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Huge metastability in high-Tc superconductors induced by parallel magnetic field
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We present a study of the temperature-magnetic-field phase diagram of homogeneous and inhomogeneous
superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the
energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears,
limited above by a steep superheating critical field Hsh and below by a strongly reentrant supercooling field
Hsc . We show that the Pauli limit Hp for the upper critical magnetic field is strongly enhanced due to the
presence of the Van Hove singularity in the density of states. The formation of a nonuniform superconducting
state is predicted to be very unlikely.
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The theoretical phase diagram of two-dimensional iso
pic superconductors under parallel magnetic fields sh
distinctive features such as a tricritical point where a hig
temperature second-order phase transition gives way
low-temperature first-order transition1,2 and consequently, to
a region of metastability. Furthermore, in such systems,
perconductivity may persist at magnetic fields higher th
the first-order critical field if the formation of an inhomog
neous superconducting phase, i.e., the so-called Fulde-F
~FF! phase,2–4 occurs.

Superconducting copper oxides have strong quasi-t
dimensional character, but the energy dispersion of
CuO2 planes is clearly anisotropic and in particular, it co
tains extended saddle points as documented by angle
solved photoemission experiments.5 Extended saddle point
have also been found in the case of the two-dimensio
Hubbard model by Assaad and Imada6 using the quantum
Monte Carlo technique. Such saddle points lead to str
Van Hove singularities~VHS! in the density of states an
recently, it has been suggested7 that such singularities could
provide an explanation for the strange out-of-plane up
critical field of the high-Tc superconductors.8 In this paper,
we study the phase diagram of a two-dimensional superc
ductor with an extended saddle point in the energy disper
under parallel magnetic field.

In a strictly two-dimensional superconductor under an
plane magnetic field, orbital frustration due to magnetic fi
is not present and the upper critical field is determined
Zeeman pair breaking. Therefore, we consider the Ham
tonian

H5(
ks

jksaks
† aks2

V

S (
k1k2k3k4

dk12k2 ,k42k3
ak11q/2↑

†

3a2k21q/2↓
† a2k31q/2↓ak41q/2↑ ~1!

with jks5jk2sh, jk5ek2m, andh5mBH, whereV, m,
H, S, andmB are, respectively, the attractive interaction co
stant, the chemical potential, the magnetic field, the are
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the system, and the Bohr magneton. Thek sums in the inter-
action term follow the usual BCS restrictions.

S-wave symmetry is assumed throughout the paper,
simplicity. The effects ofd-wave symmetry in the case of
superconductor with constant density of states have been
dressed by several authors.9 It leads to visible modifications
in the phase diagram for inhomogeneous superconduct
with, in particular, the appearance of a low-temperature k
in the phase boundary between the FF phase and the no
phase. However, the phase diagram for homogeneous su
conductivity remains very similar to that of ans-wave super-
conductor.

Minimizing the free energy2,10 or, equivalently, following
a BCS mean field approach in the case of an homogene
gap function,D52VS21(k^a2k↓ak↑&, one obtains the two-
dimensional gap equation 15VS21(p@12 f (jp↑

D )2 f (jp↓
D )#

3(2jp↑
D )21 with jks

D 5jk
D2sh, jk

D5Ajk
21D2, where f (x)

is the Fermi-distribution function. Taking the limitD→0,
one obtains

1

V
5E

0

vD
dj

N~j!

2j F tanh
j2h

2t
1tanh

j1h

2t G , ~2!

wherevD is the usual frequency cutoff andt5kBT. From
this equation, one extracts the temperature dependence o
critical field Hsc that induces the second-order phase tran
tion from the homogeneous superconducting state to the
mal state. Below a certain temperature~the tricritical point
temperature!, the phase transition becomes of first order a
the field given by Eq.~2! becomes a supercooling field abov
which the normal state is a local minimum of the free ener
Note that this critical field has no dependence on the Fer
surface shape, only density of states dependence.

