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Heterogeneous multiscale method: A general methodology for multiscale modeling
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The heterogeneous multiscale method, is presented as a general methodology for an efficient numerical
computation of problems with multiple scales. The method relies on an efficient coupling between the mac-
roscopic and microscopic models. In case the macroscopic model is not explicitly available or is invalid in part
of the domain, the microscopic model is used to supply the necessary data for the macroscopic model. Scale
separation is exploited so that coarse-grained variables can be evolved on macroscopic spatial/temporal scales
using data that are predicted based on the simulation of the microscopic process onmicroscalespatial/temporal
domains. Applications to homogenization, dislocation dynamics and crack propagation are discussed.
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Many problems in nature involve multiple active scale
For example, chemical reactions may take seconds or ho
while the vibration of chemical bonds occurs at the tim
scale of femtoseconds (10215s!. Vortical structures in the at
mosphere may range from meters to thousands of kilome
With few exceptions, the traditional approach for such pro
lems is to obtain either analytically or empirically explic
equations for the scale of interest, eliminating other sca
This approach has been very successful for large classe
problems. However, for more complex systems this appro
also forces us to introduce empirical closures that are o
not justified or understood. Typical examples of such a s
ation are found in complex fluids, plasticity, and turbule
flows.

Recently there has been an explosive growth of interes
coupling different models with levels of detail in order
achieve a balance between accuracy and efficiency. Su
coupled multi-scale/multi-physics approach is discussed
many papers,1–7 and is a central theme of the present pap

In this paper, we present a general framework for desi
ing and analyzing numerical methods that deal with pr
lems of these types. Our basic setup is as follows. We
interested in a macroscale process with a state variablU.
However, we do not have an explicit macroscale mo
which is valid everywhere. Instead we have at our dispos
microscopic model, such as molecular dynamics or quan
mechanics, that describes the microscopic state variabu.
The two processes and state variables are related to
other by compression and reconstruction operators, den
by Q and R, respectively:Qu5U and RU5u, with the
propertyQR5I , whereI is the identity operator. The com
pression operators are in general local/ensemble avera
projection to low order moments, or slow manifolds. T
reconstruction operator does the opposite. It is not uniqu
general.

Our aim is to accurately numerically approximate t
macroscopic state of the system; therefore, we will wo
with a macroscopic grid that resolves the large scale of
system. There are two main components in the hetero
0163-1829/2003/67~9!/092101~4!/$20.00 67 0921
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neous multiscale method:An overall macroscopic scheme fo
U and estimating the missing macroscopic data from t
microscopic model. The right overall macroscopic schem
depends on the nature of the problem and typically ther
more than one choice. For variational problems, we can
the standard finite element method with a piecewise poly
mial finite element space. For dynamic problems that
conservative, we may use the methods developed for non
ear conservation laws~see, e.g., Ref. 8!. Examples include
the Godunov scheme, and the discontinuous Gale
method. For dynamic problems that are non-conservat
one could simply use a standard ordinary differential eq
tion ~ODE! solver, such as the Runge-Kutta method, coup
with the force estimator that we discuss below.

After selecting the overall macroscopic scheme, we fa
the difficulty that not all data needed for the macro sche
are available since the underlying macro model is not exp
itly known everywhere. The next component of the hetero
enous multiscale method~HMM ! is to estimate such missin
data from the microscopic model. This is done by solving
micro model locally subject to the constraint thatQ̃u5U,
where Q̃ is an approximation ofQ and U is the current
macro state. Depending on the problem, the missing data
be the stiffness matrix, or the flux or forces of the mac
model, or the transition rates if the macro model is a Mark
chain. It can also be only part of the macro model such as
eddy viscosity term in a turbulence model. For variation
problems, such data can be estimated by solving the orig
microscopic variational problem on a unit cell in each e
ment of the triangulation, subject to the constraint thatQ̃u
5U. The unit cell can be a unit cell in the crystal lattice,
in quasicontinuum method, or the unit periodic cell in a p
riodic homogenization problem.9 For dynamic problems,
such data can be estimated from a Godunov proced
namely, that we first reconstruct the micro state fromU, and
then we evolve the micro state using the microscopic mo
subject to the constraint thatQ̃u5U, and finally we estimate
the missing data fromu.
©2003 The American Physical Society01-1
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The key to the efficiency of such an approach is the p
sibility that the microscale model does not have to be sol
over the whole computational domain, but rather ove
small region near where data estimation is carried out;
Fig. 1. Traces of such ideas can already be found in
literature, for example for stiff ODEs in Refs. 10 and 11 f
kinetic schemes in gas dynamics in Ref. 12. Our curr
work draws inspiration from the important work of Kevrek
dis and co-workers.10 Closely related ideas are also found
Refs. 13 and 14. We call this approach the heterogene
multiscale method, abbreviated HMM, to emphasize the
that different physical models are used at different scales
contrast, standard multi-grid techniques employ the sa
physical model on different scales and are aimed at e
ciently resolving the microscopic details.15,16

Most multiscale problems fit very well into this frame
work. For example the quasicontinuum method can be
mulated as a special case of the HMM in which the macr
cale scheme is the piecewise linear finite element meth
and the estimation of the macroscale energy functiona
done using the Cauchy-Born rule.4 However, what is impor-
tant is that the framework of the HMM allows us to desi
new numerical methods for a wide class of multisca
problems.

