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Time-resolved dynamics of electron wave packets in chaotic and regular quantum billiards
with leads
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We perform numerical studies of wave packet propagation through open quantum billiards whose classical
counterparts exhibit regular and chaotic dynamics. We show that fort&tH(tH being the Heisenberg time!, the
features in the transmitted and reflected currents are directly related to specific classical trajectories connecting
the billiard leads. Whent*tH , the calculated quantum-mechanical current starts to deviate from its classical
counterpart, with the decay rate obeying a power law that depends on the number of decay channels. In a
striking contrast to the classical escape from chaotic and regular systems~exponentially faste2gt for the
former versus power-lawt2j for the latter!, the asymptotic decay of the corresponding quantum systems does
not show a qualitative difference.
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I. INTRODUCTION

Low-dimensional nanometer-scaled semiconductor st
tures, quantum dots~sometimes called quantum electron b
liards!, represent artificial man-made systems which are w
suited for the study of different aspects of quantu
mechanical scattering.1 The conductance of quantum dots
a function of external parameter~magnetic field, Fermi en-
ergy, shape distortion, etc.! exhibits seemingly random bu
reproducible fluctuations originating from the interference
coherent electron waves inside the dot. The majority of st
ies of electron transport in such systems have focused ma
on the stationary electron dynamics. In recent years, h
ever, interest in the temporal aspect of quantum scatte
has gained prominence.2,3 This includes, e.g., studies of th
ac admittance of mesoscopic capacitors,4 time delay
distributions,5 correlation decay in quantum billiards and r
lated systems,6 and others.

Furthermore, many core starting points in the descript
of stationary scattering in quantum dots rely heavily on
properties of the system in the time domain. In particular,
semiclassical approach exploits the difference between
classical escape rate from the cavities with chaotic and re
lar ~or mixed! dynamics ~exponentially faste2gt for the
former versus power-lawt2j for the latter7!. This difference
in the classical dynamics translates into the difference in
served transport properties~statistics of the fluctuations,8,9 a
shape of the weak localization,10 fractality of the conduc-
tance oscillations,11 etc.!.

On the other hand, for chaotic cavities, quantu
mechanical approaches predict the qualitatively differe
universal power-law escape rate,12,13

dP~ t !/dt;t2bM /221, ~1!

where P(t) is the survival probability,M is the number of
decay channels, andb51 (2) for the system with~without!
time-reversal invariance. Note that the specific power of
decay law~1! depends on the initial population of the stat
as well as on the strength of the coupling.5,13 The origin of
0163-1829/2003/67~8!/085320~7!/$20.00 67 0853
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the power-law decay can easily be understood with the h
of heuristic arguments based on an averaging over the e
nential decays of many individual states that mediate
transport through the billiard.13 The nonexponential decay o
a quantum system with chaotic classical dynamics has b
indirectly demonstrated14 in a weakly coupled microwave
stadium billiard. Note that the problem of the escape o
quantum particle from a chaotic cavity is conceptually sim
lar to the asymptotic behavior of the current relaxation tim
in disordered conductors attached to ideal metallic leads.15 In
the latter case the asymptotic behavior of the correspond
distribution deviates strongly from the corresponding clas
cal decay, with the averaged conductance decreasing m
slowly than any exponential function. This behavior is due
the existence of nearly localized states that can trap elect
for a long time.

The quantum-mechanical power-law decay time for
chaotic cavity is expected to deviate from the semiclass
~SC! decay at a crossover timetcross, which is of the order
of the Heisenberg timetH5\/D, D being the mean leve
spacing of the cavity.12 Note thattH also defines the quan
tum relaxation time scale for the case of disorder
conductors.15

