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Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array
of subwavelength holes

Michaël Sarrazin,1 Jean-Pol Vigneron,1 and Jean-Marie Vigoureux2

1Laboratoire de Physique du Solide, Faculte´s Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgiu
2Laboratoire de Physique Mole´culaire, UMR-CNRS 6624, Universite´ de Franche-Comte´, F-25030 Besanc¸on Cedex, France

~Received 16 July 2002; published 28 February 2003!

Recents works dealt with the optical transmission on arrays of subwavelength holes in a metallic layer
deposited on a dielectric substrate. Making the system as realistic as possible, we perform simulations to
enlighten the experimental data. This paper proposes an investigation of the optical properties related to the
transmission of such devices. Numerical simulations give theoretical results in good agreement with experi-
ment, and we observe that the transmission and reflection behavior correspond to Fano’s profile correlated with
resonant response of the eigen modes coupled with nonhomogeneous diffraction orders. We thus conclude that
the transmission properties observed could conceivably be explained as resulting from resonant Wood’s
anomalies.
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I. INTRODUCTION

Recent papers dealt with optical experiments and sim
tions with various metallic gratings constituted of a thin m
tallic layer deposited on a dielectric substrate.1–18 Such ma-
terials are typically one- or two-dimensional photon
crystals with a finite spatial extension in the direction p
pendicular to the plane where the permittivity is periodic.

One-dimensional gratings have been widely studied
particular on account of interesting effects knows as Woo
anomalies.19–30As shown by Hessel and Oliner,19 this effect
take two distinct forms. One occurs in diffraction gratings
Rayleigh wavelengths if a diffracted order becomes tang
to the plane of the grating. The diffracted beam intens
increases just before the diffracted order vanishes. The o
is related to a resonance effect.19 Such resonances come fro
a coupling between nonhomogeneous diffraction orders
the eigenmodes of the grating. Both types of anomalies m
occur separately and independently, or appear toge
Nevière and co-workers20,21 presented a wide study of th
causes of Wood’s anomalies. In addition to Rayleigh wa
lengths they discovered two other possible origins of s
anomalies. One, called ’’plasmon anomalies,’’ occurs wh
the surface plasmons of a metallic grating are excited.
other appears when a dielectric coating is deposited o
metallic grating, and corresponds to guided modes re
nances in the dielectric layer. In fact, both anomalies co
spond to differents cases of the resonance effect repor
Hessel and Oliner.19 As shown by Hessel and Oliner,19 de-
pending on the type of periodic structure, the two kinds
anomalies~i.e., Rayleigh anomalies or resonant anomali!
may occur separately or are almost superimposed. Fin
we note that these concepts were first suggested by Fan22

In this paper we perform simulations to examine the
havior of the optical properties of a device which consists
arrays of subwavelength cylindrical holes in a chromiu
layer deposited on a quartz substrate~Fig. 1!. The values of
permittivity are those obtained from experiments.31 We
present the key role of the Rayleigh wavelength and eig
0163-1829/2003/67~8!/085415~8!/$20.00 67 0854
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mode resonances in the behavior of the zeroth order refle
and the transmission.

Our numerical study rests on the following method. Ta
ing into account the periodicity of the device, the permitti
ity is first described by a Fourier series. Then the electrom
netic field is described by Bloch waves which can also
described by a Fourier series. In this context, Maxwell eq
tions take the form of a matricial first-order differential equ
tion along to thez axis, perpendicular to thex and y axes
where the permittivity is periodic.32,33 The heart of the
method is to solve this equation. One approach deals with
propagation of the solution step by step by using the sca
ing matrix formalism. More explicitly, we numerically divide
the grating along to thez axis into many thick layers for
which we calculate the scattering matrix. The whole scat
ing matrix of the system is obtained by using a special co
bination law applied step by step to eachS matrix along to
the z axis. Indeed, it is well know that S matrices and th
combinations are much better conditioned than trans

