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Anharmonicity, vibrational instability, and the Boson peak in glasses
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We show that a vibrational instability of the spectrum of weakly interacting quasilocal harmonic modes
creates the maximum in the inelastic scattering intensity in glasses, the Boson peak. The instability, limited by
anharmonicity, causes a complete reconstruction of the vibrational density of @&&s below some fre-
guencyw,, proportional to the strength of interaction. The DOS of the new harmonic modes is independent of
the actual value of the anharmonicity. It is a universal function of frequency depending on a single parameter
— the Boson peak frequeney, which is a function of interaction strength. The excess of the DOS over the
Debye value isxw” at low frequencies and linear i in the intervalw,<w<w,. Our results are in an
excellent agreement with recent experimental studies.
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[. INTRODUCTION push to low frequencies peaks which exist in the crystalline
DOS!13|n another approach the vibrations of a random
One of the most striking properties of giasses is a maxi.dIStrlbUtlon of atoms, |nteractlng with a GaUSSIan-shaped

mum in the inelastic scattering intensity observed in neutroar Potential, was studiediin a harmonic scalar approxima-

and Raman scattering at frequencies between 0.5 and 2 THION- Reducing the density the system becomes unstable. Ap-

far below the Debye frequenéyThis so called Boson peak proaching this instability a low frequency peak appears in

(BP) indicates an excess of low frequency vibrations over th G(w)/w® which resembles the BP. The main drawback of
ST q y ; Shese models is their neglect of the static displacement of the
Debye value which is given by the sound waves. It is seen

. in the vibrational density of 09 di a%toms in response to disorder. In real glasses where short
a maximum in the vibrational density of staté80S) di- 346 order is conserved such feedback always occurs since

vided by_‘*’z’ G(w)/w? but not necessarily IS (w) itself?  {he forces between the atoms strongly depend on their dis-
The BP is a general feature, its magnitude varies stronglyance. In particular, the above models have no built in
between materials. mechanism to stabilize vibrations with negativé, unstable
Despite numerous efforts, the BP remains one of the mostodes.
intriguing problems of solid state physics. Some authors at- The proposed models of the Boson peak do not account
tribute the BP to vibrations of clusters of atoms of typical for anharmonicity effects which, as we will show in the
sizes>* The physical origin of these clusters in homogeneouspresent paper, become very important especially for small
amorphous media remains unclear and they have not bedarce constants. Glasses at low frequencies and temperatures
identified in numerical simulations. are highly anharmonic as seen in most of their macroscopic
Another popular qualitative explanation of the Bosonthermodynamic functions. Anharmonicity and static dis-
peak is a softening of acoustic phonons by static diséfder placements, together, stabilize otherwise unstable vibrational
due to elastic Rayleigh scattering. However, even the moghodes. This does not however, imply that the vibrations at
optimistic estimates show that the Rayleigh contribution is athe Boson peak are anharmonic. Anharmonicity is essential
least 4 times too small to explain the experimental data off? forming the equilibrium structure, and thus the force con-
thermal conductivity in glassésThis mechanism is also in Stants which determine the proper harmonic spectrum of low
contradiction to the linear dispersion law for acousticalffequency modes.

phonons at the Boson peak frequency seen in molecular dy- Another important point is that fche _previous explanations
namics in Ref. 7 do not relate the Boson peak, which is one of the universal

Sometimes the BP is related to low lying optic modes 0fproperties of glasses, to pther un.iversal properties, such as
parental crystal&-° Whereas the BP is a general feature Ofthe two-level systems which dominate the low-temperature

glasses such crystal structures with soft optic modes canngEhavior or the plateal_J in the; thermal conductivity at ”.‘Od'
be identified always. Such a mechanism is possible in somgrate temperatures. This relationship naturally emerges in our

cases. Yet it remains a puzzle how these crystalline peaks af#Proach.
transformed in the glassy state to a shoulder in the vibra-
tional DOS.

