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Truncated Lévy walk of a nanocluster bound weakly to an atomically flat surface:
Crossover from superdiffusion to normal diffusion

Yutaka Maruyama and Junichi Murakami
Institute for Structural and Engineering Materials (ISEM), National Institute of Advanced Industrial Science and Technology (A

Chubu, 2266-98 Anagahora, Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan
~Received 5 September 2002; published 10 February 2003!

We have demonstrated that the fast stick-slip diffusion of a nanocluster bound weakly to an atomically flat
surface such as graphite is a truncated Le´vy walk. To do this, a 2ms molecular dynamics simulation was
performed using a finite two-dimensional Frenkel-Kontolova-type model with Langevin-thermostats. We found
that the statistics of jump durations obey a power-law distribution truncated at; ns and that the exponentg
of a mean-square displacement (;tg) becomes 1 only fort*ns. ‘‘Short’’ ~200 ns! simulations cannot correctly
show the crossover from superdiffusion (g.1) to normal-diffusion (g51).

DOI: 10.1103/PhysRevB.67.085406 PACS number~s!: 61.46.1w, 36.40.Sx, 05.40.Fb
u
ica
a

i

n
ba

i
-
e

n
te

-

l

s.

pp

m
an
an

-
er

(

-
er-

ms

n
ms
sses
su-

, or
e

We
as

om-

la-

that
n to

far
ally
of
h
-
po-

-
flat
an
for
I. INTRODUCTION

Understanding diffusion mechanisms of clusters on s
faces is important from both fundamental and technolog
points of view.1 Recently, surface imaging techniques such
transmission electron microscope~TEM! have shown that
large clusters with three-dimensional structure~e.g., Sb2300,
Au250) self-diffuse as a whole on graphite much faster than
expected for uncorrelated thermal motions of atoms.2 How-
ever, it is difficult to deduce the details of the diffusio
mechanism from the images, because the techniques
cally image the clusters only in intervals of the diffusion.

To clarify the mechanism, molecular dynamics~MD!
simulations have been performed.3–5 Luedtke and Landman4

have shown that a gold cluster on graphite exhibits interm
tent ‘‘stick-slip’’ motion accompanied by rotation. The mo
tion intermittently alternated between a oscillatory trapp
motion ~‘‘stick’’ ! and a sliding jump~‘‘flight’’ or ‘‘slip’’ !
with no apparent influence of the surface. Flight~slip! time
and sticking time probability density functions~PDF’s! were
found to take power-law distributions rather than Gaussia
This indicates that the total trajectory is possibly charac
ized as a ‘‘Lévy-flight’’ ~LF!, or more strictly, as a ‘‘Le´vy-
walk’’ ~LW!,6 which can involve infinitely long jumps per
formed with a finite maximal velocity.

The notion of Lévy-flight has widely appeared in physica
issues like chaotic diffusion in a rotating fluid flow7 and also
in nonphysical ones like dynamics of economic indice8

Mathematically, LF obeys a Le´vy stable distribution ~LD!
that has power-law tails responsible forinfinite variance and
thus does not fulfill an essential hypothesis needed to a
the central limit theorem~CLT!.9 In LW, a random-walker
visits the same sites of LF.Instantaneousjumps~infinite ve-
locities! are not allowed and the time to complete each ju
of the LW is required. Therefore, variance becomes finite
‘‘superdiffusion’’ occurs when there are more flights th
stickings: mean-square displacements~MSD’s! ^@R(t1q)
2R(q)#2&q5^DR2(t)& scale astg with 1,g,2, where
^* &q denotes a statistical average over the timeq. Luedtke
and Landman4 concluded from a MSD obtained with a con
siderably long MD simulation of 90 ns that a gold clust
0163-1829/2003/67~8!/085406~5!/$20.00 67 0854
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(Au140) on graphite undergoes a mild superdiffusiong
51.1).

However, it is doubtful whether the self-diffusive stick
slip motion of the cluster really represents a genuine sup
diffusive Lévy walk. This is because cluster-surface syste
are not so far from thermal equilibrium as a genuine Le´vy
walk in anopenfluid systems7 is, where energy is pumped i
through rotating. Some fluctuation inherent in the syste
not only enhances the jumps but also unavoidably suppre
the occurrence of extremely long jumps responsible for
perdiffusion.

