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Heterogeneous multiscale method: A general methodology for multiscale modeling
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The heterogeneous multiscale method, is presented as a general methodology for an efficient numerical
computation of problems with multiple scales. The method relies on an efficient coupling between the mac-
roscopic and microscopic models. In case the macroscopic model is not explicitly available or is invalid in part
of the domain, the microscopic model is used to supply the necessary data for the macroscopic model. Scale
separation is exploited so that coarse-grained variables can be evolved on macroscopic spatial/temporal scales
using data that are predicted based on the simulation of the microscopic procagsastalespatial/temporal
domains. Applications to homogenization, dislocation dynamics and crack propagation are discussed.
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Many problems in nature involve multiple active scales.neous multiscale metho#n overall macroscopic scheme for
For example, chemical reactions may take seconds or hourt, and estimating the missing macroscopic data from the
while the vibration of chemical bonds occurs at the timemicroscopic modelThe right overall macroscopic scheme
scale of femtoseconds (18s). Vortical structures in the at- depends on the nature of the problem and typically there is
mosphere may range from meters to thousands of kilometersiore than one choice. For variational problems, we can use
With few exceptions, the traditional approach for such prob-the standard finite element method with a piecewise polyno-
lems is to obtain either analytically or empirically explicit mial finite element space. For dynamic problems that are
equations for the scale of interest, eliminating other scalessonservative, we may use the methods developed for nonlin-
This approach has been very successful for large classes gr conservation lawssee, e.g., Ref.)8 Examples include
problems. However, for more complex systems this approacthe Godunov scheme, and the discontinuous Galerkin
also forces us to introduce empirical closures that are oftefhethod. For dynamic problems that are non-conservative,
not justified or understood. Typical examples of such a situpne could simply use a standard ordinary differential equa-
ation are found in complex fluids, plasticity, and turbulenttion (ODE) solver, such as the Runge-Kutta method, coupled
flows. with the force estimator that we discuss below.

Recently there has been an explosive growth of interest in - After selecting the overall macroscopic scheme, we face
coupling different models with levels of detail in order to the difficulty that not all data needed for the macro scheme
achieve a balance between accuracy and efficiency. Suchae available since the underlying macro model is not explic-
coupled multi-scale/multi-physics approach is discussed ifly known everywhere. The next component of the heterog-
many papers;”’ and is a central theme of the present paperenous multiscale methd@MM) is to estimate such missing

In this paper, we present a general framework for designdata from the microscopic model. This is done by solving the

ing and analyzing numerical methods that deal with probsyierg model locally subject to the constraint tHati=U,
lems of these types. Our basic setup is as follows. We ae, e d i imati dU is th i
interested in a macroscale process with a state varidble where Q is an approximation ok an IS the curren

However, we do not have an explicit macroscale mode acro state. Depending on the problem, the missing data can

which is valid everywhere. Instead we have at our disposal € the stifiness matrix, or the flux or forces of the macro

microscopic model, such as molecular dynamics or quantuquOdel’ or the transition rates if the macro model is a Markov
mechanics, that déscribes the microscopic state variable chain. I.t can.also be qnly part of the macro model suqh as the
The two processes and state variables are related to eagﬂdy viscosity term in a turbulence model. For variational

other by compression and reconstruction operators, denotéﬁpblems’ _SUCh _da_ta can be estimated by_ solvmg the original
by Q and R, respectively:Qu=U and RU=u, with the Microscopic variational problem on a unit cell in each ele-

propertyQR=1, wherel is the identity operator. The com- Ment of the .triangulation, subj'ect to the constraint t@m
pression operators are in general local/ensemble averagesU- The unit cell can be a unit cell in the crystal lattice, as
projection to low order moments, or slow manifolds. Thein quasicontinuum method, or the unit periodic cell in a pe-

reconstruction operator does the opposite. It is not unique ifiodic homogenization probleth.For dynamic problems,
general. such data can be estimated from a Godunov procedure,

Our aim is to accurately numerically approximate theNamely, that we first reconstruct the micro state frdpand
macroscopic state of the system; therefore, we will workthen we evolve the micro state using the microscopic model
with a macroscopic grid that resolves the large scale of theubject to the constraint th&u=U, and finally we estimate
system. There are two main components in the heterogdhe missing data frono.
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where Jj, (1) denotes the macroscale flux at tirtfe and
position X, (112 To estimate this quantity, we proceed as
follows:

HH A )
(1) Reconstruction. FrorjU"}, we reconstructi=RU".

s
The simplest way of doing this is the piecewise linear recon-
H:H H:H H:H struction
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X for jAx<x<(j+1)Ax.

