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Analytic model of the shear modulus at all temperatures and densities
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An analytic model of the shear modulus applicable at temperatures up to melt and at all densities is
presented. It is based in part on a relation between the melting temperature and the shear modulus at melt.
Experimental data on argon are shown to agree with this relation to within 1%. The model of the shear modulus
involves seven parameters, all of which can be determined from zero-pressure experimental data. We obtain the
values of these parameters for 11 elemental solids. Both the experimental data on the room-temperature shear
modulus of argon to compressions-eR.5, and theoretical calculations of the zero-temperature shear modulus
of aluminum to compressions ef3.5 are in good agreement with the model. Electronic-structure calculations
of the shear moduli of copper and gold to compressions of 2, performed by us, agree with the model to within
uncertainties.
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[. INTRODUCTION modulus at any density, but left the density dependence itself
arbitrary. The dependence of the shear modulus on both den-
A reliable model of the adiabatigsentropi¢ shear modu- sity and temperature has also been discussed by And&rson.
lus G of a polycrystalline solid at temperatures Tg,, the In this paper, we develop an analytic model for the den-
melting temperature, and up to megabar pressures is needsify and temperature dependence of the shear modulus by
for many applications, including the modeling of plastic de-combining four key elements. First is a simple but accurate
formation at extremes of pressure and temperature, numerielation between the density, the melting temperature as a
cal calculations of elastic and shock wave propagation, antlnction of density,T,(p), and the shear modulus along the
even calculations of the oscillations of low-mass astrophysisolidus3>3® Second is the Preston-Wallace model for the
cal objects. shear modulus. Third is an analytic model for the Gruneisen
Adiabatic elastic properties are generally determined b)parameteﬁ“ that is used in conjunction with the fourth ingre-
ultrasonic wave-speed measurements, which are usualljient, the Lindemann criteriofy,to generate an analytic ex-
made in the low-pressure regime. Zero-pressure experimempression forT(p).
tal data have been accumulated on single-crystal elastic con-
stants, together with polycrystalline averages, at tempera-
tures fromT =0 to nearlyT, for Ag (to within 60 K of T,),*
Au (to within 60 K of T,,),% Ge (to within 90 K of T,;,),® and
V (to within 80 K of T;)).# The data run fronT=0 to T, for The melting temperature and shear modulus along the
AlL® Ar® Bi,” cd® Ccs; cul® In K,22 Nal®* Nb** Ne®  solidus approximately satisfy the relation
Pbltsn/ Tal® Tel” Xe® and zn®®
On the theoretical side, it is possible to calculate singe- G, Tw(p))  GorefTm(pre)
crystal elastic constants as a function of compression at zero =
temperature from electronic-structure theory. Such calcula-
tions were done by Strawt al?°for Cu, Christenseet al?!

Il. ARELATION BETWEEN SHEAR MODULUS
AND MELTING TEMPERATURE

pPTm(p) a PrefTm(Prer) @

N . . wherep,¢s is a reference density. This relation is the founda-
for Mo and Salerlind and Moriarty” for Fe, and Sderlind tion of our model for the shear modulus, so we provide the-

and Moriarty” for Ta. With known interatomic potentials, it oretical justification for it following two approaches: the

is possible to calculate the temperature dependence of tr{ﬁ’eory of dislocation-mediated meltifg3and the theory of

elastic constants by compqter-smul%n te%?”'q“es’ a256 dené- Debye solid(in which it derives as a consequence of the

gnStrztEd bt¥1 theh calculaguol?g for b ,I\/:g,l tagoic Cu.th proportionality ofG to the square of the Debye temperajure
ounds on the shear modultiscan be calcuiateg rom e a ejation is shown to agree very well with shear-modulus

single-crystal elastic constants for any crystal cfdsmd for data on argon, the only data available for such a comparison.
a cubic crystal the polycrystalline shear modulus can be cal- '

culated exactly using the Kner cubic equatio”® o _
Guinan and Steinbety modeled the zero-temperature A. Two derivations of relation (1)

shear modulus a&=G,+ GoP(po/p)™?, where G, is the It follows from our model of melting as a dislocation-
pressure derivative of at zero pressure angl is density. mediated phase transition that the relation
This functional form was chosen so that- p*2 as p— oo,

the correct asymptotic behavior albeit with a prefactor that 2

does not generally coincide with that given by the one- mzl_V(Tm)/z C(Tmv(Tm) A nl %
component plasma model f@. Preston and Wallac¢®pro- 1-v(Ty)  In(z=1) 87 '\ 4b2d(T,,)
posed a model for the temperature dependence of the shear 2
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TABLE I. Numerical values of the rati&(T,,)v(T)/(kgT,,) for 11 elemental solids that melt from bcc

crystalline structure at normal pressure.

