive energy of a transition metal consists of

lowing manner: The equilibrium thermal lattice expansions

are calculated by the force balance criterion and then the Ecot= Erept Ebond- 2)

thermodynamic quantities are determined for the equilibrium

lattice spa}cings. The anharmonic contrjbut!ons of the ther- The SMA has been used to suggest various functional

modynamic quantities are given explicitly in terms of the form for interatomic potentials in transition metals such as

power moments of the thermal atomic displacements. the Finnis-Sinclair potentiaf the closely related embedded
Let us first define the lattice displacements. We dengte  atom potential, and the TB SMA, also referred in the litera-

the vector defining the displacement of il atom, in the  tyre as to Gupta potentia.The functional form we adopted

Ith unit cell, from its equilibrium position. The potential en- here for elemental metals is that of the many-body SMA
ergy of the whole crystdl(u; ) is expressed in terms of the potential

positions of all the atoms from the sites of the equilibrium

Il. THEORY

lattice. We may assume that this function has a minimum 1 N ‘o

when all theu;, are zero, for the perfect lattice is presumably Eoi=— E (AZ exp{ — p(i_ 1”

a configuration of stable equilibrium. We use the theory of N1\ 1= l'o

small atomic vibrations, and expand the potential endsgy N 12

as a power series in the Cartesian componaiits, of the g2 exp{ _Zq(rj_ 1” ) &)
displacement vectan; around this point iF o ’

JU _ 22U - which has five parameters:y, &;; (for pure metals,;
U=Ug+ >, [—r u+ > —| ulul,,, =&), P, 0, andry. The total cohesive energl. of the
T ouj eq TN &u{,ﬂu{,v system is then written as the sum of tig . The parameters

o A &, p, andq are fitted to reproduce some experimental

+- ) guantitiesat zero temperaturécohesive energg., lattice
parameten, bulk modulus and elastic constants the sum-

whereU, denotes the interngtohesive energy of the sys- mations over the indexin Eq. (3) are either limited to th&
tem. If we truncate the above expansion of Ef.up to the first neighbors only, and in that case we use the parameters
second-order terms, then the full interatomic potential is reA, {,, p, and q determined by Rosato, Guillope, and
placed by its quadratic expansion about the equilibriumLegrand® or extended up to the fifth neighbors, and in that
atomic positions. The system is then equivalent to a collecease we use the parameters of Cleri and RoSa@eri and
tion of harmonic oscillators, and diagonalization of the cor-Rosatd® fitted these parameters to experimental data for 16
responding dynamical matrix yields the squares of thecc and hexagonal-close-packéttp transition metals.
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TABLE |. Parameters of the second moment TB potentials for cubic metals.

A (eV) £ (eV) p q E. (eV/atom) a(A)
Al(1)? 0.1221 1.316 8.612 2.516 -3.339 4.050
Al(2)P 0.0334 0.7981 14.6147 1.112 -3.339 4.050
Ni 0.1368 1.7558 10.00 2.70 —4.435 3.523
Cu 0.0993 1.3543 10.08 2.56 —3.544 3.615
Rh 0.0629 1.660 18.450 1.867 -5.752 3.803
Pd 0.1746 1.718 10.867 3.742 -3.936 3.887
Ag(1)2 0.1028 1.1780 10.928 3.139 —2.960 4.085
Ag(2)° 0.1231 1.2811 10.12 3.37 —2.960 4.085
Au 0.2061 1.790 10.229 4.036 —-3.779 4.079
Pt 0.2975 2.695 10.612 4.004 -5.853 3.924

Li 0.0333 0.3249 7.75 0.737 -1.63 3.49

Na 0.0159 0.2910 10.13 1.30 -1.13 4.29

K 0.0205 0.2625 10.58 1.34 -0.93 5.24

Rb 0.0194 0.2464 10.48 1.40 -0.85 5.61

Cs 0.0205 0.2421 9.62 1.45 -0.80 6.04

dindicates parameters taken from Ref. 36.
bindicates parameters taken from other source€)Atom Ref. 60 and A@) from Ref. 35.

The SMA TB potentials have been further extended andrhe supplementary forces act in the direction of the gen-
revised not only for bulk metal systems but also for nanoseralized coordinates; . The thermodynamic quantities of the
cale materials. For Rh clusters, Chein, Blaston-Barojas, anbarmonic crystalharmonic Hamiltoniahwill be treated in
Pedersoif proposed the size-dependent parameters of ththe Einstein approximation. In this respect, the present for-
SMATB potentials, on the basis of their generalized gradienmulation is similar conceptually to the treatment of quantum
approximation(GGA) calculations. A different parametriza- Monte Carlo method by Frenket:>3
tion strategy was introduced by Sigalas and After the action of the supplementary forcesthe system
Papaconstantopoufsén which the parameters were fitted to passes into a new equilibrium state. For obtaining the statis-
local density approximatiofLDA) calculations of the total tical average of an thermodynamic quantity,), for the
energy as a function of lattice constant. Li, Barojas, anchew equilibrium state, we use the general formula for the
Papaconstantopoufisfitted the SMA TB potential param- correlation. Specifically, we use a recurrence forifliased
eters to a LDA database that consists of the total energy asa@n the density matrix in the quantum statistical mechanics
function of the lattice constant for both bcc and fcc lattices,(for more details see Appendix)A
rather than the fitting procedure to experimental quantities.