FIG. 1. lllustration of the computational domain for the HMM.  (2) Microscopic evolution. We solve Eq@l) with the ini-
tial datau(x)=RU"(x) on a much finer grid that resolves
The key to the efficiency of such an approach is the posthe small scales. The solution will be denotedux,t).
sibility that the microscale model does not have to be solved (3) Flux estimation. Fromu, we estimate the flux at cell
over the whole computational domain, but rather over doundaries(. )= (j+3)Ax. For example, we may let
small region near where data estimation is carried out; see
Fig. 1. Traces of such ideas can already be found in the
literature, for example for stiff ODEs in Refs. 10 and 11 for Jit =2
kinetic schemes in gas dynamics in Ref. 12. Our current
work draws inspiration from the important work of Kevreki-
dis and co-worker&? Closely related ideas are also found in
Refs. 13 and 14. We call this approach the heterogeneo

multls_cale method_, abbreviated HMM, to emphas'ze the fac avings come from the reduction of size of the computational
that different physical models are used at different scales. “aomain in space and time

contrast, standard multi-grid techniques employ the same To begin with, we do not need to solve E@) over the

p_hyst:cal mcl)d_el ct)rr: dlfferent sqalgs taﬁr%dleare aimed at efflWhole physical domain. We only have to solve Ef). on a
clently resoiving th€ miCroscopic detais. unit cell of sizee around the points at the cell boundaries

wo':/lioslitorrr]gtgr(r:%llee ?;Zb;?g:iggn\t’i?]rguxegqg::}%éh;:%rgeférwhere flux evaluation is carried out. This reduces the spatial
- . e complexity of the problem factor ofAi/e)9, wher
mulated as a special case of the HMM in which the macros?O plexity of the problem by a factor of\/e)", whered

cale scheme is the piecewise linear finite element methoqs the spatial dimension. Specifically, if the macroscale flux
and the estimation cF))f the macroscale energy functional i;}s needed at poink; , ) for the overall macroscale finite
done using the Cauchy-Born rulédowever, what is impor- olume scheme, we placg. (1) at the center of a cell of

tant is that the framework of the HMM allows us to design >'“€ & denoteld bYC]+ (112)= X+ )T &P, andhln step(2)
new numerical methods for a wide class of multiscale 2P0V We evolve Eql) on Cj, () subject to the boundary

Xj+(1/2)

Xj ’
] +(1/2) <

)VU(Xj+(1/2),aAt)

for somea<1.
If this is all we do, there is no significant savings in com-
rison with solving the microscopic model directly. The

problems. condition thatu®(x,t) —RU"(x) is periodic with periodeP.
Consider first the example of a dynamic homogenization Perhaps more significant is the possibility of reducing the
problem temporal complexity. This is clearly suggested by the results

in Fig. 2, where we plot the computed flux at one particular
cell boundary over an intervit",t"+ At]. Itis clear that the
flux quickly relaxes to a quasistationary value, in this ex-

. (1) ample after about 40 microscopic time steps. This means that
we can stop the microscale evolution after about 40 micro
steps, and use the result on a macro time step which is more

Here the coefficiena(x,x/e) represents properties of a mul- than 13 micro steps. This alone constitutes savings of more

tiscaled medium, such as the conductivity of a compositehan 250 times.

material, or the permeability of a porous medilife is This idea draws inspiration from the literature on numeri-

assumed to be a small dimensionless number. For simplicitgal solutions of stiff ordinary differential equatidis? It is

we will assume that(x,y) is periodic iny with periodP.  an important ingredient that enables usprform simula-

We take the macroscale variable=Qu® to be the local tions on microscopic models over a macroscopic time scale

averages obi® over macro cells of sizeAt,Ax) which we We next discuss how the HMM can be applied to cou-

also take as the size of the macro grid. Our aim is to computpling atomistic(molecular dynamigsand continuum simula-
accuratelyQu®. Lett"=nAt andx;=jAx. For the overall tions. For clarity, we first discuss the relatively simple prob-
macroscale scheme, we choose the finite volume method lem of dislocation dynamics in the Frenkel-KontoroiK)
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FIG. 2. Numerical flux as a function of the microscopic time
steps over one macroscopic time step, for Eg.with a(x,x/¢)
=2+sin(27x/0.01), ande=0.01. The bottom figure is a detailed
view of the transient period.