FIG. 1. Diagrammatic view of the system under study. Tra
mission and reflection are calculated for the zeroth order an
normal incidence as in experiments.
©2003 The American Physical Society15-1
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matrices.33 Note that our algorithm has been compared w
accuracy with others method such as Finite Difference T
Domain ~FDTD! or Korringa-Kohn-Rostoker~KKR!.34 In
the present work the convergence is obtained from two h
monics only, i.e., for 25 vectors of the reciprocal lattic
Furthermore, here there is no convergence problem ass
ated with discontinuities such that we need to use L
method.35,36

In the following, for a square grating of parametera, note
that, gW 5(2p/a)( ieW x1 jeW y), such that the couple of integer
( i , j ) denotes the corresponding vector of the reciprocal
tice, i.e., diffraction order. Reflected and transmitted am
tudes are linked to the incident field by the use of theS
scattering matrix which is calculated by solving Maxwel
equation using a Fourier series.32 Let us defineFscat as the
scattered field, andFin as the incident field, such that

Fscat5F N̄d
1

X̄d
1

N̄v
2

X̄v
2

G , Fin5F N̄v
1

X̄v
1

N̄d
2

X̄d
2

G , ~1!

where Ā is a vector containing all the componentAgW . The
subscriptsv andd are written for the ‘‘vacuum’’ and ‘‘dielec-
tric substrate,’’ respectively, and the superscripts1 and 2
denote the positive and negative directions along thez axis
for the field propagation. For each vectorgW of the reciprocal
lattice, NvgW

2 and XvgW
2 are thes and p amplitudes of the re-

flected field, respectively, andNdgW
1 andXdgW

1 , that of the trans-

mitted field in the device. In the same way,Nv0W
1 and Xv0W

1

define thes and p polarization amplitudes of the inciden
field, respectively. ThenFscat is connected toFin via the
scattering matrix as

S~l!Fin~l!5Fscat~l!. ~2!

Then, the fluxJ of the Poynting vector through a unit ce
areas, for a incident homogeneous plane wave, is given

Jv
15

s

2m0v
kv0W z@ uNv0W

1 u21uXv0W
1 u2#, ~3!

Jd
15

s

2m0v (
gW

kdgW z@ uNdgW
1 u21uXdgW

1 u2#

3QS «d~v!
v2

c2
2ukW //1gW u2D , ~4!

Jv
252

s

2m0v (
gW

kvgW z@ uNvgW
2 u21uXvgW

2 u2#QS v2

c2
2ukW //1gW u2D ,

~5!

where the electromagnetic field has been written as a Fou
series.32 Q(x) is the Heaviside function, which gives 0 fo
x,0 and11 for x.0. kW // andv are the wave vector com
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ponent parallel to the surface, and the pulsation of an in
dent plane wave on the system, respectively. We also de

ku,gW ,z5F«uS v

c D 2

2ukW //1gW u2G1/2

, ~6!

where «u represents either the permittivity of the vacuu
(«v), or of the dielectric substrate («d). We note that ifku,gW ,z
becomes imaginary then the diffraction orders become n
homogeneous. The wavelength (l52pc/v) values, such as
ku,gW ,z50, are called Rayleigh wavelengths.

We define the zeroth-order transmission and reflection

T(0)5
s

2m0vJv
1

kd0W z@ uNd,0W
1 u21uXd,0W

1 u2# ~7!

and

R(0)52
s

2m0vJv
1

kv0W z@ uNv0W
2 u21uXv0W

2 u2#. ~8!

Moreover, a numerical computation of the poles ofS(l) is
important in order to study the eigenmodes of the structu
Let us write Eq.~2! as

S21~l!Fscat~l!5Fin~l!. ~9!

In this way, the eingenmodes of the structure are solution
Eq. ~9! in the caseFin(l)50, i.e.,

S21~l!Fscat~l!50. ~10!

This is a typical homogeneous problem, well known in t
theory of gratings.20,21,37–39Complex wavelengthslh5lh

R

1 ilh
I , for which Eq. ~10! has nontrivial solutions, are th

poles of det@S(l)#, as we have

det@S21~lh!#50. ~11!

