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Thermodynamic quantities of metals investigated by an analytic statistical moment method
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The thermodynamic properties of metals are studied by including explicitly the anharmonic effects of the
lattice vibrations going beyond the quasiharmonic approximations. The free energy, thermal lattice expansion
coefficients, mean-square atomic displacements, and specific heats at the constant volume and those at the
constant pressure,Cv and Cp , are derived in closed analytic forms in terms of the power moments of the
atomic displacements. The analytical formulas give highly accurate values of the thermodynamic quantities,
which are comparable to those of the molecular dynamics or Monte Carlo simulations for a wide temperature
range. The present formalism is well suited to calculate the thermodynamic quantities of metals and alloys by
including the many body electronic effects and by combining it with the first-principles approaches.
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I. INTRODUCTION

The first-principles determination of the thermodynam
quantities of metals and alloys are now of great importa
for the understanding of structural phase transformation
well as for the phase diagrams computations.1–3 So far, the
first-principles density functional theories4–8 have been used
extensively for the calculations of the ground state proper
of various metal systems at the absolute zero temperatur
the phase transformations occurring in metals and alloy
finite temperatures~under pressureP!, the thermal lattice vi-
brations~anharmonicity effects! play an essentially importan
role.9,10 However, most of the first-principles calculations f
the structural phase transformations and alloy phase diag
computations have been done with the use of the lattice
bration theory in the quasiharmonic~QH! approx-
imation.11–15 For the alloy phase diagram calculations, the
have been difficulties in accounting for the anharmonicity
thermal lattice vibrations, especially for the higher tempe
ture region than the Debye temperature because the the
lattice expansion plays an important role and cannot be
glected. The martensitic phase transformation in subs
tional alloys such as the NixAl12x system has also been stu
ied with the QH approximation, and the temperature reg
treated by the QH theory is usually lower than the Deb
temperature.16

The systems considered at high temperatures and
pressures require the allowance for anharmonic effects w
are very essential in these regions. The simplest way is to
the QH Debye-Gru¨neisen theory.10 However, the results ob
tained in such a way are not always satisfactory. It is no
that the Debye form of the harmonic approximation is rat
crude theory. The applicability of the QH method to t
study of particular metals is often restricted by the isotro
Debye mode and the assumption of the mean sound velo
v.17 The temperature dependence of the lattice constant
the linear thermal expansion coefficient are calculated
minimizing the free energy with respect to the volume of t
system. Due to their simplicity, pair potentials are often us
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for genetic studies of trends among a given class of meta
materials. Therefore, they do not account for mostly imp
tant many-body electronic effects in metallic systems, a
they cannot be relied on for properties of real materials.

A number of theoretical approaches have been propo
to overcome the limitations of the QH theories. The fi
calculation of the lowest-order anharmonic contributions
the atomic mean-square displacement^u2& or the Debye-
Waller factor was done by Maradudin and Flinn18 in the
leading-term approximation for a nearest-neighbor cent
force model. Since then, many anharmonic calculations
cluding the lowest-order anharmonic contributions have b
performed for metal systems.19,20 The method requires ac
knowledge of a number of Brillouin-zone sums14 and the
calculations are performed for the central-force model cr
tals. Recently, some attempts have been made to take
account the bond length dependence of bond stiffness ten
in the calculations of the free energy of the substitutio
alloys.21,22 The anharmonic effects of lattice vibrations o
the thermodynamic properties of the materials have a
been studied by employing the first-order quantum-statist
perturbation theory23–25 as well as by the first-order self
consistent~SC! phonon theories.26–31The theories have bee
used to analyze, e.g., the temperature dependence o
tended x-ray absorption fine-structure~EXAFS! spectra and
the phonon frequencies. However, the previous anharmo
ity theories are still incomplete and have some inher
drawbacks and limitations.

In the present study, we use the finite-temperature m
ment expansion technique to derive the Helmholtz free en
gies of metal systems, going beyond the QH approximatio
The thermodynamic quantities, mean-square atomic
placements, specific heats, and elastic moduli are determ
from the explicit expressions of the Helmholtz free energi
The Helmholtz free energy of the system at a given tempe
ture T will be determined self-consistently with the equilib
rium thermal lattice expansions of the crystal.

We will use the electronic many-body potentials, i.
second-moment tight-binding~TB! potentials,32–40 for the
©2003 The American Physical Society01-1
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evaluation of the internal energy of the system. In metals
long-range Coulomb interaction and the partially filled v
lence bands lead to interatomic forces that are inhere
many-body in nature. For more than a decade,
embedded-atom method~EAM!41–45and the second-momen
approximation~SMA! of the TB scheme have been the tw
most common approaches, able to overcome the major l
tations of two-body pair potentials.18,46,47The physical basis
of EAM models makes them valid, especially for normal
noble metals, whereas SMA isa priori well suited for tran-
sition elements~with narrowd-band bonding!.

In Sec. II, we will make a general derivation of the the
mal lattice expansion and Helmholtz free energy of
monoatomic cubic metals based on the fundamental p
ciples of quantum-statistical mechanics. The thermodyna
quantities of the metals are then derived in terms of
power moments of the atomic displacements from the He
holtz free energy of the system. Section III includes our m
calculation results of the thermodynamic quantities of so
cubic metals. Finally, Sec. IV summarizes the present stu

II. THEORY

We derive the thermodynamic quantities of metals, tak
into account the higher-~fourth-! order anharmonic contribu
tions in the thermal lattice vibrations going beyond the Q
approximation. The basic equations for obtaining thermo
namic quantities of the given crystals are derived in a f
lowing manner: The equilibrium thermal lattice expansio
are calculated by the force balance criterion and then
thermodynamic quantities are determined for the equilibri
lattice spacings. The anharmonic contributions of the th
modynamic quantities are given explicitly in terms of t
power moments of the thermal atomic displacements.