To simulate the long-range nature of the metallic bonding by

sp electrons in alkali metals, the interactions up to 12th- <Rn+1>a:<kn>a<qn+l>a+0‘9<K“>a

neighbor shells(228 atoms in bcc crystalare taken into danig

account?® Their potentials fitted to the first-principles LDA . - om ] oo (2m)

results are available for various metals, and more refined -0 Bam (f) oKy (5)
nonorthogonal basis TB scherigare also proposed for the m=o (2m)! | 6 danys

guantitative calculations. The present thermodynamic formu-
lﬁgﬂ%ig\(ljegbsgj\lteedTLoeCscjkjﬂﬂe'r\évnho{ae%i:;nd of TE; SChemils.where 0=kgT, mis the atomic mass, ari%in is the correla-
- B pot parameters used 1t , operator of thenth order:
the present calculations are given in Table I.
We now consider a quantum system, which is influenced
by supplemental forceg; in the space of the generalized 5 A A A N
coordinatesq; .*°~°! For simplicity, we only discuss mon- Kn=Zr=1[ 101,021+ 8s]+ -]+ Un] - 6)
atomic metallic systems, and hereafter omit the indices
the sublattices. Then, the Hamiltonian of the crystalline sysin Eq. (5) above, the symbat --) expresses the thermal av-

tem is given by eraging over the equilibrium ensemble with the Hamiltonian

H and B,n denotes the Bernoulli numbersy; ,q; ], repre-
|:|:|:|O_E ;) (4) sents the anticommutation relation. The general decouplmg
formula of Eq.(5) enables us to get all moments of the lattice
. system and to investigate the nonlinear thermodynamic prop-
where Hy denotes the crystalline Hamiltonian without the erties of the materials, taking into account the anharmonicity
supplementary forcea; and the carets represent operators.of the thermal lattice vibrations. The Helmholtz free energy
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of the system can then be obtained by taking into account the 1[/d*E A= .
higher-order moment&up to fourth ordex. Yi=6! | 508 ZanZ | |Fe(vit6ya),
The atomic force acting on a giveth atom in the lattice '@/ eq 1877y e

can be evaluated by taking derivatives of the internal energy (12)

of theith atomic site and evaluating the power moments of

the atomic displacements. If thigh atom in the lattice is respectively. In the SMA TB scheme, the paramekeysy;; ,
affected by a supplementary foree;, then the total force and y,; are composed of two contributiorfeand structure
acting on it must be zero, and one gets the force balancand repulsive energigsand k; is given by the following

relation as

F%Ey;
i lig)

Z( ) (o) +1% (L) S

JU; ,dU; gIU

L1
T2

a,y,m

P*Eqi .
dU; 4 U; gdU;,AU; , <uiaui'yui77> az=0.

eq

(@)

Here, the subscript eq indicates evaluation at equilibrium.

The thermal averages of the atomic displaceménigu; )
and(u; ,u;,U;,) (called second- and third-order momeras

1-
given siteR; can be expressed in terms of the first moment nP=> { - I
ij

(uj,) with the aid of Eq.(5) as

< |a>a

<u|a Iy>a <u|a>a<uly>a+ 0———

5,y how Béay 8
2Mw 260 w?’ ®)

0—'<uiy>a

<uiauiyui 77>a:<uia>a<uiy>a<ui 77>a+ 6Pa77]<uia>a &an

2 0-'2<uia>a + ﬁ<ui77>a5a'y COt.’( h_w)

0 Jdada, 2Mw 20
<ui7]>a5ay
0o ®
Here,P,,, is 1 (= y=7) or 0 (otherwis¢ depending on,

v, andz (Cartesian componenandw is the atomic vibration

frequency similar to that defined in the Einstein model,

which will be given by Eq(11). Then Eq.(7) is transformed
into the new differential equation

d%y dy
i 92@*‘3% 0y£+ yy3+kiy

0
+7iF(X cothX—1)y—az=0, (10

whereX=fw/26 andy=(u;). Here,k; and y; are second-
and fourth-order derivatives dt;; and defined by the fol-
lowing formulas:

PPE,
_( ou> I) St (0
eq

la

form:

q q -7
ki= ro[n.@ (2 )77.(?’)}#2.”2 A(p/ro)Z

j Fij
- P
_g”(ﬂ)

exg —p(rij/ro—1)], (13

where 7{?) and 7(® are defined, respectively, as

fuexq zq(ru/ro l)], (14)

i

:§j: If &5 exd —2q(rij /ro—1)], (15)

with

ar,;
||J:(ﬁ_)l(]) :(Xj_Xi)/rij .

After a bit of algebra,y,; defined by Eq(12) is given by

—1/2
Moj

ax2 < ax? \ry

2 3
i i
)

el
{4

2
q } -3/2
Moj
)

23 77(3)(

3(1-6l2 +5| i)
—3_

)
+A|—
l'o ; Iij
L3 617 +5|,J)( ) 6|i2j(p)2
5 U i
rij ro/ rij\ro
4
e P exp{—p(ri;/rg)—1} (16)
ij ro p ij’to .

The second derivatives oft?) and #{*) appearing in the first
term of the right-hand side of E¢16) are also given explic-
itly in terms of the TB potential parameters and the direction
cosined;; andmy;; between the central atoimand its neigh-
boring atomg (see Appendix B y,; is expressed explicitly
as
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TABLE II. Lattice sums appearing in the harmork¢ and anharmonicy; and y, parameters in cubic

metals. 2, =3, 1-615+5l]], I,=3;,1-313-3m +18m;, ;=35 +mi—6l7m].

Crystal structure  Neighbors 1 2 3 4 5
fcc Z; 12 6 24 12 24
Distance 1 V2 V3 2 NG
> 12 4 2 8 4 8
j#i
> 2 2 4 2 164/25
j#i
> 12n? 1 0 2 1 18/25
j#i
> -2 4 -4 -2 4415
1
22 3 -6 6 3 —66/5
23 2 4 4 2 292/25
bee zZ 8 6 12 24 8
Distance 1 a3 2.6/3 J11/3 2
12 8/3 2 4 8 8/3
J#i
> 8/9 2 2 664/121 8/9
J#i
> 12 8/9 0 1 152/121 8/9
j#i
21 —32/9 4 -2 416/121 -32/9
22 16/3 -6 3 —624/121 16/3
> 0 4 2 1024/121 0
3
2, (2) 2.,(3) (172 2 2 2
- q)| 9" _2‘? (9] sy 97, ) e (A ] @ o, @ )| 52
2i ro)| ay? EYRTR M2 ay o Moo I 7 7i Mo M2
p 1-315-3mi+1875m;  1-315—3m5+185m7 [ p
+A > 3 + . —
Mo/ ] I Fij Mo
12+m2—6l2m3 [ p)?2 p\3
J ! 111 2 -2
- ) (_ +1imj E) exp{—p(rij/ro— 1)}, 17
|
where (2 is defined by In determining the atomic displacemei;), the symme-

try property appropriate for cubic crystals is used

n?”=2 |ij§i2j exd —2q(rij/ro—1)]. (18 {Uia) = (Ui) = (Ui = CUi)- @9
]