In this way, if we extract the singular part ofScorresponding
to the eigenmodes of the structure, we can writeS in an
analytical form as20,21,37–39

S~l!5(
h

Rh

l2lh
1Sh~l!. ~12!

This is a generalized Laurent series, whereRh are the resi-
dues associated with each polelh . Sh(l) is the holomorphic
part ofSwhich corresponds to purely nonresonant proces

Thus, assuming thatf (l) is the mth component of
Fscatt(l), we have, for the expression off (l) in the neigh-
boorhood of one polelh ,20,21,37,38

f ~l!5
r h

l2lh
1s~l!, ~13!

wherer h5@RhFin#m ands(l)5@Sh(l)Fin#m .

II. RESULTS

The calculated transmission against the wavelength of
incident wave on the surface is shown in Fig. 2 for the zer
diffraction order, for light incidence normal to the surfac
and an electric field polarized parallel to thex axis. The
diameter of the holes (d5500 nm) and the thickness of th
5-2
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film (h5100 nm) have been chosen according to the exp
mental conditions.1,2 The solid and dashed lines represent
transmission for a square grating of parametersa51 and
1.2 mm, respectively, whereas the dotted line correspond
the transmission for a similar system without holes. In Fig
it is shown that the transmission increases with the wa
length, and that it is characterized by sudden changes in
transmission marked 1–4 in the figure. If wavelengths 1
and 4 correspond to minima, wavelength 3 is neverthe
not explicitely a minimum, as we will explain it below
These values are shifted toward larger wavelengths when
grating size increases, and the minima disappear when
sidering a system without a hole. Note that these res
qualitatively agree with the experimental data of Ebbe
and co-workers.1,2 Values of the wavelength marked 1–4 a
given in the first column of Table I. In the second column w
give the values of the positions of maxima markedA–C in
the figure.

In Fig. 3 we give the calculated reflection as a function
the wavelength of the incident wave on the surface for
zeroth diffraction order, for both gratings and for a syste
without holes. The reflection curves are characterized
maxima ~numbered 1–4! which correspond to the minim
calculated in the transmission curves. In the same way,
location of these maxima are shifted toward larger wa

FIG. 2. Percentage transmission of the incident wave agains
wavelength on the surface, for the zeroth diffraction order. The s
line denotes the transmission for the square grating of param
a51 mm, the dashed line denotes the transmission for the sq
grating of parametera51.2 mm, and the dotted line denotes th
transmission of a similar system without holes. The points nu
bered 1–4 denote sudden changes in the transmission wherea
pointsA–C denote the maxima.

TABLE I. Positions of minima and maxima of transmission.

Minima ~nm! Maxima ~nm!

~1! 708.90 ~A! 951.21
~2! 1001.44 ~B! 1320.57
~4! 1447.64 ~C! 1678.12
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lengths when the grating size increases, and they disap
when the surface is uniform. Then it appears that the sud
decrease in transmission is correlated with an increased
flection. Moreover, the positions of the correlated maxim
and minima are calculated at wavelengths which seem
correspond to Rayleigh wavelengths, as shown in the
column of Table II. We report the positions of the maxima
transmission, markedA–C, in Fig. 3. We note that the
maxima in transmission are not correlated with specifics v
ues of the reflection.

In Fig. 4 we give the calculated absorption against
wavelength of the incident wave on the surface, for the
roth diffraction order. The solid line denotes the absorpt
for the square grating of parametera51 mm, the dashed
line denotes the absorption for the square grating of par
etera51, 2 mm, and the dotted line denotes the absorpt
of a similar system without holes. We report the positions
minima in Fig. 2, numbered 1–4, and the positions of poi
A–C which denote the maxima. These peaks are found
longer wavelengths when the grating size increases, and
disappear when the surface is uniform. Thus it appears
the sudden decrease in the transmission is caused by a
bination of the increased reflection and increased loss du
surface roughness.

