
PHYSICAL REVIEW B 67, 085321 ~2003!
Transport through a quantum wire with a side quantum-dot array
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A noninteracting quantum-dot array side coupled to a quantum wire is studied. Transport through the
quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at
zero temperature develops an oscillating band with resonances and antiresonances due to constructive and
destructive interference in the ballistic channel, respectively. Moreover, we have found an odd-even parity in
the system, whose conductance vanishes for an odd number of quantum dots while it becomes 2e2/h for an
even number. We established an explicit relation between this odd-even parity and the positions of the reso-
nances and antiresonances of the conductivity with the spectrum of the isolated quantum-dot array.

DOI: 10.1103/PhysRevB.67.085321 PACS number~s!: 73.21.La, 73.63.Kv, 85.35.Be
de
ug

a
s

ur
A
ri

b

a
e
a

tu
ra
le
th
n

th
o
r

or
le

s
s
t

d
a
n

or
c

-
ly,
(
er
ed
n
and
the

he
el
by

n,

fect
I. INTRODUCTION

Recent progress in the nanofabrication of quantum
vices has enabled us to study electron transport thro
quantum dots~QD’s! in a very controllable way.1,2 QD’s are
very promising systems due to their physical properties
well as their potential applications in electronic device
These structures are small semiconductor or metal struct
in which electrons are confined in all spatial dimensions.
a consequence, discreteness of the energy and charge a
For this reason QD’s are often referred asartificial atoms. In
contrast to real atoms, different regimes can be studied
continuously changing the applied external potential.

If the single QD is referred to asartificial atom, a QD
array can be considered as anartificial moleculeor artificial
crystal.3–5 The latest advances in nanotechnology make
possible to fabricate QD arrays. In linear QD arrays leads
attached to their ends and the current through them is m
sured while external parameters such a gated voltage, m
netic field, and temperature are varied. In the resonant
neling regime, electronic transport through the QD ar
becomes sensitive to a precise matching of the electron
els in the dots that can be controlled experimentally. On
other hand, a linear QD array can be seen as a o
dimensional chain of sites. This type of chain coupled to
continuum states shows an even-odd parity effect in the c
ductance when the Fermi energy is localized in the cente
the energy band. The conductance is 2e2/h for odd samples
and is smaller for even parity.6–8

The aim of this work is to study theoretically the transp
properties of an alternative configuration of a side-coup
QD array attached to a perfect quantum wire~QW!. In this
case the QD array acts as a scattering center for transmis
through the QW. This configuration can be regarded a
quantum wave guide with side-stub structures, similar
those reported in Refs. 9–11. In contrast to the embed
QD array, the transmission through the side-coupled QD
ray consists of the interference between the ballistic chan
and the resonant channels from the QD array. For a unif
side QD array, we found that the system develops an os
lating band with resonances~perfect transmission! and anti-
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resonances~perfect reflection!. In addition, we found an odd
even parity of the number of QD’s in the array: name
perfect transmission takes place if this number is evenG
52e2/h) but perfect reflection arises for an odd numb
(G50). This result is opposed to that found in embedd
QD arrays.6–8 We established an explicit relation betwee
this odd-even parity and the positions of the resonances
antiresonances of the conductivity with the spectrum of
isolated QD array.

II. MODEL

Let us consider a QW with a side-coupled QD array. T
array consists ofN QD’s connected in a series by tunn
coupling, as shown in Fig. 1. The system is modeled
using a noninteracting Anderson tunneling Hamiltonia5

which can be written as

H5HQW1HQD
N 1HQD-QW, ~1!

with

FIG. 1. Side-coupled quantum-dot array attached to a per
quantum wire.
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H QW5v(
iÞ j

ci
†cj ,

H QD
N 5(

l 51

N

« ldl
†dl1 (

l 51

N21

~Vl ,l 11dl
†dl 111H.c.!,

HQD-QW5V0~d1
†c01c0

†d1!. ~2!

