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Analytic model of the shear modulus at all temperatures and densities

Leonid Burakovsky,* Carl W. Greeff,† and Dean L. Preston‡

Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 3 September 2002; published 17 March 2003!

An analytic model of the shear modulus applicable at temperatures up to melt and at all densities is
presented. It is based in part on a relation between the melting temperature and the shear modulus at melt.
Experimental data on argon are shown to agree with this relation to within 1%. The model of the shear modulus
involves seven parameters, all of which can be determined from zero-pressure experimental data. We obtain the
values of these parameters for 11 elemental solids. Both the experimental data on the room-temperature shear
modulus of argon to compressions of;2.5, and theoretical calculations of the zero-temperature shear modulus
of aluminum to compressions of;3.5 are in good agreement with the model. Electronic-structure calculations
of the shear moduli of copper and gold to compressions of 2, performed by us, agree with the model to within
uncertainties.
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I. INTRODUCTION

A reliable model of the adiabatic~isentropic! shear modu-
lus G of a polycrystalline solid at temperatures toTm , the
melting temperature, and up to megabar pressures is ne
for many applications, including the modeling of plastic d
formation at extremes of pressure and temperature, num
cal calculations of elastic and shock wave propagation,
even calculations of the oscillations of low-mass astroph
cal objects.

Adiabatic elastic properties are generally determined
ultrasonic wave-speed measurements, which are usu
made in the low-pressure regime. Zero-pressure experim
tal data have been accumulated on single-crystal elastic
stants, together with polycrystalline averages, at temp
tures fromT50 to nearlyTm for Ag ~to within 60 K ofTm),1

Au ~to within 60 K of Tm),2 Ge~to within 90 K of Tm),3 and
V ~to within 80 K of Tm).4 The data run fromT50 to Tm for
Al,5 Ar,6 Bi,7 Cd,8 Cs,9 Cu,10 In,11 K,12 Na,13 Nb,14 Ne,15

Pb,11 Sn,7 Ta,16 Te,17 Xe,18 and Zn.19

On the theoretical side, it is possible to calculate sin
crystal elastic constants as a function of compression at
temperature from electronic-structure theory. Such calc
tions were done by Straubet al.20 for Cu, Christensenet al.21

for Mo and So¨derlind and Moriarty22 for Fe, and So¨derlind
and Moriarty23 for Ta. With known interatomic potentials,
is possible to calculate the temperature dependence o
elastic constants by computer-simulation techniques, as d
onstrated by the calculations for Na,24 Mg,25 and Cu.26

Bounds on the shear modulusG can be calculated from th
single-crystal elastic constants for any crystal class,27 and for
a cubic crystal the polycrystalline shear modulus can be
culated exactly using the Kro¨ner cubic equation.28

Guinan and Steinberg29 modeled the zero-temperatu
shear modulus asG5G01G08P(r0 /r)1/3, whereG08 is the
pressure derivative ofG at zero pressure andr is density.
This functional form was chosen so thatG;r4/3 as r→`,
the correct asymptotic behavior albeit with a prefactor t
does not generally coincide with that given by the on
component plasma model forG. Preston and Wallace30 pro-
posed a model for the temperature dependence of the s
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modulus at any density, but left the density dependence it
arbitrary. The dependence of the shear modulus on both
sity and temperature has also been discussed by Anders31

In this paper, we develop an analytic model for the de
sity and temperature dependence of the shear modulu
combining four key elements. First is a simple but accur
relation between the density, the melting temperature a
function of density,Tm(r), and the shear modulus along th
solidus.32,33 Second is the Preston-Wallace model for t
shear modulus. Third is an analytic model for the Gruneis
parameter34 that is used in conjunction with the fourth ingre
dient, the Lindemann criterion,35 to generate an analytic ex
pression forTm(r).

II. A RELATION BETWEEN SHEAR MODULUS
AND MELTING TEMPERATURE

The melting temperature and shear modulus along
solidus approximately satisfy the relation

G„r,Tm~r!…

rTm~r!
5

G„r refTm~r ref!…

r refTm~r ref!
, ~1!

wherer ref is a reference density. This relation is the found
tion of our model for the shear modulus, so we provide th
oretical justification for it following two approaches: th
theory of dislocation-mediated melting,32,33and the theory of
a Debye solid~in which it derives as a consequence of t
proportionality ofG to the square of the Debye temperatur!.
The relation is shown to agree very well with shear-modu
data on argon, the only data available for such a compari

A. Two derivations of relation „1…

It follows from our model of melting as a dislocation
mediated phase transition that the relation

kBTm5
12n~Tm!/2

12n~Tm!

