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Unscreened universality class for superconductors with columnar disorder
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The phase transition in a model for vortex lines in high temperature superconductors with columnar defects,
i.e., linearly correlated quenched random disorder, is studied with finite size scaling and Monte Carlo simula-
tions. Previous studies of critical properties have mainly focused on the limit of strongly screened vortex line
interactions. Here the opposite limit of weak screening is considered. The simulation results provide evidence
for a distinct universality class, with values of the critical exponents that differ from the case of strong
screening of the vortex interaction. In particular, scaling is anisotropic and characterized by a nontrivial value
of the anisotropy exponentz5n i /n' . The exponents we find,z51.2560.1, n'51.060.1, z51.9560.1, are
similar to certain experimental results for YBa2Cu3O7 .
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Columnar defects have proven very effective at pinn
vortex lines in high temperature superconductors~SC’s!, re-
sulting in significant increases in the critical magnetic fie
and currents.1 The columnar defects are often produced
damage tracks by irradiating the sample with high-ene
heavy ions. Such correlated disorder strongly affects
phase transition from the SC to normal state, and there i
ongoing theoretical and experimental effort to investigate
phase diagram and properties of the transition.2–17 Below a
critical temperature the vortices freeze into a glassy SC s
known as a Bose glass, which replaces the Abrikosov vo
lattice of the clean system. Upon heating the system un
goes a continuous phase transition to a resistive vortex liq
state. The transition is characterized by the critical expone
that have been measured in a number of experiments.
critical exponents are universal, i.e., they are common for
systems in the same universality class, and depend onl
general features like the range of the interaction and dis
bution of the disorder. In spite of the fact that the screen
lengthl in high temperature SC is quite large, most theor
ical work on columnar defects has concentrated on stron
screened systems with short-range interactions.18,3,4 In gen-
eral, long-range interactions often change the universa
class of a transition, compared to short-range interaction
is, therefore, natural to study the universality class with lo
range interactions. In this paper we present a system
study of the SC transition in the systems with columnar d
order, an applied magnetic field, and weak screening,
compare the results with the experiments.

The superconducting phase transition with columnar d
order is also interesting from the perspective of quant
phase transitions in the systems with disorder.2,3,18–20In fact,
statistical mechanics of vortex lines in three dimensions
closely analogous to world lines of quantum bosons in~211!
dimensions, where the vortex phase transition correspond
the zero-temperature boson localization by substrate di
der. The quantum bosons have static disorder in imagin
time, corresponding to the columnar disorder for the vor
lines. The quantum dynamical exponentz ~relating the di-
verging time and length scales at the transition! translates
into an anisotropic scaling behavior for the vortex line pro
lem, where correlations along the columnar defects dive
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with a different rate than the perpendicular ones when
proaching the Bose-glass transition.

The vortex phase transition with columnar disorder h
previously been studied for the case of strongly scree
vortex interactions.3,4 There the correlation length expone
n, anisotropy exponentz, and dynamic exponentz take the
valuesn'1, z52, z'4.6.4 The resultz52 follows if the
compressibility is nonsingular through the transition, and
hence believed to be exact. The effect of long-range inte
tions in systems with correlated disorder has been consid
in the context of the superconductor-insulator quantum ph
transitions of disordered ultrathin films.18–20 For long range
planar 1/r -interactions, which act only between the wor
line segments in the samexy plane, and thus is completel
local in thez direction, the system is incompressible, wi
n'1 and z51.18 Early simulations5,21 of more realistic
models~from the vortex point of view! show evidence for a
nontrivial value of the anisotropy exponent close to 1. So
experiments14,15 have been interpreted as belonging to
incompressible universality class withz'1.