The unavoidable suppression of extremely long jumps
the truncation of power-law tails of a LD, makes varianc
finite. As discussed by Mantegna and Stanley,10 in such
flight, termedtruncatedLévy flight ~TLF!, a sum of flights
very slowly converges to a Gaussian due to the CLT.
expect therefore that the crossover of diffusivity occurs
follows. In small time scales, since trajectories bytruncated
Lévy walk ~TLW! are apparently identical to those by LW
and dominated by long-correlated~ballistic! segments, they
seemingly give rise to superdiffusion (g.1). On the other
hand, in large time scales, almost all trajectories are rand
ized, exhibiting normal diffusion (g51). This crossover
should be observed by computer simulations if the simu
tion time is statistically long enough.

The purpose of the present work is to demonstrate
there exists a crossover from the anomalous superdiffusio
the normal diffusion for Le´vy-type stick-slip diffusion of a
nanocluster on an atomically flat surface-like graphite. So
such a study has not been carried out yet. This is basic
due to the difficulty in determining a long-time behavior
the diffusivity that requires very prolonged MD runs wit
very heavy computational loads~i.e., many degrees of free
dom of atoms and complicated many-body interatomic
tentials!. Here we report an extremely long (2ms) MD
simulation involving a finite two-dimensional~2D! Frenkel-
Kontolova~FK! type model11 with Langevin-thermostats, ex
tended to a three-dimensional cluster on an atomically-
surface. This model is seemingly oversimplified but c
clarify the characteristic diffusion mechanism responsible
the change of diffusivity with increasing time scale.
©2003 The American Physical Society06-1
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II. COMPUTATIONAL DETAILS

Diffusive motion of small particles on surfaces is usua
believed to be driven by thermal motion of surface atom
However, for the fast diffusion of clusters bound weakly
atomically flat surfaces, it has been reported by De
et al.12 and by Luedtke and Landman4 that a static~frozen!
substrate can cause a diffusion nearly identical with o
caused by fully dynamical substrates. Presumably this is
cause significant surface lattice deformation, which affe
sticking behavior and reduces average diffusion velocity
suggested by Lewiset al.,5 does not occur due to the wea
cluster–surface interactions.~The Au–C interaction of Lewis
et al.5 is about two times stronger than that of Luedtke a
Landman.4! This suggests that although effects of therm
lattice vibrations in the surfaces cannot be completely
glected, such a surface can be effectively modeled by a s
single-atom potential. In the present work, therefore, we c
sider a model nanocluster not on a computationally he
atomistic surface but on an analytic periodic potential s
face, which mimics Au245 on a graphite surface, as show
schematically in Fig. 1.

Since vertical~z! motions of atoms in the present syste
are probably not so important to the lateral (x–y) motion of
the cluster as a whole, the periodic single-atom potential
face is expressed in 2D:vatom(x,y). On the graphite surface
b carbon atom sites, that have no carbon atoms sitting
neath them in the adjoining graphite sheet, are preferen
adsorption sites for metal atoms.13 Therefore,vatom is defined
not on the honeycomb lattice but on the triangular lattice
the surface~i.e., a carbon atom sites are omitted!. For sim-
plicity we assume the three shortest wave vectors’ terms
2D Fourier series,

vatom~x,y!5E0 f~x,y!5E0~22/9!3S cosH kFx1
y

A3
G J

1cosH k
2y

A3
J 1cosH kFx2

y

A3
G J D .

Herek is the length of the shortest wave vectors, related
the lattice constant of graphite (agraphite52.46 Å), and the
average value ofvatom(x,y) is 0 eV. The amplitude of poten
tial corrugation,E0, is thought to be a mere fraction of th
binding energy of 0.26 eV/atom for large Au islands
graphite.13 Here we setE0 to 0.06 eV. Thereby, a height o
energy barriers for single atoms is about 0.053 eV at a sa
point between potential wells on the triangular lattice.

