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Unscreened universality class for superconductors with columnar disorder
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The phase transition in a model for vortex lines in high temperature superconductors with columnar defects,
i.e., linearly correlated quenched random disorder, is studied with finite size scaling and Monte Carlo simula-
tions. Previous studies of critical properties have mainly focused on the limit of strongly screened vortex line
interactions. Here the opposite limit of weak screening is considered. The simulation results provide evidence
for a distinct universality class, with values of the critical exponents that differ from the case of strong
screening of the vortex interaction. In particular, scaling is anisotropic and characterized by a nontrivial value
of the anisotropy exponeft= v /v, . The exponents we find,=1.25-0.1, », =1.0+0.1,z=1.95+0.1, are
similar to certain experimental results for Y£&a,0;.
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Columnar defects have proven very effective at pinningwith a different rate than the perpendicular ones when ap-
vortex lines in high temperature superconduc{@€'s), re-  proaching the Bose-glass transition.
sulting in significant increases in the critical magnetic fields The vortex phase transition with columnar disorder has
and currents. The columnar defects are often produced aspreviously been studied for the case of strongly screened
damage tracks by irradiating the sample with high-energyortex interactions:* There the correlation length exponent
heavy ions. Such correlated disorder strongly affects the, anisotropy exponenf, and dynamic exponerzttake the
phase transition from the SC to normal state, and there is avalues v~1, /=2, z~4.6* The result;=2 follows if the
ongoing theoretical and experimental effort to investigate the&eompressibility is nonsingular through the transition, and is
phase diagram and properties of the transifioi.Below a  hence believed to be exact. The effect of long-range interac-
critical temperature the vortices freeze into a glassy SC statéions in systems with correlated disorder has been considered
known as a Bose glass, which replaces the Abrikosov vortei the context of the superconductor-insulator quantum phase
lattice of the clean system. Upon heating the system undei+ansitions of disordered ultrathin film¥&-% For long range
goes a continuous phase transition to a resistive vortex liquiglanar 1f-interactions, which act only between the world
state. The transition is characterized by the critical exponenténe segments in the samey plane, and thus is completely
that have been measured in a number of experiments. THecal in thez direction, the system is incompressible, with
critical exponents are universal, i.e., they are common for alv~1 and {= 1.2® Early simulation3?! of more realistic
systems in the same universality class, and depend only amodels(from the vortex point of viewshow evidence for a
general features like the range of the interaction and distrinontrivial value of the anisotropy exponent close to 1. Some
bution of the disorder. In spite of the fact that the screeningexperiment¥"!® have been interpreted as belonging to an
length\ in high temperature SC is quite large, most theoretincompressible universality class with=1.
ical work on columnar defects has concentrated on strongly The main task in this paper is to examine the supercon-
screened systems with short-range interactiérig.In gen-  ducting phase transition with columnar disorder in the limit
eral, long-range interactions often change the universalityvhere the screening length is very long, such that any effects
class of a transition, compared to short-range interactions. ibf screening of the vortex interaction can be effectively ne-
is, therefore, natural to study the universality class with long-glected. In other words, we sat—o0, and thus examine a
range interactions. In this paper we present a systematito-screening fixed point for the superconducting phase tran-
study of the SC transition in the systems with columnar dis-sition. The screening length in the high temperature super-
order, an applied magnetic field, and weak screening, andonductor is typicallyA ~1000 A, so for most of the phase
compare the results with the experiments. diagram the assumption of no screening is reasonable. We

