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Fourier inversion of acoustic wave fields in anisotropic solids
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This paper is concerned with the analysis of acoustic wave fields encountered in phase-sensitive acoustic
microscopy~PSAM! applied to elastically anisotropic solids. We show that the fast Fourier transform technique
provides a computationally efficient method of calculating two-dimensional amplitude and phase images of
these fields. More importantly, we demonstrate how this technique, applied to complex wave field data, can be
used to treat inverse problems such as source reconstruction, image quality assessment, and the determination
of elastic constants. Monochromatic and also more general time-dependent excitations, such as tone bursts and
short pulses, are treated, and the resulting wave fields described. The evolution of these wave fields with
increasing frequency is discussed, and emerging infinite frequency features, such as the ray surface and phonon
focusing caustics, are identified. A number of numerical simulations are presented that are in good agreement
with measured data from the literature. As an illustration of elastic constant determination, we use the point
spread function determination based on our PSAM measurements on the longitudinal mode in silicon to
determine the elastic constantC11 of Si.

DOI: 10.1103/PhysRevB.67.094117 PACS number~s!: 62.65.1k, 43.35.1d
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I. INTRODUCTION

There has been sustained interest for a number of yea
the pointlike excitation and detection of acoustic wave fie
in elastically anisotropic solids using phase-sensitive aco
tic microscopy~PSAM! and other means~see, e.g., the re
views in Refs. 1–5, the recent papers,6,7 and references con
tained therein!. In the case of harmonic or quasiharmon
excitation, the spatial variation of these fields is particula
striking, revealing as it does the combined effects of inter
diffraction and phonon focusing. Very-high-frequency im
ages obtained with ballistic phonons display patterns of n
diffraction-broadened caustics that are well accounted fo
the ray approximation, but these images are intensity pl
devoid of phase information. In analogous experiments d
at MHz ultrasonic frequencies, the caustics unfold into Ai
Pearcey, and higher-order diffraction patterns, which th
broaden and merge as the frequency is progressively
ered. As a tradeoff for this loss of detail in the focusing, o
is able to retain both phase and amplitude data in inte
diffraction images. This is what is done in PSAM,1 capturing
the two-dimensional ~2D! complex signal transmitted
through a sample. We show in this paper that with combin
phase and amplitude data, it is possible to use the ang
spectrum approach and the fast Fourier transform~FFT!
technique to tackle forward propagation and inversion pr
lems, such as source reconstruction, image quality ass
ment, and the determination of elastic constants.

Our treatment is based on the Green’s functionG̃33(xW ,v)
for an infinitely extended anisotropic elastic continuu
which we evaluate by the angular spectrum method to p
vide synthetic data for inversion. More general tim
dependent forms of excitation, such as tone bursts and s
pulse excitation, are also treated, and the resulting w
fields compared. As regards the role of the sample bou
aries, in using a focusing transducer of relatively small
0163-1829/2003/67~9!/094117~9!/$20.00 67 0941
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gular aperture to insonify a solid at normal incidence, t
kW -space angular spectrum within the solid does not dif
markedly from that resulting from a time-harmonic poi
force acting along the axial direction in the infinite co
tinuum. For this reason, and also because the thrust of
paper is the demonstration of broad principles, we do
take account of surface effects here. The modifications
quired to incorporate surfaces into the calculations are r
tively straightforward, but we defer them to later presen
tions.

The layout of this paper is as follows: In Sec. II we d
scribe the PSAM technique and the physical conditions t
are achieved with it. In Sec. III we develop the theory for t
forward problem of the wave field of a point force with ha
monic and more general time dependence. We prese
number of numerical simulations for silicon, obtained usi
FFT’s, which are in excellent agreement with measured d
available in the literature. In Sec. IV we discuss a spatia
distributed source, treating both forward propagation and
version, and also the issue of image quality determination
Sec. V we illustrate the potential of our technique for inver
problem solving, by using the point spread function determ
nation from our PSAM measurements on the longitudi
mode in silicon, to determine the elastic constantC11 of Si.
Finally in Sec. VI we present our conclusions.