Then, the solutions of the nonlinear differential equation of

. Eqg. (10) can be expanded in the power series of the supple-
Here, we note thaty;; and y,; depend sensitively on the onial forcea as

structure of crystals through factors including direction co-

sine_s as can _be seen in Eq%6) a_md (17). The factors in- _ y=Ar+Aja+ A2, (20)
cluding direction cosines for cubic crystals are presented in

Table II. The derivatives of*), ), and7{®) with respect  Here, Ar is the atomic displacement in the limit of zero of
to they variable are given in Appendix B. supplemental forcer. Substituting the above solution of Eq.
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(20) into the original differential equation E@10), one can where the second term denotes the harmonic contribution to
get the coupled equations on the coefficieAts and A,, the free energy.

from which the solution ofAr is given as With the aid of the free energy formudl=E—-TS, one
can find the thermodynamic quantities of metal systems. The
(Ar)?~[—C,+/C5—-4C,C5]/2Cy, (21)  specific heats and elastic moduli at temperafuage directly
where derived from the free energ¥ of the system. For instance,
the isothermal compressibility; is given by
C1:37i ’
i 0 aia/an? bt 1 v2[o*V -
C,=3k; 1+k—i2(XC0thX+1) , (22) x7=3(alag) aNal oz | (28)
2v,6° X cothX
Cy=— ki2 + > . where
Using Egs.(8) and(21), it can be shown that mean square
atomic displacementsecond momentin cubic crystals is A\ 1 9°U, X cothX g%k
given by Sz Ns oz T o o2
0 2 2y6? 1 {ak\2 X2
u?)= =X cothX+ = —=—(1+ X cothX/2 - = -
(u?) K 3 K3 ( ) 4k2(ar) (XcothX+ sinth)H' (29
2?63
+ ——=—(1+XcothX)(1+ X cothX/2). (23 "
K On the other hand, the specific heats at constant voldme
is
Once the thermal expansidr in the lattice is found, one
can get the Helmholtz free energy of the system in the fol-
lowing form:  _ank [ X2 N 20 (2 N 71) X3 cothX
V=Uy+ Wyt V,, (24) v BlsinfEX * KZ|| <727 37 sintP X
where ¥, denotes the free energy in the harmonic approxi- RZY X? B X4 N 2X* coth? X
mation and¥, the anharmonicity contribution to the free 3 sinf X/~ 72| sintFx sinkf X

energy*®~*°We calculate the anharmonicity contribution to

the free energyW , by applying the general formula (30
V=Uy+W¥y+ J)\<\A/>xd)\1 (25)  The specific heat at constant pressGigis determined from
0 the thermodynamic relations
where\V represents the Hamiltonian corresponding to the
anharmonicity contribution. It is straightforward to evaluate 2
he following Is analyticall 9TVay
the following integrals analytically Co=C,+ , (31)

XT

71 4 Y2 202
=] (uidys, 1= | (U)j —ody2.  (26)
0 0 where a1 denotes the linear thermal expansion coefficient

Then the free energy of the system is given by andyr the isothermal compressibility. In Eq27), (29), and
(30) above, the sufficesfor the parameterk, y, andy, are
¥ =Uy+3Ng[X+In(1—e )] omitted because each atomic site is equivalent in a mono-

atomic cubic crystal with primitive structure. The relation-

6 2 X cothX : : S o
+3N{ 5 | y,X2COthE X — = y,| 1+ , ship between the isothermal and adiabatic compressibilities,
k 3 2 x1 and s, is simply given by
204 2y cothx| 1 X cothX
+ F g‘yz cot + 5 c
thX Xs= G XT- (32
—2y(n1+2y,)| 1+ — )(1+XcothX)H, P

(27) One can also find “thermodynamic” Gneisen constant as
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FIG. 1. Comparison of linear thermal expansion coefficientsof (a) Cu, (b) Pd, (c) Ag, and(d) Mo, calculated by using the Morse
potentials. Solid and dot-dashed lines show the results of self-cons{S€nand non-self-consisteiNSC) treatments of the statistical
moment method, respectively, while the dashed ones are the results of the QH theory by Moruzzi, Janak, and(i8dBwarz

V [dS]  atBgV energyF(T,V) on the system volum¥ can be explored by
Y=~ |5g| = : (33 homogeneous scaling of the atomic potentig®s}. Then,
C,l oV Cp i . ;

T for each temperatur€ the equilibrium volumeéV is obtained

by minimizing Helmholtz energ¥ with respect tdv. In Fig.
1, we present the linear thermal expansion coefficientef
Cu, Pd, Ag, and Mo metals, calculated by the present theory,

whereBs= x5 * denotes the adiabatic bulk modulus.

ll. RESULTS AND DISCUSSIONS together with those oflghe QH theory by Moruzzi, Janak, and
. . , . Schwarz(MJS model.”" The linear thermal expansion coef-
A.C th th h th - .
omparison wi € quasiharmonic theory ficientsa by the present statistical moment theory and those