In a two-dimensional system, a Van Hove singular
in the density of states results usually from the presence
a saddle point in the energy dispersione(k). In the case of
a simple saddle pointe(q);qx

22qy
2 , one has a logarithmic

singularity in the density of states. In the case of an exten
saddle pointe(q);uqxun2uqyum with higher powers, one
©2003 The American Physical Society11-1
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has a power-law divergence in the density of statesN(e)
;(e2evh)2a with a512(1/n)2(1/m). Besides two-
dimensional systems, power-law divergences are prese
one dimensional systems. In a one-dimensional system,q2

dispersion leads to a inverse square root divergence in
density of states. In the following, we will assume that t
VHS is pinned at the Fermi level as observed in photoem
sion experiments in the copper oxides5 and also indicated by
theoretical studies of correlated two-dimensional models11

Assuming N(e)5Noue2evhu2a, in the weak-coupling
limit, Eq. ~2! can be rewritten as

a

g
5

1

~2t !a
GS h

2t D ~3!

with g5VNo/2 and

G~x!5E
0

`

dj
j2a

a F 1

cosh2~j1x!
1

1

cosh2~j2x!G . ~4!

The upper limit of the integral in Eq.~2! was extended to
infinity due to the fast decay of the integrand and, therefo
in the weak-coupling limit, the supercooling field has no d
pendence on the frequency cutoff. The zero-field critical te
perature obtained from Eq. 3 is given by 2tc0;@g/(a
2a2)#1/a which implies the well-known enhancement
critical temperature which motivated the Van Hove scena
of high Tc cuprate superconductors. The zero-tempera
supercooling field (hsc,0) is given by hsc,05(2g/a)1/a.12

Therefore,hsc,0;(12a)1/atc0 and one has a much large
enhancement oftc0 than that ofhsc,0 in the limit of very
strong VHS,a→1. The reason behind the different enhanc
ments is reflected in the fact that for fixed finite temperat
and zero magnetic field, the pairing susceptibility diverges
the limit a→1, but it does not diverge for fixed finite mag
netic field and zero temperature@note that tanh(x) is linear
for small x].

In Fig. 1, the temperature dependence of the reduced
per critical field~or supercooling field! obtained numerically
from Eq. ~2! is displayed for both a superconductor with
VHS and a superconductor with constant density of sta
~BCS superconductor!. The VHS exponenta51/2 is ob-
tained in the case of a quadratic one-dimensional energy
persion or, for example, in the case of an extended sa
point with quartic dispersion as found in the tw
dimensional Hubbard model.6 One observes in Fig. 1 that th
maximum second-order critical field is not reached at z
temperature, but at an intermediate temperature. This r
trant behavior for the supercooling field is known in BC
superconductors,1 and it has been recently observed in th
aluminum films.13 In the case of a VHS superconductor, th
maximum is enhanced relatively to the zero-temperature
percooling field and the reentrance becomes more
nounced.

The strong reentrant behavior of hsc can be explained in
the following way. At zero temperature, the Fermi-surfa
splitting in the normal ground state due to the Zeeman c
pling creates a no-pairing or blocking region around
zero-field Fermi surface since, in order to contribute to
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formation of a Cooper pair of momentumq, two states with
opposite spins and of momentak1q and2k must be either
both empty or both occupied at zero temperature. In the c
of homogeneous superconductivity, Cooper pairs have z
total momentum,q50. At finite temperature, thermal exc
tations provide low energy pairing possibilities within th
no-pairing region and, therefore, the pairing susceptibi
grows with temperature. In the presence of a VHS at
Fermi level, the number of these thermal excitations is mu
larger due to the strong splitting of the Fermi surface in
saddle point regions and, therefore, this effect is more p
nounced.

Given a certain value of the superconducting gap,
free-energy difference between the superconducting and
normal state can be determined from1

Fs~T,H !2Fn~T,H !5E
0

D d~1/V!

dD8
D2dD8. ~5!