II. THE PSAM EXPERIMENTAL TECHNIQUE

PSAM is used for studying the propagation of diverge
ultrasonic beams through a solid, usually in the nature of
elastically anisotropic crystal.1 The acoustical part of the ex
perimental setup in PSAM is shown in Fig. 1. A pair
point-focus transducers, one a transmitter and the oth
receiver, is focused through a transmission fluid onto op
site faces of the sample. One of the transducers is ra
scanned parallel to the surface, yielding an image of
©2003 The American Physical Society17-1
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transmitted sound field. The system operates on rf sig
excited by a narrow-bandwidth cw generator, the output
which is split into the signal that generates the ultraso
wave and an electronic reference. The transmitted ultras
signal is time gated to separate the longitudinal and trans
sal acoustic modes of propagation and to eliminate multip
echoes. The signal from the ultrasonic path is then mixe
two channels with the electronic reference 0° and 90° ph
shifted, and after boxcar averaging, the scheme delivers
low-frequency signals that may be regarded as the real
imaginary parts of the analytical signal pertaining to the
trasonic wave transmitted through the sample. The tw
dimensional map of the amplitude and phase variation of
signal has properties similar to a hologram. Application
this scheme has allowed high-resolution data to be obta
in the gigahertz regime.

By the use of the focusing transducers and the coup
fluid, which transmits only pressure waves, excitation, a
detection of displacement normal to the surface of the s
is achieved, which is pointlike to the extent that the late
sizes of the focal areas on the opposite surfaces of the sa
are smaller than the wavelengthl within the sample. The
diameter of the Airy diskdA on the surface in relation tol is
given by

dA /l5
1.22

sin~u!

cw

cs
, ~1!

wherecw andcs are the sound velocities in the transmissi
fluid ~water! and the sample respectively, andu is the half
aperture angle of the lens. Since in most solids the so
velocity is more than double that of water~in the case of
silicon, even for the transversal modes it is closer to a fac
of 4!, a lens of half aperture angle greater than about 30

FIG. 1. Schematic representation of the acoustical part of
PSAM experiment~Ref. 1!. The ultrasonic signal is generated an
detected by a pair of transducers focused on opposite surfaces o
sample. One of the transducers is raster scanned parallel to
sample surface.
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usually adequate for achieving pointlike excitation and co
sequent propagation in a wide spread of forward directi
within the solid.

III. POINT SOURCE: THE FORWARD PROBLEM

To apply the 2D fast Fourier transform in the treatment
wave propagation and ‘‘internal diffraction’’ of acousti
waves in anisotropic solids, we need first of all to explore
link between the strict Green’s function approach8 and the
Fourier-transform-based angular spectrum method.9 From
there we proceed to the calculational technique used in
later sections.

A. Time-harmonic point force

We treat, as the forward problem, the displacement fi
of a time-harmonic point force of angular frequencyv
52p f , acting in thex3 direction at the origin~0, 0, 0! in an
infinitely extensive anisotropic elastic continuum of ma
densityr and elastic stiffness tensorci jkl . The displacement
response in thex3 direction at a pointxW in the observation
plane, which is perpendicular to thex3 direction, is the dy-
namic Green’s functionG̃33(xW ,v), which has the integra
representation8

G̃33~xW ,v!5 (
n51

3 H iv

8p2r EV
dV s~n!3L33

~n! exp~ ivsW ~n!
•xW !