Firstly, we compare the thermodynamic quantities of met-of the QH theory by Moruzzet al. are referred to as SMM
als calculated by the present statistical moment methodnd MJS, respectively. In order to allow the direct compari-
(SMM) with those by the QH theor. The basic idea of the son between the two different schemes, the linear thermal
QH approximation is that the explicit dependence of the freeexpansion coefficienta; of the cubic metals are calculated
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with the use of the same Morse type of potentials, exactly 30 ——m—/—r——————7—7—+17——
identical forms as used in the QH calculations by M3She I
four metals Cu, Pd, Ag, and Mo are chosen simply becaust [ )
the linear thermal expansion coefficients are well repro- & 25 e .
duced by the two-body Morse potentials as demonstrated b'g | s ]
them?? [
The solid lines in Fig. 1 show the linear thermal expan- & 2 ZA - .
sion coefficientsat calculated by the self-consistefsC) I ]
treatments of the present SMM scheme, while the dot-dashe
ones are obtained by the non-self-consistt8C) treat-
ments. In the SC treatments, the characteristic paramieters
v1, andvy, are determined self-consistently with the lattice -
constantsa; at given temperaturd. However, in the NSC
treatments, the harmoni¢ and anharmonie/,, andy, pa-
rameters are fixed to those values evaluated at the appropr
ate reference temperatufg (e.g., absolute zero temperature
or some reference temperature; h&geis chosen to be 0 K Cu
and taken to be constant for the whole temperature re¢gion I
The calculated linear thermal expansion coefficiemtsby 0 s TSI S S 1N N
the present theory are in good agreement with those by QF 0 200 400 600 800 1000 1200 1400
theory for the lower temperature region below the Debye(@ Temperature(K)
temperature and the agreement is better for the SC calcule
tions. This indicates that the thermal lattice expansion gives 2.5
rise to the significant reduction in the parameters,, and
v», and thereby changes the thermodynamic quantities ap
preciably even for the lower temperatures. 20 Cu

(1

[\
(=4
]
-

Coefficient
vy
T
\
i

10N

o mmme- SMM(LJ)
H O Exp

— --MD

——— SMM(TB)

Thermal Expans

A)

B. Thermodynamic quantities of metals by second moment
TB potentials

1.0 |-

<u®> (x10?

With the use of the analytic expressions presented in Sec
I, it is straightforward to calculate the thermodynamic quan-
tities of metals and alloys at the thermal equilibrium. Firstly,
the equilibrium lattice spacings are determined, using Eqs ~ 9-5 |-
(20) and (21), in the SC treatment including temperature
(bond length -dependenk, y;, andy, values. The thermal 0 . . . . . ' .
I(;ittice fexpansion cahn als? bhe Icalculated t:cyhstandard proce 0 100 200 300 400 500 600 700 800

ure of minimizing the Helmholtz energy of the system: We

have checked that both calculations give almost identical rel? Temperature (K)
sults on the thermal lattice expansions. We cglcu!ate the ther- g 2. (@) The linear thermal expansion coefficient (a) and
mal lattice expansion and mean-square atomic displacemens mean-square atomic displacemefu?) of Cu crystal calculated

of some fcc(j[ransitior) metals and b_CC alkali metals, for py the present method. The corresponding experimental values are
which the reliable many-body potentials are available, anthresented by symbol®.

compare them with those by the molecular dynani®)
and Monte CarldMC) simulations. So far, a number of the
SMA base TB potentials have been proposed for fcc metalglifferences in the calculated quantities when we use the
Specifically, we use the SMA TB potentials by RosatoLennard-Jone$LJ) type of pair potentials. The bold line in
et al*® and by Cleri and Rosatbfor fcc metals, which are Fig. 2(a) represents the calculated by the present SMM,
known to give good descriptions of cohesive properties ofvhile the dashed linet values by the Lennard-Jones type of
fcc elements. For alkali metals Li, Na, K, Rb, and Cs, we usgotential; ¢(r)=Do{(ro/r)"—(n/m)(ro/r)™, with n
the potential parameters proposed recently byt al*° =9.0, m=5.5,r,=2.5487 A, andD,=4125.7 K (0.35553

In the TB scheme by Rosagt al.,>® the interaction range eV), respectively. The overall agreement between the calcu-
is limited to the first nearest neighbors, while in the TBlated and experimental; values is better for the calcula-
scheme by Cleri and Rosaid,it is extended to the fifth tions by the SMA TB potential, although LJ potential param-
neighbors. In Fig. 2, we present the linear thermal expansioeters are not best fitted to reproduce the experimemtal
coefficientsar and mean-square atomic displacemend values. We note that the classical MD simulattéshown by
of Cu crystal, together with the experimental vald@ieg sym-  the dot-dashed curve in Fig(d, do not reproduce the cor-
bols ©).>>=°8 For this calculation, the electronic many-body rect curvature of the linear thermal expansion coefficient
potentials are used for Cu crystal, but there are no largand is qualitatively incorrect due to the absence of the quan-

— Cal.
o Exp.
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5.0 - - T T differ significantly from those results by MD simulations,
a) especially for the lower temperature region, i.e., below the
Debye temperature. This is due to the fact that in the classi-
a0 b O Experiments (Ref61) o cal MD simulations_the quantum mechanical vibration ef-
—— %rgooo fects are not taken into account. One sees that the quantum

<> (x10%A)

mechanical zero point vibrations give main contributions at
lower temperature regioh=< 100 K. The agreement between
the present calculation and the experimental results is fairly
good for the whole temperature region, from zero~t800

K, much higher than the Debye temperature. In Figp) 3we
show the mean-square atomic displacement®) of Ag
crystal calculated by the present SMM using the SMA TB
potentials of Refs. 35 and 36, together with the experimental
results®? One sees in Fig.(8) that TB parameters by Rosato,
Guillope, and Legramd (first-neighbor TB potentialleads

to larger mean-square atomic displacem@rth in Ag crys-

tal compared to those results by using the TB parameters by

007 200 200 00 200 1000 Cleri and _Rosaﬁ? (5th neighbor TB potential 'I_'he simil_ar_
Temperature (K) tendency is also found for the thermal expansion coefficients
a1 of Ag crystal, largerat values by TB potential by Rosato,
L B B y Guillope, and Legrand® In the present formalism, the ther-
b) / ] mal lattice expansion and mean-square atomic displacements
7O F - SMM st neighbours ‘ 1 are characterized by the harmorkicand anharmonicy pa-
= SMM 5th neighbours / ] rameters. In particular, the thermal lattice expandimate-
3 — — CVM lst neighbours 7, 4 . . . . 2
60 b ----- CVM 5th neighbours / 3 rial dependenceis predicted by a ratio ofy/k® and the
r ®  MD 5th neighbors ]

O Exp. {Ref62)

<u> (x10%A)

0 200 400 600 800 1000 1200
Temperature (K)

1400

mean-square displaceme®) by y/k? (and also byy?/k®)
parameter as well. The ratiogk? of Cu crystal calculated
by using the TB potential by Rosato, Guillope, and
Legrand® are in fact larger than those results by Cleri and
Rosatd® for whole temperature region. The mean square
atomic displacemenr{i?) in Ag crystal by the fifth-neighbor
TB potentiaf® are in fairly good agreement with the experi-
mental results for the whole temperature region, and they are
in good agreement with the MD simulation results for high
temperature region.