Element Ba Cs Cr 6-Fe K Li Na Nb Rb  B-Ti \%

Tm(K) 1000 301.6 2130 1811 336.5 453.7 3709 2750 3125 1941 2183
v(Tr) (A3 66.68 116.8 13.10 12.76 76.38 22.14 40.17 19.33 93.37 18.61 14.89
G(T)(GPa) 296 039 357 308 080 360 193 326 060 219 323
Gu/(kgTp) 143 109 159 157 132 127 151 166 13.0 152 159

holds at any pressure. Helogs the magnitude of the Burgers
vector, v is the Poisson ratioy is the Wigner-SeitA WS)

volume,A=Db%/v is a geometric factor characterizing the lat-

tice, zis the coordination number, art{T,,) is the disloca-
tion density at melt. Note that the factoks and Ing—1)

not posible because of a lack of data from moderate to high
compressions. However, thie—0 andP— < limits are con-
sistent with Eq.(4), which we now demonstrate.

At very high compressions, a solid becomes a crystallized
one-component plasm@®CBP), i.e., a lattice of ions in a uni-

explicitly account for the influence of crystal structure onform neutralizing background of electrofis The melting

melting. The value of\ is 3\/3/4~1.30 for body-centered
cubic (bcg), and \2~1.41 for face-centered cubiécc) and
ideal (c/a=/8/3) hexagonal close-packeticp lattices
The parametew is the ratio ofb to the dislocation core
radiusr,; a~2.9 for both bce and fec crystafs This melt-

ing relation plus experimental data on over half the elements

in the periodic table givé?d(T,,)=0.61+0.20 (throughout

this paper the error in such expressions is the correspondin

standard deviationwith G(300 K), vy4300 K) used in-
stead ofG(T,), vws(Tm), respectively’?

From the compilation of data in Tables | and II, we find
that the product o and the logarithm in Eq(2) [with3®
v(T,)=0.42+0.02] is a constant to 15% at zero pressure:

aal

aZ

4b%d(T,,)

0.100+0.015 bcc

0.091+0.014 fcc. ©

curve of a solid at ultrahigh pressures is described by the
equation

ZZEZ

a(Tm) I(BTm N Fm ’

5
WhereZ is the atomic numbea= (3v/47)'2 is the Wigner-
?gitz radius, and’,,, a dimensionless constant, is the OCP
upling parameter at meft.Numerous calculations df

for a bcc OCP crystalsee Ref. 37 for a reviemconverge on
the value 175%%°The value ofl",, for a fcc OCP crystal has
been calculated to be 196l (Ref. 40 and 208.3(Ref. 41);
hence we takd',,,=200 for a fcc OCP crystal in the follow-
ing analysis. The bcc OCP single-crystal elastic constants
(c11—Cq19/2 and cyy have been calculated by means of
Monte Carlo simulation& A linear fit to the values ofG
given by the formula of Sisodiet al** (whenc,; andc,, are
not known separately, the value Gf given by this formula

We make the reasonable assumption that the mean imerdiépproximates Kroer’s shear modulus with high accuracy

location distance at the melting pointRz 1/\/d(T,,), scales
with b, which implies thatb?d(T,,) is a compression-
independent constant. It is also assumed that=r,/b is
unchanged under compression. Hencén(a?/4b?d) is ex-

pected to be pressure independent with approximately the
same value for both bcc and fcc elements. It then follows

from Eq. (2) that for a given element

1-v(P,Tn(P))2 G(P, Tn(P))v (P, Tn(P))
1-v(P.T(P))  kaT(P)iN(z—1) &
(4)

&)=

and, in fact, tends to the precise Ker value in the limit
P— ) results irf’

4qr

3

where gp.=0.09301 and8<F=0.21+0.18. We have cal-
culated(unpublishegl the coefficienigs,. to be 0.090 11. The
coefficient BLC" has not been calculated, so we assume
BoSP= B PWe have also calculated the Voigt) and Reuss

(R) bounds on the shear modulus of an ideal hcp OCP crys-

_ OCPl
bce
Tm

)

1/32262 (
04/3

GSC%F’(T):gb{

where the constart has nearly the same value for both bcctal: g}]’cp=0.1194,gﬁcp: 0.1045, hencgpc,=0.1120 for the
and fcc elements. Experimental validation of this relation isVoigt-Reuss-Hill average.