The superconducting phase transition with columnar disstress that one possibility is that the true asymptotic critical
order is also interesting from the perspective of quantunbehavior is effectively described by a fixed point with a
phase transitions in the systems with disordfet®=?%In fact,  screened interaction. However, even if this is the case, we
statistical mechanics of vortex lines in three dimensions iexpect that the scaling properties upon approaching the tran-
closely analogous to world lines of quantum boson@inl)  sition is controlled by the unscreened model in a large region
dimensions, where the vortex phase transition corresponds tf the parameter space, before an eventual crossover to the
the zero-temperature boson localization by substrate disotrue critical regime. In comparison, this occurs in clean sys-
der. The quantum bosons have static disorder in imaginariems without an applied fieltf. Our model also assumes no
time, corresponding to the columnar disorder for the vortexXluctuations in the amplitude of the SC order paraméten-
lines. The quantum dynamical exponehirelating the di- don approximatiop which is valid in a large region of the
verging time and length scales at the transititranslates phase diagram well below, .® The interaction is taken to
into an anisotropic scaling behavior for the vortex line prob-be a fully isotropic, three-dimensionéD) long- range in-
lem, where correlations along the columnar defects divergéeraction between the vortex lines, which should apply for
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fairly isotropic systems. The form of the interaction makesdefect gives approximately the same pinning energy, while
our model different from most of the previously studied they are located at random positions. On the lattice it is more
Boson-like models, with a planar interaction between thepractical to instead insert one column on each link of the
vortex lines. We consider only the case when both the magattice in thez direction, but with a random pinning energy.
netic field and all the columnar defects are aligned inzhe We use a uniform distribution of random pinning energies in
direction. The anisotropy due to the field and the columnaghe interval G<D(r,)=0.8, where eacB(r ) is constant in
disorder allows for the possibility of an anisotropic correla-the z direction to model correlated disorder. We model the
tion volume, where the correlation length in different direc- N€t applied magnetic field as a fixed nymberl_ém vortex
tions can diverge with different exponents. In addition weiNes penetrating the system in taelirection, corresponding
consider dynamical aspects of the problem, which do nof® guarter filling, i.e., one vortex on every fourth link in the
have a counterpart in the quantum boson problem, and conf.direction. To test for universality of our critical exponents,
pute the dynamical exponemt This assumes that Monte we also studied the case bf/2 vortex lines penetrating the

Carlo (MC) dynamics for vortex lines can be equated with s<ystem in thez direction and disorder strength<tD(r,)

real dynamics, which should apply close to the transition
where the dynamics is slow and overdampé@ur values line loops of random orientation on randomly selected

for.v,g,z differ from those of the previously studied models, laquettes of the lattice. One MC sweep consists of one at-
which suggests that the present model belongs to a ne‘Eempt on average to insert a loop on every plaquette, which
distinct universality class. we define as one MC time stept=1. The attempts are
Our starting point is the Ginzburg-Landau theory for theaccepted with probability 1/(+ expAE/T), whereAE is the
superconducting complex scalar order parameter fig{d)  energy change for inserting the loop. The initial vortex con-

The MC trial moves consist of attempts to insert vortex

= |ylexpio(r), figuration is taken to be a regular lattice of straight lines. To
- 2 approach equilibrium we discard abouk20* MC sweeps

H:f ddr{ V- lIA) W (6.5x 10" for the resistivity before any measurements are

®y taken, followed by equally many sweeps for collecting data.

1 B2 B.H To verify that the warmup time is long enough, we tried to
+ a2+ S Bl —— _} (1)  vary the warmup time between 5000 and® Hveeps for a

2 8w 4w single temperature, close ., which gave no significant
differences in the final results. The results were averaged
over up to 1000—2000 samples of the disorder potential. For
the simulation of static quantities, we use an exchange MC

where @, is the magnetic flux quantunB=V XA is the
magnetic flux densityA is the magnetic vector potential, and

H is the applied magnetic field. By fairly standard .
manipulation$ this model can be transformed into a model algorithm to speed up converger?éd\l_ote that _the exghange_
method can not be used for dynamic quantities, since it in-

involving only the vortex degrees of freedom. In the Londonvolves larae nonlocal moves in bhase space. In the followin
approximation, i.e., neglecting fluctuations in the amplitudeWe denotg thermal averages b[')'> andpdiso'rder averanes 9
of (r), a discretized form of the vortex Hamiltonian reads 9 ¥ 9

1 1 In the simulation, the helicity modulus and the rms cur-
H=>5 > V(r—r"q(r)-q(r’)+ > > D(r,)gr)?, (2) rentis obtained by the following procedufeAn extra term
rr’ r HQ=(KIZQ)Q2 is included in the Hamiltonian, wher@,, is
the total projected area of vortex loops added during the
simulation®® The helicity modulus in the directiop (u
=X,2) is then given by

where the sums overrun through all sites on a simple cubic
lattice with Q=L XL XL, sites and periodic boundary con-
ditions in all three directions. The vortex line variables are
specified by an integer vector fielg(r), such that theu Y,=1- (K/QT)[<Q,2L>_<QZ><Q,€>]1 (4)
=X,Y,z component is the vorticity on the link from the site o o
tor-+e,. The partition function iZ=Trexp(~H/T), where ~and the rms current density is given By, = (K/Q)[{Qy)