FIG. 1. Snapshot of the model cluster (Au245) on the periodic
potential surface (vatom) modeled for graphite.
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The model gold cluster is an atomistic three-dimensio
nanocrystal of 245 atoms shown in Fig. 1, whose lowerm
37 atoms form a compact hexagon and each interact with
surface@vatom(x,y)# like FK models.11 Interatomic interac-
tions within the cluster are restricted to first nearest nei
bors and described not by a harmonic potential used usu
for the FK models but by a Lennard-Johnes~LJ! ~6-12! po-
tential. The depth of the LJ potential well« is set to 0.609
eV, which is derived from the bulk modulus and the inte
atomic distance (aAu52.88 Å) of bulk gold. By similar rea-
soning for the 2D potential surface, the vertical~z! inter-
atomic distances are always fixed in our simulations.

To take into account the situation that cluster atoms
thermally equilibrated with surface atoms through theirdy-
namical interactions, the cluster’s lowermost 37 atoms
contact with the potential surface are treated individually
Langevin-dynamics;14 the dynamical interactions of the clus
ter atoms with the surface atoms are expressed by ran
force and friction force in proportion to velocity, both o
which are due to thermal motion of atoms and related by
fluctuation-dissipation theorem. On the other hand, the
upper 208 atoms, which are not in contact with the surfa
are treated by Newtonian-dynamics using a velocity Ve
algorithm. The time stepDt is 5 fs. The Langevin damping
time constant, 1/j, is set to 100 ps.15 By 37 Langevin-
thermostats, the atoms in the cluster are thermally equ
brated at a given temperatureT.

III. RESULTS AND DISCUSSION

We first show in Fig. 2~a! an x–y trajectory of the clus-
ter’s center-of-mass for;1.5 ns at 500 K, and in Fig. 2~b!,
its x, y, and rotational (u) components. In Fig. 2~a! we find
that the cluster stick-slip-diffuses from the site A to the site
without apparent influence of the surface morphology~open
circles!. The diagonal lines in Fig. 2~b! represent flights of
the cluster. The oscillations about horizontal lines on rig
and left sides are stickings at the sites A and B. Some of
sharply curved parts in the slip-motion are also due to
sticking event~see the criterion given below for classifyin
sticking events!. The periodst of x, y, and u oscillations
shown on the right-hand side of Fig. 2~b! are 23, 24, and 16
ps, respectively, and consistent with the corresponding
ues of t;20 ps reported by the previous studies.4,5 This
stick-slip motion is basically identical to that obtained b
more realistic modelings, which demonstrates the validity
the present simplified model.

Figure 3~a! shows a 2000 ns (52 ms) x–y trajectory, and
Figs. 3~b!–3~e! its x component on four different spatio
temporal scales. Compared to the previous studies, the s
lation time of the present study is one order of magnitu
longer. ~Luedtke and Landman4 performed a 90 ns simula
tion and Lewiset al.,5 a 125 ns simulation, for static sub
strates.! From Figs. 3~c!–3~e!, we find self-similar stick-slip
behavior, characterized by horizontal lines~stickings! and
diagonal lines~flights!, which is also reported in the previou
studies.4,5 On the other hand, Fig. 3~b! as well as Fig. 3~a!
show the behavior on the time scale one order of magnit
larger than the previous studies. It is seen from the figu
6-2
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that the characteristic stick-slip behavior is almost lost.
other words, on large spatio-temporal scales, the fluctua
of the x component becomes close to an ordinary Brown
motion characterized by a Gaussian, which implies a cro
over from a Lévy-walk to a normal random walk.