Recent work on harmonic lattice models demonstrated We present a universal mechanism for the formation of a
that softening of disordered force constants can smear ar®P in glasses, out of an originalfiat DOS. This arises from

Il. QUASILOCALIZED VIBRATIONS (QLV’s)
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the following three features:(1l) quasilocal vibrations system size the minimal sound wave frequency drops and the
(QLV's) (resonant statg¢svith a smooth, structureless initial QLV’s are no longer localized in the simulation but show the
DOS, go(w) at low w, (2) an elastic interaction between typical properties of resonant modes, i.e., of low frequency
them, and(3) stabilization by anharmonicity when the sys- local vibrations which couple bilinearly to the sound waves.
tem becomes unstable because of interaction. The exact eigenvectors of the interacting system of QLV's
Similar to the well known two level systems, the QLV's and sound waves are superpositions of these two types of
are a typical feature of disordered systems. They are addimodes. The effect of system size on the appearance of QLV's
tional modes and are characterized by a large vibrationah simulations was discussed in detail in Ref. 41. There it
amplitude of some group of atoms. Their existence in glassewas shown that the exact eigenvectors at frequencies up to
was predicted in Refs. 15-17. They can be described as lownd above the boson peak can be decomposed into extended
frequency harmonic oscillatoré1O’s) which couple bilin-  sound-wave-like modes and the local cores of QLV's. The
early to the sound waves, see Refs. 18—-20. This in turn leadstter correspond to the harmonic oscillators of this work.
to a dipOle-dipOle interaction between different HO’s. The The physica| Origin of these disorder induced QLV’s can
importance of the elastic interaction between local defects iye traced to local irregularities of the amorphous structure. In
glassztzas has been stressed by Yu and Leggettd Grannan  gense packed metallic glasses these originate, e.g., from the
etal: conflict of the local dense packirgosahedral packingand

The microscopic origin of QLV's in disordered Systems g,a| dense packingcc or hep.2 These local irregularities
varies and depends on the type of disorder. Broadly spealg-an be seen as centers of local strdfs

ing, the QLV's can be divided into two groups. First there are We expect such local strain centers to be ubiquitous. The
materials where QLV'’s exist independently of the structural '

. : . strains will have broad distributions, which will lead to broad
disorder typical for structural glasses and amorphous solids

Orientationally disorderedplastic” ) crystals belong to this distributions of QLV frequencies. Whereas local strains and

group?®=2°In these materials some molecular groups librateQLY'S Will be a general property of glasses the atomistic

with low frequencies. In harmonic approximation these sofstructure of QLV's reflects the structure of the considered

librations can be identified with QLV’s. The local potentials Material. In dense packed metallic syfltems_the cores of the
for the librational motion can vary from site to site. In this QLV have been found to be chainliké*! In Si0, they are
case we have a distribution of the librational frequenciesformed by a coupled rotations of Sj@etrahedra**In Se

The librations couple to the sound waves which in turn in-one has coupled chains and ririgstc.

duces an interaction between théhit depends on details of ~ Another possible(and natural mechanism of the QLV
the material whether the interaction is strong enough to reformation are low lying optical modes in parental crystals.
construct the original spectrum of QLV's completely or only Disorder in amorphous material would destroy the long
partially. This effect is seen in recent measurements of dirange coherence of optical modes. This makes them practi-
electrtric loss spectra of orthocarboradfieSimilarly coordi-  cally indistinguishable from quasilocal modes.

nation defects in covalent materials can lead to QLV as was Together with the tunneling systems, the QLV’s form the
observed by Biswast al?’ in a simulation of amorphous Si main ingredient of the soft potential mott’ (see Ref. 48

(see also recent works in Refs. 28 and.2QLV can origi-  They manifest themselves in experimental values, e.g., the
nate from numerous defects such as off center ions or integycess specific hé4t**and the plateau in the thermal
stitial atoms. Depending on the “size” of the defect the conductivity?®52in inelastic light® and neutron scattering,

QLV's involve more or fewer atoms. Interstitial atoms are ng they are observed in many numerical calculations, cited
the prototype of a topological point defect. QLV’s of inter- above.