Let us now estimate the Heisenberg timetH for the sys-
tem at hand. The main focus of the present study is
ballistic semiconductor quantum dots in a regime typica
accessible in an experiment. A typical size of the dot is in
range ofL50.5–2 mm; the dot is connected to electron re
ervoirs by means of two quantum point contacts~leads! typi-
cally supportinga51 –5 propagating modes, and the Fer
wavelength of electrons isl;50 nm. With this range of
parameters we are in a semiclassical regime (L/l@1) as far
as the electron dynamics in the dot is concerned. Howe
because the number of modesa is rather small, the coupling
to the environment has a wave nature and cannot be tre
semiclassically~i.e., the diffractive effects in the leads ar
expected to play a role!. Note that the majority of studies o
microwave billiards fall in the same region of parametersa
andL/l ~Ref. 16!.
©2003 The American Physical Society20-1
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I. V. ZOZOULENKO AND T. BLOMQUIST PHYSICAL REVIEW B67, 085320 ~2003!
Expressing the Heisenberg timetH5m* L2/2p\ in units
of the traversal timet tr5L/vF(m* is the effective mass an
vF is the Fermi velocity!, we get a simple estimatetH /t tr

5L/l. We thus conclude that the characteristic time sc
during which the quantum-mechanical decay is expecte
take over the classical one in a typical quantum dotL
51 mm, l;50 nm) corresponds totH /t tr'20 classical
bounces in the billiard. At the same time, the numerical c
culations show that the difference between the classical
cay of chaotic and regular-mixed cavities might become d
cernible only after;20–50 bounces—that is, on times th
are comparable or even exceedtH ~see below, Sec. III!.

Nevertheless, the semiclassical predictions~essentially
based on the classical escape asymptotics! are widely used in
experiment to distinguish between the chaotic and regu
mixed dynamics in quantum billiards.1 Is it thus possible to
reconcile the semiclassical and quantum mechanical
proaches, or should some of the semiclassical prediction
used with a certain caution or even be revised? Another
lated question is whether the quantum-mechanical deca
different for chaotic and regular quantum billiards.@Note that
the quantum-mechanical decay, Eq.~1!, is obtained for the
case of chaotic dynamics.# In other words, does the long
time decay asymptotics of thequantumsystems reflect the
underlying classical dynamics ~chaotic or regular!? Moti-
vated by these questions we present here results of d
quantum-mechanical calculations of the passage and es
of electron wave packets in two-dimensional electron b
liards.

Note that quantum relaxation in open chaotic systems
been studied in Ref. 17. It was shown there that the quan
dynamics of open chaotic systems follows the classical
cay behavior only up to a new quantum relaxation time sc
tq5tH /(TAM ), whereT is the strength of coupling andM is
the number of decay channels. When the number of chan
M→`, the new quantum scaletq is much shorter than the
Heisenberg timetH . This behavior has been verified for
model system of the quantum kicked rotator with absorbti
In the cases of the two-terminal semiconductor quantum d
studied here, the number of decay channelsM52a, where
a51 –5 andT51. Therefore, the new quantum relaxatio
time is of the order of the Heisenberg timetq5tH /AM
;tH and we do not expect to see a clear manifestation of
new hierarchy of the characteristic time scales for the sys
at hand. Results of our numerical simulations confirm t
expectation. In fact, the classical features persist in the qu
tum current even for times somewhat larger thantH ; see
below, Sec. III. It is also important to note that the results
Ref. 17 focus on the time framet!tH . In contrast, in the
present study we are interested in both characteristic t
framest,tH and t.tH , and we focus on the crossover
the quantum power-law decay which takes place attcross
;tH .

To the best of our knowledge, all of the studies of wa
packets dynamics inopen systems presented so far ha
mostly been restricted to~a! a quantum limit where the char
acteristic size of the systemL was of the order of the averag
wavelength of the wave packet^l& and~b! to an initial stage
08532
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of the wave packet evolutiont&1 (t is in units of the tra-
versal time!. The time-dependent solution of the Schro¨dinger
equation was typically obtained on the basis of dire
schemes approximating the exponential time propagato18

With such methods the task of tracing the long-time evo
tion of a wave packet in a realistic quantum dot would
forbiddingly expensive in terms of both computing pow
and memory. In the present paper we therefore impleme
spectral method based on the Green function techniqu19

which allows us to~a! reach a semiclassical regime^l&@L
and ~b! approach a long-time asymptoticst@1 correspond-
ing to 104–105 bounces of a classical particle in a billiard

The paper is organized as follows. A brief discussion
the computational method is given in Sec. II. The results
numerical simulations for two representative billiards~a
regular square and a chaotic stadium! are presented in Sec
III. We provide a detailed discussion of our findings for tw
different regimes, initial decayt,tH ~Sec. III A! and long-
time asymptoticst.tH ~Sec. III B!. Our main conclusions
are summarized in Sec. IV.