The operatorci
† creates an electron at sitei, v is the hopping

in the QW,« l is the energy level of the dotl, andVl ,l 11 is the
tunneling coupling between thel th and (l 11)th QD. Here
HQW corresponds to the free-particle Hamiltonian on a latt
with spacingd and whose eigenfunctions are expressed
Bloch solutions

uk&5 (
j 52`

`

eikd ju j &, ~3!

whereuk& is the momentum eigenstate andu j & is a Wannier
state localized at sitej. The dispersion relation associate
with these Bloch states reads

«52v cos~kd!. ~4!

Consequently, the Hamiltonian supports an energy band f
22v to 12v and the first Brillouin zone expands the inte
val @2p/d,p/d#.

The stationary states of the entire HamiltonianH can be
written as

uck&5 (
j 52`

`

aj
ku j &1(

l 51

N

bl
ku l &, ~5!

where the coefficientaj
k (bl

k) is the probability amplitude to
find the electron in the sitej of the QW (l of the array! in the
statek, namely,

aj
k5^ j uck&, bl

k5^ l uck&. ~6!

The amplitudesaj
k obey the linear difference equations

«aj
k5v~aj 21

k 1aj 11
k !1V0b1

kd j 0 ,

«b1
k5«1b1

k1V1,2b2
k1V0a0

k ,

«bl
k5« lbl

k1Vl ,l 21bl 21
k 1Vl ,l 11bl 11

k , lÞ1,N,

«bN
k 5«NbN

k 1VN,N21bN21
k . ~7!

Iterating backwards the equation forbN
k we can express the

amplitudeb1
k in terms ofa0

k as a continued fraction

b1
k5

V0a0
k

«2«12
V1,2

2

«2«22
�

«2«N212
VN21,N

2

«2«N

. ~8!

Therefore the equation fora0
k can be cast in the form
08532
e
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«a0
k5v~a21

k 1a1
k!1V0

2/QNa0
k , ~9!

whereQN is the continued fraction

QN5«2«12
V1,2

2

«2«22
�

«2«N212
VN21,N

2

«2«N

. ~10!

In order to study the solutions of Eqs.~7! we assume tha
the electrons are described by a plane wave incident from
far left with unity amplitude and a reflection amplituder and
at the far right by a transmission amplitudet. Taking this to
be the solution we can write

aj
k5eikd j1re2 ikd j, j ,0, ~11!

aj
k5teikd j, j .1. ~12!

The solution of the equations for theaj
k’s can be then

obtained iteratively from right to left. For a given transmi
sion amplitude, the associated incident and reflection am
tudes may be determined by matching the iterated functio
the proper plane wave at the far left. The transmission pr
ability is given byT5utu2 and is obtained from the iterativ
procedure described above. In equilibrium we solve
equation fort and r and we get the expressions

t5
2iv sin~kd!

2iv sin~kd!2V0
2/QN

5
QN

QN1 iG
, ~13a!

r 52
V0

2/QN

2iv sin~kd!2V0
2/QN

5
iG

QN1 iG
, ~13b!

where G(«)[V0
2/2v sin(kd) can be regarded as the lev

broadening. Notice that the level broadening can be fa
well approximated byG.V0

2/2v close to the center of the
band.

The experimentally accessible quantity is the linear c
ductanceG which is related to the transmission coefficientT
at the Fermi energy by the one-channel Landauer formul
zero temperature:

G5
2e2

h
T5

2e2

h

QN
2

QN
2 1G2

. ~14!

It is worth mentioning that the energy levels~zeros of
QN) depend only on the hopping in the QD array (Vn21,n)
while G is the only function ofV0

2/v. Consequently, both
magnitudes can be controlled independently in an actual
periment. This is one of the main advantages of the pres
setup.
1-2
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III. RESULTS

A. Short QD array

Closed expressions for the transmission and reflection
efficients can be readily obtained when the number of Q
in the array is small. ForN51, Q15«2«1 and then we
arrive at

T~«!5
~«2«1!2

~«2«1!21G2
,

R~«!5
G2

~«2«1!21G2
. ~15!