stitial atoms in fcc metals were studied extensively in the
past, see Ref. 30 for a review. These QLV’s have effective
masses of four atomic masses and the crystal structure is
strongly distorted by the defect and the low frequency of the
librational QLV can be traced to the local strain. Low con-
centrations of these interstitials are already sufficient to de-
stroy the crystalline structure completely. This is utilized in  One might thinka priori that the QLV's can have an
the interstitialcy model of glass formatidh. arbitrary DOS,g(w), depending on the particulars of the

This leads directly to the second group where the QLV’sglass. We will show, that due to the interaction between the
result directly from disorder. Such modes are regularly foundHO’s, g(w) is auniversalfunction at low frequencies. This
in computer simulations, e.g., for soft sphefesSio,,®®  universality stems from the vibrational instability of the
Se?* Ni-Zr,*® Pd-Si and Au-St° NiB,*” in amorphous icé®  spectrum which occurs in nearly all systems of interacting
in amorphous and quasicrystalline Al-Zn-My,and in  HO’s. Anharmonicity stabilizes the system in new minima,
simple dense fluid& and thus reconstructs the DOS to a neavmonicspectrum.

In these simulations the QLV's were observed as localizedhs a resultg(w)/w? acquires a maximum without a peak in
vibrations with frequencies below the minimal sound waveg(w) itself.
frequency allowed by the size of the simulated sample. A Below we will derive the following form of the reduced
simple indicator of these “size-localized” QLV's is the scal- DOS of these harmonic resonant modexscluding the De-
ing of the participation ratio with system size. Increasing thebye part at loww which is not seen in Raman scattering

IIl. DENSITY OF STATES OF QUASILOCALIZED
VIBRATIONS

094203-2



ANHARMONICITY, VIBRATIONAL INSTABILITY, AND . .. PHYSICAL REVIEW B 67, 094203 (2003

The smaller value? becomes negative when the interaction
I,=1 exceeds the thresholdritical) value

IcEwle\ M]_Mz. (6)

A negative frequency squared indicates an instability of the
corresponding eigenstate. At this instability the stable equi-
librium point at the origin turns into a saddle point of the
potential energy, Eq.3).

This instability persists also in a system of many interact-
ing HO's. In a real physical system, anharmonic forces al-
ways stabilize an embedded HO in a nearby minimum of the
potential energy. The position of this minimum depends on
the interaction between HO’s. We are thus confronted with
.2 the many-body problem of finding the minima of the poten-
g(w) 3C (w_) [22(w0)+ 2 ()] 2 tial energy for a system of interacting anharmonic oscillators,

0’ T H@)Tale similar to the one considered in Refs. 22,54. The frequencies
in these minima are real and different from the original ones.

1 nzl(“’)+1 1 tan! 1 The harmonic vibrational spectrum is reconstructed. We will
2z)(w) z1(w)—1 Zy(w) Zy(o) [’ call this anharmonicity limited vibrational instability.

D

FIG. 1. The Boson peak, E¢l).

. V. STABILIZATION BY ANHARMONICITY
whereC is a constanfEq. (22)] and

. We will now show that forweakinteractionl the recon-
S E— structed DOS has, below a characteristic frequesngy|!|,
21 0)= 5\/ 9+8(0"w)°*3. 2) a universal form irrespective of its original fo?m. Igis:s|t,| due
to interaction, it becomes énear function of frequency
The functiong(w)/w? is plotted in Fig. 1. It depends on a g(w)=w. Secondly, the displacements of the previously un-
single parameter™ characterizing the position of the Boson stable oscillators from their old equilibrium positions create
peak. The maximum of(w)/w?, the Boson peak, is ab,  static random forces which causesecondreconstruction of
~1.1w*. For small frequenciesp<wy, g(w)>w* while  the DOS below another frequeney,<w.. Due to so called

for large onesw> w,, g(w)*w. sea-gull singularitf at =0 the linear DOS is recon-
structed tog(w) = w* for w<w, . Together, these two recon-
IV. VIBRATIONAL INSTABILITY structions produce a maximum gf{w)/w? at w=wy,.