Previous works1–18 identified the convex regions in th
transmittance, i.e., those regions between the local mini
as regions where plasmons exist. If this were indeed the c
then we would expect to observe local maxima in the loss
energy. However, if we compare Figs. 2 and 4, we see
the convex regions in Fig. 2 are not matched by an increa
loss in Fig. 4; nevertheless the maxima of absorption se
to correspond to the minima of transmission.

On the basis of these results, we investigate the role

its
id
ter
re

-
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FIG. 3. Reflection against the wavelength of the incident wa
on the surface, for the zeroth diffraction order. The solid line d
notes the reflection for the square grating of parametera51 mm,
the dashed line denotes the reflection for the square grating o
rametera51, 2 mm, and the dotted line denotes the reflection o
similar system without holes. We note that the minima in Fig. 2
matched by peaks in the reflection~see Fig. 2!, numbered 1–4. We
have reported the pointsA–C which denote the positions o
maxima of the transmission.
5-3
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SARRAZIN, VIGNERON, AND VIGOUREUX PHYSICAL REVIEW B67, 085415 ~2003!
Wood’s anomalies in the physical interpretation of our sim
lations. In this way, we emphazise the existence of eig
modes and their role via resonant coupling with the elec
magnetic field.

First we study the poles and resonances of the grating
explained in Sec. I the existence of eigenmodes is linked
the existence of poles of the scattering matrix. If we ma
the assumption that the role of purely non-resonant proce
negligible, i.e.s(l);0, then Eq.~13! can be approximated
by the following expression20,21,37,38in the vicinity of one
pole lh

R1 ilh
I :

uFscat~l!u;
ur hu

A~l2lh
R!21lh

I2
, ~14!

which gives a typical resonance curve where the wavelen
of resonancel r is equal tolh

R , and where the widthG at

TABLE II. Comparison between Rayleigh wavelengths~second
column! of some diffraction orders~first column! with the poles of
the scattering matrix computed numerically~third column! and
evaluated by measuring the wavelength of resonancel r , and the
width G of some resonance curves~fourth column!. (v/m) and
(s/m) denote the vacuum/metal interface and substrate/metal in
face, respectively.

Diffraction Rayleigh’s Poles~nm! Extrapolated
order wavelength~nm! poles~nm!

~1,1! v/m 707.1 717.751i20 711.881i19.21
~1,0! v/m 1000 10101i27 1013.261i25.12
~1,1! s/m 1025.37 1010.251i59 1042.811i56.14
~1,0! s/m 1445.29 1438.751i54 1462.411i71

FIG. 4. Absorption against the wavelength of the incident wa
on the surface, for the zeroth diffraction order. The solid line
notes the absorption for the square grating of parametea
51 mm, the dashed line denotes the absorption for the square
ing of parametera51, 2 mm, and the dotted line denotes the a
sorption of a similar system without holes. We have reported
positions of minima in Fig. 2, numbered 1–4, and the positions
pointsA–C which denote the maxima.
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(1/A2)uFscat(l r)u is equal to 2lh
I . Before searching for a

typical resonance in the behavior of diffraction orders,
check the existence of poles of theS matrix.

In the third column of Table II, we give the poleslh

5lh
R1 ilh

I of the S matrix computed numerically. We kee
only values whose real parts an close to values~1!–~4! in
Figs. 2 and 3. This result suggests the possibility of reson
processes. In order to investigate such an assumption
have studied the behavior of the intensity of some spec
diffraction orders on the vacuum/metal and substrate/m
interfaces. More precisely, we have considered diffract
orders corresponding to the Rayleigh wavelengths conne
to the positions of the minima obtained in the transmiss
curves. We compare the results with the transmission
reflection curves.