The main task in this paper is to examine the superc
ducting phase transition with columnar disorder in the lim
where the screening length is very long, such that any effe
of screening of the vortex interaction can be effectively n
glected. In other words, we setl→`, and thus examine a
no-screening fixed point for the superconducting phase t
sition. The screening length in the high temperature sup
conductor is typicallyl;1000 Å, so for most of the phas
diagram the assumption of no screening is reasonable.
stress that one possibility is that the true asymptotic criti
behavior is effectively described by a fixed point with
screened interaction. However, even if this is the case,
expect that the scaling properties upon approaching the t
sition is controlled by the unscreened model in a large reg
of the parameter space, before an eventual crossover to
true critical regime. In comparison, this occurs in clean s
tems without an applied field.22 Our model also assumes n
fluctuations in the amplitude of the SC order parameter~Lon-
don approximation!, which is valid in a large region of the
phase diagram well belowHc2 .6 The interaction is taken to
be a fully isotropic, three-dimensional~3D! long- range in-
teraction between the vortex lines, which should apply
©2003 The American Physical Society01-1
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fairly isotropic systems. The form of the interaction mak
our model different from most of the previously studie
Boson-like models, with a planar interaction between
vortex lines. We consider only the case when both the m
netic field and all the columnar defects are aligned in thz
direction. The anisotropy due to the field and the colum
disorder allows for the possibility of an anisotropic corre
tion volume, where the correlation length in different dire
tions can diverge with different exponents. In addition w
consider dynamical aspects of the problem, which do
have a counterpart in the quantum boson problem, and c
pute the dynamical exponentz. This assumes that Mont
Carlo ~MC! dynamics for vortex lines can be equated w
real dynamics, which should apply close to the transit
where the dynamics is slow and overdamped.23 Our values
for n,z,z differ from those of the previously studied mode
which suggests that the present model belongs to a n
distinct universality class.

Our starting point is the Ginzburg-Landau theory for t
superconducting complex scalar order parameter field,c(r )
5ucuexpiu(r ),

H5E ddr FUS ¹2
2p i

F0
ADcU2

1aucu21
1

2
bucu41

B2

8p
2

B•H

4p G , ~1!

where F0 is the magnetic flux quantum,B5“3A is the
magnetic flux density,A is the magnetic vector potential, an
H is the applied magnetic field. By fairly standa
manipulations25 this model can be transformed into a mod
involving only the vortex degrees of freedom. In the Lond
approximation, i.e., neglecting fluctuations in the amplitu
of c(r ), a discretized form of the vortex Hamiltonian rea

H5
1

2 (
r ,r8

V~r2r 8!q~r !•q~r 8!1
1

2 (
r

D~r'!qz~r !2, ~2!

where the sums overr run through all sites on a simple cub
lattice with V5L3L3Lz sites and periodic boundary con
ditions in all three directions. The vortex line variables a
specified by an integer vector fieldq(r ), such that them
5x,y,z component is the vorticity on the link from the siter
to r1em . The partition function isZ5Tr exp(2H/T), where
T is the temperature, and Tr denotes the sum over all poss
integersqm , subject to the constraint that the discrete div
gence¹•q50 on all sites, i.e., the vortex lines have no fr
ends. The vortex-vortex interaction is given by

V~r !5
K

V (
k

eik•r

(
m

~222 coskm!1l22

, ~3!

where we choose units such thatK51, and consider the
limit of no screening, corresponding tol5`. Randomness
is included in the vortex model~2! in the second term in the
form of a random core energy, which corresponds roughly
a randoma(r ) in Eq. ~1!. In real systems, each column
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defect gives approximately the same pinning energy, wh
they are located at random positions. On the lattice it is m
practical to instead insert one column on each link of
lattice in thez direction, but with a random pinning energ
We use a uniform distribution of random pinning energies
the interval 0<D(r')<0.8, where eachD(r') is constant in
the z direction to model correlated disorder. We model t
net applied magnetic field as a fixed number ofL2/4 vortex
lines penetrating the system in thez direction, corresponding
to quarter filling, i.e., one vortex on every fourth link in th
z direction. To test for universality of our critical exponent
we also studied the case ofL2/2 vortex lines penetrating the
system in thez direction and disorder strength 0<D(r')
<1.0.

The MC trial moves consist of attempts to insert vort
line loops of random orientation on randomly select
plaquettes of the lattice. One MC sweep consists of one
tempt on average to insert a loop on every plaquette, wh
we define as one MC time step,Dt51. The attempts are
accepted with probability 1/(11expDE/T), whereDE is the
energy change for inserting the loop. The initial vortex co
figuration is taken to be a regular lattice of straight lines.
approach equilibrium we discard about 23104 MC sweeps
(6.53104 for the resistivity! before any measurements a
taken, followed by equally many sweeps for collecting da
To verify that the warmup time is long enough, we tried
vary the warmup time between 5000 and 105 sweeps for a
single temperature, close toTc , which gave no significant
differences in the final results. The results were avera
over up to 1000–2000 samples of the disorder potential.
the simulation of static quantities, we use an exchange
algorithm to speed up convergence.24 Note that the exchange
method can not be used for dynamic quantities, since it
volves large nonlocal moves in phase space. In the follow
we denote thermal averages by^•••& and disorder average
by @•••#.