Let us consider a number of randomly distributed, inter-
To illustrate our central idea of a vibrational instability, acting HO with concentration, and an initial DOSg(w)
we start with a pair of interacting HO’s immersed in an e|as‘(normalized to unity in the frequency range from 0 t@,,
tic continuum. The potential energy is given by where go(w) is a monotonously increasing function af
For the harmonic part of the interaction we take the gener-
alization of Eq.(3) and add an anharmonic term to stabilize
Herex, , are the HO coordinates), , the masses, and,, the system
the bare frequencies of the two HO's, i.e., neglecting the
bilinear interaction. The interaction strength is giverity U :(1/4)2 Ax* A>0 @
anhar i [EATIR] i .

U hal’(xl ,X2) =M 1wixf/2+ M 2w§x§/2— | 12X1Xo. (3)

l15=9120/15,,  J=A%pv? 4

We will take the interactiom to be the small parameter of
' our theory, i.e., we assume that the typical random interac-
tion | between neighboring HO’s is much smaller than the
Sypical values ofMw?2. As |I|<Mw? frequencies of order
%’o will be practically unaffected by the interaction whereas
HO’s with frequenciesw<w. will be displaced to new
minima, where

wheregq, accounts for the relative orientation of the HO's
r 1, is their distancep is the mass density of the glass, and
is a sound velocity. The interaction between the HO’s is du
to the coupling between a single HO and the surroundin
elastic mediunithe glasg This HO-phonon coupling has the
form?
Hin=Axe, o=|l|/Moy<wng. ©)]

whereA is the coupling constant ang the strain.

Diagonalization of Eq(3) yields two frequencies Since the concentration of unstable HO’s is much smaller

than the one of the stable ones a low frequency oscillator is

02+ w2 wi—w2\2 |2 typically surrounded by high frequency ones. We can sim-
~5 1 2 1 2 12 : . : . A . ,
Wi m———7F ( + ) (5) plify our consideration by again considering pairs of HO’s,
2 2 MM, one with a low frequencyw; =< . and the other one from the
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bulk of the HO'’s with a frequency, of the order ofw, (see  create random static forcésThe forcef; exerted on theth
Appendix A for the general caseDue to the combined ac- oscillator by thejth one is
tion of interaction and anharmonicity the two HO’s will be

displaced into new minima,, and x,o given by equations fi=1ijXjo- (16)
(12=1) In a purely harmonic case, these linear forces would not
IXo0=X10( My 02+ Arx2). affect the frequencies. Anharmonicity, howeve_r, renqrmahzes
20= X1l M1@1+ AsXio) the low frequency part of the spectridtha manifestation of
2 2 the sea-gull singularity. Consider an anharmonic oscillator
= + . ; .
1X10= Xz 202 AxXzo) ©  Under the action of a random static force
For [I|>1, we need the nonzero solutions of these equa- 4 2,2
. : : . ' U(X)=Ax" 4+ M wix[2— X, 1
tions. Expanding around either minimum we find the new (x) “1 (17
(harmonig frequencies from the secular equation where w; is the oscillator frequency in the harmonic ap-

proximation. The forcé shifts the equilibrium position from

a;—M;0? =1 x=0 to xq#0, given by
B _ 2| =0 (10
! @z~ Mo A+ Mawixo—f=0, (18)
with where the oscillator has a neflvarmonig frequency
@ =Mwl+3AX%, =12 (11) Opew= @1+ 3AX/M. (19

If 91(w,) is the distribution function of frequencies, and
P(f) is the distribution of random forces, then the renormal-
ized DOS is given by

From the conditionw,<w, follows X,;<Xx;o and, there-
fore, the term2x§0 in Eq. (9) can be neglected giving

X20=(1/Mo03)X10 (12 - »

and g(w)= fo gl<wl>dw1ff dfP(f)8(0—wpew . (20)

X10= 01 VM1 /A (1/16)*~ 1. (13 As the forces between the HO’s are proportional {0

. their sum is Lorentzian distribute@gee Appendix B
As a result we get from Eq(10) under the condition

w1 /w,<1 with this accuracy the new frequenciié:g:wz b(f 1 of 21

and ( )_;—f2+(5f)2' (21)
~2_ 5 2 ~
wl_zwl[(lllc)z_l]' (14 Assuming w<w. and integrating Eq.(20) with g;(w1)

