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Transport through a quantum wire with a side quantum-dot array
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A noninteracting quantum-dot array side coupled to a quantum wire is studied. Transport through the
guantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at
zero temperature develops an oscillating band with resonances and antiresonances due to constructive and
destructive interference in the ballistic channel, respectively. Moreover, we have found an odd-even parity in
the system, whose conductance vanishes for an odd number of quantum dots while it bee®imder2an
even number. We established an explicit relation between this odd-even parity and the positions of the reso-
nances and antiresonances of the conductivity with the spectrum of the isolated quantum-dot array.
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[. INTRODUCTION resonancegerfect reflection In addition, we found an odd-
even parity of the number of QD’s in the array: namely,
Recent progress in the nanofabrication of quantum deperfect transmission takes place if this number is ev@n (
vices has enabled us to study electron transport througkr 2€*/h) but perfect reflection arises for an odd number
quantum dotgQD’s) in a very controllable way? QD’s are  (G=0). This result is opposed to that found in embedded
very promising systems due to their physical properties aQD arrays:~® We established an explicit relation between
well as their potential applications in electronic devices.this odd-even parity and the positions of the resonances and
These structures are small semiconductor or metal structur@tiresonances of the conductivity with the spectrum of the
in which electrons are confined in all spatial dimensions. Adsolated QD array.
a consequence, discreteness of the energy and charge arises.

For this reason QD's are often referredaatsficial atoms In Il. MODEL
contrast to real atoms, different regimes can be studied by . _ _
continuously changing the applied external potential. Let us consider a QW with a side-coupled QD array. The

If the single QD is referred to aartificial atom a QD  array consists oN QD’s connected in a series by tunnel
array can be considered as anificial moleculeor artificial ~ coupling, as shown in Fig. 1. The system is modeled by
crystal®=® The latest advances in nanotechnology make itISing a noninteracting Anderson tunneling Hamiltorian,
possible to fabricate QD arrays. In linear QD arrays leads ar&hich can be written as
attached to their ends and the current through them is mea-
sured while external parameters such a gated voltage, mag- H=Hqw+ H(NgD +Hop-ow: (1)
netic field, and temperature are varied. In the resonant tun-_
neling regime, electronic transport through the QD arrayWith
becomes sensitive to a precise matching of the electron lev-
els in the dots that can be controlled experimentally. On the QW
other hand, a linear QD array can be seen as a one- 2 -1 0 1 2
dimensional chain of sites. This type of chain coupled to the o —e ® ® *— -
continuum states shows an even-odd parity effect in the con- V vV
ductance when the Fermi energy is localized in the center of
the energy band. The conductance &/ for odd samples y
and is smaller for even parify®

The aim of this work is to study theoretically the transport
properties of an alternative configuration of a side-coupled
QD array attached to a perfect quantum wi@Ww). In this
case the QD array acts as a scattering center for transmission
through the QW. This configuration can be regarded as a
guantum wave guide with side-stub structures, similar to
those reported in Refs. 9—11. In contrast to the embedded
QD array, the transmission through the side-coupled QD ar-
ray consists of the interference between the ballistic channel ‘N 7/
and the resonant channels from the QD array. For a uniform
side QD array, we found that the system develops an oscil- FIG. 1. Side-coupled quantum-dot array attached to a perfect
lating band with resonancdperfect transmissigrand anti-  quantum wire.
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The opera’tociT creates an electron at sitev is the hopping
inthe QW,g, is the energy level of the dbtandV, ,, is the
tunneling coupling between tHe¢h and (+1)th QD. Here

How corresponds to the free-particle Hamiltonian on a Iatticeth
with spacingd and whose eigenfunctions are expressed ag,

Bloch solutions

=2 li), 3

where|k) is the momentum eigenstate afjdl is a Wannier

state localized at sit¢. The dispersion relation associated

with these Bloch states reads

e=2v cogkd). (4)

Consequently, the Hamiltonian supports an energy band fro

—2v to +2v and the first Brillouin zone expands the inter-
val [ —z/d,n/d].

