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Electrodynamics in the near-field regions of anisotropic nanoscopic films and platelets
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An electromagnetic theory of valence electron excitations by an external electron beam in the near field
regions of uniaxial anisotropic nanoplatelets is presented. It is shown that in an interface of high symmetry
~i.e., perpendicular to the symmetry axis! only extraordinary waves can be excited by the electron beam,
usually as surface-plasmon-polariton modes. However, the anisotropy also allows excited extraordinary waves
to propagate as waveguide modes. In an interface of low symmetry a mixture of both waves is inseparably
excited. Application is made to directional near-field electron energy loss spectroscopy of uniaxial dielectric
nanoplatelets. It is found that all relevant length parameters in this spectroscopy happen to fall in the same
range, giving rise to enhanced sensitivity of the electron energy loss~EEL! signal to the size and geometry of
the detected nanoparticle. The breakdown of momentum conservation in the electron-plasmon scattering event,
associated with the finite size of the platelet along the beam direction, strongly changes the EEL signal pattern.
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I. INTRODUCTION

The electronic properties of conducting and semicondu
ing materials with restricted dimensions on a nanome
length scale have attracted much attention recently. Var
spectroscopical techniques for investigating the electro
structure of these materials have been developed. In par
lar, the excitation of electromagnetic~EM! waves in crystal-
line nanoparticles by external high energy electron beame
beams! have been exploited to study unique aspects of
valence electron properties in these nanostructures.1–4.

In a special configuration available in scanning transm
sion electron microscopes~STEM!, where thee beam is re-
stricted to the vacuum surrounding a selected nanoparti3

the beam-particle interaction is determined by those mo
which generate nonvanishing electric fields outside the p
ticle boundaries. The dominant coupling in the near-field
gions is, therefore, with nonradiative collective oscillatio
such as surface plasmons, surface plasmon-polaritons~SPPs!
or wave-guide modes.5 With beam electrons of relativistic
velocity, i.e.,v;0.5c, typical to these microscopes, the cha
acteristic wavelength,l;v/v, of an EM excitation with fre-
quencyv is in the range of 10 nm, where the SPP mod
have a strong spatial dispersion. As shown below, this uni
feature of the spectroscopical technique under considera
enables a very sensitive detection of geometrical and
effects of the nanocrystal via selection of impact parame
and beam-object orientation.

The problem of collective EM excitations in anisotrop
media with restricted dimensions is of general interest
comprehensive study of surface plasmons propagating a
boundary of a semi-infinite isotropic dielectric medium a
in a thin isotropic film was carried out by Raether.5,6 An
adequate theoretical description of surface plasmon ex
tions in a nanoplatelet, taking into account retardation
fects, material anisotropy, and the platelet finite dimensio
requires a solution of Maxwell equations for an anisotro
medium with the account of the corresponding bound
0163-1829/2003/67~8!/085401~12!/$20.00 67 0854
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conditions and the external current distribution. In the ge
eral case, this is a very complicated mathematical prob
due to the boundary conditions on surface intersections,
to the asymmetry between the various surfaces, dictated
the anisotropy of the medium, the latter giving rise, for e
ample, to the existence of ordinary and extraordinary wa
in a uniaxial symmetry.7 To our best knowledge, such a com
prehensive electrodynamic theory of the surface collec
modes has not been published yet. Lucaset al.8 presented a
dielectric model for calculating the electron energy loss sp
tra of multishell fullerenes. This work focused on geomet
cal and size effects, neglecting, however, dielectric anis
ropy and retardation effects. A more recent wor9

investigated nonradiative SPP in metal-cladded isotropic
electric cylinders, using fully retarded calculations. Som
relevant theoretical considerations can also be found in
cent experimental papers published by the Orsay group
collaborators,10–13who focused mainly on probing radial an
tangential plasmon modes in layered nanospheres and n
tubes by near-field electron-energy loss spectroscopy.3 How-
ever, their theoretical approach neglected EM retardation
quantum effects.

In the present paper we develop a theory for EM surfa
and wave-guide modes in an anisotropic~uniaxial! dielectric
film. The EM theory is applied to the calculation of the ele
tron energy loss~EEL! function of nanoplatelets in the nea
field configuration, at two different orientations of thee
beam with respect to the nanoparticle~see Fig. 1,z and yn
scans!.

We find that under certain conditions the dielectric anis
ropy introduces additional energy gaps into the SPPs b
structure. In these energy gaps SPPs transform into gu
modes. The unique feature of these modes is that, unlike
ordinary wave-guide modes existing in isotropic films, th
have a longitudinal electric field component, which allow
coupling with an externale beam. These anisotropy-induce
excitations tend, however, to wash out upon introduction
realistic damping parameters. On the other hand, a str
©2003 The American Physical Society01-1
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sensitivity of the near-field spectroscopy to size and g
metrical effects is found when the impact parameter
proaches the corresponding particle dimensions and both
comparable with the inverse momentum transfer between
beam electron and the SPP.

The paper is organized as follows. The general formal
is presented in Sec. II. In Sec. III we analyze the surface
normal modes of an anisotropic dielectric film by solving t
homogeneous parts of the corresponding Maxwell’s eq
tions. In Sec. IV the dielectric tensor is calculated in t
framework of the electronic shell model, and the dispers
relations of the various SPP modes are derived. In Sec. V
inhomogeneous boundary problem is solved for two disti
configurations of the external narrowe beam with respect to
the anisotropic dielectric film. In both cases field amplitud
are calculated and analytical expressions for the electron
ergy loss function are obtained. A comparison of the the
with experimental data taken for MoS2 nanoplatelets is also
presented in Sec. V.