The smaller frequenc§l4) is the solution of the linear equa- = C@1 We arrive at the integral
tion [compare with Eq(10)]
J(w) _ 6C ( a))

Mzwg(afl—lez):Iz. (15 Y T o*

2 Jl dt 22
®"] Jol+(wlw*)®t?3(3—2t%)
It is remarkable that for weak interaction the strength of theyith
anharmonicityA; does not enter the renormalized frequency
(14). w*=3AYe( 5f)13 M (23)
Near the threshold whergl(—1.)/1.<1, the smaller fre-

quency _squgrea)i is proportional to .KI |._|°)/| c- Provided For small frequencies, below the Boson peaks wy, only
the distribution of the random quantityis smooth one gets, - sma| random forcebcontribute to the second integral in Eq.
therefore, below a linear DO g(w) > w] irrespective of  (20). In this case the distribution functioR(f) can be ap-

the initial form ofgy(w). In Appendix A it is shown that the  proximated by a constant valu®(0) and we get from Eq.
same result holds if one has a low frequency HO surroundegb)

by several high frequency ones. Our numerical calculations
(see Sec. Vil also show that this case is typical.

and after integration finally Eq1)is obtained.

® w1
g(w)ocwsj dwlﬁxw“. (24
VI. THE BOSON PEAK 0 VO — 0y

If the low-frequency HO with their reconstructed linear  As a result at low frequencies the renormalized DOS is
DOS were isolated, the problem would be solved. There isg(w)=w*.*’ For sufficiently large frequencies> w}, the ac-
however, a further interaction between these oscillatorsion of random static forces on the HO spectrum can be
which we have not taken into account so far. The low-discarded. In this case we recover the linear DQ®)
frequency HO's, displaced from their equilibrium positions, « .
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The BP frequencyw,~1.1lw* is determined by the char- 10" grrerer———— g
acteristic value of the random static foréé, Eq. (16), act- of y s ]
. . .. 107 = N=2197, J=0.1 .
ing on an HO with the characteristic frequensy. Accord- ® - 3
ing to Eq.(16), it is due to the interaction between HO's with 107k - 3
frequencies of order ob, i.e., 3 izl . T E
31072k .3
Ii(jc)%\]nc, le/nowaC/nogo(wo), U’1O_3; - T @, -]
wheren,~nqgo(wc) w. is the concentration of these HO's. - @ . ]
The characteristic displacement of a low-frequency HO's 55‘ 3
(13) from the equilibrium position isjo~ w.M/A. As a 107 = s
result, we get the estimate ©
M .do(we) FIG. 2. Simulated density of statggo(w)>*w?, N=2097] in a
of~M chgo(wo) (25 log-log representation. The arrows indicate the two characteristic
frequenciesw, and w. .
and according to Eq23)
3 est frequencies the HO are weakly coupled whereas near and
wp~ o[ Jo(wc)/Jo(we) ], wp<oc. (26)

abovew, the eigenmodes are complicated superpositions of
Again, in lowest order the anharmonicity does not enter many HO's.

this formula. Figure 3 shows the dependence of the simulagal)/ w?
As a result we get a following estimate for the recon-On the interaction strength We can see the general increase
structed DOS: of wy, and related decrease of the BP intensity with increas-
ing J. Our simulations cover one decade in BP frequencies.
Oo(w), 0>, The insert shows that, in full agreement with our predictions

_ lo. <w<o,, [see Eqgs.8) and (28)], the crossover frequencies change
g(w)=) @ Go(@c)/we, @p=w=we @7 With interactionJ asw.xJ and wpxJt T,
w*go(wo)/wg, w<wy.