TABLE 1. Numerical values of the rati&G(T,)v(T)/(kgT,,) for 11 elemental solids that melt from fcc

crystalline structure at normal pressure.

Element Ag Al Ar Au B-Co Cu Ni Pb Pd Pt Rh
Tm(K) 1235 9335 83.8 1338 1768 1358 1728 600.6 1828 2041 2237
v(Tr) (A3 18.19 1755 4090 17.88 11.96 12.61 11.85 31.14 1565 16.04 14.87
G(T(GPa) 172 156 060 152 347 271 386 560 350 320 550
Gu/(kgTm) 184 212 212 147 170 182 192 210 217 182 265
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From Egs.(4) and (6), and the ultrahigh-pressure limit ~ TABLE  1ll. ~ Numerical  values of the ratio
p(T)=1/2**5 we obtain £é0o'=9.9+2.3 and £25P=8.9  G(P.T(P))v(P,Ti(P))/[ksTrm(P)] for Ar along its solidus. The
+2.0. Comparison of the OCP values &fto their zero- 'ast row of the table containg=0 values.
pressure counterparfgrhich follow from Eqgs.(2) and(3)],
£0ed0)=10.0+ 1.5 and£(0)=11.0+ 1.7, shows that the m(P) v Tn(P)) — u G, Tn(P))  Gu/(keTm)
P=0 and OCP values agree to within uncertainties, compel: (A%) (m/s) (GP3

ling evidence, though not a proof, that Ed) is in fact valid,  205.59 35.698 952.6 1.686 21.21
at least for bcc and fcc lattices. The uncertainty-weighted, gg g9g 36.216 909.7 1.516 20.84
average of the four values is 16:0Q..8. 175.91 36.785 879.5 1.395 21.14

Formula(1) now follows from Eq.(4) provided that the 145 gg 37.319 843.0 1.263 20.98
ratio [1—v(T)/2)/[1-»(Ty)] is (approximately a con- 16557 37.350 847.0 1.274 2128
stant; in fact this ratio varies betweerd/3 atP=0 and 3/2 1,4 19 37.959 800.0 1.118 2075
asP—oo, e, itis (17=1)/12=17/12 to 94% accuracy. 134 47 38.601 768.6 1015 2111

Formula (1) can also be derived from the theory of a

. . . ’ 123.16 39.155 736.0 0.918 21.15
Debye solid. Ledbett&t derived the Debye-solid relation

83.80 40.900 0.600 21.22

A /G
D=—\ﬁ, @ j
v NV p for T<0p and linear from®p to T, for most elements. An
i , accurate representation Gf(T) at fixed density is achieved
where ®;, is the Debye temperature antl is a constant. . janoring the low-temperature nonlinearity and approxi-

H 4/3 1/2 H H H H
[SinceG~p aSpH?f’A‘l@DNP , which is consstir%t With  matingG(T) as a linear function of the reduced temperature
v (Gruneisen —1/2. Its widely used counterpatt,® T/T,, with the correct valug(p,0) atT=0:%

=Av~3B/p, whereB is the bulk modulus, has the wrong

asymptotic behavio® p~ p?d] Siethoff and Ahlborfi’ dem-

onstrated the validity of the Ledbetter formulafat=0 for G(p,T)=G(p,0) T—())
Debye-like cubic solid4’~*° non-Debye hexagonal and te- miP
tragonal solids® and intermetallic cc_)mpoqn&_é.Equation In general, the parametg may be density dependent. A fit
(7), v~1/p, and the Lindemann melting criteridh to shear-modulus data spanning temperatures ffen® to
T/T,,=0.4 at zero pressure gaygy=0.23+0.083° (For the