II. GENERAL FORMALISM

Consider the response of a dielectric film to an exter
high frequency EM field. The bulk crystal is described by
uniaxial dielectric tensor« ik(v), written in the principal
axesx,y, andz as

«xx5«yy[«'~v!5Re«'~v!1 i Im «'~v!,
~1!

«zz[« i~v!5Re« i~v!1 i Im « i~v!.

Two different film orientations are distinguished by the m
dium symmetry axis, namely thez axis ~see Fig. 1!: in the
first the film is bounded by the planesz56c* , perpendicu-

FIG. 1. A schematic illustration of various beam configuratio
relative to a rectangular uniaxial anisotropic platelet (e-beam direc-
tions are indicated by the bold arrows!. z scan: thee beam is above
a surface normal to the symmetryz axis. yn and yp scans: thee
beam is above a surface normal to they axis, and normal~n! or
parallel~p! to the symmetryz axis, respectively. The platelet dimen
sions are 2a* 32b* 32c* . b is the distance between thee beam
path and the surface~the impact parameter!.
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lar to symmetry axis, while in the second case the film fa
are parallel toz, e.g., aty56b* . The external charge an
current distributions,r(r ,t) and j (r ,t), respectively, which
generate the EM field, are assumed to vanish inside the fi
so that the fields can be described by the inhomogene
macroscopic Maxwell equations

curlE„r,t …5Àm0

]H~r,t !

]t
, ~2!

curlH~r,t !5 j ~r,t !1
]D~r,t !

]t
, ~3!

divD~r,t !5r~r,t !, ~4!

divH~r,t !50, ~5!

with the appropriate boundary conditions at the film surfa
z56c* ~or y56b* ). Here E„r,t …,H(r,t), D(r,t) are the
vectors of the electric, magnetic and electric induction fiel
respectively. We assume the film to be nonmagnetic, so
the magnetic induction can be written asB5m0H.

In the linear response approximation the time Four
transforms of the electric induction and the correspond
electric field with frequencyv are connected by the materia
equations inside the anisotropic crystalline film,

Di~r ,v!5«0« ik~v!Ek~r,v!, ~6!

whereas outside the film~which is assumed to be a fre
space!

Dout~r,v!5«0Eout~r,v!. ~7!

The solution of Maxwell equations outside the film can
facilitated by using the Hertz vector formalism.14–16 The
Hertz vectorP(r,v), outside the film satisfies the equation14

¹2P~r,v!1
v2

c2
P~r,v!5

1

iv«0
j „r,v), ~8!

so that the corresponding electric and magnetic fields can
written as

Eout
„r,v)5graddivP~r,v!1

v2

c2
P~r,v!, ~9!

Hout
„r,v)5Àiv«0curlP~r,v!. ~10!

The electric field inside the anisotropic crystalline film
determined by the wave equations

curlcurlE„r,v)52
v2

c2
«0« ik~v!Ek„r,v). ~11!

For a uniaxial crystal Eq.~11! has two essentially differ-
ent solutions: an ordinary wave (o wave!, with electric field
Eo

„r,v…, and an extraordinary wave (e wave!, with
Ee

„r,v….7 Theo wave is polarized in the plane perpendicul
to the symmetry axis, and it is purely transverse, so t
1-2
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divEo50. Thee wave satisfies the condition divDe50 and
has a component parallel to the symmetry axis. In the n
relativistic limit v/c→0 the o wave vanishes, while thee
wave reduces to a purely longitudinal one, determined by
equation curlEe50. Consequently, the electric and magne
fields inside the anisotropic film can be written as a super
sition of extraordinary and ordinary waves:

E„r,v)5Ee
„r ,v)1Eo

„r,v), ~12!

H„r,v)5He
„r,v)1Ho

„r,v). ~13!

III. SURFACE PLASMON POLARITON MODES IN A
UNIAXIAL ANISOTROPIC DIELECTRIC FILM

In the linear response approximation all EM excitatio
can be obtained from the homogeneous Maxwell’s equatio
We first consider the case when the film surfaces are per
dicular to the symmetry axis~the z axis!. In the absence o
external current the solution of Eq.~8! can be represented a
a Fourier integral:

P~r,v!5E
2`

`

dkxE
2`

`

dky exp@ i ~kxx1kyy!# ~14!

3P~z,kx ,ky ,v!. ~15!

In the regions outside the film~at z.c* and z,2c* ; see
Fig. 1!, Py(z,kx ,ky ,v)50, and the other components ha
the form

S Px~z,kx ,ky ,v!

Pz~z,kx ,ky ,v!
D 5S A1,2

B1,2
D exp@7az~z7c* !#, ~16!

where the extinction coefficientaz in the free space is given
by

az5Ak22
v2

c2
, k2[kx

21ky
2 . ~17!

From Eqs.~9! and~10! we obtain the tangential field com
ponents outside the film:

Ex
out5 ikx

]Pz

]z
1PxS v2

c2
2kx

2D , ~18!

Ey
out52kxkyPx1 iky

]Pz

]z
, ~19!

Hx
out5v«0kyPz , ~20!

Hy
out52v«0kxPz2 iv«0

]Px

]z
. ~21!

Inside the film thee wave has the electric and magne
field components

Ez
e~z,kx ,ky ,v!5Ae exp~qz

ez!1Be exp~2qz
ez!, ~22!
08540
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Ex
e5 ikx

« i

k2«'

]Ez
e

]z
, ~23!

Ey
e5 iky

« i

k2«'

]Ez
e

]z
, ~24!