VIIl. DISCUSSION AND COMPARISON

If the DOS of the noninteracting oscillators is given by a
WITH EXPERIMENT

power lawgy(w)*w", the BP frequencyv,, scales with the
interaction strengtt as In Fig. 4 we compare our theoretical curve, Eg), with
Raman scattering data of lithium borate glassesth differ-

wop|I[F77, (28 ent compositi [
positions. The agreement is remarkably good over
Since in accordance with E@8) w.x|l|, we have always the whole composition range. This supports the idea of a
wp<w, for n>0. universal shape of the Boson pe&kThe shift of the BP to
higher frequencies with increasing concentration gfi.tan
VII. NUMERICAL SIMULATION be explained by an increase of the total concentration of

QLV’s and consequently of their interaction.
To test our ideas by numerical simulations, we plabked The agreement between theory and experiment is not con-
oscillators with frequenciesQw;<1 on a simple cubic lat- fined to this class of material. This is exemplified by Fig. 5
tice with lattice constana=1 and periodic boundary condi- which shows a comparison of the theoretical curve with nu-
tions. To simulate random orientations of the oscillators wemerical simulation results and neutron and Raman scattering
took for g;;, Eq. (4), random numbers in the interval
[—0.5,0.5. The massed; and anharmonicity parameters 14 T T T T

A; were put to 1. The DOS for the noninteracting oscillators 12 J
was taken agy(w) =", with n=1,2,3. g
. . . N 10 i
Using the potential energy given by the generalization of ~
Eq. (3) plus the anharmonicitjEqg. (7)] we then minimized 3 e omtyH iy
the potential energy, and in the usual harmonic expansion § pp= ]
around this minimum calculated the DOS for different inter- >

action strengthd. This was repeated for up to 10 000 repre-
sentations. To check for size dependence we did the calcula-
tions for differentN. Apart from the casd=0.07 the results

did not change betweed= 2097 andN=4096. . : - . 4 05
The predicted change over in the dependence of the @
DOS at two characteristic frequencieg and o, and the FIG. 3. Simulatedg(w)/w? for different interaction strengths

linear part in between can be clearly observed in a log-logg,(w)*w?, N=2097, andN=4096 (J=0.07)]. The inset shows
representation, Fig. 2, fay,(w)*w? andJ=0.1. From the the scaling of the crossover frequencies (O) and v, (®) with
calculated eigenvectors we find that, as expected, at the lovinteraction strength.
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FIG. 4. Boson peak in reduced units: Eg) (solid line) and
Raman data for lithium borate glass@®ef. 59. The positions of
the Boson peakfor different compositiong) are given in brackets.

FIG. 6. Density of states of vitreous silica for three temperatures
taken from inelastic neutron scattering dé®ef. 57). The slope of
the straight line on the figure is equal to -1.1.

data for three different glasses. were previously investigated by molecular dynamic
One of the most important results of our theory is thesimulationd? and by the replica methat.For example, in
predicted linear frequency dependence of the density of viRef. 22 Grannaret al. assumed that the dynamics “is com-
brational states above the Boson peak. It stems from thpletely dominated by the interaction between defects medi-
vibrational instability of interacting harmonic modes. Suchated by the strain field.” The local fieltharmonic and an-
linear behavior has been observed in many numerical simtharmonic contribution was neglected. We consider the
lations on different glasses and model disorderedbpposite case where the local fieflarmonic and anhar-
systems235363958.59t s also in a good agreement with monic dominates and interaction between dipoles is weak.
many experimental resufs®”61-¢\where the vibrational
DOS has a section with near linear frequency dependence.
Figure 6 shows this for vitreous silica at different tempera-
tures. Above the Boson peak the DOS increases approxi- |n conclusion we presented a universal picture of the BP
mately linearly with frequency. formation in glasses. We have shown that the low frequency
In this paper we dealt with the case of weak interactionquasilocalized harmonic modes in glasses are destabilized by
between HO's. If the interaction is increased the characteristhe weak bilinear interaction between them. Anharmonicity
tic frequencieswy, and o, grow and the gap between them stabilizes the system in a minimum of configuration space. It
narrows and finally disappears. Then our “BP”@{w)/®?  completely reconstructs the low frequency part of the spec-
superimposes the “boundary peak” @y(w) at the edge of trum (at w<w.) and the Boson peak featufat w,<w.)
the assumed spectrum of nak@wninteracting QLV’s. The  naturally emerges. The thus created boson peak has a mate-
BP can no longer be distinguished from the boundary peak afial independent shape. At low frequencies, below the BP, the
from a possible equivalent maximumgg(w). Itis possible vibrational DOS increases ag )= w”, and above the BP,
that in some cases, e.g., orientational glasggéw) has a asg(w)*w.
pronounced peak which is still visible after the reshaping of  Although the anharmonicity is responsible for this effect,
the DOS by interaction. the final spectrum of stable vibrations remalr@monic A
Similar models with strong coupling between oscillatorsremarkable feature of the presented theory is that the strength
of the anharmonicity does not enter the stable spectrum at