FIG. 3. Velocity of the dislocation in the FK model over a mac-
roscopic time step. The upper figure is the result of the full FK
model. The lower figure is the result after applying a third order
filter.

model!® This is a one-dimensional chain of atoms in a peri-
odic potential, coupled by linear springs. We will take the At the atomistic substep, we first reconstruct the initial
potential to be positions and velocities of the atoms using the displacement
and velocity fields at the macro grid using interpolation, and
1 we then evolve the atomistic model using boundary condi-
U(x)= zK[x—aint(x/a)]?. (2)  tions constructed in Ref. 3, and we estimate the needed data
2 . . -
by processing the data obtained from the atomistic model.
Here a is the equilibrium distance between neighboring at- A remark about the data processing is in order. As before,
oms, intk/a) is the nearest integer te/a. Denoting the the key to the feasibility of carrying out such simulations to
position of thenth atom byx,,, the dynamic equation for the macroscopic timese.g., microseconddies in the fact that
atoms is given by the atomistic simulation only has to be done for a small
number of steps in order to predict accurately the velocity of
3) the dislocation To see this we plot in the upper panel of Fig.
3 the speed of the dislocation computed using Bgduring
wheref is the applied force. a time interval of sizeAt. If we process this data using
One interesting aspect of the Frenkel-Kontorova model isuitable filters,
the possibility of having a dislocation in the system, which
corresponds to vacant or doubly occupied potential wells. In~
the absence of dislocations, the equilibrium positions of the **

atoms are given byx;=ja. In general, we letx;=a(] 10 ]
+Uj). uis then the displacement field. The displacement
5866866686686 6 8

field is approximated by the Klein-Gordon equation 0‘WV\A/\/\/\/V\/\F

d2u=02u—Ku+f, (4) 20

L ' L I L ' L L I
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m.).(n:k(xn+l_2Xn+anl)_U’(Xn)+f’

wherek=K/(ka®) andf=f/(ka’). Our numerical strategy ~_ «u’ comparsonf tepostonofcracktp
is now as follows. We work with a macroscopic grid of sizes [ Goueted method] _
(At,AX). The macroscale scheme consists of two compo- °'9m g
nents: a finite difference scheme for Eg) and an ODE o8r
solver for the position of the dislocation given its velocity. At o7}
each time step, we first perform an atomistic substep in order s}
to estimate the velocity of the defedtsere the dislocation asb—" , , ‘ , , , , ,
and the fluxes or forces in the atomistic region where con- ° % 0 15 20 25 30 88 40 45
tinuum equations are not valid, and we then update the po- FiG. 4. Upper panel: displacement profile at the crack surface
sition of the defects and the displacement field over theear the tip; circles denote the continuum region, lines denote the
macro grid using the estimated data in the atomistic regiomtomistic subdomain. Lower panel: comparison of the tip position
and the continuum equatiofiere the Klein-Gordon equa- as a function of time computed using the full atomistic madelid
tion) elsewhere. line) and the HMM(dashed ling

L=x10°
5.0

092101-3



BRIEF REPORTS PHYSICAL REVIEW B57, 092101 (2003

— 1 (t"+t T equation. In Fig. 4 we plot the displacement profile at the
g(t)= ?fn K( 1- {)QS(T)dT, K(7)=1-cos2rr, crack surface near the tip, together with a comparison of the
! 5) tip position as a function of time computed using the full
atomistic model as well as the HMM.
we obtain the lower panel of Fig. 3 and this resembles Again the key to the efficiency of this procedure is that
closely Fig. 2. Therefore to extract the dislocation velocity,we need only to simulate the atomistic model over few micro
we only have to simulate the microscale model for about 4Gime steps, and by processing the velocity data for the crack
micro time steps. Yet we can use that value over one macrtip, we can estimate its macroscale velocity and use it over
time step. the macro time step which is of several thousand micro time
This strategy applies to more general situations when cousteps. ) o
pling atomistic and continuum models is necessary. As our N summary, the HMM is a very general and very efficient
last example, we discuss a two-dimensional model of modeT€thodology for dealing with multiscale/multiphysics prob-
lll crack propagation in an inhomogeneous medium. The delems. It provides a framework for bridging not only spatial
tails of the model was discussed in Ref. 19. Other exampleSc@/es, but also temporal scales. It also allows us to study

can be found in Refs. 9 and 19. We follow the proceduremacroscopic behavior of systems in the absence of explicit

outlined in the second example. The macroscale scheme co :acroscopic models. A solid mathematical foundation for

) R ; e HMM, including issues on numerical stability and accu-
sists of two components: A finite difference scheme for therac was presented in Ref. 9. Applications to a wide variet
linear elasticity equation away from the crack tip and Ao yr’oblemF; includin com. Iéx iﬁ?erfaces couplin moIech
ODE solver for the position of the crack tip. At each macro P > 1aing P ) ’ piing .

: . : . - “lar dynamics with hydrodynamics, are currently being
time step, we predict the velocity of the crack tip by solving activelv pursued
the atomistic model near the current position of the crack tip, yp '
using boundary conditions that minimize the reflection of the We thank Bill Gear, Yannis Kevrekidis, and Eric Vanden-
phonons’ We then update the position of the crack tip andEijnden for very stimulating discussions. The work of W. E
the displacement fields away from the crack tip using stanwas supported in part by ONR Grant No. N00014-01-1-
dard finite difference schemes on the linear elasticity0674.
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