Hx
e5kyEz

e v«0« i

k2
Ez

e , ~25!

Hy
e52kx

v«0« i

k2
Ez

e , ~26!

where

qz
e5A«'

« i
Fk22

v2

c2
« iG . ~27!

The e-wave normal componentEz
e supports the surface

induced charges atz56c* .5 Theo wave is polarized only in
the xy plane ~i.e., parallel to the film surface!. It has the
following field components

Ex
o~z,kx ,ky ,v!5Ao exp~qz

oz!1Bo exp~2qz
oz!, ~28!

Ey
o52

kx

ky
Ex

o , ~29!

Hx
o52 i

1

vm0

kx

ky

]Ex
o

]z
, ~30!

Hy
o52 i

1

vm0

]Ex
o

]z
, ~31!

where

qz
o5Ak22

v2

c2
«' . ~32!

The continuity of the tangential componentsEx,y andHx,y
at the surfacesz56c* results in a system of eight equation
which has a non-trivial solution for thee wave and for theo
wave, provided the following conditions are satisfied, resp
tively:

2qz
eaz«' coth~2qz

ec* !1~az«'!21~qz
e!250, ~33!

2qz
oaz coth~2qz

oc* !1az
21~qz

o!250. ~34!

Due to the symmetry of the film~ with respect to the
central planez50), these equations can be factorized, e
in the case of thee wave @Eq. ~33!#, into two independent
equations, which determine the dispersion relations of
SPP modes, having either symmetric or antisymmetric fi
profiles, respectively:

«'az1qz
e tanh~qz

ec* !50, ~35!
1-3
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«'az1qz
e coth~qz

ec* !50. ~36!

Equation ~34! for the o wave has no real solutions fo
az.0,qz

o.0, implying that theo wave is not a surface EM
mode. It can propagate, however, within the film as a wa
guide mode, as will be shown below. The various possib
ties of wave-guide modes can be examined by allowingqz

o

andqz
e to be purely imaginary, and assuming real dielect

functions@Eqs.~1!#. For ano wave,qz
o5 i uqz

ou under the con-
dition

«'.k2c2/v2, ~37!

whereas for ane waveqz
e5 i uqz

eu, provided

« i.k2c2/v2,
«'

« i
.0 ~38!

or

« i,k2c2/v2,
«'

« i
,0. ~39!

The latter condition corresponds to the strong anisotr
situation, when the dielectric function components«' and« i
have opposite signs in a certain frequency range.

The dispersion relations~34!–~36! for purely imaginary
qz

o andqz
e reduce to the well-known dispersion relations f

symmetric and antisymmetric guided modes.17 The guidedo
wave can exist only for«'.0 ~see Eq.~37!!, whereas the
guidede-wave can exist for both«'.0 and«',0, depend-
ing on the sign and magnitude of« i , as seen in Eqs.~38! and
~39!. The latter property results in a series of alternat
energy bands of wave-guide and SPP modes, due to the
plicated frequency dependence of the dielectric function@Eq.
~1!# ~see Sec. IV!. In realistic situations the dielectric func
tion in the frequency range of interest here is a comp
function, and so anye wave develops both evanescent a
oscillatory fields inside the film, so that the distinction b
tween SPP and guided modes is not very clear.

Now consider the case when the film faces are paralle
the symmetry axis. The electric and magnetic fieldsEo, Ee

andHo, He, inside the film,uyu,b* , are given, respectively
by

Ey
o~y,kx ,kz ,v!5Ao exp~qy

oy!1Bo exp~2qy
oy!, ~40!

Ex
o5 i

1

kx
qy

oEy
o , Ez

o50, ~41!

Hx
o52

kz

vm0
Ey

o , Hy
o5 i

kz

vm0kx

]Ey
o

]y
, ~42!

Hz
o5

1

vm0kx
S v2

c2
«'2kz

2D Ey
o ~43!

and

Ez
e~y,kx ,kz ,v!5Ae exp~qy

ey!1Be exp~2qy
ey!, ~44!
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Ex
e5

kxkz

kz
22~v2/c2!«'

Ez
e , ~45!

Ey
e52

ikz

kz
22~v2/c2!«'

]Ez
e

]y
, ~46!

Hx
e5 i

«'

vm0

~v/c!2

kz
22~v2/c2!«'

]Ez
e

]y
, ~47!

Hy
e5

kx

vm0

~v/c!2

kz
22~v2/c2!«'

«'Ez
e , Hz

e50, ~48!

where

qy
o5Akz

21kx
22

v2

c2
«', ~49!

qy
e5A« i

«'

kz
21kx

22
v2

c2
« i. ~50!

Here, in contrast to the previous case, bothe and o waves
have a component perpendicular to the film facesy56b* ,
and can support surface plasma modes.

The Hertz vector components in the regionsb* ,y and
y,2b* are given, respectively, by

S Px~y,kx ,kz ,v!

Py~y,kx ,kz ,v!
D 5S A1,2

B1,2
D exp@7ay~y7b* !#, ~51!

andPz(z,kx ,ky ,v)50, where

ay5Akx
21kz

22
v2

c2
. ~52!

In the general case the boundary conditions for the e
tric and magnetic field componentsEz ,Dy5«'Ey ,Hz and
Hy at the facesy56b* yield a system of eight linear equa
tions, analogous to the eight equations obtained atz56c*
above. However, here in contrast to the previous case, te
ando waves cannot be separated due to symmetry brea
in the y direction. For this reason, only a mixture ofe ando
surface modes can be excited. An explicit solution, thou
very complicated, can be derived in such a case. It ha
relatively simple form in the limiting case of a semi-infinit
sample, withb* →`. The resulting system of four linea
homogeneous equations has a nontrivial solution when:

D~qy
o ,qy

e!50, ~53!

with

D~qy
o ,qy

e![2~qy
o!42~qy

o!3ay1~qy
o!2~kx

22kx
2«'2«'qy

eay!