Let us first define the lattice displacements. We denoteui l
the vector defining the displacement of thei th atom, in the
l th unit cell, from its equilibrium position. The potential en
ergy of the whole crystalU(ui l ) is expressed in terms of th
positions of all the atoms from the sites of the equilibriu
lattice. We may assume that this function has a minim
when all theui l are zero, for the perfect lattice is presumab
a configuration of stable equilibrium. We use the theory
small atomic vibrations, and expand the potential energU
as a power series in the Cartesian components,uil

j , of the
displacement vectorui l around this point

U5U01(
i ,l , j

F ]U

]uil
j G

eq

ui l
j 1 (

i i 8,l ,l l 8, j j 8
F ]2U

]ui l
j ]ui 8 l 8

j 8 G
eq

ui l
j ui 8 l 8

j 8

1¯ , ~1!

whereU0 denotes the internal~cohesive! energy of the sys-
tem. If we truncate the above expansion of Eq.~1! up to the
second-order terms, then the full interatomic potential is
placed by its quadratic expansion about the equilibri
atomic positions. The system is then equivalent to a col
tion of harmonic oscillators, and diagonalization of the c
responding dynamical matrix yields the squares of
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normal-mode frequencies~phonon spectrum!.48 This scheme
is called as the QH approximation.

In the present study the thermodynamic quantities are
culated with the use of the electronic many-body potent
or the potentials derived by EAM. We note that the pres
analytic formulation is quite useful when we combine it wi
the ab initio theoretical scheme by numerically evaluatin
the harmonick and anharmonicg1 andg2 parameters which
will be defined in the subsequent derivations. The SMA T
scheme is well suited to describe the cohesion of transi
metals since they are elements with a partially filled narr
d band superimposed on a broad free-electron-likes-p band.
The narrowness of thed band, especially in the 3d series, is
a consequence of the relative constriction of thed orbitals
compared with the outers and p orbitals. As one moves
across the periodic table, thed band is gradually being filled
Most of the properties of the transition metals are charac
ized by the filling of thed band and ignoring thespelectrons.
This constitutes Friedel’sd-band model which further as
sumes a rectangular approximation for the density of sta
r i(E) such that the bonding energy of the solid is primar
due to the filling of thed band and proportional to its width
In the SMA, the bonding energy is then proportional to t
root of the second momentsAm i

(2). In metals, an importan
contribution to the structure comes from the repulsive te
represented as a sum of pair potentials accounting for
short-range behavior of the interaction between ions. The
fore, the cohesive energy of a transition metal consists o

Ecoh5Erep1Ebond. ~2!

The SMA has been used to suggest various functio
form for interatomic potentials in transition metals such
the Finnis-Sinclair potential,34 the closely related embedde
atom potential, and the TB SMA, also referred in the lite
ture as to Gupta potential.33 The functional form we adopted
here for elemental metals is that of the many-body SM
potential

Eci5
1

N (
i 51

N XA(
j Þ i

N

expF2pS r i j

r 0
21D G

2H j i j
2 (

j Þ i

N

expF22qS r i j

r 0
21D G J 1/2C, ~3!

which has five parameters:«0 , j i j ~for pure metals,j i j
5j0), p, q, and r 0 . The total cohesive energyEc of the
system is then written as the sum of theEci . The parameters
A, j0 , p, and q are fitted to reproduce some experimen
quantitiesat zero temperature~cohesive energyEc , lattice
parametera, bulk modulus and elastic constants!. In the sum-
mations over the indexj in Eq. ~3! are either limited to theZ1
first neighbors only, and in that case we use the parame
A, z0 , p, and q determined by Rosato, Guillope, an
Legrand,35 or extended up to the fifth neighbors, and in th
case we use the parameters of Cleri and Rosato.36 Cleri and
Rosato36 fitted these parameters to experimental data for
fcc and hexagonal-close-packed~hcp! transition metals.
1-2
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TABLE I. Parameters of the second moment TB potentials for cubic metals.

A ~eV! j ~eV! p q Ec ~eV/atom! a ~Å!

Al ~1!a 0.1221 1.316 8.612 2.516 23.339 4.050
Al ~2!b 0.0334 0.7981 14.6147 1.112 23.339 4.050

Ni 0.1368 1.7558 10.00 2.70 24.435 3.523
Cu 0.0993 1.3543 10.08 2.56 23.544 3.615
Rh 0.0629 1.660 18.450 1.867 25.752 3.803
Pd 0.1746 1.718 10.867 3.742 23.936 3.887

Ag~1!a 0.1028 1.1780 10.928 3.139 22.960 4.085
Ag~2!b 0.1231 1.2811 10.12 3.37 22.960 4.085

Au 0.2061 1.790 10.229 4.036 23.779 4.079
Pt 0.2975 2.695 10.612 4.004 25.853 3.924
Li 0.0333 0.3249 7.75 0.737 21.63 3.49
Na 0.0159 0.2910 10.13 1.30 21.13 4.29
K 0.0205 0.2625 10.58 1.34 20.93 5.24
Rb 0.0194 0.2464 10.48 1.40 20.85 5.61
Cs 0.0205 0.2421 9.62 1.45 20.80 6.04

aindicates parameters taken from Ref. 36.
bindicates parameters taken from other sources: Al~2! from Ref. 60 and Ag~2! from Ref. 35.
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The SMA TB potentials have been further extended a
revised not only for bulk metal systems but also for nan
cale materials. For Rh clusters, Chein, Blaston-Barojas,
Pederson38 proposed the size-dependent parameters of
SMA TB potentials, on the basis of their generalized gradi
approximation~GGA! calculations. A different parametriza
tion strategy was introduced by Sigalas a
Papaconstantopoulos39 in which the parameters were fitted
local density approximation~LDA ! calculations of the tota
energy as a function of lattice constant. Li, Barojas, a
Papaconstantopoulos40 fitted the SMA TB potential param
eters to a LDA database that consists of the total energy
function of the lattice constant for both bcc and fcc lattic
rather than the fitting procedure to experimental quantit
To simulate the long-range nature of the metallic bonding
sp electrons in alkali metals, the interactions up to 12
neighbor shells~228 atoms in bcc crystal! are taken into
account.40 Their potentials fitted to the first-principles LDA
results are available for various metals, and more refi
nonorthogonal basis TB schemes39 are also proposed for th
quantitative calculations. The present thermodynamic form
lation is well suited to couple with any kind of TB schem
mentioned above. The SMA TB potential parameters use
the present calculations are given in Table I.