G~Tm!v~Tm!

ln~z21!

l

8p
lnS a2

4b2d~Tm!
D

~2!
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TABLE I. Numerical values of the ratioG(Tm)v(Tm)/(kBTm) for 11 elemental solids that melt from bc
crystalline structure at normal pressure.

Element Ba Cs Cr d-Fe K Li Na Nb Rb b-Ti V

Tm(K) 1000 301.6 2130 1811 336.5 453.7 370.9 2750 312.5 1941 21
v(Tm)(Å3) 66.68 116.8 13.10 12.76 76.38 22.14 40.17 19.33 93.37 18.61 14
G(Tm)(GPa) 2.96 0.39 35.7 30.8 0.80 3.60 1.93 32.6 0.60 21.9 32
Gv/(kBTm) 14.3 10.9 15.9 15.7 13.2 12.7 15.1 16.6 13.0 15.2 15
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holds at any pressure. Hereb is the magnitude of the Burger
vector, n is the Poisson ratio,v is the Wigner-Seitz~WS!
volume,l[b3/v is a geometric factor characterizing the la
tice, z is the coordination number, andd(Tm) is the disloca-
tion density at melt. Note that the factorsl and ln(z21)
explicitly account for the influence of crystal structure
melting. The value ofl is 3A3/4'1.30 for body-centered
cubic ~bcc!, andA2'1.41 for face-centered cubic~fcc! and
ideal (c/a5A8/3) hexagonal close-packed~hcp! lattices.33

The parametera is the ratio ofb to the dislocation core
radiusr 0 ; a'2.9 for both bcc and fcc crystals.33 This melt-
ing relation plus experimental data on over half the eleme
in the periodic table giveb2d(Tm)50.6160.20 ~throughout
this paper the error in such expressions is the correspon
standard deviation! with G(300 K), vWS(300 K) used in-
stead ofG(Tm), vWS(Tm), respectively.32

From the compilation of data in Tables I and II, we fin
that the product ofl and the logarithm in Eq.~2! @with36

n(Tm)50.4260.02] is a constant to 15% at zero pressur

l

8p
lnS a2

4b2d~Tm!
D 5H 0.10060.015 bcc

0.09160.014 fcc.
~3!

We make the reasonable assumption that the mean inte
location distance at the melting point, 2R'1/Ad(Tm), scales
with b, which implies that b2d(Tm) is a compression-
independent constant. It is also assumed thata215r 0 /b is
unchanged under compression. Hence,l ln(a2/4b2d) is ex-
pected to be pressure independent with approximately
same value for both bcc and fcc elements. It then follo
from Eq. ~2! that for a given element

j~P![
12n„P,Tm~P!…/2

12n„P,Tm~P!…

G„P,Tm~P!…v„P,Tm~P!…

kBTm~P!ln~z21!
5c,

~4!

where the constantc has nearly the same value for both b
and fcc elements. Experimental validation of this relation
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not posible because of a lack of data from moderate to h
compressions. However, theP→0 andP→` limits are con-
sistent with Eq.~4!, which we now demonstrate.

At very high compressions, a solid becomes a crystalliz
one-component plasma~OCP!, i.e., a lattice of ions in a uni-
form neutralizing background of electrons.35 The melting
curve of a solid at ultrahigh pressures is described by
equation

Z2e2

a~Tm!kBTm
5Gm , ~5!

whereZ is the atomic number,a5(3v/4p)1/3 is the Wigner-
Seitz radius, andGm , a dimensionless constant, is the OC
coupling parameter at melt.35 Numerous calculations ofGm
for a bcc OCP crystal~see Ref. 37 for a review! converge on
the value 175.38,39The value ofGm for a fcc OCP crystal has
been calculated to be 19661 ~Ref. 40! and 208.3~Ref. 41!;
hence we takeGm5200 for a fcc OCP crystal in the follow
ing analysis. The bcc OCP single-crystal elastic consta
(c112c12)/2 and c44 have been calculated by means
Monte Carlo simulations.42 A linear fit to the values ofG
given by the formula of Sisodiaet al.43 ~whenc11 andc12 are
not known separately, the value ofG given by this formula
approximates Kro¨ner’s shear modulus with high accurac
and, in fact, tends to the precise Kro¨ner value in the limit
P→`) results in37