The stationary states of the entire Hamiltonldrcan be
written as

)

o= 3 afli)+ 3, bl

(5

where the coefficiemi'j‘ (b|k) is the probability amplitude to
find the electron in the siteof the QW ( of the array in the
statek, namely,

af=(ilgn, b=l )
The amplitudea}‘ obey the linear difference equations
eaf=v(a_;+af,,)+Vobid,
eb¥=g,b%+V, bs+Veak,
ebi’=z b+ V| _1bi 1+ V) 1bf

[#1N,

()

Iterating backwards the equation fbh we can express the
amplitudebX in terms ofaf as a continued fraction

k _ k k
8bN_8NbN+VN,N—le71 .

Voa'é

2
V1,2

(8)

2
VN—l.N

ETEN

eTEN-1"

Therefore the equation fars can be cast in the form

PHYSICAL REVIEW B 67, 085321 (2003

sai=v(a* ;+ak)+VZ/Quak, 9
whereQy is the continued fraction
Via
=g—gq— ’ 10
Qn=¢e—g; pp— (10
2
VN—l,N
ETEN-1T g—ey

In order to study the solutions of Eq§) we assume that
e electrons are described by a plane wave incident from the
r left with unity amplitude and a reflection amplitudend
at the far right by a transmission amplituti€Taking this to
be the solution we can write
ar:eikdj_i_refikdj,

j<0, (1)

af=te'd,  j>1. (12)

The solution of the equations for tfﬁ"s can be then

rﬂbtained iteratively from right to left. For a given transmis-

sion amplitude, the associated incident and reflection ampli-
tudes may be determined by matching the iterated function to
the proper plane wave at the far left. The transmission prob-
ability is given by T=|t|? and is obtained from the iterative
procedure described above. In equilibrium we solve the
equation fort andr and we get the expressions

2iv sin(kd) Qu

= = N y 13

t 2iv sin(kd)—V2/Qy Qntil (139
V2

_ o/ Qn (130

" 2ivsinkd)—VZIQy QuFil’

where F(s)EV§/2v sinkd) can be regarded as the level
broadening. Notice that the level broadening can be fairly
well approximated byl'=V3/2v close to the center of the
band.

The experimentally accessible quantity is the linear con-
ductanceG which is related to the transmission coefficidnt
at the Fermi energy by the one-channel Landauer formula at
zero temperature:

262 Q2
- ZQ—NZ (14)
Qn+T
It is worth mentioning that the energy leve(geros of
Qn) depend only on the hopping in the QD array,( 1)
while T" is the only function Of\/(z,/v. Consequently, both
magnitudes can be controlled independently in an actual ex-

periment. This is one of the main advantages of the present
setup.
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IIl. RESULTS [(e—e1)(e—gy)— VI]?

[(e—e1)(e—e5)—VI?+(e—e,)T?

A. Short QD array T(e)

Closed expressions for the transmission and reflection co-
efficients can be readily obtained when the number of QD’s 2p2
in the array is small. FON=1, Q;=&—¢,; and then we (e—e2)

. R(e)= , (16
arrive at [(8—81)(8—82)—Vg]2+(8—82)2F2
(8_81)2 _
T(e)= ———, where V, ,=V,. Therefore, the system presents one reso-
(8—&1)?+1I7? nance ine — e, and bonding and antibonding antiresonances
at energies
2
R(e)= (15

(e—eq)%+ rz
The system has an antiresonance ats;. The transmission
and the reflection probability are 0 and 1, respectively.

For N=2, the transmission and reflection coefficients areThe system witiN= 23 side-coupled QD’s shows particularly
given by simple solution for the cas¥, ,=V, =V,

1 1
e= E(sl-i- 82):?/(81—82)2+4v§.

{(8_81)(8_82)(8_83)_V§[(8_81)+(8_83)]}2

T(e)= ,
) {(e—e)(e—e2)(e—e3)—V(e—e1)+(e—e3)]}2+[(e—&2) (e —£5) — VZ]T?