The calculated mean-square atomic displacemerfisof
Ag crystal by the present method is also compared with
those by the cluster variation methd@VM). As is well
known, CVM?3~%is an analytical statistical method that di-
rectly gives us the free energy of a system. The CVM was

originally designed for the statistical mechanics of the Ising
model on a fixed lattice, and extended recently to treat sys-
tems with continuous degrees of freedom, such as the lattice
site distortion, due to thermal vibrations, thermal dilatation,
and mixture of atoms of different sizes. In general, in CVM
treatments the correlations in the atomic displacements are
tum mechanical vibration effects. One also sees in Fig. 2 taken into account within the small atomic clustéesg.,
that the agreements between the calculated and experimenghall clusters such as pair, tetrahedron, or octahedron clus-
results of the mean square atomic displacemémts in Cu  ters. Finel and Téot gave the first application of the Gauss-
crystal are quite excellent for the SMA TB calculations, com-ian CVM®® for the thermodynamic quantities of some transi-
pared to those by two-body potentials. This implies that thdion metals. It has been demonstrated that Gaussian CVM
present SMM scheme with SMA TB potentials provides usgives the excellent results of the thermodynamic quantities
fully quantitative estimates for the thermodynamic quantitiesof metals (the CPU time is several orders of magnitude
of elemental metals. smaller than the one needed for numerical MD or MC simu-
We show in Fig. 8) the mean-square atomic displace- lations. The thin dot-dashed and thin dashed curves in Fig.
ments (u?) of Al crystal as a function of temperatufE,  3(b) represent the mean-square atomic displacerigijt of
together with those values by the MD simulafidand ex-  Ag crystal obtained by the Gaussian C¥Musing the SMA
perimental dat&' The present calculations by using SMM TB potentials of Refs. 35 and 36, respectively. Both CVM

FIG. 3. Mean-square atomic displacemefug) of (a) Al and
(b) Ag crystals as a function of temperature.(&), the dashed line
shows the results of MD simulations by Papanicolabal. (Ref.
60), while the solid circles are the experimental values.
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TABLE lIl. Bulk modulus, linear thermal expansion, and @eisen constant calculated with the use of
the SMA TB potentials. Experimental values of NRT) are those values for 250 K.

B(GPa) a (108 K™Y Y
Calc.

Element T=0 RT Expt. Calc. Expt. Calc. Expt.
Al 87 75 72 24.5 23.6 2.09 2.19
Cu 153 137 137 15.9 16.7 221 2.00
Ni 190 182 184 14.7 12.7 2.01 1.88
Ag 114 96 101 235 19.7 2.78 2.36
Rh 306 280 271 10.9 8.2 2.19 2.43
Pd 204 171 181 14.3 11.6 2.22 2.18
Au 185 164 173 17.2 14.2 3.21 3.04
Pt 301 259 278 11.2 8.9 3.06 2.56
Li 16.8 12.4 11.6 65.4 56.0 1.18 1.18
Na* 6.5 43 6.8 83.9 71.0 1.53 1.31
K 5.3 3.6 3.2 98.7 83.0 1.54 1.37
Rb 4.0 2.8 31 104.6 90.0 1.65 1.67
Cs 29 2.1 2.0 108.8 97.0 1.55 1.44

calculations ofar are generally in agreement with the ex- lated Gruneisen constantgg for low temperatures are well

perimental results. We note that fou?) calculations of Ay compared with the experimental values which are deduced

crystal, however, the present analytic SMM gives much effifrom the low (room-) temperature specific heats.

cient analytic calculations and much better results compared The lattice specific heat§, and C, at constant volume

to those by CVM calculations. and at constant pressure are calculated using B@.and
T_he calpglated thermodynamic quantities of cubic me_taIS(gl), respectively. However, the evaluations by E@€) and

fce (in addition to Cu, Ag, and Al presented abgemd alkali  (31) are the lattice contributions, and their values may not be

(bcg) metals, by the present method are summarized in Tablgjrectly compared with the corresponding experimental val-

lll. In the present calculations, we use the TB potential payes we do not include the contributions of lattice vacancies

rameters by Li, Barojas, and PapaconstantopOtifs al- ' gjectronic parts of the specific heals, which are

kali metals Li, Na, K, Rb, and Cs. This TB model takes into known to give significant contributions in metals for higher

account the interatomic interactions up to 12th neighbors emperature redion near the melting temperature. In particu-
i.e., 228 atoms in bcc lattice. The relative magnitudes o{ P 9 9 b NP

linear thermal expansion coefficients of fcansition met- 12" it has been demonstrated that lattice vacancies make a

als are in good agreement with the experimental resultéf”lrge contrlbutlc_)n to the speqflc he'ats' for the high-
However, the thermal lattice expansion coefficieatsf al- temperature regioff The electronic contribution to the spe-

kali metals are systematically largér10%) than those of cific heat at con_stant volulrrﬁﬁ'e is proportional to the tem-
experimental results, although their relative magnitudes ar@eratureT and given byC7®= y.T, v, being the electronic