1qy
o~kx

2ay1kx
2«'qy

e2«'qy
eay

2!1kx
2«'ay

2

1«'qy
eaykx

2 . ~54!
1-4
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Expression~53! is the dispersion relation for such a hybr
mode.

IV. DISPERSION RELATIONS

In this section our main purpose is to gain deeper insi
into the nature of those SPP modes which can propagate
face of a uniaxial anisotropic dielectric film. This can b
achieved by studying in detail the dispersion relations of
various modes. We use a simplified dielectric function, ba
on the electron shell model, first proposed by Dick a
Overhauser18 and later elaborated by sever
researchers.19–23 In this model the relevant charge oscill
tions is considered as displacements of the center of gra
of the valence electronic shell with respect to the ion co
and the frequency and wave vector dependent dielectric
sor is calculated in the harmonic approximation for the
displacements. The characteristic wavenumber of the ex
tions in the STEM-EEL spectroscopy under consideration
aroundv/v, which is about 10 nm~for electron beam ve-
locities v/c50.54–0.77, corresponding to 100–300-ke
e-beam energies!#. Thus one can use the so called ‘‘loca
(k\0), or ‘‘optical’’ dielectric function expressed in th
principal crystallographic axes of the uniaxial crystal,a
5x,y,z, as

«aa~v!511(
j 51

3n vp,a
2 ~ j !

vb
2~ j !2v22 ivGb~ j !

, ~55!

where vp,a( j )5vp,a(k\0,j ) is the effective long wave-
length plasmon frequency at thej-th electronic branch (j
51,2, . . . ,3n; n is the number of atoms in a unit cell!. There
are 3n electronic branches with bound frequenciesvb( j ),
and the corresponding damping parameters are:Gb„j ).

Restricting ourselves to the low-lying electron branch
we further simplify the analysis by using only three oscil
tors. For the uniaxial medium studied here there are only
independent components for the dielectric tensor:«zz[« i
and «xx5«yy[«' . The anisotropy is introduced via th
plasmon frequencies only, while the bound frequencies
the damping parameters are assumed to be the same for
components. The three-oscillator model dielectric tensor
ploited in the calculation below@see Figs. 2 and 3~a!# pro-
vides a reasonable reproduction of the 2H-MoS2 experimen-
tally derived function.

Dispersion relations for the various SPP modes can
obtained now by solving Eqs.~35! and ~36! under the addi-
tional constraintsaz.0 and@qz

e(v)#2.0, which ensure tha
the electric field associated with the corresponding cha
oscillations decays on both sides of the film face. In the lim
where all the damping parametersGb( j ) vanish so that the
dielectric functions are purely real bothaz

2(v) and

@qz
e~v!#25~«' /« i!@az

2~v!2~v/c!2~« i21!# ~56!

should be positive for all the SPP frequenciesv located be-
low the light line ~LL !, v5ck @or az(v)50].

To study the effect of anisotropy let us first consider t
semi-infinite limit c* →`. In this case both Eqs.~35!, and
08540
t
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e
d
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ity
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e
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is

,

o

d
oth
x-

e

e
it

~36! reduce to the equation«'az1qz
e50, which should be

solved under the condition (qz
e)2.0. The solution for the

extinction coefficient is:az
252(v/c)2(« i21)/(«'« i21)

and correspondingly (qz
e)25(«'az)

2. The dispersion rela-
tions following from this solution, k25(v/c)2« i(«'

21)/(« i«'21), for our model dielectric tensor@Fig. 3~a!#,
are shown in Fig. 3~c!. The corresponding dispersion rela
tions for the isotropic case,«'5« i , are shown in Fig. 3~b!.
The salient feature of the dispersion lines obtained in
anisotropic situation is the emergence of a split-off subba
at the LL (az50) from each main band, except for the to

FIG. 2. Frequency dependent dielectric tensor representin
uniaxial anisotropic crystal in the electronic plasma oscillations
gion: ~a! «xx[«' and~b! «zz[« i . Calculations are according to th
three-oscillator shell model@Eq. ~55!# with oscillator parameters
bound frequenciesvb(1)[v152.5 eV, v254.9 eV, and v3

512 eV and damping constantsGb(1)[G151.1 eV, G253.1 eV,
and G356 eV, plasma frequencies:~a! vp,x(1)[vx158 eV, vx2

512.5 eV, and vx3517 eV ~b! vp,z(1)[vz156.5 eV, vz2

59 eV, andvz3522.5 eV. Note that the calculated dielectric fun
tions resemble those derived experimentally for 2H-MoS2, reported
in ~Ref. 25!.
1-5
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FIG. 3. Dispersion relations of nonradiative, symmetric (s* ,w* ), and antisymmetric (s,w) SPP and wave-guide modes, respectively,
uniaxially anisotropic dielectric film@with thickness 2c* 540 Å ~e!#. The dielectric tensor used in the calculations shown in~a! is identical
to that presented in Fig. 2 with all damping parameters set equal to zero. Frequency and wave-number scales are given in uvn