1
1

8p2rx E0

2p

df s~n!2L33
~n!J , ~2!

where sW (n) is the slowness vector associated with thenth
acoustic branch: longitudinal~L!, fast transverse~FT! and
slow transverse~ST!, dV is the infinitesimal solid angle in
slowness space, andL33

(n)5@U3
(n)#2 is the coupling factor for

each mode, withU3
(n) being thex3 component of the polar-

ization eigenvector.
In the intermediate and far field, wherevsx@1, the sec-

ond term in Eq.~2!, for which the associated strain field fal
off as ;1/x2, is small compared with the first term, fo
which the strain field falls off as;1/x, and so is neglected
below. In many experiments, a wave train of finite durati
rather than a perfectly monochromatic source is employ
and time gating is used to separately study the longitud
and transverse wave fields. In the equations below, we
cordingly suppress the polarization indexn and summation
over that index. The integral over solid angleV is readily
transformed to a surface integral over (s1 ,s2), yielding

G̃33~xW ,v!5
iv

8p2r E ds1ds2

L33

V3
exp~ ivsW•xW !, ~3!

whereV3(sW) is thex3 component of the group velocity or ra
vector

VW 5
¹WsS~sW !

sW•¹WsS~sW !
.

e

the
the
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VW is normal to the acoustic slowness surface, the surf
representing the directional dependence of the slownessW.
To render Eq.~3! more transparently in the form of a Fourie
transform, we change the integration variable to wave ve
kW i5(k1 ,k2)5vsW i5v•(s1 ,s2), yielding

G̃33~xW ,v!5AE dkW i
2H L33

V3
exp@ ivx3s3#J exp~ ikW i•xW i!,

~4!

where A5 i /8p2rv, and L33, V3 , and s3 are regarded as
functions ofkW i /v. In numerical simulations we include i
the integrand a slowly varying windowing functionH(kW i)
that could represent the directionality of the transducers
that provides a smooth cutoff to the domain of integratio

The above expression is almost identical to that for
field of a focusing transducer transmitted through a para
sided solid, except that in the latter situation, the factorV3 is
absent andAL33 is replaced by the product of the transm
sion coefficients at the surfaces, which has a similar ang
spectral behavior for smallkW i . The results we present her
are not very sensitive to the precise form ofH, and the dif-
ference between the two approaches amounts to not m
more than varying the windowing function. More importa
is the influence of the phase variation associated with
slowness components3 in Eq. ~4!.

B. General time-dependent point force

In the case of excitation by a time-dependent signalF(t)
with frequency spectrumf (v), the transient response is

G33~xW ,t !5E G̃33~xW ,v! f ~v!exp@2 ivt#dv, ~5!

whereG̃33(xW ,v) is given by Eq.~4!. If we perform the inte-
gration with respect tov first, this yields the function

K~kW i ,t !5E dv f ~v!
L33

V3
exp$ iv@x3s32t#%, ~6!

for the remaining Fourier transform with respect tokW i . The
advantage of this is that theK functions for the L, FT, and ST
modes can be combined at this stage, leading to a signifi
saving in computational time. We show examples of this ty
of calculation in Fig. 3.

C. Calculational technique

Equation~4!, proposed in simplified form by Plutaet al.,9

is in the form of a Fourier transform, and may be perform
numerically by application of the 2D FFT algorithm. Th
entails numerically solving Christoffel’s equation for th
slownesses and eigenvectors10 for an N3N array of kW i’s.
The subsequent saving in computational time in using a F
as compared with a ‘‘classical’’ numerical Fourier inversio
is
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T,
,

tFFT

tcl
5F log2 N

2N G2

,

which for N51024 comes totFFT/tcl'@1/200#2.
In applying a discrete Fourier transform we have to ta
account of the distribution of sampling points and the ba
width limits in kW i space. Assuming sampling of a square a
of side a with N points per line, the spatial frequency o
sampling isa/N, and hence according to the Nyquist crit
rion, to avoid aliasing effects, only structures ofki,pN/a
should be sampled. For acoustic slowness of the order of
ms/mm,N51024, and propagation distance 10 mm, this li
its the frequency to the regionf ,N/(2sa)5256 MHz. Ex-
periments at higher frequencies may be simulated by incr
ing the value ofN, or to some extent by reducing th
propagation angle or narrowing the windowing functionH.