Gbcc
OCP~T!5gbccS 4p

3 D 1/3Z2e2

v4/3 S 12bbcc
OCP T

Tm
D , ~6!

wheregbcc50.093 01 andbbcc
OCP50.2160.18. We have cal-

culated~unpublished! the coefficientgfcc to be 0.090 11. The
coefficient b fcc

OCP has not been calculated, so we assu
b fcc

OCP5bbcc
OCPWe have also calculated the Voigt~V! and Reuss

~R! bounds on the shear modulus of an ideal hcp OCP c
tal: ghcp

V 50.1194,ghcp
R 50.1045, henceghcp50.1120 for the

Voigt-Reuss-Hill average.
c

37
.87
.0

.5
TABLE II. Numerical values of the ratioG(Tm)v(Tm)/(kBTm) for 11 elemental solids that melt from fc
crystalline structure at normal pressure.

Element Ag Al Ar Au b-Co Cu Ni Pb Pd Pt Rh

Tm(K) 1235 933.5 83.8 1338 1768 1358 1728 600.6 1828 2041 22
v(Tm)(Å3) 18.19 17.55 40.90 17.88 11.96 12.61 11.85 31.14 15.65 16.04 14
G(Tm)(GPa) 17.2 15.6 0.60 15.2 34.7 27.1 38.6 5.60 35.0 32.0 55
Gv/(kBTm) 18.4 21.2 21.2 14.7 17.0 18.2 19.2 21.0 21.7 18.2 26
7-2
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From Eqs.~4! and ~6!, and the ultrahigh-pressure lim
n(T)51/2,44,45 we obtain jbcc

OCP59.962.3 and j fcc
OCP58.9

62.0. Comparison of the OCP values ofj to their zero-
pressure counterparts@which follow from Eqs.~2! and ~3!#,
jbcc(0)510.061.5 andj fcc(0)511.061.7, shows that the
P50 and OCP values agree to within uncertainties, comp
ling evidence, though not a proof, that Eq.~4! is in fact valid,
at least for bcc and fcc lattices. The uncertainty-weigh
average of the four values is 10.061.8.

Formula~1! now follows from Eq.~4! provided that the
ratio @12n(Tm)/2#/@12n(Tm)# is ~approximately! a con-
stant; in fact this ratio varies between'4/3 atP50 and 3/2
asP→`, i.e., it is (1761)/12'17/12 to 94% accuracy.

Formula ~1! can also be derived from the theory of
Debye solid. Ledbetter46 derived the Debye-solid relation

QD5
L

v1/3
AG

r
, ~7!

where QD is the Debye temperature andL is a constant.
@SinceG;r4/3 asr→`, QD;r1/2, which is consistent with
g ~Grüneisen! →1/2.34,44 Its widely used counterpart,46 QD

5L̃v21/3AB/r, whereB is the bulk modulus, has the wron
asymptotic behavior,QD;r2/3] Siethoff and Ahlborn47 dem-
onstrated the validity of the Ledbetter formula atP50 for
Debye-like cubic solids,47–49 non-Debye hexagonal and te
tragonal solids,50 and intermetallic compounds.51 Equation
~7!, v;1/r, and the Lindemann melting criterion35

Tm~r!r2/3

QD
2 ~r!

5const, ~8!

again yield relation~1!.

B. Experimental verification

Direct experimental validation of relation~1! over a re-
stricted range of densities is possible for a single element
argon. Ishizakiet al.52 measured the transverse ultrason
wave velocityut in compressed argon along its solidus a
function of temperature. We calculate the shear modu
from the formulaut5AG/r, andv5Vm /NA from the mea-
sured argon melting curve,53 Vm5Vm(Tm), Vm being the
molar volume. Our results for the values ofGv/(kBTm) are
shown in Table III.

For theP.0 data we findG v/(kBTm)521.0660.17, in
agreement with itsP50 value@we getG v/(kBTm)521.08
60.17 for all of the data#. Thus,Gv/(kBTm) for Ar deviates
from a constant by less than 1%.