The transition to the normal state with variation of field
temperature occurs when the zero gap local extreme of
free energy becomes the absolute minimum. If the finite g
local minimum of the superconducting phase converges
the normal state local extreme as the transition is
proached, the transition is of second order, otherwise it is
first order and there is a region of metastability limited belo
by the supercooling fieldhsc and above by the superheatin
field hsh . The superheating field is the highest field f
which there is still a finite gap solution of Eq.~2!.1 It can be

FIG. 1. The phase diagram of a paramagnetically limited tw
dimensional superconductor with constant density of statesa
50) and with a power-law divergence in the density of statesa
51/2) pinned at the Fermi level. The reentrant behavior of
supercooling fieldHsc observed in BCS superconductors is strong
enhanced if a VHS is present in the Density of States.
1-2
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shown that below this field, there is a finite gap local mi
mum in the free energy. The first-order critical fieldh1 and
the superheating field determined numerically from Eqs.~2!
and ~5! are shown in Fig. 1. At zero temperature, the sup
heating field is just the zero-temperature gap function,hsh,0
5D05@A(a)g#1/a;tc0, with A(a)52pcosec@(1
2a)p#P2a(0), where Pn(x) is the Legendre function o
the first kind. Consequently,hsc,0;(12a)1/ahsh,0 and there
is a huge metastability region. In Fig. 1, it is also appar
that the reduced temperature of the tricritical point is sligh
larger in the case of the VHS superconductor.

At zero temperature, the free-energy difference is giv
by

DF~0,H !5
No

422a F 4

12a
h22a2aA~a!D22aG . ~6!

The zero-temperature critical field associated with the fi
order transition is usually denominated by Pauli limit
Chandrasekhar-Clogston limit.14 This field is easily extracted
from the previous result,hp5$a(12a)A(a)/4%1/(22a)D0
and therefore, this limit to superconductivity is as strong
enhanced as the zero-temperature superconducting gap
to the presence of the VHS. Fora50, one recovers the wel
known result,hp5D0 /A2.1 In the limit a→1, hp→D0/2.
Note that recent experiments indicate that the in-plane up
critical field in the copper oxides exceeds considerably
BCS Pauli limit.15

The previous results are independent of the shape of
Fermi surface. Now, we will consider finiteq solutions of the
gap equation, that is, we will search for a Fulde-Ferrel ph
in the phase diagram. Following the BCS mean-field
proach in the case of an inhomogeneous gap function,Dq
52VS21(k^a2k2q↓ak↑&, and taking the limitDq→0, one
obtains the following two-dimensional gap equation,2

15
V

S (
p

12 f ~jp1q/2↑!2 f ~jp2q/2↓!

jp1q/2↑1jp2q/2↓
. ~7!

For a given temperature, the FF critical field is determin
by searching for the highest-field solution of this equation
any value ofq.

It is well known that the Fulde-Ferrel state becomes
hanced in the presence of Fermi surface nesting.16 One might
imagine that a VHS pinned at the Fermi level could prov
a similar nesting effect in the Fulde-Ferrel state. Howev
one should be aware of a difference: while Fermi surfa
nesting does not enhance homogenous superconductivit
the case of VHS nesting it is considerably enhanced. I
therefore possible that the Fulde-Ferrel region of the ph
diagram is narrower or that it even does not exist. We w
show that at zero temperature and finite magnetic fie
saddle points lead in fact to very poor Fermi-surface nes
and indeed the Fulde-Ferrel region of the phase diagram
absent in the case of an extended saddle point. Furtherm
this phase remains absent even if one improves the ne
property by considering an isotropic Fermi surface with va
ishing Fermi velocity.
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Let us consider the latter first. In order for an isotrop
energy dispersion to have an VHS in the density of state
must be of the formjk5ek2evh5asign(q)uqub where q
5k2kvh . Again, we assumekF5kvh . The density of states
for the above model isN(e);a21/bb21j (1/b)21 and, there-
fore, the inhomogeneous gap equation can be rewritten

15VE
0

vD
djN~j!E

0

pdu

p

tanhS j1

2t D1tanhS j2

2t D
j11j2

~8!

with j65@ uju1/bsgn(j)61/2q cosu#b6h where we have ne-
glected aq2/k term sinceq!kF and where@x#b should be
understood as sgn(x)uxub. In order to keep the expression
simpler, we have considereda51. Note that in the one-
dimensional case, the angle integration would be absent

In the weak-coupling limit, the zero-temperature critic
field, for q̃5q/(2h1/b)<1, can be obtained from the equa
tion hc,0(q̃)5@2gG(q̃)# (1/a) with

G~ q̃!5E
0

pdu

p E
(12q̃cosu)b

`

3dj
2j211(1/b)

~j (1/b)1q̃ cosu!b1~j (1/b)2q̃ cosu!b
. ~9!