D. Numerical simulation of forward propagation

By application of the method described above, one is a
to perform numerical simulations of wave propagation, ha
ing the freedom to choose many parameters: type and siz
crystal, wave polarization, type and distribution of the exc
ing force, etc. We present here the results of calculations
wave fields generated by a point source. The examples h
been chosen to show the potential of the forwa
propagation technique and to produce results comparab
those available in the literature or analyzed earlier by
authors.

Figure 2 depictsG̃33(xW i) in the planex3520 mm for an
~001!-oriented silicon crystal, forf 510 MHz ~a! and~b!, 50
MHz ~d! and infinite frequency~e!. The calculations are for
the ST branch and are thus relevant to existing experime
data pertaining to finite wave trains and time gating to se
rate the faster L wave train from the other two. The F
branch in the vicinity of thê100& axes of crystals such as S
is almost perfectly shear horizontally~SH! polarized and so
is not coupled to by the axial excitation discussed her11

Extensive studies of internal diffraction patterns by Wo
and co-worker2–4 and Wuerzet al.12 have concentrated on
the ST internal diffraction pattern, for which the amplitud
distribution reveals an abundance of structure absent f
the L pattern.

The amplitude images in Figs. 2~a! and 2~d! are essen-
tially identical to the experimental and calculated images
Si reported by Weaver, Hauser, and Wolfe13 for the same
parameters. Their experimental setup is the same as
shown in Fig. 1, and as explained in Sec. II, the insonifi
tion by a pressure wave through water delivers a pointl
force normal to the surface. The infinite-frequency intens
plot ~e! matches very closely the measured ST componen
the phonon focusing pattern of Si.2

Comparing Figs. 2~a! and 2~c! we see that as the fre
quency is raised from 10 to 50 MHz the fringe spacing d
creases, and the underlying caustic structure begins
emerge. In the infinite-frequency intensity pattern~e!, calcu-
lated on the basis of the ray approximation, the caustic st
ture is fully developed.

Figure 2~g! shows the response to a 15-MHz tone burst
8 periods. This is intermediate between monochromatic
7-3
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FIG. 2. ~a! Amplitude and~b! phase images of
silicon, representing the spatial dependence

G̃33(xW i) in the planex3520 mm and for fre-
quency f 510 MHz. ~d! Depicts the 2D ampli-
tude variation at 50 MHz and~c! and~f! the am-
plitude variation along the central line in cases~a!
and ~d!, respectively.~e! The infinite-frequency
phonon focusing pattern for Si.~g! Response in
the planex3510 mm to a 15-MHz tone burst of 8
periods as observed after a 2.15-ms delay. The
reference axes are aligned along the cubic cr
tallographic axes, and the spatial range of t
scan is 15315 mm2 in each case. The darknes
of the gray scale in~a! and~d! proportional to the
amplitude, in~e! to the intensity, and in~g! to the
real part of the analytical signal.
094117-4
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FIG. 3. Numerical simulation of a short-puls
transient signal in a~001!-oriented Si crystal.
Scan area 20320 mm2, distance between sourc
and measuring planel 510 mm, delay timet
51.31ms ~a! and~b!, t51.70ms ~c! and~d!, and
t52.15ms ~e! and ~f!. ~a!, ~c!, and ~e! are for
infinite frequency, while the remaining three a
for a mean frequency of 30 MHz and bandwid
12 MHz.
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pulse excitation, which we illustrate later. It demonstrates
way interference of the waves creates the internal diffrac
pattern. The parameters of the calculation are the same a
those of one of the measurements of Wolfe and Hauser,4 and
the pattern obtained is in good agreement with their m
sured pattern.