III. MODEL OF THE SHEAR MODULUS
AT ALL TEMPERATURES AND DENSITIES

Preston and Wallace30 constructed a model of the tem
perature dependence of the shear modulus (0<T<Tm) for
arbitrary pressures. TheT dependence ofG involves two
characteristic temperatures, namely, the Debye tempera
and the melting temperature. The shear modulus is alw
monotonically decreasing with decreasingT, and is nonlinear
09410
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for T&QD and linear fromQD to Tm for most elements. An
accurate representation ofG(T) at fixed density is achieved
by ignoring the low-temperature nonlinearity and appro
matingG(T) as a linear function of the reduced temperatu
T/Tm with the correct valueG(r,0) atT50:30

G~r,T!5G~r,0!S 12b
T

Tm~r! D . ~9!

In general, the parameterb may be density dependent. A fi
to shear-modulus data spanning temperatures fromT50 to
T/Tm*0.4 at zero pressure gaveb050.2360.08.30 ~For the
11 fcc elements in Table IV belowb050.2760.10.) On the
other hand,bOCP50.2160.18 ~as discussed above!, which
equalsb0 to within uncertainties, so we assume thatb is
independent of density. Atr5r ref andT5Tm(r ref), Eq. ~9!
reduces to

b512
G„r ref ,Tm~r ref!…

G~r ref,0!
. ~10!

The linear temperature dependence is suggested by avai
P50 experimental data onG over the temperature range
<T<Tm .1–19 This straight-line representation turns out
be quite accurate: the maximum deviation of the data fr
the corresponding fitted lines is;5% for 21 of the 22 metals
analyzed in Ref. 30. The exception is uranium, for whi
G(T) is nonlinear throughout thea phase atP50. As men-
tioned above,G(T) is nonlinear belowQD , thus G(T) is
nonlinear for low-melting-point solids fromT50 to Tm . De-
spite the nonlinearity ofG(T) in these cases, the model un
certainty is only of order 10%.

At any given pressure, the introduction of the temperat
dependence of the density,r5r(T), into Eq. ~9! gives the
temperature dependence ofG at that pressure. In Fig. 1, w
compareG„r(T),T… for 0<T<Tm at P50 for Au and Cu to
experimental data.2,10 The temperature dependence of t
density was taken from Ref. 54, andG(r,0) andTm(r) are
described by Eqs.~13! and~14! below with parameter value
from Tables II and IV.

The Grüneisen parameter was recently modeled as34

TABLE III. Numerical values of the ratio
G„P,Tm(P)…v„P,Tm(P)…/@kBTm(P)# for Ar along its solidus. The
last row of the table containsP50 values.

Tm(P)
~K!

v„P,Tm(P)…
(Å3)

ut

~m/s!
G„P,Tm(P)…

~GPa!
Gv/(kBTm)

205.59 35.698 952.6 1.686 21.21
190.90 36.216 909.7 1.516 20.84
175.91 36.785 879.5 1.395 21.14
162.80 37.319 843.0 1.263 20.98
162.07 37.350 847.0 1.274 21.28
148.19 37.959 800.0 1.118 20.75
134.47 38.601 768.6 1.015 21.11
123.16 39.155 736.0 0.918 21.15
83.80 40.900 0.600 21.22
7-3
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TABLE IV. Numerical values of the model parameters for 11 fcc elements. The corresponding val
Tm(rm) andG„rm ,Tm(rm)… are provided in Table II.

Element r0 (g/cc) rm(g/cc) G(r0,0)(GPa) g1 (g/cc)1/3 g2 (g/cc)q q b

Ag 10.63 9.850 33.5 2.23 9.633104 4.8 0.18
Al 2.730 2.550 29.3 0.84 45.4 3.5 0.22
Ar 1.771 1.622 1.46 1.06 6.42 2.2 0.23
Au 19.49 18.29 30.5 3.21 1.9731012 9.4 0.18
b-Co 8.910 8.180 73.2 1.81 6.283104 5.5 0.33
Cu 9.020 8.370 52.4 1.87 2.313104 4.7 0.25
Ni 8.970 8.220 93.6 1.85 5.603105 6.5 0.41
Pb 11.60 11.05 11.7 3.09 8.213108 8.5 0.36
Pd 12.13 11.29 50.3 2.40 3.343106 6.6 0.07
Pt 21.58 20.19 66.3 3.21 1.1331011 8.3 0.27
Rh 12.49 11.49 158. 2.16 1.463107 6.5 0.42
m
p-

or
q
e
la

tin

1/3

in

l
ven

s

e
ental

of

-e
g~r!5
1

2
1

g1

r1/3
1

g2

rq
, g1 ,g2 ,q5const, q.1,

~11!

