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Huge metastability in high-T . superconductors induced by parallel magnetic field
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We present a study of the temperature-magnetic-field phase diagram of homogeneous and inhomogeneous
superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the
energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears,
limited above by a steep superheating critical field, EInd below by a strongly reentrant supercooling field
Hsc. We show that the Pauli limit fifor the upper critical magnetic field is strongly enhanced due to the
presence of the Van Hove singularity in the density of states. The formation of a nonuniform superconducting
state is predicted to be very unlikely.
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The theoretical phase diagram of two-dimensional isotrothe system, and the Bohr magneton. khgums in the inter-
pic superconductors under parallel magnetic fields showsction term follow the usual BCS restrictions.
distinctive features such as a tricritical point where a high- S.wave symmetry is assumed throughout the paper, for
temperature second-order phase transition gives way to @mplicity. The effects ofl-wave symmetry in the case of a
low-temperature first-order transitibhand consequently, to - superconductor with constant density of states have been ad-
a region of metastability. Furthermore, in such systems, sudressed by several authdrt. leads to visible modifications
perconductivity may persist at magnetic fields higher thann the phase diagram for inhomogeneous superconductivity
the first-order critical field if the formation of an inhomoge- with, in particular, the appearance of a low-temperature kink
neous superconducting phase, i.e., the so-called Fulde-Feriglthe phase boundary between the FF phase and the normal
(FF) phas€;™* occurs. phase. However, the phase diagram for homogeneous super-

Superconducting copper oxides have strong quasi-twoconductivity remains very similar to that of @awave super-
dimensional character, but the energy dispersion of theonductor.
CuO; planes is clearly anisotropic and in particular, it con-  Minimizing the free energd'® or, equivalently, following
tains extended saddle points as documented by angle rg-BCS mean field approach in the case of an homogeneous
solved photoemission experiment&xtended saddle points gap functionA = _V3*12k<a7klam>, one obtains the two-
have also been found in the case of the two-dimensionalimensional gap equation=lVS 1S [1—f(£2)—f(£2)]
Hubbard model by Assaad and Imédssing the quantum (281 with &2 = & N 5 P! P!

(2&5,) "~ with &, =& —oh, &= \/§k2+A , wheref(x)

Monte Carlo technique. Such saddle points lead to StrongL tha Fermi-distribution function. Taking the limi&— 0
Van Hove singularitieSVHS) in the density of states and one obtains '

recently, it has been suggestatiat such singularities could
provide an explanation for the strange out-of-plane upper
critical field of the highT, superconductor$in this paper, 1_ wadgN(g){tanr‘?_h +tanh§+h @
we study the phase diagram of a two-dimensional supercon- Vo Jo 2¢ | 2t 2t |’
ductor with an extended saddle point in the energy dispersion
under parallel magnetic field. where wp is the usual frequency cutoff artd=kgT. From
In a strictly two-dimensional superconductor under an in-this equation, one extracts the temperature dependence of the
plane magnetic field, orbital frustration due to magnetic fieldcritical field Hs, that induces the second-order phase transi-
is not present and the upper critical field is determined bytion from the homogeneous superconducting state to the nor-
Zeeman pair breaking. Therefore, we consider the Hamilmal state. Below a certain temperatutie tricritical point
tonian temperaturg the phase transition becomes of first order and
the field given by Eq(2) becomes a supercooling field above
which the normal state is a local minimum of the free energy.
Note that this critical field has no dependence on the Fermi-
surface shape, only density of states dependence.
wal a a ) _ In a twq-dimensional system, a Van Hove singularity
—kpt a2l F kgt a2l Tk, al2] in the density of states results usually from the presence of
a saddle point in the energy dispersiefk). In the case of
with &,=&—oh, &=e—n, andh=pugH, whereV, u,  a simple saddle poiré(q)~agZ—q;, one has a logarithmic
H, S andug are, respectively, the attractive interaction con-singularity in the density of states. In the case of an extended
stant, the chemical potential, the magnetic field, the area afaddle pointe(q)~|qg,|"—|q,|™ with higher powers, one