Figure 3 depicts the simulated response of Si in an exp
ment with short-pulse point excitation for three values of
time delay, 1.31, 1.70, and 2.15ms. The observation surfac
area is 20320 mm2, and the observation plane is 10 m
from the excitation point in the@001# direction. These are
exactly the parameters of the experimental results on S
ported by Wolfe.2,3 Figures 3~a!, 3~c!, and 3~e! are intensity
plots for infinite frequency and are calculated in the ray
proximation. They essentially represent planar sections
three heights through the L and ST sheets of the group
locity surface. Figures 3~b!, 3~d!, and 3~f! are the corre-
sponding internal diffraction images representing the r
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part of the analytical response for the same time intervals
for a pulse of mean frequency 30 MHz and Gaussian en
lope of bandwidth 12 MHz. For these latter three imag
summation has been performed over all three modes
propagation, but only the L and ST show any visible pre
ence in the images, because the FT mode is so very we
coupled for axial excitation along thex3 direction.

It can be seen that the broad-band responses in Figs.~b!,
3~d!, and 3~f! straddle the wave arrivals predicted on t
basis of the ray approximation, but as expected they hav
oscillatory shape with finite spread because of the limi
bandwidth of the excitation. These images compare w
with the corresponding experimental images of Wolfe.2,3 The
apparent L wave reflections in Fig. 3~d!, i.e., the convex
inward circular segments, are an aliasing effect, an artifac
the image sources in neighboring cells, that are inheren
discrete Fourier transforms. They could be eliminated
choosing a larger value ofN, but we have left them in be
7-5
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cause they resemble the actual L mode side wall reflect
present in the measurements of Wolfe.2,3

IV. DISTRIBUTED MONOCHROMATIC SOURCE

Hitherto we have been considering a point force. Here
formulate the forward and inverse propagation problems
a planar distributed source and demonstrate the recons
tion of the source structure from complex data collected d
ing PSAM measurements. Generally speaking, in the cur
experimental approaches one has access only to thex3 com-
ponent of the response in the viewing plane, not the
vector response, so rigorous inversion is not possible. N
ertheless, by a procedure akin to synthetic aperture inver
in optics, we are able to achieve a reasonably accurate re
struction of the source. We discuss the methods of im
quality estimation for that technique.

A. Forward propagation

For a force in thex3 direction with a 2D distribution
function in thex350 planeF(xW i)exp(2ivt), the response in
the x35 l plane is given by the convolution integral

u3~xW i ,l ,v!5F~xW i! ^ G̃33~xW i ,l ,v!, ~7!

which may be calculated from the inverse 2D Fourier tra
form of

ū~kW i ,l ,v!5F̄~kW i!•Ḡ33~kW i ,l ,v!, ~8!

whereF̄(kW i) is the 2D Fourier transform of the source stru
ture.
From Eq.~4!, it follows for the Fourier domain Green’s func
tion that

Ḡ33~kW i ,l ,v!}H L33

V3
exp@ iv ls3#J . ~9!

The angular spectral behavior of relation~9! depends on the
propagation mode and type of crystal. For longitudin
waves it is similar to the complex 2D Fresnel function~or
Newton’s rings! with the shape of the fringes distorte
slightly by anisotropy. In the case of the ST mode of a crys
such as Si~001!, the amplitude of this function is small in th
central area inkW i space, approaching zero atkW i50, where
U350, and henceL3350.

B. Inverse problem

Treating the collected 2D data at the viewing surface a
complex distribution at a synthetic aperture, we invert
propagation process to recover the image of the source
numerical back propagation technique.14 To this end, we ap-
ply the complex conjugate of relation~9!:

Ḡ33* ~kW i ,l ,v!5
L33

V3
exp~2 ik3x3!5Ḡ33~kW i ,2 l ,v!.

~10!

The product of Eqs.~8! and ~10! yields
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ū8~kW i ,l ,v!5ū~kW i ,l ,v!
L33

V3
exp~2 ik3l !5F̄~kW i!FL33

V3
G2

.

~11!

Applying the inverse 2D Fourier transform we obtain t
image of the source

F8~xW i!5F~xW i! ^ PSF~xW i!, ~12!

where the point spread function~PSF!