We now consider a quantum system, which is influenc
by supplemental forcesa i in the space of the generalize
coordinatesqi .49–51 For simplicity, we only discuss mon
atomic metallic systems, and hereafter omit the indicesl on
the sublattices. Then, the Hamiltonian of the crystalline s
tem is given by

Ĥ5Ĥ02(
i

a i q̂i , ~4!

where Ĥ0 denotes the crystalline Hamiltonian without th
supplementary forcesa i and the carets represent operato
09430
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The supplementary forcesa i act in the direction of the gen
eralized coordinatesqi . The thermodynamic quantities of th
harmonic crystal~harmonic Hamiltonian! will be treated in
the Einstein approximation. In this respect, the present
mulation is similar conceptually to the treatment of quantu
Monte Carlo method by Frenkel.52,53

After the action of the supplementary forcesa i the system
passes into a new equilibrium state. For obtaining the sta
tical average of an thermodynamic quantity^qk&a for the
new equilibrium state, we use the general formula for
correlation. Specifically, we use a recurrence formula54 based
on the density matrix in the quantum statistical mechan
~for more details see Appendix A!

^K̂n11&a5^K̂n&a^q̂n11&a1u
]^K̂n&a

]an11

2u (
m50

`
B2m

~2m!! S i\

u D 2mK ]K̂n
~2m!

]an11
L

a

, ~5!

whereu5kBT, m is the atomic mass, andK̂n is the correla-
tion operator of thenth order:

K̂n5
1

2n21 @ ...@ q̂1 ,q̂2#1q̂3#1 ...]1q̂n] 1 . ~6!

In Eq. ~5! above, the symbol̂̄ & expresses the thermal av
eraging over the equilibrium ensemble with the Hamiltoni
Ĥ and B2n denotes the Bernoulli numbers.@qi ,qj #1 repre-
sents the anticommutation relation. The general decoup
formula of Eq.~5! enables us to get all moments of the latti
system and to investigate the nonlinear thermodynamic p
erties of the materials, taking into account the anharmoni
of the thermal lattice vibrations. The Helmholtz free ener
1-3
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of the system can then be obtained by taking into account
higher-order moments~up to fourth order!.

The atomic force acting on a giveni th atom in the lattice
can be evaluated by taking derivatives of the internal ene
of the i th atomic site and evaluating the power moments
the atomic displacements. If thei th atom in the lattice is
affected by a supplementary forceab , then the total force
acting on it must be zero, and one gets the force bala
relation as

(
a

S ]2Eci

]uia]uib
D

eq

^uia&1 1
2 (

a,g
S ]3Eci

]uia]uib]uig
D

eq

^uiauig&

1
1

3! (
a,g,h

S ]4Eci

]uia]uib]uig]uih
D

eq

^uiauiguih&2ab50.

~7!

Here, the subscript eq indicates evaluation at equilibriu
The thermal averages of the atomic displacements^uiauig&
and^uiauiguih& ~called second- and third-order moments! at
given siteRi can be expressed in terms of the first mom
^uia& with the aid of Eq.~5! as

^uiauig&a5^uia&a^uig&a1u
]^uia&a

]ag

1
\dag

2mv
cothS \v

2u D2
udag

mv2 , ~8!

^uiauiguih&a5^uia&a^uig&a^uih&a1uPagh^uia&a

]^uig&a

]ah

1u2
]2^uia&a

]ag]ah
1

\^uih&adag

2mv
cothS \v

2u D
2u

^uih&adag

mv2 . ~9!

Here,Pagh is 1 (a5g5h) or 0 ~otherwise! depending ona,
g, andh ~Cartesian component! andv is the atomic vibration
frequency similar to that defined in the Einstein mod
which will be given by Eq.~11!. Then Eq.~7! is transformed
into the new differential equation

g iu
2

d2y

da2 13g iuy
dy

da
1g i y

31kiy

1g i

u

k
~X cothX21!y2ab50, ~10!

whereX[\v/2u and y[^ui&. Here,ki and g i are second-
and fourth-order derivatives ofEci and defined by the fol-
lowing formulas:

ki5S ]2Eci

]uia
2 D

eq

[mv2, ~11!
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g i5
1

6 F S ]4Eci

]uia
4 D

eq

16S ]4Eci

]uib
2 ]uig

2 D
eq
G[ 1

6 ~g1i16g2i !,

~12!

respectively. In the SMA TB scheme, the parameterski , g1i ,
and g2i are composed of two contributions~band structure
and repulsive energies! and ki is given by the following
form:

ki5
q

r 0
Fh i

~2!2S 2
q

r 0
Dh i

~3!Gm2i
21/22A~p/r 0!(

j
F12, i j

2

r i j

2, i j
2 S p

r 0
D Gexp@2p~r i j /r 021!#, ~13!

whereh i
(2) andh i

(3) are defined, respectively, as

h i
~2!5(

j
F12 l i j

2

r i j
Gj i j

2 exp@22q~r i j /r 021!#, ~14!

h i
~3!5(

j
l i j
2 j i j

2 expb22q~r i j /r 021!c, ~15!

with

l i j 5S ]r i j

]x D5~xj2xi !/r i j .

After a bit of algebra,g1i defined by Eq.~12! is given by

g1i5S q

r 0
D F ]2h i

~2!

]x2 22
]2h i

~3!