through consideration of its low- and ultrahigh-pressure li
its. This analytic form forg was obtained under the assum
tions that~i! g→1/2 asr→`, ~ii ! g is an analytic function
of x[1/r1/3, essentially the interatomic distance, and~iii ! the
coefficient ofx in the Taylor-Maclaurin series expansion f
g is nonzero. The third term on the right-hand side of E
~11! represents the contribution of the quadratic and high
order terms in the power series. The procedure for calcu
ing the values ofg1 , g2, andq is discussed below.

Equation~11! and the Lindemann criterion35

d ln Tm~r!

d ln r
52S g~r!2

1

3D ~12!

provide a model for the density dependence of the mel
temperature,

FIG. 1. TheP50 shear moduli of Cu and Au: Equation~9! with
r5r(T) from Ref. 54 andG(r(T),0) andTm„r(T)… described by
Eqs.~13! and~14! with the parameters from Tables II and IV vs th
experimental data on Cu~Ref. 10! ~smaller points! and Au~Ref. 2!
~larger points!.
09410
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Tm~r!5Tm~r ref!S r

r ref
D expH 6g1S 1

~r ref!
1/3

2
1

r1/3D
1

2g2

q S 1

~r ref!
q

2
1

rqD J . ~13!

The natural choice for the reference density isrm , the zero-
pressure density at melt, which is known experimentally
most cases~see, e.g., Ref. 54!

Finally, Eqs.~1!, ~9!, ~10!, and~13! result in

G~r,0!5G~r ref,0!S r

r ref
D 4/3

expH 6g1S 1

~r ref!
1/3

2
1

r1/3D
1

2g2

q S 1

~r ref!
q

2
1

rqD J , ~14!

wherer ref is most conveniently chosen to be eitherrm or r0,
the density at zero pressure and temperature.

Equations~9!, ~13!, and~14! constitute our analytic mode
for the shear modulus. It requires the determination of se
parameters, namely,r ref , G(r ref,0), Tm(r ref), g1 , g2 , q, and
b. The values ofg1 , g2, andq are obtained by simultaneou
solution of Eq.~11! with r5r(T5300 K) andr5rm , and
Eq. ~5! with34 Gm5180 andTm(r) given by the high-density
limit of Eq. ~13!. The value ofg(rm) is obtained from the
Kraut-Kennedy relation55 and low-pressure melting data. Th
remaining parameters are either zero-pressure experim
data themselves or can be determined from such data~for
example,b). In Table IV, we present the values ofr ref ~both
r0 and rm), G(r0,0), g1 , g2 , q, and b for all of the fcc
elements of Table II. The values ofG(rm,0) can be calcu-
lated from the relationG(rm,0)5G(rm ,Tm)/(12b) with
G(rm ,Tm) from Table II, which also contains the values
Tm(rm). Sinceb-Co exists only aboveT'700 K at P50,
its values ofG(r0,0) andb were obtained from the condi
tions G(rm ,Tm)534.7 and G(r(T5710 K)58.62, T
5710 K)557.1.56
7-4
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In Figs. 2–4, we compare the melting curves of Ar, A
and Cu as given by Eq.~13! with the corresponding param
eters from Table IV to experimental data.

Only five of the seven shear-modulus parameters are
dependent because four appear in the model as two ra
namely, b/Tm(r) in Eq. ~9! and G(r ref,0)/(r ref)

4/3 in Eq.
~14!; hence the shear modulus is of the form

G~r,T!5a1r4/3expH 2
a2

rq
2

a3

r1/3J
2a4rT, a1 ,a2 ,a3 ,a4 ,q5const.0. ~15!

As specific examples, we provide the following formulas f
the shear moduli of Ar, Al, Cu, and Au:

GAr~r,T!5687.4r4/3expH 2
5.84

r2.2
2

6.36

r1/3J 21.3231023rT,

~16!