PSF~xW i!5E dkW i
2FL33

V3
G2

exp~ ikW i•xW i! ~13!

is a characteristic of the entire imaging process~including
forward wave propagation and calculated inversion! and is to
be interpreted as the image of an elementary point sourc

C. Imaging quality

The process of measurement through a crystal and
merical reconstruction of a planar source or structure can
treated as a stationary and linear imaging process in
dimensions. A measure of the quality of the imaging is t
modulation transfer function15 ~MTF!, defined ink-vector or
spatial frequency space as the modulus of the Fourier tr
form of the PSF. The MTF is influenced by the apertures
the two transducers, the transmission coefficients at the
faces, and thekW i dependence ofḠ33. Bearing in mind the
fact that the first two factors have a relatively small influen
on the results in comparison with the last one, and reitera
our desire to focus on principles rather than detail, we w
discuss below only the image quality limitations associa
with Ḡ33. Applying the definition of the MTF to Eq.~13! we
obtain

MTF~kW i!5FL33~kW i /v!

V3~kW i /v!
G 2

. ~14!

In case of observation by means of the ST mode, low spa
frequencies are represented byk vectors close to thê100&
direction ~small kW i) and are rarely transferred to the imag
and so the MTF has the form of a somewhat distorted an
lar aperture inkW i space.

There are other types of inverting functions besides
~10!, which for particular types of crystals and specifi
propagation modes, could lead to broadening of the tra
ferred spatial frequency range and improvements in the M
and resolution. Such optimization, similar to the problem
apodization in optics, would entail the definition of go
functions and other issues. We do not, however, wish her
get involved in lengthy discussions of inversion techniqu
and algorithms. Concentrating rather on principles, we w
refer only to the back-propagation technique describ
above. It has the advantage of ensuring that amplitude
weak, noise-prone components are not amplified, and in
merical simulation allows us to use the same procedure
inversion as in forward propagation, with only a change
sign of the distance parameterl. With this approach then, we
present below the results of inversion of simulated results
7-6
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FIG. 4. ~a! and ~c! PSF and~b! and ~d! MTF
for the imaging by back propagation of ST wave
in silicon at the frequency~a! and ~b! 100 MHz
and ~c! and ~d! 10 MHz. The scan range in im
ages~a! and ~c! is 15 mm, and in the spatial fre
quency domain images~b! and ~d! is 35 lines/
mm. The MTF has a maximum of about 1
lines/mm at 100 MHz and 1 line/mm at 10 MHz
ve
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point and extended sources, and treat an example of in
sion of measured data for a pointlike source.

Figure 4 shows the MTF and PSF for 10- and 100-M
ST waves generated by a point source in a~001!-oriented Si
crystal of 15-mm thickness. It depicts the expected dep
dence of the resolution on the measurement frequency.
trapolating on this basis, one infers that micrometer reso
tion could be achieved by going to a frequency of a f
gigahertz.

As a demonstration of the potential imaging qual
achievable with PSAM in conjunction with a FFT inversio
we present in Fig. 5 simulated image reconstructions, usin
and ST waves, of an object in the form of a sinusoidal
emens star, which is a standard object for the testing of
tical systems.

Despite the frequency being the same in both cases,
difference in resolution is quite striking. As expected, b
cause at the same frequency L waves are faster and
longer wavelengths than ST waves, they achieve lower re
lution. This is reflected in the blurred central fine-structu
region, which covers a larger area for the L waves. On
other hand, since the ST waves in Si~001! tend not to trans-
mit low spatial frequencies, because for theseL33 is small,
the outer more broadly structured regions of the test star
obscured in that case.
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V. EXAMPLE OF ELASTIC CONSTANT DETERMINATION

The point spread function given by Eq.~13! relates to
ideal conditions, in the sense that the same crystal mo
applies to the forward and inverse transforms. When the
ward propagation is experimentally measured or, for wh
ever reason, does not correspond to the inverse model, th
less-than-ideal PSF is obtained. This fact can be exploite
inverse problem solving. Thus, for inversion of experimen
data to obtain elastic constants, we perform the follow
steps:

~1! Calculate the Fourier transform of the measured co
plex distribution, which we callḠ33

meas(kW i ,l ,v) and which we
interpret as the Fourier domain Green’s function of the act
system.