T is the temperature, and Tr denotes the sum over all possibks(Q%)1"% where we use two different replicas in our simu-
integersq,, , subject to the constraint that the discrete diver-lations, denotedr and 3, to avoid any bias in the expecta-
genceV-q=0 on all sites, i.e., the vortex lines have no freetion values. We also calculate the linear resistivity in

ends. The vortex-vortex interaction is given by which caseHq is not included inH, by evaluating the Kubo
formulaf®
K eik-r to
ViN=gq .
Q R,=>= V,(DV,(0)], 5
“ 3 (2-2cosk,) +\ "2 w77 2, LVuOVL0)] ®)

: wheret is the MC time and,—, and the voltage i%/,

where we choose units such thidt=1, and consider the ~AQ,. AQ, is the net change in the projected vortex loop
limit of no screening, corresponding do=%. Randomness area during a sweep. In practice the summation ttgés

is included in the vortex modéR) in the second term in the chosen large enough that the resistivity is independety. of
form of a random core energy, which corresponds roughly to  Next we consider the anisotropic finite size scaling rela-
a randoma(r) in Eg. (1). In real systems, each columnar tions used to extract critical properties from the MC deta.
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FIG. 1. MC data for the helicity modulus in tiedirection vs L

temperature for different system sizdesT ;~0.0765 is estimated as
the temperature where all curves intersect. Inset: Finite size scalingf
collapse of the data for fillingg=1/2 andf=1/4, and for two
disorder strengthésee text usingv=1.0, {=1.25.

FIG. 2. Finite size scaling collapse according to E§sand(7),
the data for the helicity modulus in ttedirection (main par}
and the rms current in perpendicular directiditse) at T=T,.
The best collapse is obtained fog~0.0765,{~1.25.

At the transition temperaturg, the correlation length in the sity in thex direction,J,, can also be used to calculafg.
xy planes., in thez direction, &,, and the correlation time, The result agrees, within the error bars, with the result from

r m iver T-T 7% &~&, an Yz . . .
2; e‘rr?sseijnisictjrct)gig fir?it?aesgi |sca|inz:;| aﬁé‘%ﬂrgth,eie?ig- Right atT, it is possible to obtain a data c(olla_pse when
ity modulus in thez direction is plotting various quant2|t|es as a function bf/L . Flgure 2
shows such plots forl(*/L,)Y, and (L,L)J,ns. Adjusting T,
o 1-de Uy and ¢ until the best collapse is obtained gives identical esti-
Yz=L LT To) Lo /L, 6) mates, within the error bars, as the previous method. This
clearly demonstrates that the scaling is anisotropic.

The inset of Fig. 1 shows a determination of the correla-
tion length exponent, using finite size scaling, for data
from two different fillings,f=1/2 andf=1/4, and two dif-
ferent disorder strengths. We use fits to Eg). to obtain a
data collapse for different system sizes=4—8 for f
=1/2, L=8-12 for f=1/4) over an entire temperature in-
terval aroundrl .. Both T, andv were free parameters in the
fit resulting in v=1.0=0.1, T.,=0.0765 forf=1/4 andT,
=0.0747 forf=1/2. The data collapse to a common univer-

48+ _d-1-¢-z ®) sal scaling function indicates that the results are indeed uni-
P + Pe versal.

_In the simulations we consider a whole range of system ~\eyt we study the critical MC dynamics of the model. We
sizesL, for eachl, since the anisotropy exponetitthat .50 late the resistivity in the x and z directions from the
enters the aspect ratid,,~L*, is a priori unknown. For  kunho formula in Eq.(5) at T=T,=0.0765. This gives us
nonintegral values ot ,, we simulate two systems with poth a useful consistency test of the valfie 1.25 found
nearest integek , and interpolate the results using linear in- ahove, and a value for the dynamic exporefi verify that
terpolation. For the resistivity, both linear and logarithmic the summation time in Eq5) is long enough, we plqi vst,
interpolations were tested and agree within error bars. Oncig the inset of Fig. 3. We also note that the correlation time is
we locate the correct value fdt the argument,/L¢ in the  at most~10° sweeps, which is much less than the equilibra-
scaling functions can be made constant by settiggl ¢. tion times used in the simulations. Figure 3 shows the resis-