Consider first the example of a dynamic homogenizat
problem

]u«

]t
5¹•FaS x,

x

« D¹u«G . ~1!

Here the coefficienta(x,x/«) represents properties of a mu
tiscaled medium, such as the conductivity of a compo
material, or the permeability of a porous medium.17 « is
assumed to be a small dimensionless number. For simpli
we will assume thata(x,y) is periodic iny with period P.
We take the macroscale variableU5Qu« to be the local
averages ofu« over macro cells of size (Dt,Dx) which we
also take as the size of the macro grid. Our aim is to comp
accuratelyQu«. Let tn5nDt and xj5 j Dx. For the overall
macroscale scheme, we choose the finite volume metho

FIG. 1. Illustration of the computational domain for the HMM
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n2
Dt

Dx
~Jj 1(1/2)

n 2Jj 2(1/2)
n !,

where Jj 1(1/2) denotes the macroscale flux at timetn and
position xj 1(1/2) . To estimate this quantity, we proceed
follows:

~1! Reconstruction. From$Un%, we reconstructũ5RUn.
The simplest way of doing this is the piecewise linear rec
struction

RUn~x!5U j
n1

U j 11
n 2U j

n

Dx
~x2xj !

for j Dx<x,( j 11)Dx.
~2! Microscopic evolution. We solve Eq.~1! with the ini-

tial data ũ(x)5RUn(x) on a much finer grid that resolve
the small scales. The solution will be denoted byu(x,t).

~3! Flux estimation. Fromu, we estimate the flux at cel
boundariesxj 1(1/2)5( j 1 1

2 )Dx. For example, we may let

Jj 1(1/2)5aS xj 1(1/2) ,
xj 1(1/2)

« D¹u~xj 1(1/2) ,aDt !

for somea,1.
If this is all we do, there is no significant savings in com

parison with solving the microscopic model directly. Th
savings come from the reduction of size of the computatio
domain in space and time.

To begin with, we do not need to solve Eq.~1! over the
whole physical domain. We only have to solve Eq.~1! on a
unit cell of size« around the points at the cell boundari
where flux evaluation is carried out. This reduces the spa
complexity of the problem by a factor of (Dx/«)d, whered
is the spatial dimension. Specifically, if the macroscale fl
is needed at pointxj 1(1/2) for the overall macroscale finite
volume scheme, we placexj 1(1/2) at the center of a cell of
size «, denoted byCj 1(1/2)

« 5xj 1(1/2)1«P, and in step~2!
above we evolve Eq.~1! on Cj 1(1/2)

« subject to the boundary
condition thatu«(x,t)2RUn(x) is periodic with period«P.

Perhaps more significant is the possibility of reducing
temporal complexity. This is clearly suggested by the res
in Fig. 2, where we plot the computed flux at one particu
cell boundary over an interval@ tn,tn1Dt#. It is clear that the
flux quickly relaxes to a quasistationary value, in this e
ample after about 40 microscopic time steps. This means
we can stop the microscale evolution after about 40 mi
steps, and use the result on a macro time step which is m
than 104 micro steps. This alone constitutes savings of m
than 250 times.

This idea draws inspiration from the literature on nume
cal solutions of stiff ordinary differential equations10,11. It is
an important ingredient that enables us toperform simula-
tions on microscopic models over a macroscopic time sc.

We next discuss how the HMM can be applied to co
pling atomistic~molecular dynamics! and continuum simula-
tions. For clarity, we first discuss the relatively simple pro
lem of dislocation dynamics in the Frenkel-Kontorova~FK!
1-2



ri
he

at

l
ch
. I
th

en

es
po

t
rd

on
p
th
io
-

ial
ent
nd
di-
data
l.
re,
to

all
of

g.

g

ace
the

ion

e

d

c-
K
er

BRIEF REPORTS PHYSICAL REVIEW B67, 092101 ~2003!
model.18 This is a one-dimensional chain of atoms in a pe
odic potential, coupled by linear springs. We will take t
potential to be