1-8B (€)

Tm(p)pm:const ) 11 fcc elements in Table IV beloy,=0.27+0.10.) On the
02(p) ' other hand,3°“"=0.21+0.18 (as discussed abopewhich
o ) equals By to within uncertainties, so we assume thatis
again yield relation(1). independent of density. Ad=p,o and T=T(prer)» EQ. (9)
reduces to
B. Experimental verification
Direct experimental validation of relatiofll) over a re- g—1- G(pref, Tm(pres) 10

stricted range of densities is possible for a single element, viz G(pret0)

argon. Ishizakiet al®®> measured the transverse ultrasonic

wave velocityu, in compressed argon along its solidus as alhe linear temperature dependence is suggested by available

function of temperature. We calculate the shear modulu®=0 experimental data o over the temperature range 0

from the formulau,=G/p, andv =V, /N, from the mea- <T=<Ty."™* This straight-line representation turns out to

sured argon melting curv&, V,,=V(T), Vi, being the be quite accurate: the maximum deviation of the data from

molar volume. Our results for the values @b/(kBTm) are the Corresponding fitted lines is5% for 21 of the 22 metals

shown in Table III. analyzed in Ref. 30. The exception is uranium, for which
For theP>0 data we findG v/(kgT,,)=21.06:0.17, in  G(T) is nonlinear throughout the phase aP=0. As men-

agreement with it =0 value[we getG v/(kgT,)=21.08 tioned aboveG(T) is nonlinear below®p, thus G(T) is

+0.17 for all of the dath Thus,Guv/(kgT,,) for Ar deviates  nonlinear for low-melting-point solids from=0 to Tr,. De-
from a constant by less than 1%. spite the nonlinearity o6(T) in these cases, the model un-

certainty is only of order 10%.

At any given pressure, the introduction of the temperature
dependence of the density=p(T), into Eqg. (9) gives the
temperature dependence @fat that pressure. In Fig. 1, we

Preston and Wallaé® constructed a model of the tem- compareG(p(T),T) for O<ST<T,, atP=0 for Au and Cu to
perature dependence of the shear modulus T&T,,) for  experimental data!® The temperature dependence of the
arbitrary pressures. Th& dependence ofs involves two  density was taken from Ref. 54, ai@(p,0) andT,(p) are
characteristic temperatures, namely, the Debye temperatudescribed by Eqg13) and(14) below with parameter values
and the melting temperature. The shear modulus is alwaysom Tables Il and IV.
monotonically decreasing with decreasifigand is nonlinear The Grineisen parameter was recently modeletf as

IIl. MODEL OF THE SHEAR MODULUS
AT ALL TEMPERATURES AND DENSITIES
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TABLE IV. Numerical values of the model parameters for 11 fcc elements. The corresponding values of
Tm(pm) andG(py,, Tm(pm)) are provided in Table 1.

Element  po(g/cc)  pm(glec)  G(po,0)(GPa) 1 (glce)® v, (glecy q B

Ag 10.63 9.850 33.5 2.23 96310 48 0.8

Al 2.730 2.550 29.3 0.84 45.4 35 0.22

Ar 1.771 1.622 1.46 1.06 6.42 22 023

Au 19.49 18.29 30.5 3.21 1.8710% 94 018

B-Co 8.910 8.180 73.2 1.81 6.280' 55 0.33

Cu 9.020 8.370 52.4 1.87 2310 47 025

Ni 8.970 8.220 93.6 1.85 5601° 65 0.41

Pb 11.60 11.05 11.7 3.09 8210° 85 0.36

Pd 12.13 11.29 50.3 2.40 3340° 66 0.07

Pt 21.58 20.19 66.3 3.21 130" 83 027

Rh 12.49 11.49 158. 2.16 1.460° 65 042

1 v 7 p \'° 1 1
vip)=5+ =+~ vuy2.d=const, g>1, Tm(P):Tm(Pref)(_> eX;{Gn(—m—Ts>
p pf Pret (Pre)™ P
11
2’)/2 1 1
through consideration of its low- and ultrahigh-pressure lim- + T( (prep)® N I;) ] : (13

its. This analytic form fory was obtained under the assump-
tions that(i) y—1/2 asp—oo, (i) v is an analytic function . o
of x=1/pY3 essentially the interatomic distance, dfid the The natural chp|ce for the ref_erer_1ce densityis, the zero-
coefficient ofx in the Taylor-Maclaurin series expansion for Pressure density at melt, which is known experimentally in
v is nonzero. The third term on the right-hand side of Eq_mos_t casegsee, e.g., Ref. 34 .