IX. CONCLUSION

all. It looks as if the anharmonicity does all the work, it
1or stabilizes the system in a minimum and reconstructs the
o8k spectrum and then disappears. Therefore, the discussed phe-
o nomenon is independent of the variation of the anharmonic-
NO06F - 12010 ity bgtween dn_‘ferent maten_als. The only para_meter entermg
3 a-Si0, the final density of states is the strength of interaction be-
o041 tween the HO’s.
ook Compared to previous work, the main result of our ap-
proach is the natural emergence of the BP on the unstruc-
0.0 L L ) ) ) tured, flat low frequency part of the initial spectrum
00 05 1.0 w}‘i’b 20 25 30 go(w)/®?> where the DOS previously had no peaks. For

small interactions the BP frequency is much smaller than the
Debye frequency value. It shifts with interaction strength
which explains the large variety of BP magnitudes found in
experiment. In contrast with previous models, a natural con-
nection of the Boson peak phenomena with other universal
properties of glasses is established.

FIG. 5. Boson peak in reduced units: EG) (solid line), nu-
merical simulation, Fig. 3dashed ling neutron scattering data for
a-Si0, at T=51K (Ref. 57 (®) and for the orientational glass
phase of ethandRef. 23 (O) and Raman data fax-B,0O; (Ref.
55) (+).
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APPENDIX A: CLUSTER APPROACH 71 M

i Wi

Consider a cluster containing a low frequency oscillatorand the new low frequency of the system of coupled oscilla-
with frequencyw; =< w. surrounded by a large number-1  tors is given by
of HO's with much higher frequencias; ~ wq. Inclusive of

their interaction, the total potential energy of the cluster is 2 2
M_(lel_k% k<Mjof,
1

Miw? 1 1 w, 2= (A10)
U= ——+= 2 Axi—= > 1ixx;. (AL ! 2
ot 2. 2 42 i zi% ! M—l(k—lei), k>M w2,
The equilibrium positions of the HO'g;o are given by the . i ) o
system ofs nonlinear equations As in the case of a pair pf oscillators, the anharmonicity has
been used in the derivation of E@A\10) but does not appear
5 3 ) in this or our final result Eq(1).
M wj XioJHA\iXio:;i lijXjo, 1=12,...8 (A2 To derive the(reconstructed DOS the distribution ok,
. p(K), has to be calculated. Inserting E@¢4) and (A5) into
In the case of instabilityx;#0), in analogy to the pre- the definition ofp(k) gives
viously considered case of a pair of oscillators, the static

displacements of the high-frequency oscillators are much J? 91,
smaller than the one of the low-frequency oscillaiqg. p(k)_< _Mﬁel 8 w? >> (ALD)
Therefore, in leading order !
Here the angular brackets denote averaging over the posi-
Xio=(11i/Mjw})Xy, i#1. (A3)  tions of thes—1 high frequency HO's, their frequencies and

orientations. For simplicity we take equal massés=M

Inserting these values into E(2) for i=1 we get and forg;; a uniform distribution in the intervgt1/2, 1/2,.

12 Using the Holtsmark meth8d(see Appendix Bone gets
M 1 w3x301 Arx3o= X102, —2 (A4)
i#1 Mo 1 B B2
p(k)=——exp( ——>, (A12)
Under the condition V2 k¥ 2k
where
Mjw2<k where k= = (A5)
i#1 Mjo; m [mIng /1
B=2\3 =\ =w M. (A13)
the cluster becomes unstable and the low frequency oscilla- 3 M\ @ 0

tor is displ to a minimum . . .
or is displaced to a u Here ng is the total concentration of HO in the cluster and