510 eV andkn5vn /c, respectively;vup in ~a! corresponds to the maximum of the upper dispersion branch in~e!. The corresponding
dispersion lines in an isotropic film are shown in~d!. The limiting case of a semi-infinite slab is shown in~b! and~c!. Note that the bound
frequenciesv1,2,3, shown by long-dashed lines, determine the lower edges of the SPP bands. Also note the emergence of a split-of
from the main SPP band in~c!, and the related anisotropic splittings in~e!. The enlarged portion of the low-lying band is shown in the inse
The light line,v5ck, and thee-beam line,v5vk are indicated by LL ande-L respectively. Also note the continuous connection betwe
SPP and wave-guide subbands within any branch belonging to a given symmetry.
o
er

it,
g

n

he
one, at frequencyv, where« i51, corresponding to a zer
of qz

e @see Eq.~56!#. The subband terminates at a second z
of qz

e , where«'50.
Returning to the finite slab, the long wavelength lim

qz
ec* &1, turns out to be quite useful. Approximatin

tanhx'x, and cothx'1/x1x/3, the solution of Eqs.~35! and
~36! yields the following implicit forms of the dispersio
relations:

k25S v

c D 2

1@az
s,a~v!#2, ~57!
08540
o
where

az
s~v!5

« i

2c*
H 216F11S v

c
c* D 2S 2

« i
D 2

~« i21!G1/2J
~58!

is the solution for the extinction coefficient obtained from t
symmetric branch of the dispersion relation@Eq. ~35!# and
1-6
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az
a~v!5

3« i

2c*
H 216F11S v

c
c* D 2S 2

3« i
D 2

~« i21!

2
4

3« i«'
G1/2J ~59!

is the extinction coefficient derived from the antisymmet
branch@Eq. ~36!#. Note that the branch-point of the squar
root in either Eq.~58! or ~59! occurs at a maximum of the
corresponding dispersion curve@see Figs. 3~d! and 3~e!#.

We may now distinguish between essentially two differe
frequency regions, depending on the relative signs of« i and
«' , as explained below Eqs.~38! and ~39!.

In the first case, where both«' and« i are negative, i.e.
«' /« i.0, the dispersion lines follow essentially the we
known band structure of an isotropic medium, shown in F
3~d!, where bands of~symmetric and antisymmetric! wave-
guide modes appear in energy gaps of SPP modes. T
guided-wave modes are always restricted to the close vi
ity of the LL, az50.

In the second case, where«' /« i,0, the anisotropy is
essential, that is, the isotropic limit can not be approac
without crossing a zero of either«' or « i . As can be seen
from Eqs. ~56! and ~59!, in the frequency range wher
« i(v).0 and «'(v),0 @in Fig. 3~a! see the anisotropic
band#, the wave-guide modes can exist at largek, away from
the LL @see the wave-guide mode branchesw in Fig. 3~e!,
corresponding to the antisymmetric branch of the dispers
relations, Eq.~36!#. These anisotropy-induced modes ha
strong polarization character and can be coupled effectiv
to the external electron via its exponential tail outside
film ~see Sec. V!.

All dispersion lines shown in Figs. 3 are restricted to t
region lying below the LL,az50, corresponding to nonra
diative modes. Mathematically speaking, one may carry
an analytical continuation of the algebraic equation~57!, into
the regionaz

2,0, which yields radiative modes, lying abov
the light-line in Fig. 3~see Sec. V!.

The SPP dispersion relations described above are of g
importance because of the high~relativistic! velocity of the
e-beam, which sets the scale of the electron-plasmon
mentum transfer along the beam direction atkx5v/v
;v/c. This situation is illustrated in Fig. 3, where in add
tion to the LL, v5ck, the so called ‘‘e-beam line’~e-L!,
v5vk, is shown. The close proximity of these lines, typic
to the experiments, implies that the excitation by thee-beam
occurs at the strongly dispersive region of the SPP mo
their characteristic wavelength coinciding with the nano
eter dimensions of the particle, thus providing enhanced s
sitivity of the spectroscopy to particle geometry and size~see
Sec. V!.

V. APPLICATION OF THE ELECTRODYNAMIC THEORY
TO NEAR-FIELD EELS

The general EM theory, developed in the previous s
tions, can now be applied to a concrete physical situation
the energy loss processes probed by a converging ST
electron beam. It is customary to use for the correspond
08540
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spectral loss function the standard expression~see, e.g., Ref.
14!, derived under the assumptions that the path of the be
electron is classical and rigid~i.e., not affected by the inter
action with the dielectric medium!. These assumptions ar
clearly violated in some interesting cases~see below!. Let us,
for the sake of simplicity, ignore such quantum mechani
effects for a moment. Thus, within the framework of th
classical approach, the total power lossDW of the beam
electron, moving along thex axis, which is assumed to b
parallel to an infinite object face, is given by

DW5eE
2`

`

vdtEx@re~ t !,t#, ~60!

where re(t)5(vt,0,b) is the position vector defining the
electron classical trajectory,v and (2e) are the electron ve-
locity and charge respectively. The corresponding differen
power loss, per unit path length per unit loss ener
d2P/dvdx, is given bydDW/dx5*0

`dv\v(d2P/dvdx).14

We start with the situation when the symmetry axisz is
perpendicular to the exposed platelet face. The current d
sity associated with thee beam,

j x~r ,t !52evd@z2~c* 1b!#d~y!d~x2vt !, ~61!

corresponds to an electron propagated at a distanceb ~ the
impact parameter! above the nanoplatelet facez5c* with
velocity v along thex axis.

To apply the theory developed above for a finite recta
gular platelet we restrict the beam position to the spa
region near a platelet face, and sufficiently far from its edg
where the influence of the corners can be neglected. Un
these circumstances one may be allowed to use the se
tion of variables method employed in the implementation
the boundary conditions in Sec. III.