]x2 S q

r 0
D Gm2i

21/2

2S q

r 0
D 2Fh i

~2!22h i
~3!S q

r 0
D G2

m2i
23/2

1AS p

r 0
D(

j
F3~126l i j

2 15l i j
4 !

r i j
3

1
3~126l i j

2 15l i j
4 !

r i j
2 S p

r 0
D2

6l i j
2

r i j
S p

r 0
D 2

1 l i j
4 S p

r 0
D 4Gexp$2p~r i j /r 0!21%. ~16!

The second derivatives ofh i
(2) andh i

(3) appearing in the first
term of the right-hand side of Eq.~16! are also given explic-
itly in terms of the TB potential parameters and the direct
cosinesl i j andmi j between the central atomi and its neigh-
boring atomsj ~see Appendix B!. g2i is expressed explicitly
as
1-4
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g2i5S q

r 0
D F ]2h i

~2!

]y2 22
]2h i

~3!

]y2 S q

r 0
D Gm2i

21/222F ]h i
~1!

]y G2S q

r 0
D 2

m2i
23/21S q

r 0
D 2Fh i

~2!22h i
~3!S q

r 0
D G2

m2i
25/2

1AS p

r 0
D(

j
F123l i j

2 23mi j
2 115l i j

2 mi j
2

r i j
3 1

123l i j
2 23mi j

2 115l i j
2 mi j

2

r i j
2 S p

r 0
D

2
l i j
2 1mi j

2 26l i j
2 mi j

2

r i j
S p

r 0
D 2

1 l i j
2 mi j

2 S p

r 0
D 3Gexp$2p~r i j /r 021!%, ~17!

TABLE II. Lattice sums appearing in the harmonick1 and anharmonicg1 and g2 parameters in cubic
metals.(1[( j Þ i126l i j

2 15l i j
4 , (2[( j Þ i123l i j

2 23mi j
2 115l i j

2 mi j
2 , (3[( j Þ i l i j

2 1mi j
2 26l i j

2 mi j
2 .

Crystal structure Neighbors 1 2 3 4 5

fcc Zi 12 6 24 12 24
Distance 1 & ) 2 A5

(
jÞi

l ij
2 4 2 8 4 8

(
jÞi

l ji
4 2 2 4 2 164/25

(
jÞi

l ij
2mij

2 1 0 2 1 18/25

(
1

22 4 24 22 44/5

(
2

3 26 6 3 266/5

(
3

2 4 4 2 292/25

bcc Zi 8 6 12 24 8
Distance 1 2/) 2A6/3 A11/3 2

(
jÞi

l ij
2 8/3 2 4 8 8/3

(
jÞi

l ji
4 8/9 2 2 664/121 8/9

(
jÞi

l ij
2mij

2 8/9 0 1 152/121 8/9

(
1

232/9 4 22 416/121 232/9

(
2

16/3 26 3 2624/121 16/3

(
3

0 4 2 1024/121 0
e
o

of
ple-

f
.

whereh i
(1) is defined by

h i
~1!5(

j
l i j j i j

2 exp@22q~r i j /r 021!#. ~18!

Here, we note thatg1i and g2i depend sensitively on th
structure of crystals through factors including direction c
sines as can be seen in Eqs.~16! and ~17!. The factors in-
cluding direction cosines for cubic crystals are presented
Table II. The derivatives ofh i

(1) , h i
(2) , andh i

(3) with respect
to they variable are given in Appendix B.
09430
-

in

In determining the atomic displacement^ui&, the symme-
try property appropriate for cubic crystals is used

^uia&5^uig&5^uih&[^ui&. ~19!

Then, the solutions of the nonlinear differential equation
Eq. ~10! can be expanded in the power series of the sup
mental forcea as

y5Dr 1A1a1A2a2. ~20!

Here,Dr is the atomic displacement in the limit of zero o
supplemental forcea. Substituting the above solution of Eq
1-5
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~20! into the original differential equation Eq.~10!, one can
get the coupled equations on the coefficientsA1 and A2 ,
from which the solution ofDr is given as

~Dr !2'@2C21AC2
224C1C3#/2C1 , ~21!

where

C153g i ,

C253kiF11
g iu

ki
2 ~X cothX11!G , ~22!

C352
2g iu

2

ki
2 S 11

X cothX

2 D .

Using Eqs.~8! and ~21!, it can be shown that mean squa
atomic displacement~second moment! in cubic crystals is
given by

^u2&5
u

k
X cothX1

2

3

2gu2

k3 ~11X cothX/2!

1
2g2u3

k5 ~11X cothX!~11X cothX/2!. ~23!

Once the thermal expansionDr in the lattice is found, one
can get the Helmholtz free energy of the system in the
lowing form:

C5U01C01C1 , ~24!

whereC0 denotes the free energy in the harmonic appro
mation andC1 the anharmonicity contribution to the fre
energy.38–40 We calculate the anharmonicity contribution
the free energyC1 by applying the general formula

C5U01C01E
0

l

^V̂&ldl, ~25!

wherelV̂ represents the Hamiltonian corresponding to
anharmonicity contribution. It is straightforward to evalua
the following integrals analytically

I 15E
0

g1

^ui
4&dg1 , I 25E

0

g2

^ui
2&g150

2 dg2 . ~26!

Then the free energy of the system is given by

C5U013Nu@X1 ln~12e22X!#

13NH u2

k2 Fg2X2 coth2 X2
2

3
g1S 11

X cothX

2 D G ,
1

2u3

k4 F4

3
g2

2X cothXS 11
X cothX

2 D
22g1~g112g2!S 11

X cothX

2 D ~11X cothX!G J ,

~27!
09430
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where the second term denotes the harmonic contributio
the free energy.