Note that now the blocking region is no longerj5h but j

5h(12q̃ cosu)b. G(x) has a maximum forx51 and there-
fore, the maximumHc(q) is reached whenq̃5q/(2h1/b)
51. This field is significantly enhanced by the VHS since
is proportional toV(1/a), with a5121/b. However, there is
only a weak enhancement in comparison with theq50 su-
percooling field as observed in Fig. 1 in the case ofa
51/2. The FF phase boundary lies clearly below the fir
order critical fieldh1 and therefore, this phase will not b
observed.

The same conclusion is reached if now one consider
energy dispersion with saddle points,jk5ek2evh5a(uqxun

2uqyum) whereq5k2kvh, with the values of the momen
tum restricted to a small region around the saddle pointskvh

and 2kvh by a cutoff. In this case, the zero gap pairin
susceptibility @the integrand of Eq.~8!# has its maximum
value forq50 even for a simple quadratic saddle point.
Fig. 2, plots of the zero gap pairing susceptibility at ze
temperature and for a fixed magnetic field are displayed fo
BCS superconductor and for an extended saddle point w
m5n54. The direction of momentumq for the latter is
chosen to be along thex axis or along the diagonal of th
Brillouin zone. For the saddle point, the maximum of t
pairing susceptibility is forq50. In the case of a simple
quadratic saddle point, the maximum remains atq50. If one
‘‘weakens’’ the saddle point by choosing exponents sma
than two, the maximum shifts to finiteq, and rapidly be-
comes fixed atq̃51. One could, therefore, conclude that th
Fulde-Ferrel state is absent in systems with energy dis
sions containing saddle points close to the Fermi level. Ho
ever, one should be aware that the Fulde-Ferrel state is
tremely sensitive to nesting properties of the Fermi surf
1-3
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and that we have only considered the saddle point contr
tion to the formation of this state and ignored the rest of
Fermi surface. In the case of homogeneous supercondu
ity, such procedure is justified since the saddle point con

FIG. 2. The pairing susceptibility as a function of the renorm
ized pair momentumq/(2h1/b) for a BCS superconductor and
superconductor with an extended VHS at a small, but finite te
perature, obtained numerically from Eq. 8.
.
v.
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bution clearly dominates. In the case of Fulde-Ferrel sup
conductivity, if some portion of the Fermi surface is strong
nested, it may lead to a higher critical field than that
homogeneous superconductivity.

Concerning the experimental relevance of the results p
sented in this paper to the particular case of the cuprates
obvious statement is that an huge metastability region in
phase diagram is reflected by a low-temperature hyster
behavior which can be probed, for instance, by resistive c
cal field measurements17 or tunnelling measurements of den
sity of states~as recently in thin Al films13!. Unfortunately,
in-plane critical fields of the high-Tc superconductors are
presently outside the experimental magnetic-field range. O
can partially circumvent this difficulty by considerin
strongly overdoped or underdoped cuprates with lower c
cal fields. A study of hysteresis in these materials wo
provide a test of the validity of the extended Van Hove s
nario for high-Tc cuprate superconductivity.

In conclusion, we have shown that a two-dimensional
perconductor with an extended saddle point in the ene
dispersion pinned at the Fermi level has, at low temperat
a large metastability region in the temperature-para
magnetic-field phase diagram and that the Pauli limitHp for
the upper critical magnetic field is strongly enhanced in t
extended Van Hove scenario. Fulde-Ferrel superconducti
is absent from the phase diagram unless there are Fe
surface sections~away from the saddle point region! with
very good nesting properties.
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