Before going to the discussion about the MSD of the cl
ter, we examine whether the statistics of the stick-slip beh
ior have power-law nature indicative of a Le´vy-walk. To cal-
culate the flight time PDF,pf(t), and the sticking time PDF
ps(t), we divide the whole trajectory into a succession
sticking and flight intervals as in Refs. 14 and 4; for every
ps distanced(t i)5uR(t i2t/2)2R(t i1t/2)u is computed,
and if d(t i),dc , the event is then identified as a stickin
one. In the analysis, the sticking period (t) of 20 ps, and the
sticking amplitude (dc) of 0.6 Å, the same values as those

FIG. 2. ~a! 1.5 nsx–y trajectory of the cluster’s center-of-mas
at 500 K. The small open circles (s) represent the minimum po
tential energy sites (b-sites! in the periodic potential surface. Th
large closed circles represent the lowermost 37 atoms of the clu
(d). u is the cluster’s angle of rotation relative to the surfa
lattice. ~b! The variations inx, y, andu as a function of time.
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FIG. 3. ~a! 2 ms x–y trajectory of the cluster’s center-of-mas
at 500 K. The small closed dot represents the size of the clu
~b!–~e! The x component of the trajectory in four different spatio
temporal scales. The area in the small rectangle in~b! is expanded
to a full scale in~c!, and the like from~c! to ~d! and from~d! to ~e!.
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Ref. 4 are used. Flight events are then simply the interv
between the stickings. The PDF’s are determined from
tograms of the flight and stick durations. The histograms
normalized according to(np(tn)Dt51, where durationt is
rounded totn every 20 ps~5 histogram bin widthDt5t)
because of the uncertainty between sticking and flight ev
below t.

We show in Fig. 4 the histograms of the flight times~a!
and the sticking times~b!, obtained from the full dataset o
the 2000 nsx–y stick-slip diffusion~closed triangles! and its
portion of 200 ns~open inverted triangles!. Each figure indi-
cates a power-law relation for both the two datasets, dem
strating the temporal self-similarity of the stick-slip behav
in Figs. 3~c!–3~e!: pf(t);tm with m;2.0, andps(t);tn

with n;1.9. These exponents are a little different from t
results (m;2.3 andn;2.1) in Ref. 4 probably because o
differences in the size of the cluster and the interatomic
teractions. However, the overall reproduction of the char
teristic stick-slip diffusion is very good. This indicates eith
the validity of our simplified model or the presence of som
universal mechanism~such as, for example, self-organize
criticality16! which is independent of details of models.

As seen in Fig. 3~e!, the slopes of the diagonal lines a
always almost the same. This indicates that the flight spe
are almost the same and that they are constant during
flights. This allows us to suppose that the flight duration is
proportion to jump length ‘‘,,’’ i.e., the power-law relation of
pf(t) indeed indicates a power-law tail of a LDpf(,) with
no typical jump length, or characteristics of LW.

It should be noted that, fort. ns, there is a drop-off in
the flight time histogram obtained from the 2000 ns data
The drop-off, a transition from power-law decay to mu

FIG. 4. Histograms of flight timespf(t) ~a! and sticking times
ps(t) ~b!, calculated from the 2ms MD simulation ~closed tri-
angles! and its portion of 200 ns~open inverted triangles!. Histo-
gram bin width (Dt) is 20 ps~see text!. The flight times obey a
power-law probability density function;t2m with m;2.0, and
sticking times;t2n with n;1.9.
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faster~exponential! decay, is indicative of truncation of tail
of the LD. In self-diffusive cluster–surface systems, in
nitely long~-lived! jumps, which violate equipartion of en
ergy and thermalization with surfaces, are unrealistic a
unavoidably interfered by some fluctuation inherent in t
systems and decay, which is not the case foropensystems7

where energy is pumped in.
There seems to be no drop-off in the sticking time his

grams within the present simulation time of 2ms. This may
imply that the sticking time PDF can have an infinitely lon
tail, although the statistics could be still insufficient to clari
the point.