The system has an antiresonance at«5«1. The transmission
and the reflection probability are 0 and 1, respective
For N52, the transmission and reflection coefficients a
given by
rm

th
o
d
e

y
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T~«!5
@~«2«1!~«2«2!2Vc

2#2

@~«2«1!~«2«2!2Vc
2#21~«2«2!2G2

,

R~«!5
~«2«2!2G2

@~«2«1!~«2«2!2Vc
2#21~«2«2!2G2

, ~16!

where V1,2[Vc . Therefore, the system presents one re
nance in«2«2 and bonding and antibonding antiresonanc
at energies

«5
1

2
~«11«2!6

1

2
A~«12«2!214Vc

2.

The system withN53 side-coupled QD’s shows particularl
simple solution for the caseV1,25V2,3[Vc ,
T~«!5
$~«2«1!~«2«2!~«2«3!2Vc

2@~«2«1!1~«2«3!#%2

$~«2«1!~«2«2!~«2«3!2Vc
2@~«2«1!1~«2«3!#%21@~«2«2!~«2«3!2Vc

2#2G2
,

R~«!5
@~«2«2!~«2«3!2Vc

2#2G2

$~«2«1!~«2«2!~«2«3!2Vc
2@~«2«1!1~«2«3!#%21@~«2«2!~«2«3!2Vc

2#2G2
. ~17!
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Clearly, for the case with«15«25«3, the system shows
three antiresonances at«5«1 and «5«16A2Vc and two
resonances at«5«16Vc .

Figure 2 shows the conductance as a function of the Fe
energy of the incident electron for« i50 (i 51, . . . ,N) and
Vc5G. There exists only one narrow antiresonance in
case ofN51 QD, and bonding, and antibonding antires
nances and one resonance in zero are clearly reveale
N52. In addition, bonding and antibonding resonanc

FIG. 2. Conductance, in units of 2e2/h, vs Fermi energy, in
units of theG, for the case of the one-, two-, and three-QD arra
with Vc5G.
i

e
-
for
s

and zero, bonding and antibonding antiresonances a
whenN53.

B. Long QD array

When the numberN of attached QD’s is large, we mus
rely on numerical calculations. For the sake of simplicity w
consider a uniform quantum dot arrayVl 21,l[Vc and « l
5«0. The continued fractionQN in Eq. ~10! is written as
QN5(«2«0)xN , wherexN satisfies the following recursive
equation

xN512
a

xN21
, N51,2,3, . . . , ~18!

with x151 anda[Vc
2/(«2«0)2 for «Þ«0.

For N large the antiresonance appearing in Fig. 2 forN
51 evolves as a fast oscillation band. As the number
QD’s N, increases, this narrow antiresonance splits intoN
antiresonances andN21 resonances, as seen in the upp
panel of Fig. 3 forVc5G and«050. On further increasing
N, the antiresonances never merge into a single stop ban
one would naively expect. In fact, it is not difficult to dem
onstrate thatQN5DN /DN21, where DN5det(HQD

N 2«I ).
The transmission coefficient can be written as

T5
DN

2

DN
2 1G2DN21

2
. ~19!s
1-3
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Thus, the transmission vanishes in the spectrum ofHQD
N and

becomes unity in the spectrum of theHQD
N21 . Therefore the

conductance showsN antiresonances andN21 resonances
as we see in Figs. 1 and 2. This statement is further c
firmed by plotting the full width at half minimum of the
antiresonancesD as a function of energy, as shown in Fig.
for different values ofN and«050.

C. Odd-even parity

Here we consider the case when the Fermi energy
pinned at the value of the energy level of the quantum d
From Eq.~7! is straightforward to prove the existence of
odd-even parity when« l5«0,

G50, N odd,

G5
2e2

h
, N even, ~20!

FIG. 3. Conductance, in units of 2e2/h, vs Fermi energy, in
units ofG, for ~a! N511 and~b! N530 QD arrays withVc5G and
«050.