GAl~r,T!5611.8r4/3expH 2
25.9

r3.5
2

5.04

r1/3J 21.8531023rT,

~17!

FIG. 3. Melting curve of Al: Eq.~13! with the Al parameters
from Table IV vs data. The smaller points are the experimental d
of Ref. 58, and the larger points are the results of calculations.59

FIG. 2. Melting curve of Ar: Eq.~13! with the Ar parameters
from Table IV vs data. The smaller points are the experimental d
of Ref. 53, and the larger points are the results of calculations.57
09410
n-
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r

GCu~r,T!5841.2r4/3expH 2
9.833103

r4.7
2

11.22

r1/3 J
27.9631024rT, ~18!

GAu~r,T!51022.0r4/3expH 2
4.1931011

r9.4
2

19.26

r1/3 J
21.3731024rT. ~19!

In Fig. 5, we compare theT5300 K shear modulus of Ar
as given by Eq.~16! to experimental data. TheT50 shear
modulus of Al from Eq.~17! is compared to the results o
electronic-structure calculations in Fig. 6. TheT50 shear
moduli of Cu and Au as given, respectively, by Eqs.~18! and
~19! are compared to the results of the correspond
electronic-structure calculations in Figs. 7 and 8 in the f
lowing section.

ta

FIG. 4. Melting curve of Cu: Eq.~13! with the Cu parameters
from Table IV vs data. The smaller points are from a new SESAM
melting curve table60 for Cu. The larger points are theP50 refer-
ence point at~in g/cc! r58.4, and the shock-melting points of Re
61 atr510.2, 12.2, and 14.3, and of Refs. 62 and 63 atr514.0.

FIG. 5. TheT5300 shear modulus of Ar: Eq.~16! vs older64

~smaller points! and more recent65 ~larger points! experimental data.
The experimental technique used to obtain the older data has
criticized.65

ta
7-5
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IV. COMPARISON OF MODEL
TO ELECTRONIC-STRUCTURE RESULTS

FOR CU AND AU

With the exception of Ar, experimental data are not ava
able to test the model to megabar pressures. We can, h
ever, test theT50 version of the model by comparing it t
the results ofab initio electronic-structure calculations of th
shear modulus.

Electronic-structure calculations based on approxim
density-functional theories have proven to give good pred
tions for a variety of material properties. A study of the ela
tic constants of several elements and compounds67 covering
a wide range of elastic properties found errors with respec
experiment of generally less than 10% in the isotropic sh
modulus. These results are obtained without empirical
puts. We expect such calculations to have similar accur
under compression, thus providing a test of the anal
model.

For this reason, we have carried out electronic-struct
calculations to obtain the single-crystal elastic constantsC8
5(C112C12)/2, C44, and B5 1

3 (C1112C12) for the fcc

FIG. 6. The T50 shear modulus of Al: Eq.~17! vs the
electronic-structure calculations of Ref. 66 The small, medium,
large points represent the values ofG in fcc, hcp, and bcc phases o
Al, respectively.

FIG. 7. TheT50 shear modulus of Cu: Eq.~18! vs electronic-
structure calculations~larger points, Table V!. The smaller points,
obtained from the first-principles calculations,26 are shown for com-
parison.
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metals Cu and Au from normal to twice normal densi
From these, an average polycrystalline shear modulus is
culated and compared to the model.

The method for the calculations was described by So¨der-
lind et al.68 To evaluateC8, the lattice is deformed by the
~volume conserving! transformation

S 11d 0 0

0 11d 0

0 0 1/~11d!2
D . ~20!

The resulting energy change is

DE/Veq56C8d21O~d3!, ~21!

whereVeq is the ~equilibrium! volume of the system. Simi-
larly, C44 is obtained by applying the~volume conserving!
transformation

S 1 d 0

d 1 0

0 0 1/~12d2!
D , ~22!

resulting in an energy change

DE/Veq52C44d
21O~d4!. ~23!

In our calculations, we have evaluated the energy as a fu
tion of d at intervals of 0.01, up tod50.04. For theC8 case,
the energy is not an even function ofd, and so negative
values ofd were used. The resultingE(d) were fit to fourth-
degree polynomials and the quadratic coefficient was use
evaluate the elastic constant from Eq.~21! or Eq. ~23!.