We show in Fig. 5~a! a log–log plot of the MSD calcu-
lated from the full dataset of the 2ms stick-slip trajectory in
Fig. 3~a!, and in Fig. 5~b! its slope, g5d log^@R(t1q)
2R(q)#2&q /d log t. When the slope is 2, it represents a b
listic motion, and the slope of 1 corresponds to an ordin
Brownian-type motion.~The increase in the fluctuation ofg
for t*104 ps reflects the fact that the data are less accura
large t because the number of samples for a statistical a
age overq decreases witht.! From the figures, we can see
crossover from superdiffusion (1,g,2) corresponding to
the Lévy-type power-law flight PDF fort& ns to normal
diffusion (g51) due to the truncation of the PDF fort

FIG. 5. ~a! Log–log plots of MSD’s for the Le´vy-type cluster
surface diffusion at 500 K and~b! the slopes,g, of the plots. The
solid curve was derived from the full dataset of the 2ms x–y
stick-slip trajectory in Fig. 3~a! and the dotted curve from the re
duced dataset consisting only of flight events in the full dataset.
solid lines with slopes of 2~ballistic! and 1~Brownian-type! in ~a!
are guides to the eyes.
6-4
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* ns. This is consistent with a visual inspection of the t
jectory for 1.5 ns in Fig. 2~a!: In time scales smaller than
maximum flight duration of; ns, TLW is seemingly iden-
tical to LW, and some trajectories are partially randomiz
while others are dominated by a long-correlated~linear! ex-
cursion, which results in superdiffusion (g.1). On the other
hand, in time scales larger than the maximum flight durati
almost all trajectories are randomized and this gives rise
the crossover to normal diffusion (g51). Statistically good
convergence tog51 requires long MD simulations. We ob
served that small datasets of;100 ns can sometimes exhib
no crossover to normal diffusion because of the lack of s
tistics.

The diffusion coefficientD(5^DR2(t)&/4t) of the cluster
is estimated to be 1.7531025 cm2/s from the linear part
(103 ps ,t,104 ps) in the MSD. This value is about te
orders of magnitude larger than those for other clust
surface systems such as compact Ir clusters on atomically
Ir surfaces.17 However, the value ofD is three orders of
magnitude smaller than estimated at 500 K from the den
of self-similar ramified-cluster-islands measured by TEM2

As discussed by Lewiset al.,5 this huge discrepancy is prob
ably mainly due to errors in the estimation of cluster dep
sition flux and in ‘‘deposition-diffusion-aggregation’’~DDA!
model’s assumptions to analyze experiments.2 Using realistic
many-body potentials, Lewiset al.5 reported 3.71 and 1.09
31025 cm2/s for dynamic and frozen substrates, resp
tively (g were estimated to be 0.9–1.2!, which strongly sup-
ports our result.

As was noted by Luedtke and Landman4 and references
therein, it is known that when mathematically genuine LW
with infinite variance coexist with stickings, diffusivity i
either anomalous~super- : 1,g,2; sub- : 0,g,1) diffu-
sion or normal diffusion (g51) depending on statistics o
us

v.

et

is
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the stickings (n) as well as the LW’s (m). On the other hand
the effect of stickings on the crossover to normal diffusi
due to being a TLW is unclear. To assess the effect, we m
a reduced (;68%) dataset which consists only of fligh
events@for d(t i).dc] out of the full dataset of 2000 ns to
calculate a MSD and itsg. The results~dotted lines! are
shown in Figs. 5~a! and 5~b!. The upward constant shift from
the solid line in Fig. 5~a! is due to the difference in averag
diffusion velocity. Figure 5~b! shows that the solid and dot
ted lines almost overlap fort.102 ps and this indicates tha
the crossover originates only from the truncation of flig
duration. From the discrepancy fort,102 ps, it can be seen
that the oscillation around a few tens of ps is due to lo
oscillatory sticking motion.

IV. CONCLUSION

To clarify long-time asymptotic behavior of Le´vy-type
stick-slip diffusion of a nanocluster bound weakly to a
atomically flat surface such as graphite, we have present
finite 2D Frenkel-Kontolova-type model with Langevin
thermostats and performed an extremely long 2ms molecu-
lar dynamics simulation. We have found that the statistics
jump ~flight! duration take a Le´vy-type power-law distribu-
tion truncated at about ns, which results in crossover fr
Lévy-type superdiffusion fort& ns to normal diffusion for
t* ns. We also found that that for relatively ‘‘short’’ (t
5200 ns) simulations the truncation cannot be obtained
cause of lack of statistical reliability. This indicates that t
correct long-time behavior probably cannot be obtained fr
short simulations.
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