In the simulation, the helicity modulus and the rms cu
rent is obtained by the following procedure.25 An extra term
HQ5(K/2V)Q2 is included in the Hamiltonian, whereQm is
the total projected area of vortex loops added during
simulation.25 The helicity modulus in the directionm (m
5x,z) is then given by

Ym512 ~K/VT! @^Qm
2 &2^Qm

a&^Qm
b&#, ~4!

and the rms current density is given byJm5(K/V)@^Qm
a&

3^Qm
b&#1/2, where we use two different replicas in our sim

lations, denoteda andb, to avoid any bias in the expecta
tion values. We also calculate the linear resistivityr, in
which caseHQ is not included inH, by evaluating the Kubo
formula26

Rm5
1

2T (
t52t0

t0

@^Vm~ t !Vm~0!&#, ~5!

where t is the MC time andt0→`, and the voltage isVm
;DQm . DQm is the net change in the projected vortex lo
area during a sweep. In practice the summation timet0 is
chosen large enough that the resistivity is independent ot0.

Next we consider the anisotropic finite size scaling re
tions used to extract critical properties from the MC data3,4
1-2
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At the transition temperatureTc the correlation length in the
xy planes,j, in thez direction,jz , and the correlation time
t, are assumed to diverge asj;uT2Tcu2n, jz;jz, and t
;jz. The anisotropic finite size scaling ansatz4 for the helic-
ity modulus in thez direction is

Yz5L12d1z f z„L
1/n~T2Tc!,Lz /Lz

…, ~6!

whered53 is the spatial dimensionality, andf z is a scaling
function ~all scaling functions will from now onwards b
suppressed!. Similarly, for the current density in thex direc-
tion, we have

Jx;L22d2z. ~7!

The linear resistivity is given byr5E/J, where E is the
electric field andJ is the current density, and scales as

rx;Ld231z2z, rz;Ld212z2z. ~8!

In the simulations we consider a whole range of syst
sizesLz for eachL, since the anisotropy exponentz that
enters the aspect ratio,Lz;Lz, is a priori unknown. For
nonintegral values ofLz , we simulate two systems with
nearest integerLz and interpolate the results using linear i
terpolation. For the resistivity, both linear and logarithm
interpolations were tested and agree within error bars. O
we locate the correct value forz, the argumentLz /Lz in the
scaling functions can be made constant by settingLz}Lz.

We determine the critical temperatureTc for the phase
transition and the critical exponents from the MC data for
helicity modulus in Eq.~4!, by fits to the finite size scaling
form in Eq.~6!. Figure 1 shows our estimate ofTc , using the
scaling form of the helicity modulus in thez direction. By
selecting the value forz that gives the best common inte
section point, we obtainz51.2560.1 and Tc50.0765,
where the error bar onz is estimated by the interval outsid
which scaling gets considerably worse. The rms current d

FIG. 1. MC data for the helicity modulus in thez direction vs
temperature for different system sizesL. Tc'0.0765 is estimated a
the temperature where all curves intersect. Inset: Finite size sca
collapse of the data for fillingsf 51/2 and f 51/4, and for two
disorder strengths~see text! usingn51.0, z51.25.
09250
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sity in thex direction,Jx , can also be used to calculateTc .
The result agrees, within the error bars, with the result fr
Yz .

Right at Tc it is possible to obtain a data collapse wh
plotting various quantities as a function ofLz /Lz. Figure 2
shows such plots for (L2/Lz)Yz and (LzL)Jrms. AdjustingTc
andz until the best collapse is obtained gives identical e
mates, within the error bars, as the previous method. T
clearly demonstrates that the scaling is anisotropic.

The inset of Fig. 1 shows a determination of the corre
tion length exponentn, using finite size scaling, for dat
from two different fillings, f 51/2 andf 51/4, and two dif-
ferent disorder strengths. We use fits to Eq.~6! to obtain a
data collapse for different system sizes (L5428 for f
51/2, L58212 for f 51/4) over an entire temperature in
terval aroundTc . Both Tc andn were free parameters in th
fit resulting in n51.060.1, Tc50.0765 for f 51/4 andTc
50.0747 forf 51/2. The data collapse to a common unive
sal scaling function indicates that the results are indeed
versal.