Vv
H=2 &l = 2 Oki—k, ok, k.20
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has a power-law divergence in the density of stdi€e)
~(e—€,n) "¢ with a=1—(1/n)—(1/m). Besides two-
dimensional systems, power-law divergences are present i
one dimensional systems. In a one-dimensional systeyf, a
dispersion leads to a inverse square root divergence in th
density of states. In the following, we will assume that the
VHS is pinned at the Fermi level as observed in photoemis-
sion experiments in the copper oxidesd also indicated by
theoretical studies of correlated two-dimensional models.

=0)

Assuming N(e)=N,|e—¢€,,| "%, in the weak-coupling
limit, Eqg. (2) can be rewritten as
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The upper limit of the integral in Eq2) was extended to 0.0 02 0.4 0.6 08 1.0
infinity due to the fast decay of the integrand and, therefore, T/T
in the weak-coupling limit, the supercooling field has no de-

pendence on the frequency cutoff. The zero-field critical tem- FIG. 1. The phase diagram of a paramagnetically limited two-
perature obtained from Eq. 3 is given byt.g2~[g/(« dimensional superconductor with constant density of states (
_ az)]lla which implies the well-known enhancement of =0) and with a power-law divergence in the density of states (
critical temperature which motivated the Van Hove scenarig=1/2) pinned at the Fermi level. The reentrant behavior of the
of high T cuprate superconductors. The zero-temperaturéUperCOO“UQ fleld-lsc_ observed in BCS sup_erconductors is strongly
supercooling field ls.o) is given by hsc,0:(29/a)l/w-12 enhanced if a VHS is present in the Density of States.
Therefore,hsc,0~(1—a)l’“tco and one has a much larger ) . )
enhancement of., than that ofhg, in the limit of very ~ formation of a Cooper pair of momentugy two states with
strong VHS,a— 1. The reason behind the different enhance-OPPOsite spins and of momerkar g and —k must be either
ments is reflected in the fact that for fixed finite temperaturd?0th émpty or both occupied at zero temperature. In the case
and zero magnetic field, the pairing susceptibility diverges irPf homogeneous superconductivity, Cooper pairs have zero
the limit «— 1, but it does not diverge for fixed finite mag- totél momentumg=0. At finite temperature, thermal exci-
netic field and zero temperatufeote that tanh( is linear ~ tations provide low energy pairing possibilities within this
for smallx]. no-pairing region and, therefore, the pairing susceptibility

In Fig. 1, the temperature dependence of the reduced u"ows with temperature. In the presence of a VHS at the
per critical field(or supercooling fielobtained numerically ~Fermi level, the number of these thermal excitations is much
from Eq. (2) is displayed for both a superconductor with a larger due_ to the_ strong splitting of the_Ferml su_rface in the
VHS and a superconductor with constant density of state§addle point regions and, therefore, this effect is more pro-
(BCS superconductar The VHS exponeniw=1/2 is ob- nounced. _ _
tained in the case of a quadratic one-dimensional energy dis- Given a certain value of the superconducting gap, the
persion or, for example, in the case of an extended saddifsee-energy difference betw_een the superconducting and the
point with quartic dispersion as found in the two- Normal state can be determined from
dimensional Hubbard mod&/One observes in Fig. 1 that the
maximum second-order critical field is not reached at zero
temperature, but at an intermediate temperature. This reen-
trant behavior for the supercooling field is known in BCS
superconductorsand it has been recently observed in thin The transition to the normal state with variation of field or
aluminum films®® In the case of a VHS superconductor, this temperature occurs when the zero gap local extreme of the
maximum is enhanced relatively to the zero-temperature suree energy becomes the absolute minimum. If the finite gap
percooling field and the reentrance becomes more prdeocal minimum of the superconducting phase converges to
nounced. the normal state local extreme as the transition is ap-