in good agreement with the experimental results. The calcuspecific heat constafit:*® The electronic specific heaG;'®
lated Gruneisen constants and elastic moduli are also prevalues are estimated to be 0.8—-13.4%Cgf for metals con-
sented in Table Ill. The anharmonicity of the lattice vibra- sidered here by the free-electron motteTherefore, the
tions is well described by the Gmeisen constany;. The  present formulas of the lattice contribution to the specific
material of larger value o may be regarded as the mate- heats, bothC, andC,, for the cubic metals tend to under-
rial with higher lattice anharmonicity. So, the evaluation of estimate the specific heats for higher temperature region,
the Grineisen constant is of great significance for the assessvhen compared with the experimental results. The lattice
ment of anharmonic thermodynamic properties of metals andontribution of specific heat§,, calculated for Cu crystal is
alloys. The experimental Gneisen constantgg of fcc met-  shown in Fig. 4, together with the experimental resflsnd

als are larger than 2 except for Ni, while those of alkalithose of MD simulation results. As expected from above
metals are less than 2 and take values arotid5. The mentioned reasonings, the calculateg values of solid Cu
calculated Groeisen constantyg of fcc metals are also are smaller than the experimental values at high tempera-
larger than 2, while those values of alkali metals are less thatures. However, the temperature dependefocevaturg of

2, in agreement with the experimental results. The calculate@, of Cu crystal by the present method is in good agreement
ve values by the present method have the weak temperaturgith the experimental results, in contrast to the MD simula-
dependence, i.e., show the slight increase with increasintion results. In the MD simulations, the heat capacities per
temperature as in the calculations by QH thelijhe tabu-  atom at constant pressugg, can be obtained for metals by
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40 s T the evaluations ok, y;, andy,, and thus for the calcula-
A tions of thermodynamic quantities of the present study.
O Experiment (Ref. 58)
A MD(Reéfﬁ\)A
i proent IV. CONCLUSIONS
15 _ A ] We have presented an analytic formulation for obtaining

the thermodynamic quantities of metals and alloys based on
the finite temperature moment expansion technique in the
statistical physics. The thermal lattice expansion of mon-
A atomic crystalgfourth-order anharmonic contributipis de-
rived explicitly in terms of the three characteristic param-
eters,k;, ¥4, and y,. The present formalism takes into
account the quantum-mechanical zero-point vibrations as
well as the higher-order anharmonic terms in the atomic dis-
placements and it enables us to derive the various thermody-
Cu namic quantities of metals and alloys for a wide temperature
1 range. We are able to calculate the thermodynamic quantities
25 - TP L quite efficiently and accurately by using the analytic formu-
0 500 1000 1500 las and taking into account the many-body electronic effects
Temperature (K) in metallic systems. The calculated ther_modynamic _quanti-
ties of metals are in good agreement with the experimental
FIG. 4. Specific heats per atom at constant pres€yrglotted  results as well as with those by MD and MC simulatigims
against temperaturg for Cu crystal, in unit of Boltzmann's con- some cases, better results by the present mgthod
stantkg . The experimental datéRef. 58 are shown as the open Although in this paper we only used many-body elec-
circles. tronic potentials, the extension to coupling the present SMM
scheme with the ab initio density functional theories is
straightforward. This can be done by evaluating three char-

taking the numerical derivative of the internal energy with @Cteristic parameteis y,, andy, for cubic systems. It can

respect to temperaturd@ The MD simulations by Mei, Dav- also be_ applied directly for the composition-temperature
enport, and Fernand® give reasonable values (ﬁ’ for phase diagrams calculations of alloys for the full temperature
' P

higher temperature region when compared with the experi[ange from absolute zero to the melting temperatligs

mental data. However, it should be noted that the MD simu-
lations are only adequate above the room temperature, and ACKNOWLEDGMENTS
the calculatecC,, value deviates from the experimental data

at low temperatures because quantum effects are not tak?n -{?i aLthhoSrs |\'Iéogltdt“k?3:10 thank fPtrr:)felstqr S. '-'It-sur:‘e'lyuli(l of
into account in the classical MD simulations. nstitute for Soll ate Fnysics ot the Jniversity of Tokyo

: . for valuable discussions. The support of the supercomputing
The bulk moduliBy of cubic metals are evaluated at ab- facility of Institute for Solid State Physics, the University of
solute zero temperature and at room temperatB® and

presented also in Table Ill. The ratios of bulk moduli, Tokyo is also acknowledged.
B+/Bg, with respect to those of the absolute zero tempera-

ture are calculated to be 0.85-0.9@¢c metal$ and ~0.7 APPENDIX A: MOMENT DEVELOPMENT BY DENSITY
(alkali metal$ which are favorably compared with the ex- MATRIX FORMALISM

perimental results. In general, the calculated bulk moduli
B+(RT) andBg are in good agreement with the experimental
results as well as QH calculations.

As a final remark of this section, we note that the prese
statistical moment method can be incorporated in a straigh
forward manner with the first-principles density functional
theory, by simply evaluating three kinds of derivatiese p(q;_ ﬂ)

>O

Specific Heats at Constant Pressure Cp (kg)
2

To derive the mean-square atomic displacenmeatond

momenj and higher-order power moments of the thermal
{attice vibrations, we use the formalism based on the density

n A o .

Imatrlx p, which is defined by

for harmonic and two for anharmonic contributipref the p=ex (A1)
atomic total energy with respect to the Cartesian coordinates.

The density functional T8 and TBTE® (tight-binding total .

energy methods with Slater-Koster parameters derived fromWhereW andH denote the Helmholz free energy and Hamil-
the first-principles theories can be readily applied to evaluatéonian of the system, respectively. In the presence of the
k, 71, andy, values, on the basis of Hellman-Feynman theo-Constant supplemental forces, «;, ...,y in the system,
rem. The full density functional theories such as the linearthe HamiltoniarH is given byH=Hy— 2, «;§; . The density
response approach by Giannozet al®® and real-space matrix p is normalized so as to satisfy the conditionpTr
finite-element density matrix methBtcan also be used for =1 and given by the solution of the Liouville equation
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J i AP
iﬁof,_lt):[H’FA’]—- (A2) ((@—(a))(F=(F)))
- (a{F} JF )
We use the following identities on the derivatives of an op- da da
erator functionE, composed of two different operatofs 5 7\ m/ pE(m
andB: +02 (—1)m—" ”‘(—F) < — > (A9)
Ex(m.AB)=ex 7(A+\B)] (A3)  Then, one gets the decoupling formula
(}]E)\(T1A1 ) - n+1(|h)n 1 R "
. {TB t 2 i [AABIANAB. A S{F.ad D= (Fa(@da
5 s A a(F) S B, (ih 2n | gF2m
+AB...]11{ E\(7,A,B) — a_ n %
]]]} " O 02 ot g) \ a|
O B e R (4 (A10)
=E\(7,AB [TB—nZl Dl