II. METHOD OF CALCULATIONS

We have studied the temporal evolution of wave pack
in square, Sinai, and stadium billiards of various shapes.
all of these exhibit similar features we only present he
results for two representative geometries, a square~which is
classically regular! and a quarter-stadium~which is classi-
cally chaotic!; see Fig. 1. The billiards are connected to tw
semi-infinite leads that can support one or more propaga
modes. Magnetic field is restricted to zero. We assume a h
wall confinement both in the leads and in the interior
billiards.

The dynamics of the wave packet is governed by the tim
dependent Schro¨dinger equation

S i\
]

]t
2H D uc~ t !&50, ~2!

whereH is the Hamiltonian operator anduc(t)& is the wave
function. To study the time evolution of the initial state w
follow Sto”vneng and Hauge19 and perform the Laplace trans
form of Eq. ~2!, uc̃(s)&5Luc(t)&, followed by an integra-
tion by parts,

FIG. 1. A square and a quarter-stadium shaped billiard c
nected to semi-infinite leads;L5R,L/w58. The half-width of the
wave packets50.4L; at t50 the wave packet is distinct from zer
in the interval of 3L. The average wavelength of the wave pack
^l&52p/^k&50.8w.
0-2
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TIME-RESOLVED DYNAMICS OF ELECTRON WAVE . . . PHYSICAL REVIEW B 67, 085320 ~2003!
uc̃~s!&5
i\

i\s2Ĥ
uc~0!&.

Performing the inverse Laplace transform and changing v
ables in the Mellin inversion integrali\s→z we obtain

uc~ t !&5
i

2pE2`1 i0

`1 i0

dzĜ~z!uc~0!&e2 izt/\, ~3!

where we have introduced the Green function operatoĜ

5(z2Ĥ)21, and taken into account the fact that all th
poles of the Green function lie in the lowerz plane. With the
help of Eq.~3!, the calculation of the temporal evolution o
the initial state is effectively reduced to the computation
the Green function of the Hamiltonian operatorĤ in the
energy domain.

In order to perform numerical calculations we discret
the system and introduce a standard tight-binding lat
Hamiltonian

Ĥ5(
m,n

@ um,n&~e01Vnm!^m,nu2u$um,n&^m,n11u1um,n&

3^m11,nu1H.c.%#, ~4!

whereu is the nearest-neighbor hopping amplitude,e0 is the
lattice site electron energy, andVnm is the potential energy
The matrix element̂m,nuc& defines the probability ampli
tude of finding the electron on the site (m,n), with m5ax,
n5ay, and a being the lattice constant;x and y are the
longitudinal and transverse coordinates, respectively. In
calculations we always choosea small enough such thatka
!1, k being the wave vector. In this limit the tight-bindin
Hamiltonian~4! yields the familiar Scro¨dinger equation, pro-
vided e054u and u5\2/2m* a2, with m* the effective
mass.

Let us consider a minimum-uncertainty wave packet
average energyE which enters a billiard from the left lead i
one of the transverse modesa. We can then write the initia
state in the left lead att50 in the form

uca~0!&5(
mn

fm
a f a

n umn&, ~5!

fm
a 5

1

~2p!1/4As
e2(m2m0)2/4s21 ik i

am, ~6!

wheref a
n5A2/wsin(pan/w) is the eigenfunction of the trans

verse motion, andw is the width of the leads~measured in
units of a lattice constanta). ^k&52p/^l&5AE/u is the
average wave number~in units of a21), where u
5\2/2m* a2 andm* being the effective mass. Furthermor
^k&25ki

a21k'
a 2, k'

a5pa/w, whereki
a andk'

a are the lon-
gitudinal and transverse wave vectors, respectively. After
wave packet enters the billiard, it will leak out through bo
of the leads in all the available modesb. For computational
purposes it is convenient to pass from real space to
mixed-space-mode representation of the state vectoruc& ac-
08532
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mumn&. The wave function in, e.g.