~2! Generate the model inverse distributionḠ33* (kW i ,l ,v),
based on assumed crystal characteristics.

~3! Multiply the above two functions.
~4! Perform an inverse Fourier transformation to get t

image of the source.
For a pointlike source, the maximum of the PSF th

obtained is a measure of the 2D correlation between the c
plex measured signal for the sample andḠ33(kW i ,l ,v) ob-
tained from the numerical model. The maximum is sensit
to the elastic constants used in the calculation, and falls
7-7



f
ed
z
on

y

M. PLUTA, A. G. EVERY, W. GRILL, AND T. J. KIM PHYSICAL REVIEW B67, 094117 ~2003!
FIG. 5. ~a! Numerical image reconstruction o
a 11sin(16f) Siemens test star, as measur
through a 15-mm-thick silicon crystal at 20 MH
and then reconstructed with back propagati
procedures,~b! using L waves and~c! using ST
waves.~d! Modulation transfer function shown in
spatial frequency space~lines/mm!, of the imag-
ing process~propagation and reconstruction! for
20-MHz ST waves. The darkness of the gra
scale in~d! is proportional to the amplitude!.
th

ing
ig

elas-
rapidly when these deviate from the values pertaining to
specimen.

As an illustration of elastic constant determination us
PSAM, we make use of the experimental data shown in F
09411
e

.

6~a! for L mode propagation in Si~001!, to determine the
‘‘longitudinal’’ elastic constantC11 of silicon. Figure 6~d!
shows the calculated PSF based on known values of the
tic constantsC12 andC44 and three different values ofC11,
in

d
d

n-
n
,

FIG. 6. ~a! Real part of the field distribution
measured by the PSAM technique at 380 MHz
a ~100!-oriented Si crystal of thickness 516mm,
time gated to extract the longitudinal mode an
avoid multiple reflections. The horizontal an
vertical field size is 1.66 mm.~b! Corresponding
simulated pattern using the known elastic co
stants of Si.~c! Dependence of the correlatio
between~a! and ~b!, i.e., peak value of the PSF
on the assumedC11 value.~d! PSF cross section
for C115165 GPa ~thick solid line!, 155 GPa
~thin solid line!, and 150 GPa~dotted line!.
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to which the data are most sensitive. The PSF forC11
5165 GPa, which is close to the known value for Si,
clearly much sharper and has a larger maximum value t
the other two. Figure 6~c! shows the variation of the pea
height, or correlation value, with assumed value ofC11. It
shows a clear maximum at the known value ofC11. Mea-
surements on both the longitudinal and transverse mo
would be required to recover all three elastic constants
silicon.

It is evident from Fig. 6~c!, and other estimates of our
concur with this, that PSAM can achieve somewhat be
than 1% accuracy in absolute elastic constant determina
which is comparable with that obtained by pulse echo a
many other measuring techniques.16,17 In competition with
the well-established standard methods, the niche area we
visage for PSAM is in application to samples that are av
able in the form of thin plates or even small-angle wedg
The advantages of PSAM in this situation are as follows

~a! Not much sample preparation is required@in contrast
to accurate shaping for resonance experiments, a highly
ished surface for surface Brillouin scattering~SBS!, accurate
parallelism for pulse-echo experiments, etc.#.

~b! While our illustrative example above involves only th
L mode signal andC11, in general, a single image contain
the effects of L, ST, and FT wave propagation in a wi
spread of directions and is sensitive to a larger numbe
elastic constants.

*On leave from Institute of Physics, Wroclaw University of Tec
nology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
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