In the above Eqs(A8)—(Al0), B,, denotes the Bernoulli

e number and=® is defined by
X[A+AB[A+AB..[A+AB..]]]{, (A4)

where [A+\B, =—{(A+)\B)B B(A+\B)}. X (A11)

By differentiation of the density matrig with respect to the  sypstitutingF =, into Eq. (A10), one can get the mean-

constant forcer;, one can get the relation square atomic displacement from the thermal equilibrium po-
sition, as
1ow 1 o1 (in)"
= gy =
0 aa ~(@)a— 21 (n+1)! ( ) @ 4_0’ g @ 2n | 5520
AS) (G- (a)a)am 020 =02 Ban [ 12)7 24
( ) ql ql a a (96( (2n)| aai a.
where (A12)
o Equation (A12) is used to derive Eq(8) in the text. The
@"My=Tr[...[§ A]_A...]p. (A6)  similar formulas can be given for higher order moments as
well.
For equilibrium state, one can show tH&™)=0 because
a,slatz[ﬂ,,s]_zo is satisfied. One can then derive from APPENDIX B: DERIVATIVES OF COUPLING
(A5) the relation PARAMETERS k AND y

. The second derivatives such ag?%®/9x?> and
T #*5®ox?, appearing in Eq(16) in the text are given by the
<qk>a . (A7)

da following forms, respectively:

Using the relation(F),=Tr{Fp] and Eqgs.(A3) and (A4), 2

one can get the following identities: 7i
J J _Z_axl =2[ 3(1-612+514)r2

A AF) | oF q
(E=(En@—(@n) =6 S ~aa-aij it |
0
if gF(m q\?
+02 (=™ (0) ek +alf(1=15)r; (E) & exd —2q(rij Iro— 1)1,

(A8) (B1)
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q
2 [2(1—5“2]-+4If})r”2+1dﬁ(1—lﬁ)r”1(a) v =—Zj {(1—3|ﬁ—3m§+15|ﬁmﬁ)r”3
q)? +2(1-3m2— 12+ 712m )Y
+4Iﬁ(§) & exd —2q(rij/ro—1)]. (B2) T T g

q 2
_4(m2_|2m2)ral(r_) }gﬁ
0

On the other hand, the first and second derivatives such as xexg —2q(ri;/ro—1)], (B4)
anM1ay, #*9®1ay?, anda?5 > ay? with respect to they

_ _ and
variable are given by 2 3
%7, 2 g2 2\ -2 o2
2
19277-(1) B q _Em2 711 2.2 E 2
(9yl :; ||Jm|Jr|J1+2||Jm|J(E)}§ﬁ 5rnZiJ-)rij Mo +4|ijmij o glj
xexg —2q(ri/ro— 1)1, (B5)
xXexd —2q(rij/ro—1)], (B3)  respectively.

Ip. E. A. Turchi and A. GonisStatics and Dynamics of Alloy !°G. Leibfried and W. Ludwig,Theory of Anharmonic Effects in
Phase Transformationd@lenum, New York, 1994 p. 345. Crystals(Academic, New York, 1961

2Foundations and Applications of Cluster Variation Method and 2°J. Rosen and G. Grimvall, Phys. Rev.28, 7199(1983.
Path Probability Method edited by T. Morita, M. Suzuki, K. 2Van de Walle, G. Ceder, and U. V. Waghmare, Phys. Rev. 86tt.

Wada, and M. Kaburagi, Suppl. Prog. Theor. Phy45 1 4911(1998.

(1994. 22\/an de Walle and G. Ceder, Phys. Rev6B 5972(2000.
3J. L. Moran-Lopez and J. M. SancheEheory and Applications of ~ 2%T. Yokoyama, Y. Yonamoto, T. Ohta, and A. Ugawa, Phys. Rev. B

the Cluster Variation and Path Probability MethodBlenum, 54, 6921(1996.

New York, 1996. 24T. Yokoyama, K. Kobayashi, T. Ohta, and A. Ugawa, Phys. Rev.
‘R. Ahuja, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 53, 6111(1996.

B 48, 16 269(1993. 25A. 1. Frenkel and J. J. Rehr, Phys. Rev4B, 585(1993.
5S. A. Ostanin and V. Yu. Trubitsin, Phys. Rev. B, 13485  2°N. Boccara and G. Sarma, Physi¢sY.) 1, 219 (1965.

(1998. 2IN. S. Gillis, N. R. Werthamer, and T. R. Koehler, Phys. Rev. B
6U. Pinsook and G. J. Ackland, Phys. Rev5B, 11 252(1998; 165 951 (1968.

59, 13 642(1999. 28p_F. ChoquardThe Anharmonic CrystalBenjamin, New York
TA. Zupan, P. Blaha, K. Schwarz, and J. P. Perdew, Phys. Rev. B 1967).

58, 11 266(1998. 29R. C. Shukla and E. Sternin, Philos. Mag.78, 1 (1996.
8p, J. Wojtowaz and J. G. Kirkwood, J. Chem. Phg8, 1299  3CR. Hardy, M. A. Day, R. C. Shukla, and E. R. Cowley, Phys. Rev.

(1960. B 49, 8732(1994).
9M. Asta, R. McCormark, and D. de Fontaine, Phys. Re®@®3  3!R. C. Shukla, Philos. Mag. B4, 13(1996, Phys. Status Solidi B

748 (1993. 205, 481(1998.
0y, L. Moruzzi, J. F. Janak, and K. Schwarz, Phys. Re@B790  32F. Ducastelle, J. Phy$France 31, 1055(1970.