With the aid of the free energy formulaC5E2TS, one
can find the thermodynamic quantities of metal systems.
specific heats and elastic moduli at temperatureT are directly
derived from the free energyC of the system. For instance
the isothermal compressibilityxT is given by

xT53~a/a0!3Y F2P1
1

3N

&

a S ]2C

]r 2 D
T
G , ~28!

where

]2C

]r 2 53NH 1

6

]2U0

]r 2 1uFX cothX

2k

]2k

]r 2

2
1

4k2 S ]k

]r D
2S X cothX1

X2

sinh2 XD G J . ~29!

On the other hand, the specific heats at constant volumeCv
is

Cv53NkBH X2

sinh2 X
1

2u

k2 F S 2g21
g1

3 D X3 cothX

sinh2 X

1
g1

3 S 11
X2

sinh2 XD2g2S X4

sinh4 X
1

2X4 coth2 X

sinh2 X D G J .

~30!

The specific heat at constant pressureCp is determined from
the thermodynamic relations

Cp5Cv1
9TVaT

2

xT
, ~31!

where aT denotes the linear thermal expansion coefficie
andxT the isothermal compressibility. In Eqs.~27!, ~29!, and
~30! above, the sufficesi for the parametersk, g1 andg2 are
omitted because each atomic site is equivalent in a mo
atomic cubic crystal with primitive structure. The relatio
ship between the isothermal and adiabatic compressibilit
xT andxs , is simply given by

xs5
Cv

Cp
xT . ~32!

One can also find ‘‘thermodynamic’’ Gru¨neisen constant as
1-6
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FIG. 1. Comparison of linear thermal expansion coefficientsaT of ~a! Cu, ~b! Pd, ~c! Ag, and ~d! Mo, calculated by using the Morse
potentials. Solid and dot-dashed lines show the results of self-consistent~SC! and non-self-consistent~NSC! treatments of the statistica
moment method, respectively, while the dashed ones are the results of the QH theory by Moruzzi, Janak, and Schwarz~MJS!.
e
ho

re

ory,
nd
f-
se

ri-
mal
d

gG5
V

Cy
F ]S

]VG
T

5
aTBSV

CP
, ~33!

whereBS[xS
21 denotes the adiabatic bulk modulus.

III. RESULTS AND DISCUSSIONS

A. Comparison with the quasiharmonic theory

Firstly, we compare the thermodynamic quantities of m
als calculated by the present statistical moment met
~SMM! with those by the QH theory.10 The basic idea of the
QH approximation is that the explicit dependence of the f
09430
t-
d

e

energyF(T,V) on the system volumeV can be explored by
homogeneous scaling of the atomic potentials$Ri

0%. Then,
for each temperatureT the equilibrium volumeV is obtained
by minimizing Helmholtz energyF with respect toV. In Fig.
1, we present the linear thermal expansion coefficientsaT of
Cu, Pd, Ag, and Mo metals, calculated by the present the
together with those of the QH theory by Moruzzi, Janak, a
Schwarz~MJS model!.10 The linear thermal expansion coe
ficientsaT by the present statistical moment theory and tho
of the QH theory by Moruzziet al. are referred to as SMM
and MJS, respectively. In order to allow the direct compa
son between the two different schemes, the linear ther
expansion coefficientsaT of the cubic metals are calculate
1-7
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with the use of the same Morse type of potentials, exa
identical forms as used in the QH calculations by MJS.10 The
four metals Cu, Pd, Ag, and Mo are chosen simply beca
the linear thermal expansion coefficientsaT are well repro-
duced by the two-body Morse potentials as demonstrated
them.10

The solid lines in Fig. 1 show the linear thermal expa
sion coefficientsaT calculated by the self-consistent~SC!
treatments of the present SMM scheme, while the dot-das
ones are obtained by the non-self-consistent~NSC! treat-
ments. In the SC treatments, the characteristic parametek,
g1 , andg2 are determined self-consistently with the latti
constantsaT at given temperatureT. However, in the NSC
treatments, the harmonick, and anharmonicg1 , andg2 pa-
rameters are fixed to those values evaluated at the appr
ate reference temperatureT0 ~e.g., absolute zero temperatu
or some reference temperature; hereT0 is chosen to be 0 K
and taken to be constant for the whole temperature regi!.
The calculated linear thermal expansion coefficientsaT by
the present theory are in good agreement with those by
theory for the lower temperature region below the Deb
temperature and the agreement is better for the SC calc
tions. This indicates that the thermal lattice expansion gi
rise to the significant reduction in the parametersk, g1 , and
g2 , and thereby changes the thermodynamic quantities
preciably even for the lower temperatures.

B. Thermodynamic quantities of metals by second moment
TB potentials

With the use of the analytic expressions presented in S
II, it is straightforward to calculate the thermodynamic qua
tities of metals and alloys at the thermal equilibrium. First
the equilibrium lattice spacings are determined, using E
~20! and ~21!, in the SC treatment including temperatu
~bond length! -dependentk, g1 , andg2 values. The therma
lattice expansion can also be calculated by standard pr
dure of minimizing the Helmholtz energy of the system: W
have checked that both calculations give almost identical
sults on the thermal lattice expansions. We calculate the t
mal lattice expansion and mean-square atomic displacem
of some fcc~transition! metals and bcc alkali metals, fo
which the reliable many-body potentials are available, a
compare them with those by the molecular dynamics~MD!
and Monte Carlo~MC! simulations. So far, a number of th
SMA base TB potentials have been proposed for fcc met
Specifically, we use the SMA TB potentials by Rosa
et al.35 and by Cleri and Rosato36 for fcc metals, which are
known to give good descriptions of cohesive properties
fcc elements. For alkali metals Li, Na, K, Rb, and Cs, we u
the potential parameters proposed recently by Liet al.40