The strong reentrant behavior of.fcan be explained in proached, the transition is of second order, otherwise it is of
the following way. At zero temperature, the Fermi-surfacefirst order and there is a region of metastability limited below
splitting in the normal ground state due to the Zeeman couby the supercooling fieltis. and above by the superheating
pling creates a no-pairing or blocking region around thefield hg,. The superheating field is the highest field for
zero-field Fermi surface since, in order to contribute to thewhich there is still a finite gap solution of E(). It can be
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shown that below this field, there is a finite gap local mini- Let us consider the latter first. In order for an isotropic
mum in the free energy. The first-order critical fi¢lg and  energy dispersion to have an VHS in the density of states, it
the superheating field determined numerically from Egs. must be of the formé,=e— €,,=asign(q)|q|® where g
and(5) are shown in Fig. 1. At zero temperature, the super=k—k,;,. Again, we assumi:=k,,. The density of states
heating field is just the zero-temperature gap functla,  for the above model id(e)~a *b~ 1P ~1 and, there-
=Ao=[A(a@)g]¥*~tc0, with A(a)=2mcose¢(1  fore, the inhomogeneous gap equation can be rewritten as
—a)m]P_,(0), where P,(x) is the Legendre function of B
the first kind. Consequentifisq o~ (1— a)l/“hsh,o and there tan)‘(— +tan|‘(§—>
is a huge metastability region. In Fig. 1, it is also apparent ©p 7d 6 2t 2t
that the reduced temperature of the tricritical point is slightly 1:Vf0 dEN(E) fo T £ i
larger in the case of the VHS superconductor.
At zero temperature, the free-energy difference is giverwith ¢~ =[|&|*®sgn() = 1/2q cos6]°+h where we have ne-
by glected ag®/k term sinceq<<kg and wherd x]® should be
understood as sgr|x|°. In order to keep the expressions
N, 4 simpler, we have consideregl=1. Note that in the one-
= ——h?"“—aA(a)A?"*|. (6)  dimensional case, the angle integration would be absent.
a|ll-a ) R -
In the weak-coupling limit, the zero-temperature critical
The zero-temperature critical field associated with the firstfield, for g=a/(2h*®)<1, can be obtained from the equa-
order transition is usually denominated by Pauli limit ortion h () =[2gG(q)]") with
Chandrasekhar-Clogston lintit This field is easily extracted
from the previous resulth,={a(1—a)A(a)/4*Z A, G(G) = ”%I“
and therefore, this limit to superconductivity is as strongly 0 T J(1-qcos6)®
enhanced as the zero-temperature superconducting gap due
to the presence of the VHS. Far=0, one recovers the well
known result,hpzAO/\_/E.1 In fthe_ limit a—1, thAO/Z. ng(g(l/b)_,_a c0s)P+ (£P) —G cosh)®” ©
Note that recent experiments indicate that the in-plane upper
critical field in the copper oxides exceeds considerably théVote that now the blocking region is no longg+h but &

BCS Pauli limit!® =h(1—qcosé)’. G(x) has a maximum fok=1 and there-
The previous results are independent of the shape of thgye, the maximumH(q) is reached wherg=gq/(2h®)
Fermi surface. Now, we will consider finitesolutions of the =1 This field is significantly enhanced by the VHS since it

gap equation, that is, we will search for a Fulde-Ferrel phasg proportional tov(®), with a=1—1/b. However, there is
in the phase diagram. Following the BCS mean-field apopnly a weak enhancement in comparison with ¢fe0 su-
proach in the case of an inhomogeneous gap functlon, percooling field as observed in Fig. 1 in the case cof
=—VS 'Z(a_y-q ), and taking the limitA,—0, one  —1/2. The FF phase boundary lies clearly below the first-

obtains the following two-dimensional gap equatfon, order critical fieldh, and therefore, this phase will not be
observed.
Y 2 1=1(Eprgrr) = F(€p—qr2) ; The same conclusion is reached if now one considers a
s 4 Eor a2t € g2l : () energy dispersion with saddle pointg,= €,— e,n=a(|gy|"