the right lead can then be written in the form

uca~ t !&5(
mb

cba
m ~ t !umb&, ~7!

wherecba
m gives the probability of finding a particle on th

slice m in the transverse modeb, provided the initial state
enters the billiard in the modea. Discretizing the standard
expression for the quantum-mechanical current,j (x,y)
5 i\/2m* (c¹c* 2c* ¹c), we obtain, using Eq.~7!, the
following expression for the total currentJ5*dy j(x,y)
through the slicem in the leads expressed via coefficien
cba

m (t):

J5
i\

m* a
(
b

@cba
m ~cba

m11* 2cba
m21* !2c.c.#. ~8!

We calculate the coefficientscba
m11 in Eq. ~8! by computing a

matrix element̂ mbuc& using Eqs.~3!–~7!:

cba
m ~ t !5

i

2pE2`1 i0

`1 i0

dz(
m8

Gba
mm8~z!fm

a e2 izt/\, ~9!

where Gba
mm8(z) stands for the matrix elemen

^mbuG(z)um8a& of the Green function of the whole syste
~billiard and semi-infinite leads!. We compute the matrix el-
ements of the Green function by making use of the modifi
recursive Green-function technique described in detail
Ref. 20.

Note that the quantum-mechanical current is related to
survival probability in the billiard, Eq.~1!, by the obvious
relation

dP~ t !/dt52Jl~ t !2Jr~ t !, ~10!

whereJl(t) andJr(t) stand for the currents flowing into th
left and right leads, respectively. Note also that the funct
Jl(t)1Jr(t) can be interpreted as the distribution of the tim
delays in the billiard.5

Special care has been taken to ensure the reliability of
results of the numerical simulations. In particular, this
cludes a thorough control of the conservation of the to
current. We have also calculated the temporal evolution
the wave packet in the infinite wire of widthw and found
excellent agreement with the analytical results for the cas
a one-dimensional~1D! lattice.19 Finally, the method we
have developed correctly reproduces the conductance q
tization of the quantum point contact.

III. RESULTS AND DISCUSSION

A. Initial decay „t›tH…

Let us first concentrate on the initial phase of the wa
packet dynamics. Our choice of parameters describing
wave packet,s and ^k&, ensures that the spreading of th
wave packet becomes noticeable only after relatively lo
time t*50 @here and hereafter we measure time in units
the traversal timet tr5L/^v&, ^v&5L/(\^k&/m* ); the cur-
0-3
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I. V. ZOZOULENKO AND T. BLOMQUIST PHYSICAL REVIEW B67, 085320 ~2003!
rent is measured in units of\/2m* a]. The width of the wave
packet in thek space is of the orderDk;1/w. This allows us
to launch a wave packet propagating in one specified m
in the leads~for the hard wall confinement the distance b
tween consecutive transverse modes in the leads is give
p/w).

Figure 2 shows the quantum-mechanical current for
square billiard in the time intervalt&15. The initial period
of time 0,t&3, when the current through the left leadJl(t)
is negative, corresponds to a buildup phase when the w
packet enters the billiard. Having entered the billiard,
wave packet starts to leak out through the leads and the
culated quantum-mechanical currentsJl ,Jr show a series of
pronounced peaks. To outline the origin of these peaks
calculate the leakage current of a correspondingclassical
wave packet in the same billiard. In the classical calculati
we take into account the diffractive effects in the leads in
framework of the standard Fraunhofer diffraction approxim
tion by injecting the electrons with the corresponding an
lar distributionP(u) ~the inset in Fig. 2 shows a calculate
angular probability distribution for the lead geometry und
consideration!. The very good correspondence between
quantum-mechanical and classical results allows us to
cribe each peak in thequantum-mechanicaltransmitted-
reflected currents to a specificclassicaltrajectory connecting
the billiard leads; see the insets in Fig. 2.