In Fig. 5, curve~a! shows the modulus of the electroma
netic field of the orders (61,0) at the substrate/metal inte
face, as a function of the wavelength. The same is true
curve ~b! but the interface is now vacuum/metal. Curve~c!
shows the reflected (0,0) order. One notices the presenc
localized peaks in curves~a! and (b). Simulations allow one
to check that orders (61,0) have onlyp polarization. These
peaks coincide with the minima of the curve of transmiss
of Fig. 2. Since these peaks correspond to orders witp
polarization, they are probably resonances of the struct
To confirm this, we evaluate the poles by measuring
wavelength of resonancel r ~which is equal tolh

R), and the
width G at (1/A2)uFscat(l r)u ~which is equal to 2lh

I ). We
obtain results given in the fourth column of Table II. One c
easilly compare these results with those of the third colu
of Table II. This confirms the resonant characteristic of t
diffraction orders (61,0) at the metal/vacuum and meta
substrate interfaces@Hessel and Oliner called such diffrac
tion orders ‘‘resonant diffraction orders’’~Ref. 19!#. Note
that the orders (61,0) at the vacuum/metal interface an
(61,61) at the substrate/metal interface have poles w

r-

e
-

at-

e
f

FIG. 5. Curve~a! shows the modulus of the electromagne
field of the orders (61,0) at the substrate/metal interface, as a fu
tion of the wavelength. The same holds for curve~b! but for the
vacuum/metal interface. Curve~c! shows the reflected (0,0) orde
One notices the presence of localized peaks in curves~a! and (b).
The amplitude of the incident field is equal to 1 V m21.
5-4
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closer real parts. This means that both modes are alm
degenerated, with the consequence that both mode ef
cannot be clearly distinguished particularly for the transm
sion. So wavelength~3! does not seem to provide a minimu
as clearly as wavelength~2!.

Figure 6 shows the behavior of the amplitude modulus
the diffraction orders (0,61) for the vacuum/metal@curve
(a)] and for the substrate/metal@curve (b)] interfaces, re-
spectively, as a function of the wavelength. Curve~c! corre-
sponds to the order (0,0) in the transmission. All these ord
exist only with a polarizations. One notices that the minim
of these curves are correlated with the peaks of resonan
On the other hand, we know that orders withs polarization
cannot present resonances. From this point of view,
minima of the curve of transmission of Fig. 2 are correla
with the resonances, while the behavior of the convex p
of the curves of transmission can be interpreted accordin
the profile of the orders of polarizationp.

Let us now turn to Wood’s anomalies. We consider t
case where purely nonresonant process cannot be totally
glected, so that we supposes(l);s0. Thus it is easy to show
that Eq.~13! can be written as19,22

uFscat~l!u25
~l2lz

R!21lz
I2

~l2lh
R!21lh

I2
us0u2, ~15!

with

lz
R5lh

R2nR and lz
I 5lh

I 2n I , ~16!

where

n5
r h

s
. ~17!

Coefficientn shows the significance of resonant effects co
pared with purely nonresonant effects.lz5lz

R1 ilz
I corre-

FIG. 6. Behavior of the amplitude modulus of the diffractio
orders (0,61), respectively for the interface vacuum/metal@curve
(a)] and for the interface substrate/metal@curve (b)] as a function
of the wavelength. Curve~c! corresponds to the order (0,0) in tran
mission. All these orders exist only with a polarizations. The am-
plitude of the incident field is equal to 1 V m21.
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sponds to the zero of Eqs.~13! and ~15!. Equation~15! cor-
responds to the profiles of Fig. 7. This last expression ta
into account the interferences between resonant and pu
nonresonant processes. In this way, the profiles which co
spond to Eq.~14!, i.e., a purely resonant process, tend
become asymmetric. As shown in Fig. 7, the dashed cu
shows a typically resonant process like those described
Eq. ~14!. On the other hand, solid and dash-dotted cur
show a typical behavior where a minimum is followed by
maximum, and vice versa assuming the values ofn. These
profiles tend towardus0u2 whenl tends to6`. We note that
these properties, which result from the interference of re
nant and nonresonant processes, are similar to those
scribed by Hessel and Oliner19 and Fano.22 For this reason
profiles like those described in Fig. 7 are often called ‘‘Fa
profiles.’’