The bulk modulusB is obtained from the volume
dependent energy of the undistorted crystal by

B5Veq

d2E

dVeq
2

. ~24!

The energy was evaluated at volume intervals of 5% of
normal volume, from 20% expanded to 50% contracted. D
rivatives were evaluated by fitting the equation of state

d
FIG. 8. TheT50 shear modulus of Au: Eq.~19! vs electronic-

structure calculations~larger points, Table VI!. The smaller points,
obtained from the first-principles calculations,73 are shown for com-
parison.
7-6



n
el
in
te

th

tio

y

y.

he
V
as
a
s

ee
ur

o
as
ds
or
er
ro
th

ing

on.
-
r for
ken
,

ood
ing
an-

nc-
t

ear
der
l

n
del
on-
th

du
a

du
al

rg

ANALYTIC MODEL OF THE SHEAR MODULUS AT ALL . . . PHYSICAL REVIEW B 67, 094107 ~2003!
Roseet al.69 to the energies and differentiating the functio
It was found that a single curve of this type did not accrat
fit both the high-density points and the points near the m
mum, so seperate overlapping fits were made for the
highest and lowest densities.

The electronic-structure calculations were based on
linearized augmented plane-wave code70WIEN97. The energy
functional used was the generalized-gradient approxima
as parametrized by Perdew, Burke, and Ernzerhof.71 Some
numerical parameters used in the calculations for Cu~Au!
were in atomic units: muffin-tin radiusr MT51.8 ~2.0!, plane-
wave cutoff r MTkmax59.0, cutoff for expansion of densit
and potentialgmax516 ~19!; Brillouin-zone integrals used
special points corresponding to 163 (183) points in the full
zone, with Gaussian smearing of the energies by 20 mR

Our results onC8, C44, andB for Cu and Au are shown
in Tables V and VI, respectively. It is interesting to note t
increasing anisotropy of Au under pressure. From Table
we see that for Au,C8 does not increase nearly as rapidly
C44 with compression. This is connected with the fact th
the energy difference between the fcc and bcc structure
small at all pressures.72 The distortion corresponding toC8 is
along the Bain path connecting fcc to bcc, and it has b
seen68 that a small energy difference between these struct
correlates with a small value ofC8.

Let us now turn to the calculation of the shear moduli
Cu and Au. For a solid of cubic crystalline structure,
analysis by Kro¨ner28 shows, successively narrower boun
can be placed on the shear modulus as the degree of dis
in grain orientation increases. In the limit of perfect disord
the value of the shear modulus is the single positive real
of a cubic equation with coefficients that depend on
single-crystal elastic constantsC8, C44, andB:

TABLE V. The single-crystal elastic constants and shear mo
lus of Cu as functions of density from the electronic-structure c
culations described in the text.

r (g/cc) C8 (GPa) C44 (GPa) B(GPa) G(GPa)

8.850 30.404 77.639 142.15 53.912
9.833 41.863 124.78 235.73 81.901
11.06 48.599 167.42 386.02 104.66
12.64 83.020 260.81 652.48 168.57
14.75 130.48 445.26 1151.8 279.70
17.70 229.71 800.23 2118.4 499.25

TABLE VI. The single-crystal elastic constants and shear mo
lus of Au as functions of density from the electronic-structure c
culations described in the text.

r (g/cc) C8 (GPa) C44 (GPa) B(GPa) G(GPa)

19.29 16.445 31.690 201.20 24.585
21.43 19.550 77.940 339.57 46.764
24.11 33.890 127.75 568.39 78.093
27.56 35.053 255.22 1029.0 127.48
32.15 69.837 479.27 1918.2 243.34
38.58 121.16 912.15 3753.2 451.65
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~25!

The values of the shear modulus calculated from Eq.~25! are
shown in Tables V and VI along withC8, C44, andB.

As a by-product of our analysis, we obtain the interest
results thatG(2r0,0).10 G(r0,0) for Cu, andG(2r0,0)
.20 G(r0,0) for Au.

In Figs. 7 and 8, we compare Eqs.~18! and ~19! with T
50, for Cu and Au, to the correspondingG entries in Tables
V and VI.