U~x!5
1

2
K@x2aint~x/a!#2. ~2!

Here a is the equilibrium distance between neighboring
oms, int(x/a) is the nearest integer tox/a. Denoting the
position of thenth atom byxn , the dynamic equation for the
atoms is given by

mẍn5k~xn1122xn1xn21!2U8~xn!1 f , ~3!

wheref is the applied force.
One interesting aspect of the Frenkel-Kontorova mode

the possibility of having a dislocation in the system, whi
corresponds to vacant or doubly occupied potential wells
the absence of dislocations, the equilibrium positions of
atoms are given byxj5 ja. In general, we letxj5a( j
1uj ). u is then the displacement field. The displacem
field is approximated by the Klein-Gordon equation

]t
2u5]x

2u2K̄u1 f̄ , ~4!

whereK̄5K/(ka2) and f̄ 5 f /(ka3). Our numerical strategy
is now as follows. We work with a macroscopic grid of siz
(nt,nx). The macroscale scheme consists of two com
nents: a finite difference scheme for Eq.~4! and an ODE
solver for the position of the dislocation given its velocity. A
each time step, we first perform an atomistic substep in o
to estimate the velocity of the defects~here the dislocation!
and the fluxes or forces in the atomistic region where c
tinuum equations are not valid, and we then update the
sition of the defects and the displacement field over
macro grid using the estimated data in the atomistic reg
and the continuum equation~here the Klein-Gordon equa
tion! elsewhere.

FIG. 2. Numerical flux as a function of the microscopic tim
steps over one macroscopic time step, for Eq.~1! with a(x,x/«)
521sin(2px/0.01), and«50.01. The bottom figure is a detaile
view of the transient period.
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At the atomistic substep, we first reconstruct the init
positions and velocities of the atoms using the displacem
and velocity fields at the macro grid using interpolation, a
we then evolve the atomistic model using boundary con
tions constructed in Ref. 3, and we estimate the needed
by processing the data obtained from the atomistic mode

A remark about the data processing is in order. As befo
the key to the feasibility of carrying out such simulations
macroscopic times~e.g., microseconds! lies in the fact that
the atomistic simulation only has to be done for a sm
number of steps in order to predict accurately the velocity
the dislocation. To see this we plot in the upper panel of Fi
3 the speed of the dislocation computed using Eq.~3! during
a time interval of sizent. If we process this data usin
suitable filters,

FIG. 4. Upper panel: displacement profile at the crack surf
near the tip; circles denote the continuum region, lines denote
atomistic subdomain. Lower panel: comparison of the tip posit
as a function of time computed using the full atomistic model~solid
line! and the HMM~dashed line!.

FIG. 3. Velocity of the dislocation in the FK model over a ma
roscopic time step. The upper figure is the result of the full F
model. The lower figure is the result after applying a third ord
filter.
1-3
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ḡ~ t !5
1

t Etn

tn1t
KS 12

t

t Dg«~t!dt, K~t!512cos2pt,

~5!

we obtain the lower panel of Fig. 3 and this resemb
closely Fig. 2. Therefore to extract the dislocation veloc
we only have to simulate the microscale model for about
micro time steps. Yet we can use that value over one ma
time step.

This strategy applies to more general situations when c
pling atomistic and continuum models is necessary. As
last example, we discuss a two-dimensional model of mo
III crack propagation in an inhomogeneous medium. The
tails of the model was discussed in Ref. 19. Other exam
can be found in Refs. 9 and 19. We follow the proced
outlined in the second example. The macroscale scheme
sists of two components: A finite difference scheme for
linear elasticity equation away from the crack tip and
ODE solver for the position of the crack tip. At each mac
time step, we predict the velocity of the crack tip by solvi
the atomistic model near the current position of the crack
using boundary conditions that minimize the reflection of
phonons.3 We then update the position of the crack tip a
the displacement fields away from the crack tip using st
dard finite difference schemes on the linear elastic
Eu

tt.

l.

z,

s
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equation. In Fig. 4 we plot the displacement profile at t
crack surface near the tip, together with a comparison of
tip position as a function of time computed using the f
atomistic model as well as the HMM.

Again the key to the efficiency of this procedure is th
we need only to simulate the atomistic model over few mic
time steps, and by processing the velocity data for the cr
tip, we can estimate its macroscale velocity and use it o
the macro time step which is of several thousand micro ti
steps.

In summary, the HMM is a very general and very efficie
methodology for dealing with multiscale/multiphysics pro
lems. It provides a framework for bridging not only spati
scales, but also temporal scales. It also allows us to st
macroscopic behavior of systems in the absence of exp
macroscopic models. A solid mathematical foundation
the HMM, including issues on numerical stability and acc
racy, was presented in Ref. 9. Applications to a wide vari
of problems, including complex interfaces, coupling molec
lar dynamics with hydrodynamics, are currently bei
actively pursued.
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