To find the component of the electric field,Ex(r,t), re-
sponsible for the power loss at the beam positions, we sho
now solve the system of equations for the coefficientsA and
B ~obtained from the boundary conditions atz56c* ),
which include the particular solution of inhomogeneo
equations~8!,

Px
ext~z,kx ,ky ,v!5

pev
iv«0az

d~kxv2v!

3exp@2azuz2~c* 1b!u#, ~62!

associated with the current density@Eq. ~61!#. The coeffi-
cientsA1 andB1 are the only ones needed for the calcu
tion of the loss function@Eq. ~60!#.

Combining Eqs.~18!,~9!,~16!, and~51!, and the calculated
values ofA1 and B1 , and substituting into Eq.~60!, one
obtains the following expression:
1-7
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d2P(z)

dvdx
5

e2

2p2«0v2\
E

0

`

dky ImH exp~22azb!3
az

k2
3H F1

2
k2

az
2 S 12

v2

c2D G az
22qz

o2

2qz
oaz coth~2qz

oc* !1az
21~qz

o!2

1
~«'az!

22qz
e2

2«'azqz
e coth~2qz

ec* !1~«'az!
21~qz

e!2J J .

~63!

Note that in deriving this expression we have taken
vantage of the time reversal symmetry of the dielectric
sponse function, implying that the integrand is even inky ,
and that the dielectric tensor components satisfy« ik(2v)
5« ik* (v). In the limiting case of a semi-infinite isotropi
medium, Expression~63! coincides with that derived in Ref
14. When each of the two denominators appearing in
~63! vanishes there is a resonant contribution to the l
function corresponding to excitation of a collective E
mode by thee beam. The corresponding conditions coinci
with the dispersion relations, Eqs.~33! and ~34!, and their
separated appearance in Eq.~63! reflects the separability o
the ordinary and extraordinary waves propagating along
surface normal to the symmetry axis. It should be not
however, that only thee wave can satisfy the resonance co
dition for a surface mode~see the discussion in Sec. III!.

A similar procedure, though more involved, yields for t
valence electron excitation in a slab parallel to the symme
axis, and ane beam corresponding toj x(r,t)52evd@y
2(b* 1b)#d(z)d(x2vt),

d2P(y)

dvdx
5

e2

2p2«0\v2E0

`

dkz ImH exp~22ayb!

3H 2S 12
v2

c2D A~qy
o ,qy

e!

ayD~qy
o ,qy

e!

1
2ay@qy

o22«'qy
eqy

o1kx
2~«'21!#

D~qy
o ,qy

e!
J J , ~64!

whereD(qy
o ,qy

e) is determined by expression~54!, and

A~qy
o ,qy

e!5~qy
o!42~qy

o!3ay1~qy
o!2~2kx

21kx
2«'1«'qy

eay!

1qy
o~kx

2ay2kx
2«'qy

e2«'qy
eay

2!1kx
2«'ay

2

2«'qy
eaykx

2 . ~65!

In the special case of isotropic medium,qy
o5qy

e5qy , in the
nonrelativistic limit, Eq. ~64! reduces to a well known
expression14.

An interesting situation may be realized experimenta
when the nanoplatelet dimension along one direction, say
z axis, is small compared to the characteristic wavelen
c/v, and much smaller than along the other ones, such
b* @c* . Hence for thee beam in az-scan configuration the
boundary conditions aty56b* are not very important, and
08540
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the allowed values ofky can be considered as quasicontin
ous sinceDky;1/b* !kx even in the low energy region.

However, in ay-scan configuration, where the expos
platelet face has a small dimension~i.e., along thez axis!, the
boundary conditions atz56c* should be considered mor
carefully. These conditions stem from the continuity ofEy

o

and Hx
o at z56c* , which yield, e.g., for the symmetric

branch, the confinement condition

tankzc* 5
Akx

21 l y
o22~v2/c2!

kz
, ~66!

wherel y
o5Im qy

o5(v/A2c)$@K̃41(Im «')2#1/22K̃2%1/2, and

K̃2[(c/v)2(kz
21kx

2)2Re«' . In the nonrelativistic limit,

K̃2@1, this condition reduces to tankzc* 'Akxc*
'A(v/v)c* , which imposes quantization on the possib
values ofkz . For a sufficiently thin film such that (v/v)c*
!1, the smallest possible value ofkz is

kz,min'
1

c*
S v

v
c* D 1/2

.

This implies that the integral overkz in Eq. ~64! for the loss
function in they-scan configuration should be replaced by
discrete sum, starting with the minimal valuekz,min . The
resulting cutoff of the corresponding extinction coefficie
ay significantly alters the dependence of the loss function
b with respect to that obtained in thez-scan configuration24

~see Sec. VI!.
Applying the model dielectric function@Eq. ~55!# ~as

specified in Fig. 2! to the above expressions for the lo
function in both thez- and y-scan configurations, it is now
possible to study in detail theb dependence of the EEL spec
trum of nanoplatelets, which is capable of revealing vario
EM quantum size effects. For example, the developmen
the well known surface plasmon splitting, due to the inter
tion between two opposite faces of the platelet,6 can be de-
tected just by varying the impact parameter. The idea is
lustrated in Fig. 4, by plotting the loss function of a th
platelet for values of the impact parameterb, varied through
the value of the platelet thickness 2c* . The high energy
broad band around 18 eV gradually splits into two resolv
lines asb increases.