In order to refine the interpretation of our results, in Fig
we represent the three curves~transmission, reflection, an
resonant diffraction order! on a more restricted domain o
wavelength in the range 1300–1900 nm. In this range, si
the Rayleigh wavelength is associated to the resonant diff
tion order (1,0) for the metal/substrate interface, we rep
sent the amplitude of this order only. The solid line deno
the transmission, the dashed line denotes the reflection,
the dash-dotted line denotes the amplitude of the reso
diffraction order. We also indicate the position of the corr
sponding Rayleigh wavelength, as well as that of the ma
mum of resonance~vertical dotted lines!. One labels~a! the
maximum of the transmission,~b! the minimum of the re-
flection, and~c! the maximum of the reflection.

One notices that the maximum of the resonance does
strictly coincide with the maximum of the reflection and th
minimum of the transmission. Also, one notices that t
maximum of the reflection does not coincides with the mi
mum of the transmission. On the other hand, the Rayle
wavelength seems to correspond well with the minimum
the transmission. We notice that the diffraction order is h
mogeneous for wavelengths lower than the Rayleigh wa
length. For this reason, the resonance peak cannot be
served for wavelengths lower than Rayleigh wavelengt
So, if one intends to take away the position of the resona
of the value of the Rayleigh wavelength, one can makea

FIG. 7. Some examples of typical Fano profiles.
5-5
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SARRAZIN, VIGNERON, AND VIGOUREUX PHYSICAL REVIEW B67, 085415 ~2003!
priori only in the direction of increasing wavelength
Should the opposite occur, the position of the resonance p
tends toward Rayleigh’s value.

As in Fig. 8, in Fig. 9 we represent the three curves~trans-
mission, reflection, and resonant diffraction order! for the
same physical parameters. However, whereas in the prev
case the value of the permittivity of the metal film was th
of chromium,31 we now use a value equal to2251 i1 which
does not depend on the wavelength. Such a value of
permittivity does not correspond to an existing material.

FIG. 8. The set of three curves~transmission, reflection and
resonant diffraction order! on a more restricted domain of wave
length included between 1300 and 1900 nm. In this domain R
leigh’s wavelength is associated with the diffraction order~1,0! of
the interface metal/substrate. We also indicate the position of
wavelength of the corresponding Rayleigh wave as well as tha
the maximum of resonance.~a! is the maximum of the transmission
~b! the minimum of the reflection, and~c! the maximum of the
reflection. Solid line: transmission; dashed line: reflection; da
dotted line: resonant diffraction order. The amplitude of the incid
field is equal to 1 V m21.

FIG. 9. A similar system to that in Fig. 8 except that the value
the permittivity of the metal film here is equal to2251 i1. As in
Fig. 8, ~a! is the maximum of the transmission,~b! the minimum of
the reflection, and~c! the maximum of the reflection.~d! is the
minimum of the transmission. The amplitude of the incident field
equal to 1 V m21.
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choose this permittivity value for the metal such that w
select a peak of resonance farther from the Rayleigh wa
length than in the previous case. The choice of this va
comes from research on the compromise between the p
tion of the peak of resonance and its width, so as to illustr
our matter clearly. As in Fig. 8,~a! is the maximum of the
transmission,~b! the minimum of the reflection, and~c! the
maximum of the reflection.~d! is the minimum of the trans-
mission.

This time, one notices in a clear way the absence of
incidence between the peak of the resonance and the min
~respectively the maxima! of the reflection~respectively of
transmission!. Contrary to what is generally assumed,1–16

one sees that the nonresonant Wood’s anomalies conne
to Rayleigh wavelengths are not the cause of the minima
the transmission. They simply correspond to a discontinu
of each of the three curves. It is particularly important to no
that the profiles of the transmission and reflection corresp
to Fano profiles, as discussed below. One can interpret
behavior of these spectra in terms of resonant Woo
anomalies in the sense described by Fano22 and by Hessel
and Oliner.19

III. DISCUSSION

In order to understand the physical mechanisms resp
sible for the behavior observed in Figs. 8 and 9, in Fig.
we represent the corresponding involved processes. In
10, circles A and B represent diffracting elements~e.g.,
holes!. So an incident homogeneous wave~i! diffracts in A
and generates a nonhomogeneous resonant diffraction o
~e! @e.g.~1,0!#. Such an order is coupled with an eigenmo
which is characterized by a complex wavelengthlh . It be-
comes possible to excite this eigenmode, which leads
feedback reaction on the order (e). This process is related to
the resonant term.