We determine the critical temperatufig for the phase tivity in the x andz directions as a function of system size.
transition and the critical exponents from the MC data for theWe calculate/ andz by making a power law fit of the data
helicity modulus in Eq(4), by fits to the finite size scaling points in the figure to Eq(8). This gives{=1.3+0.1,z
form in Eq.(6). Figure 1 shows our estimate ©f, using the  =1.95+0.1, where the error bars are estimated by the boot-
scaling form of the helicity modulus in thedirection. By  strap method! in good agreement witht~1.25 found
selecting the value fot that gives the best common inter- above.
section point, we obtain=1.25-0.1 and T.=0.0765, Finally we will compare our findings with some other
where the error bar ot is estimated by the interval outside results. The results for critical exponents=1.25+0.1p
which scaling gets considerably worse. The rms current den=1.0+0.1,z=1.95+0.1, imply that the linear resistivity

whered=3 is the spatial dimensionality, arfd is a scaling
function (all scaling functions will from now onwards be
suppressed Similarly, for the current density in thedirec-
tion, we have

J~L27d ¢, (7)

The linear resistivity is given by=E/J, whereE is the
electric field and] is the current density, and scales as
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FIG. 3. MC data for resistivity in thex and z directions for
different system sizek at T=T.. The straight lines are power law

fits to the data points, with exponents-{=0.65 andz+ (-2

=1.28. Inset: Finite size scaling plot of the resistivity as a function

of the summation time,.

scales asp~|T—T¢° with s,=v(z+3—-d—-{)~0.7,s,
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TABLE I. Summary of a few selected experiments and simula-
tions of high temperature superconductors with columnar disorder.

Experiment simulation v 14 z
(K,Ba)BiO; (Ref. 10 1.1+0.1 ~2 5.3+0.3
Tl,Ba,CaCyOg (Ref. 8 1.1+0.2 1.9-0.2 4.9-0.2
Bi,SrCa _,Y,Cu,Oq 1.04+0.06 ~2 5.28+0.05
(Ref. 1)

YBa,Cu;0; (Ref. 19 ~1.0 ~1.1 ~2.2
YBa,Cu;0; (Ref. 15 0.9+0.2 1.2:0.2 2.3:0.3
Simulations §—0) ~1.0 2 4.6:0.3
(Refs. 18 and %

Present work X — =) 1.0+0.1 1.25-0.1 1.95:0.1

~1400 A, this corresponds t8B=0.1 T. The precise loca-
tion of the crossover between weak and strong screening is
unclear, as well as the precise role of anisotropy and other
parameters, and would be interesting to investigate further
both experimentally and theoretically.

In summary, we obtained scaling properties and numerical
results for the critical exponents that apply for the supercon-
ducting transition in the systems with columnar defects in the

=v(z+1-d+{)~1.3. For the nonlinear current-voltage limit of a long screening length, and compared with the ex-

characteristic atT=T., we have E~JP with p,=(1
+2)/(d+{—-2)~1.3,p,=({+2)/(d—1)~1.6, for d=3.

periments. The critical exponents for this universality class
differ considerably from the strongly screened ca$end

Table | shows a comparison between the simulation resultalso from the case of planarriihteractions® In particular,

and the results from a selection of transport experimentghe anisotropy exponent differs from the valire 1 assigned
where the critical exponents studied in this paper have beeto the universality class of incompressible dirty bosons with
measured. In the table we observe that several experimengganar long-range interactiod®®%° Further work is moti-
agree very well with the previously known exponents forvated in order to further clarify the origin of the scaling
screened vortex interactions. Notably, however, the table alsproperties obtained in different experiments and when the
shows that the results from two of the experiments ondifferent models apply. Experimental studies to look for a
YBa,CuyO; agree quite well with our exponents for un- crossover between unscreened and screened scaling behavior
screened 3D interactions, which suggests that they may efvould also be interesting.

fectively belong to the new universality class considered We acknowledge illuminating discussions with George
here. Naively one may expect that the present results decrabtree and Stephen Teitel. This work was supported by the
scribe the transition when the screening length is muctBwedish Research Council, STINT, PDC, and thera@o

longer than the vortex spacing. For Y®ar0,, where\
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