This dependence on the impact parameterb reflects a fil-
tering effect in momentum space of the exponentially dec
ing factore22azb, which suppresses contributions of SPPs
the loss processes with wavelengths shorter than 2b. Thus,
for b,c* , large values ofk, at which the size splitting is
significantly reduced@see Fig. 3~d!#, dominate the loss func
tion. For larger values ofb only small values ofk, for which
the splitting is pronounced, contribute significantly to t
loss function, thus resulting in larger splitting energy.

It should be noted that for many realistic materials t
effect of the dielectric function anisotropy on the loss fun
tion in the energy range of interest here is not very importa
This is mostly due to significant interband transitions, resu
ing in large damping parametersGb( j ). To study the effect
of this damping the loss function shown in Fig. 4~a! for
1-8
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impact parameterb530 Å is recalculated for unrealisticall
small values of the damping parameters. As expected@see
Fig. 5~a!#, all major peaks in the loss function are correlat
very well with the asymptotic~high density of states! sectors
of the corresponding dispersion lines shown in Fig. 3~e!. For
a thicker film, where the finite size effects are suppressed
anisotropy-induced split-off subband, discussed at the en
Sec. IV, is clearly seen, yet at small damping only, as sho
in Fig. 5~b!. For the realistic values of the damping para
eters this splitting is practically washed out.

An important, qualitatively different, size effect arise
from the platelet finite dimension along thee-beam direction
(x axis; see Fig. 1!. The delta functiond(kxv2v), appear-
ing in Eqs.~63!, reflects the requirement of conservation

FIG. 4. Thek-space filtering effect, demonstrated by the dev
opment of SPP splitting as a function of the impact parameterb, in
the range where it is comparable to corresponding object dim
sions ~see the text!. Calculated loss functions are based on~a! a
three-oscillator dielectric function~see Fig. 2! and~b! optically de-
rived dielectric function of 2H-MoS2 ~Ref. 25!. The film thickness
is 2c* 540 Å and the beam electron velocity isv50.54c.
08540
he
of
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f

momentum along the beam direction in the electron-plasm
scattering. This constraint is inherent to the rigid classi
trajectory model used above for the beam electron, wh
ignores the momentum uncertainty originating from the fin
size of the target object. This effect can be introduced i
the classical theory by replacing the strict delta function w
a continuous distribution function of (kxv2v). The form of
this distribution can be determined by comparing the cla
cal expression for the loss function@Eq. ~63!#, to that derived

-

n-

FIG. 5. Electron energy loss~EEL! in isotropic (« i5«') and
anisotropic (« iÞ«') films with small and large damping param
eters~indicated by SD and LD, respectively!. In ~a! the film thick-
ness is 2c* 540 Å and the only apparent effect of the anisotropy
in enhancing the finite-size splitting of the high energy SPP b
@compare Figs. 3~d! and 3~e!#. In ~b! the film thickness is 2c*
5200 Å, and the anisotropy leads to a significant splitting of t
intermediate band, which is completely washed out by the la
damping parameters. The other parameters areb530 Å and v/c
50.54. The small damping~SD! situation was calculated with 25%
of the large damping~LD! constants~used in Fig. 2!. Note the
remarkable correlation between peak positions and the high de
of states (dk/dv) regions in the dispersion lines shown in Fig. 3~e!.
1-9
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in Ref. 3 by means of a full quantum mechanical approa
Thus we write

d2Pqu

dvdx
5

a*

p E dkx$sinc@~kx2v/v !a* #%23
d2Pcl~kx!

dvdx
,

~67!

wherePcl(kx) is the classical expression, given by Eq.~63!
and sinc(qa* )[(1/a* )*2a*

a* exp(iqx)dx5sin(qa* )/(qa* ).
Evidently, in the limit a* →`, the distribution
(a* /p)sinc2(qa* ) tends to a delta function and Eq.~67!
reduces to the classical result@Eq. ~63!#. In Fig. 6 the influ-
ence of this quantum mechanical correction on the loss fu
tion is illustrated for thez-scan configuration of thee beam.

It is seen that the breakdown of the strict momentum c
servation condition along the beam direction, as expres
by Eq. ~67!, suppresses the power loss of thee beam to
excitations of internal degrees of freedom of the platelet,
to momentum transfer to the platelet as a whole. Eviden
the skeleton of this quantum smearing effect is recognize
a classical recoil effect. The reduction of the EEL intens
becomes particularly strong in the energy region nearv
;v/a* , where the momentum smearingDkx;1/a* ap-
proaches the characteristice-beam line momentumv/v.
Thus, by varying the platelet sizea* the shape of the entire
electron loss spectrum changes drastically as compared t
classical one. Note the substantial reduction of the EEL
tensity in the low energy region even for films as thick
2a* *1000*Å, which reflects the long range nature of th
electron-plasmon interaction at the low energy branches
the e-beam line~see Figs. 3!.

Finally, it should be noted that for sufficiently small va
ues of a* there would be significant contributions to th

FIG. 6. Calculated loss functions for a 2H-MoS2 nanoplatelet in
a z-scan configuration, in which the condition of momentum c
servation along the beam direction is relaxed due to the finite siz
the platelet~see the text!. Curves corresponding to four sizes a
shown: 2a* 5200, 600, and 1000 Å, and̀. The other parameter
used are 2c* 5100 Å, v/c50.54, andb530 Å. The experimen-
tally derived dielectric tensor of 2H-MoS2 is used.
08540
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integral overkx in Eq. ~67!, for which the values ofaz were
purely imaginary, and the SPP dispersion lines could p
etrate beyond the light line. Under these conditions the
beam can be coupled to radiative modes of the plate
which should be reflected in smoothly~nonexponentially!
decaying dependence on the impact parameter. This stri
situation requires a further study.