—|a,|™ wheregq=k—k"", with the values of the momen-

For a given temperature, the FF critical field is determinedum restricted to a small region around the saddle pdiits
by searching for the highest-field solution of this equation fora"d —K" by a cutoff. In this case, the zero gap pairing
any value ofg. susceptibility[the integrand of Eq(8)] has its maximum

It is well known that the Fulde-Ferrel state becomes envalue forq=0 even for a simple quadratic saddle point. In
hanced in the presence of Fermi surface nesfi@ne might ~ Fig. 2, plots of the zero gap pairing susceptibility at zero
imagine that a VHS pinned at the Fermi level could pro\,idetemperature and for a fixed magnetic field are dlsplayed for a
a similar nesting effect in the Fulde-Ferrel state. HoweverBCS superconductor and for an extended saddle point with
one should be aware of a difference: while Fermi surfacdN=n=4. The direction of momentung for the latter is
nesting does not enhance homogenous superconductivity, f{10Sen to be along the axis or along the diagonal of the
the case of VHS nesting it is considerably enhanced. It i$rillouin zone. For the saddle point, the maximum of the
therefore possible that the Fulde-Ferrel region of the phasBairing susceptibility is fog=0. In the case of a simple
diagram is narrower or that it even does not exist. We willquadratic saddle point, the maximum remainga(0. If one
show that at zero temperature and finite magnetic field; weakens” the saddle point by choosing exponents smaller
saddle points lead in fact to very poor Fermi-surface nestinghan two, the maximum shifts to finitg, and rapidly be-
and indeed the Fulde-Ferrel region of the phase diagram isomes fixed aj=1. One could, therefore, conclude that the
absent in the case of an extended saddle point. Furthermoreulde-Ferrel state is absent in systems with energy disper-
this phase remains absent even if one improves the nestirgjons containing saddle points close to the Fermi level. How-
property by considering an isotropic Fermi surface with van-ever, one should be aware that the Fulde-Ferrel state is ex-
ishing Fermi velocity. tremely sensitive to nesting properties of the Fermi surface
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114 bution clearly dominates. In the case of Fulde-Ferrel super-
—— VHS q=(q,0) 10 conductivity, if some portion of the Fermi surface is strongly
tepc VHS q=(q,9)2" nested, it may lead to a higher critical field than that of

homogeneous superconductivity.

Concerning the experimental relevance of the results pre-
sented in this paper to the particular case of the cuprates, an
obvious statement is that an huge metastability region in the
phase diagram is reflected by a low-temperature hysteretic
behavior which can be probed, for instance, by resistive criti-
cal field measuremeritsor tunnelling measurements of den-
sity of states(as recently in thin Al film&). Unfortunately,
in-plane critical fields of the higf~ superconductors are
presently outside the experimental magnetic-field range. One
can partially circumvent this difficulty by considering
strongly overdoped or underdoped cuprates with lower criti-
o L ” e S0 cal fields. A study of hysteresis in these materials would

provide a test of the validity of the extended Van Hove sce-

a/2h nario for highT . cuprate superconductivity.
- o ] In conclusion, we have shown that a two-dimensional su-

_ FIG._2. The pairing susi:/sptlblllty as a function of the renormal- perconductor with an extended saddle point in the energy
ized pair momentung/(2h™®) for a BCS superconductor and a gishersion pinned at the Fermi level has, at low temperature,
superconductqr with an e_xtended VHS at a small, but finite tem-a large metastability region in the temperature-parallel
perature, obtained numerically from Eq. 8. magnetic-field phase diagram and that the Pauli lijtfor

the upper critical magnetic field is strongly enhanced in this
and that we have only considered the saddle point contribuextended Van Hove scenario. Fulde-Ferrel superconductivity
tion to the formation of this state and ignored the rest of thas absent from the phase diagram unless there are Fermi-
Fermi surface. In the case of homogeneous superconductigurface sectiongaway from the saddle point regiprvith
ity, such procedure is justified since the saddle point contrivery good nesting properties.
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