In the TB scheme by Rosatoet al.,35 the interaction range
is limited to the first nearest neighbors, while in the T
scheme by Cleri and Rosato,36 it is extended to the fifth
neighbors. In Fig. 2, we present the linear thermal expans
coefficientsaT and mean-square atomic displacements^u2&
of Cu crystal, together with the experimental values~by sym-
bols s!.55–58 For this calculation, the electronic many-bod
potentials are used for Cu crystal, but there are no la
09430
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differences in the calculated quantities when we use
Lennard-Jones~LJ! type of pair potentials. The bold line in
Fig. 2~a! represents the calculatedaT by the present SMM,
while the dashed lineaT values by the Lennard-Jones type
potential; w(r )5D0$(r 0 /r )n2(n/m)(r 0 /r )m%, with n
59.0, m55.5, r 052.5487 Å, andD054125.7 K ~0.35553
eV!, respectively. The overall agreement between the ca
lated and experimentalaT values is better for the calcula
tions by the SMA TB potential, although LJ potential param
eters are not best fitted to reproduce the experimentalaT
values. We note that the classical MD simulation,59 shown by
the dot-dashed curve in Fig. 2~a!, do not reproduce the cor
rect curvature of the linear thermal expansion coefficientaT ,
and is qualitatively incorrect due to the absence of the qu

FIG. 2. ~a! The linear thermal expansion coefficientaT ~a! and
~b! mean-square atomic displacements^u2& of Cu crystal calculated
by the present method. The corresponding experimental values
presented by symbolss.
1-8
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tum mechanical vibration effects. One also sees in Fig. 2~b!
that the agreements between the calculated and experim
results of the mean square atomic displacements^u2& in Cu
crystal are quite excellent for the SMA TB calculations, co
pared to those by two-body potentials. This implies that
present SMM scheme with SMA TB potentials provides
fully quantitative estimates for the thermodynamic quantit
of elemental metals.

We show in Fig. 3~a! the mean-square atomic displac
ments ^u2& of Al crystal as a function of temperatureT,
together with those values by the MD simulation60 and ex-
perimental data.61 The present calculations by using SM

FIG. 3. Mean-square atomic displacements^u2& of ~a! Al and
~b! Ag crystals as a function of temperature. In~a!, the dashed line
shows the results of MD simulations by Papanicolaouet al. ~Ref.
60!, while the solid circles are the experimental values.
09430
tal
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e
s
s

differ significantly from those results by MD simulation
especially for the lower temperature region, i.e., below
Debye temperature. This is due to the fact that in the cla
cal MD simulations the quantum mechanical vibration
fects are not taken into account. One sees that the quan
mechanical zero point vibrations give main contributions
lower temperature regionT<100 K. The agreement betwee
the present calculation and the experimental results is fa
good for the whole temperature region, from zero to;800
K, much higher than the Debye temperature. In Fig. 3~b!, we
show the mean-square atomic displacements^u2& of Ag
crystal calculated by the present SMM using the SMA T
potentials of Refs. 35 and 36, together with the experime
results.62 One sees in Fig. 3~b! that TB parameters by Rosato
Guillope, and Legrand35 ~first-neighbor TB potential! leads
to larger mean-square atomic displacement^u2& in Ag crys-
tal compared to those results by using the TB parameter
Cleri and Rosato36 ~5th neighbor TB potential!. The similar
tendency is also found for the thermal expansion coefficie
aT of Ag crystal, largeraT values by TB potential by Rosato
Guillope, and Legrand.35 In the present formalism, the the
mal lattice expansion and mean-square atomic displacem
are characterized by the harmonick and anharmonicg pa-
rameters. In particular, the thermal lattice expansion~mate-
rial dependence! is predicted by a ratio ofg/k2 and the
mean-square displacement^u2& by g/k2 ~and also byg2/k5)
parameter as well. The ratiosg/k2 of Cu crystal calculated
by using the TB potential by Rosato, Guillope, an
Legrand35 are in fact larger than those results by Cleri a
Rosato36 for whole temperature region. The mean squa
atomic displacement̂u2& in Ag crystal by the fifth-neighbor
TB potential36 are in fairly good agreement with the exper
mental results for the whole temperature region, and they
in good agreement with the MD simulation results for hi
temperature region.

The calculated mean-square atomic displacements^u2& of
Ag crystal by the present method is also compared w
those by the cluster variation method~CVM!. As is well
known, CVM63–65 is an analytical statistical method that d
rectly gives us the free energy of a system. The CVM w
originally designed for the statistical mechanics of the Is
model on a fixed lattice, and extended recently to treat s
tems with continuous degrees of freedom, such as the la
site distortion, due to thermal vibrations, thermal dilatatio
and mixture of atoms of different sizes. In general, in CV
treatments the correlations in the atomic displacements
taken into account within the small atomic clusters~e.g.,
small clusters such as pair, tetrahedron, or octahedron c
ters!. Finel and Te´tot gave the first application of the Gaus
ian CVM65 for the thermodynamic quantities of some tran
tion metals. It has been demonstrated that Gaussian C
gives the excellent results of the thermodynamic quanti
of metals ~the CPU time is several orders of magnitu
smaller than the one needed for numerical MD or MC sim
lations!. The thin dot-dashed and thin dashed curves in F
3~b! represent the mean-square atomic displacement^u2& of
Ag crystal obtained by the Gaussian CVM65 using the SMA
TB potentials of Refs. 35 and 36, respectively. Both CV
1-9
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TABLE III. Bulk modulus, linear thermal expansion, and Gru¨neisen constant calculated with the use
the SMA TB potentials. Experimental values of Na* ~RT! are those values for 250 K.

Element

BT(GPa) a (1026 K21) gG

Calc.