Next we study the critical MC dynamics of the model. W
calculate the resistivityr in the x andz directions from the
Kubo formula in Eq.~5! at T5Tc50.0765. This gives us
both a useful consistency test of the valuez'1.25 found
above, and a value for the dynamic exponentz. To verify that
the summation time in Eq.~5! is long enough, we plotr vs t0
in the inset of Fig. 3. We also note that the correlation time
at most;103 sweeps, which is much less than the equilib
tion times used in the simulations. Figure 3 shows the re
tivity in the x andz directions as a function of system siz
We calculatez andz by making a power law fit of the data
points in the figure to Eq.~8!. This gives z51.360.1, z
51.9560.1, where the error bars are estimated by the bo
strap method,27 in good agreement withz'1.25 found
above.

Finally we will compare our findings with some othe
results. The results for critical exponents,z51.2560.1,n
51.060.1, z51.9560.1, imply that the linear resistivity

ng
FIG. 2. Finite size scaling collapse according to Eqs.~6! and~7!,

of the data for the helicity modulus in thez direction ~main part!
and the rms current in perpendicular directions~inset! at T5Tc .
The best collapse is obtained forTc'0.0765,z'1.25.
1-3
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scales asr;uT2Tcus with sx5n(z132d2z)'0.7, sz
5n(z112d1z)'1.3. For the nonlinear current-voltag
characteristic atT5Tc , we have E;Jp with px5(1
1z)/(d1z22)'1.3, pz5(z1z)/(d21)'1.6, for d53.
Table I shows a comparison between the simulation res
and the results from a selection of transport experime
where the critical exponents studied in this paper have b
measured. In the table we observe that several experim
agree very well with the previously known exponents
screened vortex interactions. Notably, however, the table
shows that the results from two of the experiments
YBa2Cu3O7 agree quite well with our exponents for un
screened 3D interactions, which suggests that they may
fectively belong to the new universality class conside
here. Naively one may expect that the present results
scribe the transition when the screening length is m
longer than the vortex spacing. For YBa2Cu3O7, wherel

FIG. 3. MC data for resistivity in thex and z directions for
different system sizesL at T5Tc . The straight lines are power law
fits to the data points, with exponentsz2z50.65 andz1z22
51.28. Inset: Finite size scaling plot of the resistivity as a funct
of the summation timet0.
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;1400 Å, this corresponds toB*0.1 T. The precise loca
tion of the crossover between weak and strong screenin
unclear, as well as the precise role of anisotropy and o
parameters, and would be interesting to investigate furt
both experimentally and theoretically.

In summary, we obtained scaling properties and numer
results for the critical exponents that apply for the superc
ducting transition in the systems with columnar defects in
limit of a long screening length, and compared with the e
periments. The critical exponents for this universality cla
differ considerably from the strongly screened case,3,4 and
also from the case of planar 1/r -interactions.18 In particular,
the anisotropy exponent differs from the valuez51 assigned
to the universality class of incompressible dirty bosons w
planar long-range interactions.19,18,20 Further work is moti-
vated in order to further clarify the origin of the scalin
properties obtained in different experiments and when
different models apply. Experimental studies to look for
crossover between unscreened and screened scaling beh
would also be interesting.

We acknowledge illuminating discussions with Geor
Crabtree and Stephen Teitel. This work was supported by
Swedish Research Council, STINT, PDC, and the Go¨ran
Gustafsson foundation.

TABLE I. Summary of a few selected experiments and simu
tions of high temperature superconductors with columnar disor

Experiment simulation n z z

(K,Ba)BiO3 ~Ref. 10! 1.160.1 '2 5.360.3
Tl2Ba2CaCu2O8 ~Ref. 8! 1.160.2 1.960.2 4.960.2
Bi2Sr2Ca12xYxCu2O8

~Ref. 11!
1.0460.06 '2 5.2860.05

YBa2Cu3O7 ~Ref. 14! '1.0 '1.1 '2.2
YBa2Cu3O7 ~Ref. 15! 0.960.2 1.260.2 2.360.3
Simulations (l→0)
~Refs. 18 and 4!

'1.0 2 4.660.3

Present work (l→`) 1.060.1 1.2560.1 1.9560.1
n
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