The diffraction order~e! diffracts in B, and generates a
contribution to the homogenous zero diffraction order (0,
Thus one can ideally expect to observe a resonant pro

y-

e
of

-
t

f

FIG. 10. Diagrammatic representation of the processes res
sible for the behavior of the transmission properties.
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i.e., Lorentzian-like, for the homogenous zero diffraction
der (0,0) which appears inB. Nevertheless, it is necessary
account for nonresonant diffraction processes related to
holomorphic term. So incident wave (i ), here represented in
B, generates a homogeneous zero order. Then one takes
account the interference of two rates, resonant and nonr
nant contributions to zero order. The resulting line shapes
typically Fano profiles which correspond to resonant p
cesses where one takes nonresonant effects into account
notes that a maximum in the transmission does not neces
correspond to a maximum of the resonance of a diffract
order. This is exactly the process observed in Fig. 9, wh
the resonance is associated with the diffraction order (1
So, the Fano profiles of the reflection and transmission re
from a superimposition of resonant and nonresonant co
butions to the zero diffraction order.

If one refers to Fig. 8, the concrete case of chromium,
resonance is closer to the Rayleigh wavelength than in
case of Fig. 9. On the other hand, the positions of the m
mum and minimum of a Fano profile are determined by
resonance position. More precisely, if the resonance
shifted in a given direction, the maximum and minimum
the Fano profile tend to be shifted in the same way. Con
quently, in the present case, the maximum and minimum
the asymmetric Fano’s profile are shifted toward the R
leigh wavelength in the same way as the resonant respo
In Fig. 8, in the case of the transmission, minimum~d! is not
of the same kind of the minimum~d! in Fig. 9. This is not a
true minima of the Fano profile. All occurs as if the min
mum of the Fano profile disappears behind the Rayle
wavelength toward low wavelength. In other words, t
minimum ~d! in Fig. 8 comes from the cutoff and the disco
tinuity introduced between the minimum and the maximu
of the Fano profile at the Rayleigh wavelength. On the ot
hand, note that maximum~a! of the transmission and max
mum ~c! of the reflection just localized rests after the Ra
leigh wavelength. For the reflection, minima~b! tend to be
shifted toward a low wavelength.

Previous works1–16 identified the convex regions in trans
mission, i.e., the regions between the minima, as regi
where plasmons exist. The present study tends to qualify
hypothesis, since it shows that the experimental results
be described in terms of Wood’s anomalies. Indeed, as sh
lff
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by Fano22 and Hessel and Oliner,19 for one-dimesionnal grat-
ings, Wood’s anomalies can be treated in terms of eig
modes grating excitation. In this context, these authors d
onstrated the asymmetric behavior of the intensities of
homogeneous diffraction orders according to the wavelen
One can conclude that the results of Ebbesen’s experim
correspond to the observation of resonant Wood’s anoma

Here, as we use metal in our device, it seems natura
assume that these resonances are surface plasmons
nances. Nevertheless, it is important to note that our anal
does not make raise hypothesis as to the origin of the eig
modes. This means that it could be possible to obtain tra
mission curves similar to those for metals, by substituting
surface plasmons by polaritons or guided modes. This w
is in progress.

IV. CONCLUSION

Using a system similar to that used in recent papers,1,2 we
have shown that numerical simulations give theoretical
sults in good qualitative agreement with experiments. Pre
ous authors suggested that the results are due to the pre
of a metallic layer, such that the surface plasmons could g
rise to transmission curves of these characteristics. We h
performed simulations using the same geometry, and
served that the transmission and reflection behaviors co
spond to Fano profiles correlated with the resonant respo
of the eigenmodes coupled with nonhomogeneous diffrac
orders. We thus conclude that the transmission properties
served could conceivably be explained as resulting fr
resonant Wood’s anomalies.
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