Experimental confirmation of the size effect discussed
low Eq. ~64! is shown in Fig. 7. The experimental data~see
Ref. 3! for details! correspond to a MoS2 rectangular platelet,
ca 1003100310 nm3 in size, and ane beam, propagating
alongx axis and progressively advancing along thez or y line
scans. Spectra of representative pixels along the two
scans are shown, thez-scan advancing along thez axis to-
wards the large platelet face and they scan approaching the
platelet narrow face along they axis. Comparingy- and
z-scan spectra, one may observe some minor spectral di
ences, yet the most striking observation concerns the
intensities, which show quite significant differences in dec
rates. The high energy mode, for example, attenuates tow
they direction on a length scale about two times shorter th
the correspondingz-scan attenuation.

Representative loss functions, calculated with Eqs.~63!
and~64! @including the quantum correction, Eq.~67!#, using
an experimentally derived dielectric function25, are also pre-
sented in Figs. 7. In thez-scan configuration the calculate
spectral features are in very good quantitative agreem
with the corresponding experimental data. Given the

-
of

FIG. 7. Experimental near-field electron energy loss spectra
2H-MoS2 nanoplatelet inz- andy-scan configurations. The impac
parameter values are as follows: in thez-scanb536, 72, and 108 Å
for curves 1, 2, and 3, and in they scanb525, 55, and 85 Å for
curves 1* , 2* , and 3* , respectively. Calculated spectra~dashed
curves! correspond tob536 Å in z and b525 Å in y ~the other
parameters: 2c* 5100 Å andv/c50.54). The effect of the break
down of momentum conservation along the beam axis due to
finite size of the object is illustrated by the dot-dashed curve.
calculated spectra are scaled by the same incoming beam flux
rameter. An experimental dielectric function of 2H-MoS2 ~Ref. 25!
is used in the calculations.
1-10
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proximate nature of the calculations, the comparison of
corresponding line intensities is rather good. It is stres
that only a single free parameter, the incoming beam fl
has been used here, kept with an identical value in all ca
lated spectra. In they-scan configuration the agreement b
tween theory and experiment~both in terms of line positions
and intensities! deteriorates quickly as the impact parame
b increases~not shown!. This finding is not well understood
yet. It may arise from the complete neglect of the effect
the platelet corners in our calculation, which becomes a
rious shortcoming in they-scan configuration when the im
pact parameter becomes comparable to the narrow sizec* .

It is interesting to note that, similar to the experimen
spectra, the calculated line scans differ substantially in th
intensity decay as a function of the impact parameterb. Lin-
ear fits used to evaluate the effective attenuation parame
in both the calculated and experimental loss data, yiel
directional ratioay /az of about 2. The origin of this effect is
in the smaller size of the platelet along thez axis, and the
strong quantization of the corresponding wave numberkz , as
explained in the paragraph below Eq.~66!. The minimal at-
tenuation parameter along thez scan is az

min5(v/v)(1
2b2)1/2, while ay

min5(v/v)@v2kz,min
2 /v21(12b2)#1/2'(v/v)

3@v/vc* 1(12b2)#1/2. For typical values of the electron
velocity v50.54c, and the energy loss\v510 eV in this
experiment, we find the classical longitudinal waveleng
kx

215v/v'100 Å, so that for the platelet thicknessc*
550 Å realized in the experiment, we find the theoretic
estimateay /az'1.95, in very good agreement with the e
perimentally derived value.

VI. CONCLUSIONS

We have developed a theory for collective electrom
netic modes, which dominate the near-field regions outs
thin films and nanoplatelets, taking into account the effec
medium anisotropy and finite dimensions of the platelet. E
ploying the electron shell model in a three oscillator appro
mation, a model dielectric tensor has been derived for
study of dispersion curves and excitation probabilities of
SPP and guided modes.

Our calculations show that hybridization of ordinary a
extra-ordinary modes occurs on a surface of low symme
while complete separation takes place on surfaces per
O
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dicular to the symmetry axis. The extraordinary wave its
exhibits fine anisotropy splitting, which tend to easily sme
as soon as large imaginary parts of the dielectric function
introduced, namely, with typically realistic values in the e
ergy range of interband transitions. In contrast, it show
great sensitivity to size and geometrical parameters at im
parameter values, which are comparable to correspon
object dimensions. Under certain conditions for the dielec
function components SPP modes transform into TE and
guided modes.

The predicted sensitivity to size effects is due to a uniq
coincidence of all relevant length parameters in the STE
EEL spectroscopy, and to the momentum space filtering
posed by the exponentially decaying electron-plasmon in
action in the vacuum, a value controlled by selecting
beam-nanoparticle impact parameter.

Two qualitatively different size effects could be distin
guished. The first, relating particle finite dimensions in t
plane perpendicular to the beam direction, strongly infl
ences the intensity decay constants, thus resulting in di
tional sensitivity to the particle shape. The second effec
raised by the finite object size along the beam direction~and
the corresponding breakdown of momentum conservatio
the electron-plasmon scattering!. This effect provides new
channels of radiative plasmon excitations and results in d
tic changes of the EEL pattern. An interesting interplay
relativistic and spatial dispersions has been shown to im
further effects on the spectral appearance of the sur
modes.

Comparing our theory with experimental data of a sem
isolated MoS2 nanoplatelet, a good quantitative agreemen
obtained in the range of validity of our approximations.
particular, a strong EM quantum size effect is revealed by
dependence of the loss function on the impact paramete
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