Finally, it is interesting to compare our model atT50 to
the Guinan-Steinberg model mentioned in the Introducti
The equation of state,P5P(r), is needed to make this com
parison. In Fig. 9, the models are compared to each othe
Ar and Al. The corresponding equations of state are ta
from Ref. 74 For Al,G0851.8 comes from Ref. 75 For Ar
G0851.6 is obtained from the relation45 g05B0 /2 G08/G0

21/6 with g05g(r0) from Eq.~11! andB0 taken from Ref.
74 The values ofr0 andG05G(r0,0) can be found in Table
IV.

It is seen that agreement between the two models is g
at low densities, but it gradually deteriorates with increas
compression. The reason for this must be that the Guin
Steinberg model generally provides only the correct fu
tional form G;r4/3 in the limit of infinite compression, no
the precise numerical value ofG in that limit, in contrast to
our model which provides both.

V. CONCLUDING REMARKS

We have constructed an analytic model of the sh
modulus applicable at all densities greater than or of or
ambient @G(r,0)→0 as r→0, as required, but the mode
may not be quantitatively correct for expanded states#, and
temperatures from 0 toTm . All of the model parameters ca
be obtained from low-pressure experimental data. The mo
has the proper low-pressure and high-pressure limits, by c
struction, and to within uncertainties it agrees wi
electronic-structure values ofG for Cu and Au to compres-

-
l-

-
-

FIG. 9. Comparison of the two models for theT50 shear
modulus: Eqs.~16! and~17! vs the corresponding Guinan-Steinbe
values for Ar~smaller points! and Al ~larger points!.
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sions of 2, which roughly corresponds to pressures of 5 M
for Cu and 9 Mbar for Au.

The above comparisons of our shear-modulus mo
which includes a model forTm(r), to electronic-structure
calculations and experimental data on Ar, Al, Cu, and
show very good agreement. This suggests that our m
accurately represents the density and temperature de
dence of the shear moduli of monatomic solids in gene
There is, however, no theoretical justification for applyi
our model to alloys or compounds, although in practice
may work reasonably well in these cases. Its generaliza
to more complex materials would involve generalizing o
model for the Gru¨neisen parameter. A functional form fo
g(r) depends critically on the asymptotic (r→`) form of
the equation of state,34 and it has been suggested that t
asymptotic forms of the equations of state of more comp
materials, e.g., ionic, covalent, or molecular crystals, are
ferent from that of a metal.76 If so, the limiting value ofg is
unknown ~not necessarily 1/2! for such materials. In tha
case, an analytic model for the Gru¨neisen parameter canno
be constructed, hence analytic forms for the melting cu
and shear modulus cannot be obtained.

We now briefly discuss three potential applications of o
model.

~1! Plastic deformation of metals at high pressure. It
generally assumed that the ratio of the plastic flow str
~shear stress necessary to induce plastic deformation
given strain rate! to the shear modulus is approximately i
dependent of pressure. In other words, the predominant p
sure dependence of the plastic flow stress is contained in
shear modulus. An accurate, simple analytic~for fast evalu-
ation! model of the shear modulus is therefore essential
numerical simulations of material deformation over extrem
in pressure.
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~2! Numerical simulations of elastic wave propagatio
including pressure release waves in shocked solids. The
ferential stress deviatordsi j is equal to 2G(r,T)(de i j
2d i j dekk/3) plus material rotation terms (de i j is the differ-
ential elastic strain!, thus a model of the shear modulus
required for calculations of elastic wave propagation in m
terials with sufficiently high yield stresses that the stress
viators are not negligible. The speed of a release wave
shocked solid depends onG(rH ,TH), whererH andTH are
the density and temperature of the shocked state.

~3! Pulsations and quakes of dense stars. Hansen and
Horn77 have done a preliminary analysis of the effects
crystalline cores on the oscillations of white dwarfs a
found that theg-like spheroidal mode frequencies are i
creased by approximately a factor of 2, concluding that
elastic shear strength of the core must be taken into acc
in the computation of cool white dwarf oscillations. The i
clusion of elastic shear strength in the neutron star pulsa
equations of McDermottet al.78 resulted in the appearance o
two classes of oscillation modes not present in a fluid n
tron star. The change in the shape of the surface followin
neutron star quake is proportional to the shear modulus
the crust.79

Further tests of our model for the shear modulus sho
be made as high-pressure experimental data and electr
structure results become available for elements other t
argon, aluminum, copper, and gold. New zero-pressure
are also needed to generate additional sets of model pa
eters.
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