(11) represents the contribution of the quadratic and higher- Finally, Eas.(1), (9), (10), and(13) result in

order terms in the power series. The procedure for calculat-

ing the values ofy,, y,, andq is discussed below. p |43 1 1
Equation(11) and the Lindemann criteridn G(P-O)ZG(Pref,O)(—> exp{ 671(_1/3_73
Pref (Prer) P
dinT.(p) 1
—qiee=2l w3 12 +@( L _i)}, )
a (Pref)q Pq

provide a model for the density dependence of the melting
temperature, wherep,.; is most conveniently chosen to be eithgfor pg,
the density at zero pressure and temperature.
Equationd9), (13), and(14) constitute our analytic model
50} for the shear modulus. It requires the determination of seven
45t paramEtersv namEnyefi G(pref10)1 Tm([_’ref)a Y1, :}/21 a, and
B. The values ofy;, y,, andq are obtained by simultaneous
solution of Eq.(11) with p=p(T=300 K) andp=p,,, and
Eq. (5) with®** I",,= 180 andT,,(p) given by the high-density
limit of Eq. (13). The value ofy(p,,) is obtained from the
Kraut-Kennedy relatiott and low-pressure melting data. The
remaining parameters are either zero-pressure experimental
data themselves or can be determined from such data
example,3). In Table IV, we present the values pf; (both
po and pn), G(po.0), v1, ¥2, q, and B for all of the fcc
0 200 400 600 800 1000 1200 elements of Table Il. The values &(p,,0) can be calcu-
T(K) lated from the relationG(p,,,0)=G(pm, Tm)/(1—B) with
FIG. 1. TheP=0 shear moduli of Cu and Au: Equati¢®) with ~ G(Pm,Tm) from Table II, which also contains the values of
p=p(T) from Ref. 54 andG(p(T),0) andT,(p(T)) described by ~ Tm(pPm). Sincep-Co exists only abovd~700 K atP=0,
Egs.(13) and(14) with the parameters from Tables Il and IV vs the its values ofG(p,,0) andp3 were obtained from the condi-
experimental data on C@Ref. 10 (smaller pointsand Au(Ref. 2 tions G(p,,,T)=34.7 and G(p(T=710 K)=8.62, T
(larger points. =710 K)=57.1.56
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3000 o

2500
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m (K)

= 1500 (3
1000 d

500

35 n 75 7.5 10 12.5 15 17.5 20 22.5

1.5 2 2.5 3
P (g/ce) P (g/cc)

FIG. 2. Melting curve of Ar: Eq(13) with the Ar parameters FIG. 4. Melting curve of Cu: Eq(13) with the Cu parameters
from Table IV vs data. The smaller points are the experimental dat§0m Table IV vs data. The smaller points are from a new SESAME
of Ref. 53, and the larger points are the results of calculafibns. melting curve tabf® for Cu. The larger points are tfe=0 refer-

ence point atin g/co p=28.4, and the shock-melting points of Ref.

In Figs. 2—4, we compare the melting curves of Ar, Al, 61 atp=10.2, 12.2, and 14.3, and of Refs. 62 and 63 atl4.0.
and Cu as given by Eq13) with the corresponding param-
eters from Table 1V to experimental data.

Only five of the seven shear-modulus parameters are in- GCu(p,T)=841.?p4/38Xp{ -
dependent because four appear in the model as two ratios,
namely, B/ T(p) in Eq. (9) and G(p,er,0)/(pre) ™ in Eq.