Expt. Calc. Expt. Calc. Expt.T50 RT

Al 87 75 72 24.5 23.6 2.09 2.19
Cu 153 137 137 15.9 16.7 2.21 2.00
Ni 190 182 184 14.7 12.7 2.01 1.88
Ag 114 96 101 23.5 19.7 2.78 2.36
Rh 306 280 271 10.9 8.2 2.19 2.43
Pd 204 171 181 14.3 11.6 2.22 2.18
Au 185 164 173 17.2 14.2 3.21 3.04
Pt 301 259 278 11.2 8.9 3.06 2.56
Li 16.8 12.4 11.6 65.4 56.0 1.18 1.18

Na* 6.5 4.3 6.8 83.9 71.0 1.53 1.31
K 5.3 3.6 3.2 98.7 83.0 1.54 1.37
Rb 4.0 2.8 3.1 104.6 90.0 1.65 1.67
Cs 2.9 2.1 2.0 108.8 97.0 1.55 1.44
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calculations ofaT are generally in agreement with the e
perimental results. We note that for^u2& calculations of Ag
crystal, however, the present analytic SMM gives much e
cient analytic calculations and much better results compa
to those by CVM calculations.

The calculated thermodynamic quantities of cubic met
fcc ~in addition to Cu, Ag, and Al presented above! and alkali
~bcc! metals, by the present method are summarized in Ta
III. In the present calculations, we use the TB potential
rameters by Li, Barojas, and Papaconstantopoulos40 for al-
kali metals Li, Na, K, Rb, and Cs. This TB model takes in
account the interatomic interactions up to 12th neighbo
i.e., 228 atoms in bcc lattice. The relative magnitudes
linear thermal expansion coefficients of fcc~transition! met-
als are in good agreement with the experimental resu
However, the thermal lattice expansion coefficientsa of al-
kali metals are systematically larger~;10%! than those of
experimental results, although their relative magnitudes
in good agreement with the experimental results. The ca
lated Grüneisen constants and elastic moduli are also p
sented in Table III. The anharmonicity of the lattice vibr
tions is well described by the Gru¨neisen constantgG . The
material of larger value ofgG may be regarded as the mat
rial with higher lattice anharmonicity. So, the evaluation
the Grüneisen constant is of great significance for the ass
ment of anharmonic thermodynamic properties of metals
alloys. The experimental Gru¨neisen constantsgG of fcc met-
als are larger than 2 except for Ni, while those of alk
metals are less than 2 and take values around;1.5. The
calculated Gru¨neisen constantsgG of fcc metals are also
larger than 2, while those values of alkali metals are less t
2, in agreement with the experimental results. The calcula
gG values by the present method have the weak tempera
dependence, i.e., show the slight increase with increa
temperature as in the calculations by QH theory.10 The tabu-
09430
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lated Grüneisen constantsgG for low temperatures are wel
compared with the experimental values which are dedu
from the low ~room-! temperature specific heats.

The lattice specific heatsCv and Cp at constant volume
and at constant pressure are calculated using Eqs.~30! and
~31!, respectively. However, the evaluations by Eqs.~30! and
~31! are the lattice contributions, and their values may not
directly compared with the corresponding experimental v
ues. We do not include the contributions of lattice vacanc
and electronic parts of the specific heatsCv , which are
known to give significant contributions in metals for high
temperature region near the melting temperature. In part
lar, it has been demonstrated that lattice vacancies ma
large contribution to the specific heats for the hig
temperature region.66 The electronic contribution to the spe
cific heat at constant volumeCv

ele is proportional to the tem-
peratureT and given byCv

ele5geT, ge being the electronic
specific heat constant.56,66 The electronic specific heatsCv

ele

values are estimated to be 0.8–13.4% ofCv
lat for metals con-

sidered here by the free-electron model.56 Therefore, the
present formulas of the lattice contribution to the spec
heats, bothCv and Cp , for the cubic metals tend to unde
estimate the specific heats for higher temperature reg
when compared with the experimental results. The latt
contribution of specific heatsCp calculated for Cu crystal is
shown in Fig. 4, together with the experimental results58 and
those of MD simulation results. As expected from abo
mentioned reasonings, the calculatedCp values of solid Cu
are smaller than the experimental values at high temp
tures. However, the temperature dependence~curvature! of
Cp of Cu crystal by the present method is in good agreem
with the experimental results, in contrast to the MD simu
tion results. In the MD simulations, the heat capacities
atom at constant pressureCp can be obtained for metals b
1-10
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taking the numerical derivative of the internal energy w
respect to temperature.59 The MD simulations by Mei, Dav-
enport, and Fernando59 give reasonable values ofCp for
higher temperature region when compared with the exp
mental data. However, it should be noted that the MD sim
lations are only adequate above the room temperature,
the calculatedCp value deviates from the experimental da
at low temperatures because quantum effects are not t
into account in the classical MD simulations.

The bulk moduliBT of cubic metals are evaluated at a
solute zero temperature and at room temperature~RT! and
presented also in Table III. The ratios of bulk modu
BT /B0 , with respect to those of the absolute zero tempe
ture are calculated to be 0.85–0.90~fcc metals! and ;0.7
~alkali metals! which are favorably compared with the e
perimental results. In general, the calculated bulk mod
BT(RT) andB0 are in good agreement with the experimen
results as well as QH calculations.

As a final remark of this section, we note that the pres
statistical moment method can be incorporated in a strai
forward manner with the first-principles density function
theory, by simply evaluating three kinds of derivatives~one
for harmonic and two for anharmonic contributions! of the
atomic total energy with respect to the Cartesian coordina
The density functional TB67 and TBTE68 ~tight-binding total
energy! methods with Slater-Koster parameters derived fr
the first-principles theories can be readily applied to evalu
k, g1 , andg2 values, on the basis of Hellman-Feynman the
rem. The full density functional theories such as the line
response approach by Giannozziet al.69 and real-space
finite-element density matrix method70 can also be used fo

FIG. 4. Specific heats per atom at constant pressureCp plotted
against temperatureT for Cu crystal, in unit of Boltzmann’s con
stantkB . The experimental data~Ref. 58! are shown as the ope
circles.
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the evaluations ofk, g1 , andg2 , and thus for the calcula
tions of thermodynamic quantities of the present study.