(1988. 3R. P. Gupta, Phys. Rev. B3, 6265 (1981); D. Tomanenk, S.
1A, P. Sutton, Philos. Mag. 80, 147(1989. Mukherjee, and K. H. Bennemanihid. 28, 665 (1983; W.
12y Ozolins, C. Wolrerton, and A. Zunger, Phys. Rev5B 4816 Zhong, Y. S. Li, and D. Tomanekbid. 44, 13053(1991).

(1998; 57, 6427(1998; 58, R5897(1998. 34M. W. Finnis and J. E. Sinclair, Philos. Mag. %0, 45 (1984.
13K, Persson, M. Ekman, and G. Grimvall, Phys. Rev6® 9999  *°V. Rosato, M. Guillope, and B. Legrand, Philos. Mag59, 321

(1999. (1989.

14\, Ozolins and M. Asta, Phys. Rev. Le&6, 448(200). 36 Cleri and V. Rosato, Phys. Rev.4B, 22 (1993.
5van de Walle and G. Ceder, Rev. Mod. Phyd, 11 (2002. 87B. von Sydow, J. Hartford, and G. Wahnstrom, Comput. Mater.
165, Rubini and P. Ballone, Phys. Rev.4B, 99 (1993. Sci. 15, 367 (1999.

YG. P. SrivastavaThe Physics of Phonorisiilger, Bristol, 1990.  8C.-H. Chien, E. Blaisten-Barojas, and M. R. Pederson, J. Chem.
A, A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall, Ann. Phys.112(5), 2301(2000.
Phys.(N.Y.) 15, 337(1961); A. A. Maradudin and P. A. Flinn, 39\M. M. Sigalas and D. A. Papaconstantopoulos, Phys. Red0,B
Phys. Rev129 2529(1963. 1574(1994).

094301-13



K. MASUDA-JINDO, VU VAN HUNG, AND PHAM DINH TAM

PHYSICAL REVIEW B 67, 094301 (2003

40y, Li, E. B. Barojas, and D. A. Papaconstantopoulos, Phys. Rev. B°J. Mei, J. W. Davenport, and G. W. Fernando, Phys. Re%3B

57, 15519(1998.

4IM. S. Daw and M. I. Baskes, Phys. Rev.2B, 6443(1984.

423, M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Re@B7983
(1986.

43M. I. Baskes, Phys. Rev. Leth9, 2666(1987).

443. M. Holender, Phys. Rev. B1, 8054 (1990.

45R. Pasianot, D. Farkas, and E. J. Savino, Phys. Ret3 B952
(1991).

48, A. Girifalco and V. G. Weizer, Phys. Re®14, 687 (1959.

4'N. V. Hung and J. J. Rehr, Phys. Rev5B, 43 (1997.

48U. Hansen, P. Vogl, and V. Fiorentini, Phys. Rev.6B, 5055
(1999.

4N. Tang and V. V. Hung, Phys. Status SolidilB9, 511(1988; V.
E. Panhimet al, Phase Theory in Alloy$Nauka, Novosibirk,
1984 (in Russian.

50N. Tang and V. V. Hung, Phys. Status SolidilB2, 371 (1990.

51vu Van Hung and K. Masuda-Jindo, J. Phys. Soc. &8 2067
(2000; V. V. Hung, H. V. Tich, and K. Masuda-Jinddid. 69,
2691 (2000.

52D, Frenkel and A. J. C. Ladd, J. Chem. Phgg, 3188(1984.

53D, Frenkel, Phys. Rev. Letg6, 858(1986.

54Ya. P. Terletsky and N. Tang, Ann. Phyé eipzig) 19, 299
(1967.

53, s. Mitra and S. K. Joshi, J. Chem. Phgd, 1462(1961).

56K. A. Gschneidner Jr., Solid State Phys, 275(1964).

5" American Institute of Physics Handbodkd ed., edited by B. H.

Billings et al. (McGraw-Hill, New York, 1982.
58M. W. Zemansky,Heat and Thermodynamic&VicGraw-Hill,
New York, 1957, p. 263.

4653(19912).

0N, I. Papanicolaou, G. C. Kallinteris, G. A. Evangelakis, and D.
A. Papaconstantopoulos, Comput. Mater. 3@i.224 (2000.

61R. C. Shukla and C. A. Plint, Phys. Rev4B, 10 337(1989, and
references therein.

52M. Simerska, Acta Crystallogf4, 1259(1961); Czech. J. Phys.
B12, 858(1962.

83R. Kikuchi, Phys. Rev81, 998(1951); T. Mohri, J. M. Sanchez,
and D. de Fontaine, Acta MetalB3, 1171(1985.

64R. Kikuchi and K. Masuda-Jindo, Comput. Mater. S8j. 1
(1997.

5A. Finel, Suppl. Prog. Theor. Phy$15, 59 (1994); A. Finel and
R. Teot, in Stability of Materials edited by A. Gonis, P.E.A.
Turchi, and J. Kudrnovsky, NATO ASI Series, Vol. 383enum,
New York, 1996, p. 197.

%R. A. MacDonald, R. C. Shukla, and D. K. Kahalner, Phys. Rev.
B 29, 6489(1984.

57D. Porezag, Th. Kohler, G. Seifert, and R. Kaschner, Phys. Rev. B
51, 12947 (1999; Th. Frauenheim, F. Weich, Th. Kohler, S.
Uhlmann, D. Porezag, and G. Seifert, Phys. Re\62B 11492
(1995.

%8R. E. Cohen, M. J. Mehl, and D. A. Papaconstantopoulos, Phys.
Rev. B50, 14 694(1994); E. Wasserman, L. Stixrude, and R. E.
Cohen,ibid. 53, 8296(1996.

69p, Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys.
Rev. B43, 7231(1991).

0D, J. Kouri, Y. Huang, and D. K. Hoffman, J. Phys. Chetf0,
7903(1996; J. M. Thijssen and J. E. Inglesfield, Phys. Rev. B
51, 17 988(1995.

094301-14