. 71 . . .
:\/WZ_A. A (llw)q is the o™+ moment of the normalized initial DOS
X10= \( 101)/A (A6) Oo(w). This formula is a more accurate definition of the
In the opposite casayl 1w§> k, the cluster is stable and, characteristic frequency, introduced in Eq(8). Note that

=0. the distributionp(k) (A12) belongs to an important class of
The eigenfrequencies of the interacting oscillators are th@ne-sided stable distributions, Ref. 68.
solutions of the secular equation of ordersof Due to the combined action of interaction and anharmo-
) nicity the DOS is reconstructed T ») =2wG(w?) with
al—le _|12 _Ils
o apmMae® ol | G(0)=(8(0* = 0Dk,
T le o aeM? = [ “dko0 | “doteo(wd)stwr-3)
(A7)

Here the «; are given by Eq.(11). In leading order in (Al4)

lij /M wé the secular equation is a linear equation fof andGo(wf)Ego(wl)/Zwl. Using Eq.(A10) and integrating
[compare Eq(15)] Eqg. (A14) we obtain
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= 5 1 1 ) k
Glw ):E Odkp k+§|\/|w Gy M

(A15)

e k
+f dkp(k)GO(a)z-i—— .
0 M

For low frequenciesw<w., G(w?)=const andg(w)=w,
i.e., the reconstructed DOS islimear functionof w. For
high frequencies the first term in EGA15) can be discarded

and the original DOS is reproduce@(w?)=Gy(w?) for
w>w;.

APPENDIX B: HOLTSMARK METHOD
1. Distribution of random forces

Let x; be a random value with zero medw)=0 and
finite (|x|) and letr; (N— ) be Poisson-distributed random
points in three-dimensiond3D) space with concentration
n.. The distribution functiorP(f) of the random values

f=> X;

| r

(B1)

can then be calculated by the Holtsmark methbd.

P(f):< 5( -3 :—;) > ~ %f:dre”flz(f) (82)

F(T)=<GX[{—i7'2i ;(—; >,

where angular brackets denote averaging avxeandr;.
Since the values; /r? are independent of each other

with

(B3)

N
F(T):<e—i7x/r3>N:(1_ %J d3r<1_e—irx/r3>x)

(B4)

which in the limit N— becomes

F(T)zex;{ —nCJ' d3r<1—e*i”"r3)X

Using (x)>=0 and changing the integration variable yto
=|7||x|/r® we get

F(T)=exp{ —

The integral equals/2 and Eq(B2) is the Fourier transform
of a Lorentzian distribution of random forces

. (B5)

. (B6)

4an xdy
) [ 1-cog)
oy

1 s
P(f)=—

7§24 (5f)2 ®7

where the width of the distribution is given by

PHYSICAL REVIEW B7, 094203 (2003

2
27N,

o1 = """ (|x]).

(B8)

2. p(k) distribution

The same method can be applied to calculate the distribu-

tion of the random quantiti

(B9)

where the x;’s are random and uniformly distributed,
—Xol2<X;<Xo/2, r; are N— ) Poisson-distributed random
points in 3D spacdconcentrationny) and w; are random
frequencies of HO’s distributed in the interval

0<wi<wg (B10)

with a DOSgy(w) normalized to unity.
Analogously to Eq(B2) the distributiono(k) can be writ-
ten as

p(k)= %J’j;dTeikTK(T) (B11)
with
X2
K(T)=<exr{—i72 = > (B12)
P

Following the steps of the previous subsection we can write

K(r)=exp[—nof d3r<1—e—”xz”6w2>x,4 (B13)

and, introducing the new variable= (x?| 7|)/(r8w?),

K(r)zexp{—z?wno<%> J[7[(a+iB sgnT) |,
e (B14)
where
a= fm ﬂ(1—cosy), B= fw ﬂsiny. (B15
0 y3/2 0 y3/2

It is straightforward to show that= B= /2. Therefore

K(7)=exd —B\|7[(1+i sgn7)]

=3 V7Mo%l 5/

After integration in Eq(B11) with K(7) from Eqg.(B16) we

finally get
B B?
kT/ZeX - ﬂ .

(B16)
with

(B17)

p(Kk) (B19)

1
__\/E
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