[(e—&2)(e—£3)— Vo IT?

R(e)= .
° {(e—e1)(e—ex)(s—83)—Vel(e—e1) + (s —83) [} +[(e—82) (s —£5) — Vi ]T?

17

Clearly, for the case witke;=¢e,=¢5, the system shows and zero, bonding and antibonding antiresonances arise
three antiresonances at=g, and e=g;+ 2V, and two whenN=3.
resonances at=g,;+V,.

Figure 2 shows the conductance as a function of the Fermi B. Long QD array

energy of the incident electron fef=0 (i=1,... N) and When the numbeN of attached QD’s is large, we must
Ve=T". There exists only one narrow antiresonance in thgely on numerical calculations. For the sake of simplicity we
case ofN=1 QD, and bonding, and antibonding antireso-consider a uniform quantum dot array_,,=V, and g
nances and one resonance in zero are clearly revealed far; | The continued fractioQy in Eq. (10) is written as

N=2. In addition, bonding and antibonding resonancesQ=(s—=g)xy, Wherexy satisfies the following recursive

equation
1.0
o
Xny=1- , N=123..., (18
0.8 1 XN-1
—_ with x;=1 anda=V?/(e—sg)? for e # &,
Nf 0.6 For N large the antiresonance appearing in Fig. 2 Nor
Q =1 evolves as a fast oscillation band. As the number of
@ 0.4 QD’s N, increases, this narrow antiresonance splits ito
O antiresonances and—1 resonances, as seen in the upper
0.2 panel of Fig. 3 forV,=T" andeq=0. On further increasing
) N, the antiresonances never merge into a single stop band, as
one would naively expect. In fact, it is not difficult to dem-
0.0 i} onstrate thatQy=Dy/Dy-1, Where D,\,_zdet(H(NgD—sl).
The transmission coefficient can be written as
FIG. 2. Conductance, in units ofe?/h, vs Fermi energy, in D,Z\,
units of thel’, for the case of the one-, two-, and three-QD arrays T= S o - (19
with V=T DN+I°DR-1
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as can be readily checked in Figs. 1 and 2. This result also
holds for QD arrays with off-diagonal disorder. This odd-
even parity is opposed to the case of an embedded quantum
array, where perfect transmission takes place for odd
| parity5=8 This property arises from the fact that the energy
a) level of the QD’s,eq, is always in the electronic spectrum of
' ! the isolated QD array, provided the number of the QD’s is
odd. It is straightforward to demonstrate this statement from
the factDy satisfies the recursive equation

G(e)l(2¢' 1h)
o
T

DN:(S_SO)DN—l_VIZ\l—l,NDN—Zx N=3,45...,

G(e)/(2¢°1h)
(@)
T

1 (21

b) . .
0.0 RS R — with Dy =e—eo and Dy= (e —e()?—Vi,. It is clear from
3 2 1 0 1 2 3 Eq.(21) thatDy, is zero ats =&, if Nis odd. Therefore, is

el . .
an eigenvalue ngD and then from Eq(19) we obtain that

FIG. 3. Conductance, in units ofe?/h, vs Fermi energy, in at s=g,, T=0 (perfect reflectionif N is odd andT=1
units of ", for (8) N=11 and(b) N=30 QD arrays witiv.=T" and (perfect transmissigrfor evenN.
g9=0.
D. Infinite QD array
Thus, the transmission vanishes in the spectrum@[g and
becomes unity in the spectrum of thi);*. Therefore the
conductance showd antiresonances and—1 resonances,

To understand the origin of the fast oscillations of the
conductance as a function of the Fermi enefig. 3), we
now consider the limiting cashl—«. Thus, we are faced
TWith a one-dimensional mafl8). This map has two fixed

firmed by plotting the full width at half minimum of the points at?

antiresonanced as a function of energy, as shown in Fig. 4
for different values olN ande,=0.