4.7 1/3

9.83x 10° 11.22}
p p

_ —4
(14); hence the shear modulus is of the form 7.96x10 “pT, (18)
a, az
— 4/3 s __°
Glp. D =a1p EXP{ e pl/s] e | 419x10" 19.26
Gau(p,T)=1022."expy — Y EERT
—aupT, a;,ay,az,a4,g=const>0. (15) P p
— 4
As specific examples, we provide the following formulas for —1.37<10 “pT. (19
the shear moduli of Ar, Al, Cu, and Au: In Fig. 5, we compare th& =300 K shear modulus of Ar
as given by Eq(16) to experimental data. ThE=0 shear
a3 5.84 6.36 3 modulus of Al from Eq.(17) is compared to the results of
Gar(p, T)=687.4""€x _ﬁ_ 13 —1.32¢10 ~pT, electronic-structure calculations in Fig. 6. The=0 shear
(16) moduli of Cu and Au as given, respectively, by EGk8) and
(19) are compared to the results of the corresponding
259 504 electronic-structure calculations in Figs. 7 and 8 in the fol-
Gal(p, T)=611.8"%expl — —-— — - —1.85<10 °pT,  lowing section.
P~ p
(17)
120
60001 100
5000} 80
[\
o 4000} ?P‘, 60
£ L U}
& 3000 20
2000}
20
1000}
0
ol 2 2.5 3 3.5 4 4.5 5
2.5 3 3.5 4 4.5 5 P (g/cc)
P (g/cc)

FIG. 5. TheT=300 shear modulus of Ar: Eq16) vs oldef*
FIG. 3. Melting curve of Al: Eq.(13) with the Al parameters (smaller pointsand more recefit (larger pointy experimental data.
from Table IV vs data. The smaller points are the experimental datdhe experimental technique used to obtain the older data has been
of Ref. 58, and the larger points are the results of calculafidns. criticized®®
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10001 500
[ ]
800} 400
m i ° © 300
§1600 g
. 2
Y 400 V200
[ ]
200t 100
ot 0 . . . .
3 4 5 6 7 8 9 20 25 30 35 40
P (g/cc) £ (g/cc)
FIG. 6. The T=0 shear modulus of Al: Eq(l7) vs the FIG. 8. TheT=0 shear modulus of Au: Eq19) vs electronic-

electronic-structure calculations of Ref. 66 The small, medium, andcture calculationglarger points, Table VI The smaller points,

IAalrge pointt§ relpresent the values®fn fcc, hep, and bee phases of  gpiained from the first-principles calculatioffsare shown for com-
, respectively.

parison.
IV. COMPARISON OF MODEL metals Cu and Au from normal to twice normal density.
TO ELECTRONIC-STRUCTURE RESULTS From these, an average polycrystalline shear modulus is cal-
FOR CU AND AU culated and compared to the model.

The method for the calculations was described bgeso
lind et al® To evaluateC’, the lattice is deformed by the
V(Vvolume conservingtransformation

With the exception of Ar, experimental data are not avail-
able to test the model to megabar pressures. We can, ho
ever, test thel =0 version of the model by comparing it to
the results ofb initio electronic-structure calculations of the 1+8 0 0
shear modulus.

Electronic-structure calculations based on approximate 0 1+6 0 : (20
density-functional theories have proven to give good predic- 0 0 11+ 6)2
tions for a variety of material properties. A study of the elas-
tic constants of several elements and compotincisvering
a widg range of elastic properties found errors _with regpect to AE/V=6C' 82+ 0(6%), (22)
experiment of generally less than 10% in the isotropic shear
modulus. These results are obtained without empirical inwhereVe, is the (equilibrium) volume of the system. Simi-
puts. We expect such calculations to have similar accurackarly, C,4 is obtained by applying thévolume conserving
under compression, thus providing a test of the analyti¢ransformation
model.

The resulting energy change is

For this reason, we have carried out electronic-structure 16 0
calculations to obtain the single-crystal elastic constéxits 6 1 0 , (22
=(C11_C12)/2, C44, and B=%(C11+2C12) for the fcc 0 0 1](1_52)

resulting in an energy change
AE/Vgq=2Cy48°+0(5%). (23

In our calculations, we have evaluated the energy as a func-
tion of § at intervals of 0.01, up t6=0.04. For theC’ case,
the energy is not an even function éf and so negative
values ofs were used. The resulting( ) were fit to fourth-
degree polynomials and the quadratic coefficient was used to
evaluate the elastic constant from Eg1) or Eq. (23).