FIG. 4. Full width at half minimum of the antiresonancesD for
different values ofN andVc5G. Each segment joints the two en
ergies for which conductance becomese2/h on every antiresonance
08532
n-
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as can be readily checked in Figs. 1 and 2. This result a
holds for QD arrays with off-diagonal disorder. This od
even parity is opposed to the case of an embedded quan
array, where perfect transmission takes place for o
parity.6–8 This property arises from the fact that the ener
level of the QD’s,«0, is always in the electronic spectrum o
the isolated QD array, provided the number of the QD’s
odd. It is straightforward to demonstrate this statement fr
the factDN satisfies the recursive equation

DN5~«2«0!DN212VN21,N
2 DN22 , N53,4,5, . . . ,

~21!

with D15«2«0 and D25(«2«0)22V1,2
2 . It is clear from

Eq. ~21! thatDN is zero at«5«0 if N is odd. Therefore«0 is
an eigenvalue ofHQD

N and then from Eq.~19! we obtain that
at «5«0 , T50 ~perfect reflection! if N is odd andT51
~perfect transmission! for evenN.

D. Infinite QD array

To understand the origin of the fast oscillations of t
conductance as a function of the Fermi energy~Fig. 3!, we
now consider the limiting caseN→`. Thus, we are faced
with a one-dimensional map~18!. This map has two fixed
points at12

x6* 5
1

2
~16A124a!, ~22!

when a,1/4, namely,u«2«0u.2Vc . The conductance for
N→` is

G`5
2e2

h

~ u«2«0u1A~«2«0!224Vc
2!2

~ u«2«0u1A~«2«0!224Vc
2!21G2

, ~23!

for u«2«0u.2Vc . This result explains the smooth tails se
in Fig. 3 whenu«2«0u/G.2.

The conductance undergoes a bifurcation ata51/4 (u«
2«0u52Vc), and there are no fixed points whena.1/4,
namely, u«2«0u,2Vc . Consequently, minute variations o
the Fermi energy result in a dramatic change in the cond
tance of the QW, as can be concluded from the lower pa
of Fig. 3.

IV. SUMMARY

In this work, we studied the conductance at zero tempe
ture of a side QD array attached to a QW. For a uniform Q
array we found that the system develops an oscillating b
with N antiresonances andN21 resonances arising from th
hybridization of the quasibound levels of the QD’s and t
coupling to the QW. The positions of the antiresonances c
respond exactly to the electronic spectrum of the isolated
array. This property could be used to measure the ene
spectrum of theN QD array. It should be stressed that th
particular setup we suggested allows us to control the ene
and width of the antiresonances in an independent fash
When the number of attached QD’s is large, a rich pheno
enology appears for different values of the Fermi ener
1-4
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When the Fermi energy lies far from the center of the Q
band (u«2«0u.2Vc), the conductance presents regular a
smooth behavior. However, the conductance strongly flu
ates close to the center of the QW band (u«2«0u,2Vc).
These results pose a question about the relevance of th
furcation atu«2«0u52Vc in actual experiments. Finally, w
found an odd-even parity behavior of the conductance w
the Fermi energy lies in center of the band. If the numbe
QD’s in the array is even, perfect transmission takes pl
(G52e2/h). On the contrary, perfect reflection occurs wh
this number is odd (G50). This property arises from th
intrinsic electronic properties of the QD array.

We expect that the above picture remains valid even if
electron-electron interaction is taken into account. In fact
embedded QD arrays, the main effect of the electron-elec
interaction is to shift and to split the resonance positions.13,14

This occurs because the on-site Coulomb repulsion energU
introduces a renormalization of the site energies. In anal
with embedded QD arrays, we expect that depending on
relation between the interdot coupling and the on-site C
lomb interaction different regimes arise. Fortc /U!1, the
resonances and antiresonances would split into two dis
minibands separated by the on-site Coulomb energy, w
for tc /U@1, the resonances and antiresonances would o
h-

en

,

.

,
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in pairs. Moreover, we think that the odd-even parity in t
conductance also holds if the electron-electron interactio
added. This assumption is based on the fact that the con
tance in Hubbard chains coupled to reservoirs shows
odd-even parity.6 Therefore, we believe that the interactio
would not break this symmetry.

In summary we studied a noninteracting QD array s
coupled to a quantum wire. We found that conductance
zero temperature develops an oscillating band with re
nances and antiresonances due to constructive and des
tive interference in the ballistic channel, respectively. W
show that this band is related to the electronic properties
the isolated QD array.
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