X’;:%(li\/l—4a), (22)

) ) ‘when a<1/4, namely,|e —eo|>2V,.. The conductance for
Here we consider the case when the Fermi energy if_ o« js

pinned at the value of the energy level of the quantum dot.
From Eq.(7) is straightforward to prove the existence of an 262 (le—eo|+ (e —£g)2—4V2)2

odd-even parity whems,= ¢, Gm:T(|e oo+ J(o—s0 = aVE2+ T2 (23
— &0 —¢o) T c

C. Odd-even parity

G=0, N odd, for |e —eo|>2V,.. This result explains the smooth tails seen
in Fig. 3 when|e —go|/T>2.

The conductance undergoes a bifurcatiornat 1/4 (|e
G=—, N even, (20) —&0|=2V,), and there are no fixed points wher>1/4,

h namely, |e —go| <2V.. Consequently, minute variations of
the Fermi energy result in a dramatic change in the conduc-
tance of the QW, as can be concluded from the lower panel
of Fig. 3.

IV. SUMMARY

In this work, we studied the conductance at zero tempera-
ture of a side QD array attached to a QW. For a uniform QD
array we found that the system develops an oscillating band
with N antiresonances ad— 1 resonances arising from the
hybridization of the quasibound levels of the QD’s and the
coupling to the QW. The positions of the antiresonances cor-
—_— —_— respond exactly to the electronic spectrum of the isolated QD
0 — T T T array. This property could be used to measure the energy

-2 -1 0 1 2 spectrum of theN QD array. It should be stressed that the
particular setup we suggested allows us to control the energy

FIG. 4. Full width at half minimum of the antiresonancedor ~ and width of the antiresonances in an independent fashion.
different values olN andV,=TI". Each segment joints the two en- When the number of attached QD’s is large, a rich phenom-
ergies for which conductance beconedsh on every antiresonance. enology appears for different values of the Fermi energy.
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When the Fermi energy lies far from the center of the QWin pairs. Moreover, we think that the odd-even parity in the
band (e —eg|>2V,), the conductance presents regular andconductance also holds if the electron-electron interaction is
smooth behavior. However, the conductance strongly fluctuadded. This assumption is based on the fact that the conduc-
ates close to the center of the QW band {ey|<2V,). tance in Hubbard chains coupled to reservoirs shows this
These results pose a question about the relevance of the Rjdd-even parity. Therefore, we believe that the interaction
furcation at|e — gq| =2V, in actual experiments. Finally, we would not break this symmetry.

found an odd-even pa”ty behavior of the conductance when In Summary we Studied a noninteracting QD array Side
the Fermi energy lies in center of the band. If the number ogoumed to a quantum wire. We found that conductance at
QD’s in the array is even, perfect transmission takes placgerg temperature develops an oscillating band with reso-
(G=2€?/h). On the contrary, perfect reflection occurs whenpances and antiresonances due to constructive and destruc-
this number is odd @=0). This property arises from the tjve interference in the ballistic channel, respectively. We

intrinsic electronic properties of the QD array. ~ show that this band is related to the electronic properties of
We expect that the above picture remains valid even if thene jsolated QD array.

electron-electron interaction is taken into account. In fact, in
embedded QD arrays, the main effect of the electron-electron
interaction is to shift and to split the resonance positiors.
This occurs because the on-site Coulomb repulsion engrgy
introduces a renormalization of the site energies. In analogy P.A.O. and I.G. would like to thank Milenio ICM P99-
with embedded QD arrays, we expect that depending on th&35-F and FONDECYT for financial support under Grant
relation between the interdot coupling and the on-site CouNo. 1020269. Work in Madrid was supported by DGIMCyT
lomb interaction different regimes arise. FpU<1, the  (Grant No. MAT2000-073% and CAM (Grant No. 07N/
resonances and antiresonances would split into two distind075/2001. |.G. would like to thank UCN for the warm
minibands separated by the on-site Coulomb energy, whil@ospitality during his visit. M. L. L. d. G. was supported by
fort./U>1, the resonances and antiresonances would occi@aedra Presidencial en Ciencia F. Claro.
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