The bulk modulusB is obtained from the volume-
dependent energy of the undistorted crystal by

8 10 12 14 16 18 42E
P (g/cc) B=V (24)

“avz,

FIG. 7. TheT=0 shear modulus of Cu: E¢18) vs electronic- “
structure calculationgarger points, Table ¥ The smaller points, The energy was evaluated at volume intervals of 5% of the
obtained from the first-principles calculatioffsare shown for com- normal volume, from 20% expanded to 50% contracted. De-
parison. rivatives were evaluated by fitting the equation of state of
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TABLE V. The single-crystal elastic constants and shear modu- .
lus of Cu as functions of density from the electronic-structure cal- 1500
culations described in the text. 1250} o

p (glce) C' (GPa) Cu(GPa) B(GPa) G(GPa) <1000}
Ay

8.850 30.404 77.639 14215 53912 2 _ .|
9.833 41.863 124.78 23573  81.901 U

11.06 48.599 167.42 386.02  104.66 500}
12.64 83.020 260.81 65248  168.57

14.75 130.48 445.26 1151.8  279.70 250
17.70 229.71 800.23 21184  499.25 ol

P (g/ec)

Roseet al® to the energies and differentiating the function. .

It was found that a single curve of this type did not accrately FIG- 9. Comparison of the two models for the=0 shear
fit both the high-density points and the points near the mini-medulus: Eqs(16) and(17) vs the corresponding Guinan-Steinberg
mum, so seperate overlapping fits were made for the telfalues for Ar(smaller pointsand Al (larger points.

highest and lowest densities.

The electronic-structure calculations were based on the 5 9B+4C’ , 3(B+4C’)Cy  3BC'Cyy
linearized augmented plane-wave cBieeng7. The energy X 8 X 8 X 4 N
functional used was the generalized-gradient approximation (25)
as parametrized by Perdew, Burke, and Ernzeth&ome
numerical parameters used in the calculations for(Gu) The values of the shear modulus calculated from(E§). are
were in atomic units: muffin-tin radius,r=1.8(2.0), plane- ~ shown in Tables V and VI along wit&’, Cy4,, andB.
wave cutoffryrkma,=9.0, cutoff for expansion of density As a by-product of our analysis, we obtain the interesting
and potentialg =16 (19); Brillouin-zone integrals used results thatG(2p,,0)=10 G(p,,0) for Cu, andG(2po,0)
special points corresponding to®1618°%) points in the full =20 G(po,0) for Au.
zone, with Gaussian smearing of the energies by 20 mRy.  In Figs. 7 and 8, we compare Eq4d8) and (19) with T

Our results orC’, Cy44, andB for Cu and Au are shown =0, for Cu and Au, to the correspondi@entries in Tables
in Tables V and VI, respectively. It is interesting to note theV and VI.
increasing anisotropy of Au under pressure. From Table VI, Finally, it is interesting to compare our model &t 0 to
we see that for AuC’ does not increase nearly as rapidly asthe Guinan-Steinberg model mentioned in the Introduction.
C.4 With compression. This is connected with the fact thatThe equation of staté®=P(p), is needed to make this com-
the energy difference between the fcc and bcc structures @arison. In Fig. 9, the models are compared to each other for
small at all pressure€.The distortion corresponding ©®’ is ~ Ar and Al. The corresponding equations of state are taken
along the Bain path connecting fcc to bee, and it has beefrom Ref. 74 For Al,G;=1.8 comes from Ref. 75 For Atr,
seefi®that a small energy difference between these structure8,=1.6 is obtained from the relatiéh y,=By/2 G{/G,
correlates with a small value @' —1/6 with yo=y(po) from Eq.(11) andB, taken from Ref.

Let us now turn to the calculation of the shear moduli of 74 The values opy andGy= G(p,,0) can be found in Table
Cu and Au. For a solid of cubic crystalline structure, aslV.
analysis by Krmer® shows, successively narrower bounds It is seen that agreement between the two models is good
can be placed on the shear modulus as the degree of disordsrlow densities, but it gradually deteriorates with increasing
in grain orientation increases. In the limit of perfect disorder,compression. The reason for this must be that the Guinan-
the value of the shear modulus is the single positive real rodbteinberg model generally provides only the correct func-
of a cubic equation with coefficients that depend on thetional form G~ p*2in the limit of infinite compression, not
single-crystal elastic constan®, C,4, andB: the precise numerical value & in that limit, in contrast to