IV. CONCLUSIONS

We have presented an analytic formulation for obtain
the thermodynamic quantities of metals and alloys based
the finite temperature moment expansion technique in
statistical physics. The thermal lattice expansion of mo
atomic crystals~fourth-order anharmonic contribution! is de-
rived explicitly in terms of the three characteristic para
eters, k1 , g1 , and g2 . The present formalism takes int
account the quantum-mechanical zero-point vibrations
well as the higher-order anharmonic terms in the atomic d
placements and it enables us to derive the various therm
namic quantities of metals and alloys for a wide temperat
range. We are able to calculate the thermodynamic quant
quite efficiently and accurately by using the analytic form
las and taking into account the many-body electronic effe
in metallic systems. The calculated thermodynamic qua
ties of metals are in good agreement with the experime
results as well as with those by MD and MC simulations~in
some cases, better results by the present method!.

Although in this paper we only used many-body ele
tronic potentials, the extension to coupling the present SM
scheme with the ab initio density functional theories
straightforward. This can be done by evaluating three ch
acteristic parametersk, g1 , andg2 for cubic systems. It can
also be applied directly for the composition-temperatu
phase diagrams calculations of alloys for the full temperat
range from absolute zero to the melting temperaturesTm .
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APPENDIX A: MOMENT DEVELOPMENT BY DENSITY
MATRIX FORMALISM

To derive the mean-square atomic displacement~second
moment! and higher-order power moments of the therm
lattice vibrations, we use the formalism based on the den
matrix r̂, which is defined by

r̂5expS C2Ĥ

u
D , ~A1!

whereC andĤ denote the Helmholz free energy and Ham
tonian of the system, respectively. In the presence of
constant supplemental forcesa1 , a2 ,...,aN in the system,
the HamiltonianĤ is given byĤ5Ĥ02( ia i q̂i . The density
matrix r̂ is normalized so as to satisfy the condition Tr̂
51 and given by the solution of the Liouville equation
1-11
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i\
]r̂

]t
5@Ĥ,r̂ #2 . ~A2!

We use the following identities on the derivatives of an o
erator functionÊl composed of two different operatorsÂ
and B̂:

Êl~t,Â,B̂![exp@t~Â1lB̂!# ~A3!

]Êl~t,Â,B̂!

]l
5H tB̂1 (

n51

`
tn11~ i\!n

~n11!!
@Â1lB̂@Â1lB̂...@Â

1lB̂...###J Êl~t,Â,B̂!

5Êl~t,Â,B̂!H tB̂2 (
n51

`
~2t!n11~ i\!n

~n11!!

3@Â1lB̂@Â1lB̂...@Â1lB̂...###J , ~A4!

where @Â1lB̂,B̂#5
1

i\
$~Â1lB̂!B̂2B̂~Â1lB̂!%.

By differentiation of the density matrixr̂ with respect to the
constant forcea i , one can get the relation

1

u

]C

]a i
1

1

u F2^q̂i&a2 (
n51

`
1

~n11!! S i\

u D n

^q̂i
~n!&aG50,

~A5!

where

^q̂i
~n!&5Tr@@ ...@ q̂i ,Ĥ#2Ĥ...#r̂. ~A6!

For equilibrium state, one can show that^q̂i
(n)&50 because

]r̂/]t5@Ĥ,r̂ #250 is satisfied. One can then derive fro
~A5! the relation

^q̂k&a5
]C

]ak
. ~A7!

Using the relation̂ F̂&a5Tr@ F̂ r̂ # and Eqs.~A3! and ~A4!,
one can get the following identities:

^~ F̂2^F̂&!~ q̂2^q̂&!&52uS ]^F̂&
]a

2K ]F̂

]aL D
1u (

m51

`

~21!m
Bm

m! S i\

u D mK ]F̂ ~m!

]a L ,

~A8!
09430
-

^~ q̂2^q̂&!~ F̂2^F̂&!&

52uS ]^F̂&
]a

2K ]F̂

]aL D
1u (

m51

`

~21!m
Bm

m! S 2
i\

u D mK ]F̂ ~m!

]a L . ~A9!

Then, one gets the decoupling formula

1

2
^@ F̂,q̂k#1&a2^F̂&a^q̂k&a

5u
]^F̂&a

]ak
2u (

n50

`
B2n

~2n!! S i\

u D 2nK ]F̂ ~2n!

]ak
L

a

,

~A10!

In the above Eqs.~A8!–~A10!, B2n denotes the Bernoull
number andF̂ (k) is defined by

~A11!

SubstitutingF̂5q̂k into Eq. ~A10!, one can get the mean
square atomic displacement from the thermal equilibrium
sition, as

^~ q̂i2^q̂i&a!2&a5u
]^q̂i&a

]a i
2u (

n50

`
B2n

~2n!! S i\

u D 2nK ]q̂i
~2n!

]a i
L

a

.

~A12!

Equation ~A12! is used to derive Eq.~8! in the text. The
similar formulas can be given for higher order moments
well.

APPENDIX B: DERIVATIVES OF COUPLING
PARAMETERS k AND g

The second derivatives such as]2h i
(2)/]x2 and

]2h i
(3)/]x2, appearing in Eq.~16! in the text are given by the

following forms, respectively:

]2h i
~2!

]x2 5(
j

F23~126l i j
2 15l i j

4 !r i j
23

22~128l i j
2 17l i j

4 !r i j
-2S q

r 0
D

14l i j
2 ~12 l i j

2 !r i j
21S q

r 0
D 2Gj i j

2 exp@22q~r i j /r 021!#,

~B1!
1-12
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]2h i
~3!

]x2 5(
j

F2~125l i j
2 14l i j

4 !r i j
22110l i j

2 ~12 l i j
2 !r i j

21S q

r 0
D

14l i j
4 S q

r 0
D 2Gj i j

2 exp@22q~r i j /r 021!#. ~B2!

On the other hand, the first and second derivatives suc
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