. . our model which provides both.
TABLE VI. The single-crystal elastic constants and shear modu- P

lus of Au as functions of density from the electronic-structure cal-

culations described in the text. V. CONCLUDING REMARKS

/ We have constructed an analytic model of the shear
p (gfcc) C'(GPa) Cu(GPa) B(GPa) G(GPa) modulus applicable at all densities greater than or of order
19.29 16.445 31.690 201.20 24.585 ambient[G(p,0)—0 asp—0, as required, but the model
21.43 19.550 77.940 339.57 46.764 may not be quantitatively correct for expanded sthtaad
24.11 33.890 127.75 568.39 78.093 temperatures from O t®,,. All of the model parameters can
27.56 35.053 255.22 1029.0 127.48 be obtained from low-pressure experimental data. The model
32.15 69.837 479.27 1918.2 243.34 has the proper low-pressure and high-pressure limits, by con-
38.58 121.16 912.15 3753.2 451.65 Struction, and to within uncertainties it agrees with

electronic-structure values @ for Cu and Au to compres-
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sions of 2, which roughly corresponds to pressures of 5 Mbar (2) Numerical simulations of elastic wave propagation,
for Cu and 9 Mbar for Au. including pressure release waves in shocked solids. The dif-
The above comparisons of our shear-modulus modelferential stress deviatods; is equal to Z(p,T)(de;;
which includes a model foll,(p), to electronic-structure — &;jd€,/3) plus material rotation termgg;; is the differ-
calculations and experimental data on Ar, Al, Cu, and Auéntial elastic straij thus a model of the shear modulus is
show very good agreement. This suggests that our modégquired for calculations of elastic wave propagation in ma-
dence of the shear moduli of monatomic solids in generalViators are not negligible. The speed of a release wave in a
There is, however, no theoretical justification for applyingShocked solid depends &@(py,Ty), wherepy andTy are
our model to alloys or compounds, although in practice ittN€ density and temperature of the shocked state.
may work reasonably well in these cases. Its generalizatio (3)77Pulsat|ons and qua_ke_s of dense stars. Hansen and Van
to more complex materials would involve generalizing our orn _have done a prellmmary_analyss Of. the effects of
model for the Groeisen parameter. A functional form for crystalline cores on the OS.C'”at'O”S of white QWarfs a}nd
+(p) depends critically on the asymptotip-c) form of found that theg-llkg spheroidal mode frequenmgs are in-
the equation of stat¥, and it has been suggested that thecreaged by approximately a factor of 2, concludl_ng that the
asymptotic forms of the equations of state of more comple lastic shear str_ength of the core must be Fak?” Into account
materials, e.g., ionic, covalent, or molecular crystals, are dif!" the computation of cool white .dwarf oscillations. The n-
ferent from that of a metdP If so, the limiting value ofy is cIu5|o_n of elastic shear stre7nsgth in the. neutron star pulsation
unknown (not necessarily 1j2for such materials. In that equations of 'V'CDeFmO.m al.“resulted in the appearance of
case, an analytic model for the Grisen parameter cannot two classes of oscnlat_lon modes not present in a fluid neu-
be constructed, hence analytic forms for the melting curvdron star. The change in the shape of the surface following a

and shear modulus cannot be obtained neutron star quake is proportional to the shear modulus of
. 9

We now briefly discuss three potential applications of ourthe crust.

model. Further tests of our model for the shear modulus should

(1) Plastic deformation of metals at high pressure. It iSbe made as high-pressure experimental data and electronic-
generally assumed that the ratio of the plastic flow stresStructure results become available for elements other than
(shear stress necessary to induce plastic deformation at 490N aluminum, copper, and go_lql. New zero-pressure data
given strain rateto the shear modulus is approximately in- are also needed to generate additional sets of model param-
dependent of pressure. In other words, the predominant preg;ers.
sure dependence of the plastic flow stress is contained in the
shear modulus. An accurate, simple analyfar fast evalu-
ation) model of the shear modulus is therefore essential for We wish to thank J.C. Boettger, J.D. Johnson, and G.W.
numerical simulations of material deformation over extreme$feufer for very stimulating discussions on the subject of the
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