The relative height of each peak depends on the densit
the corresponding trajectories and on the angular distribu

FIG. 2. Quantum-mechanical reflected and transmitted cur
through a square billiard~upper and lower solid curves, respe
tively!. Dashed lines indicate correspondingclassicalcurrents. The
wave packet enters the billiard in the second modea52; ^k&
52.5w/p. The insets show classical reflected and transmitted
jectories; the numbers in the parentheses are the so-called win
numbers indicating how many times an electron traverses the
liard in the longitudinal and transverse directions. The inset to
right show an angular distribution of injected electronsP(u) calcu-
lated in the Fraunhofer approximation fora52. The Heisenberg
time tH is indicated by a dot-dashed line. The curves are shifted
clarity.
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for a given incoming modea. The effect of the latter is
clearly seen in Fig. 3, where the quantum-mechanical cur
in a square billiard is shown for three different incomin
modes of the wave packet,a51,2,3. At the initial stage of
the current decay,t&20, the positions of the peaks are th
same for all incoming modes, although their absolute val
differ. This is explained by the fact that the angular distrib
tion P(u) is different for differenta, with its maximum
being shifted to largeru for higher modesa. We conclude
this discussion by pointing out that all quantum billiar
studied here exhibit similar characteristic peaks in the curr
at t&tH which can be explained in terms of correspondi
classical trajectories~see, e.g., Fig. 4, where the calculat
quantum-mechanical and classical currents in a stadi
shaped billiard show the same features fort&tH).

B. Long-time asymptotics„tœtH…

Let us now focus on the long-time asymptotics of t
wave packet dynamics. As discussed in the Introduction,
expect that the quantum-mechanical dynamics starts to d
ate from its classical counterpart at timetcross;tH . The
numerical calculations confirm this expectation. Consider
square billiard; see Fig. 3. Its classical escape rate is in
pendent of the number of modes in the leads and is w

nt

-
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FIG. 3. Quantum-mechanical transmitted current through
square billiard for different incoming modes of the wave pack
a51,2,3, with^k&p/w51.5,2.5,3.5, respectively. The upper curv
indicates correspondingclassicalcurrent. Vertical dotted lines are
guides for an eye indicating the same positions of the peaks in
current. Dashed lines give the asymptotic power-law decay obta
by the best fit in the interval 80,t,2000. The Heisenberg timetH

is indicated by a dot-dashed line. The curves are shifted for cla
0-4



or
e

s
o
ed
od
po
.
ct

b
th
tio
te

tia

w
e

tic
be
fo

its,

a
its
ows
ng-
ow-
as-
arly
ely,

le
ent
he
law
ct it
ere
on

to
ith-
an
cay
ur

f a
e-

in

s-
ics

egu-

ay
s its
law
all

g
arts
t
time
cays
ay
m-

e
ta.

sed
rved

uc-

ot-
he

re
n

he
-
f
e

a-
e

TIME-RESOLVED DYNAMICS OF ELECTRON WAVE . . . PHYSICAL REVIEW B 67, 085320 ~2003!
approximated by a power law;t23. Comparison with the
quantum-mechanical escape shows that classical traject
can still be traced in the quantum current even for the tim
somehow larger thattH .

However, at the time scalet*2tH the identification of the
characteristic peaks in the quantum-mechanical current i
longer possible and the quantum-mechanical decay sh
qualitative new features. In particular, the calculat
quantum-mechanical decay depends on the number of m
in the leads and follows the power-law decay with the ex
nents j52.3,3,3.5 for modesa51,2,3 correspondingly
These values are somehow different from those expe
from Eq. ~1!, j52,3,4. ~In a billiard with two leads a num-
ber of decay channels is given byM52a.!

One of the reasons for the above discrepancy may
related to the fact that in a billiard system the details of
coupling between the leads can be important for the selec
of particular states that mediate transport through the sys
Furthermore, in the case of open cavities~i.e., strong cou-
pling!, the broadening of some resonant states has essen
non-Lorentzian character21 @on the contrary, Eq.~1! corre-
sponds to the case when all resonant states are excited
the same probability att50 and have the Lorentzian lin
shape#. It is also worth to mention that Eq.~1! is based on the
random matrix theory and similar stochas
approaches.5,12,13The predictions of these theories tend to
rather general in nature, and they usually fail to account

FIG. 4. Quantum-mechanical reflected and transmitted cur
through a stadium-shaped billiard. Lower curves show correspo
ing classical currents. The wave packet enters the billiard in t
second modea52; ^k&52.5w/p. The inset show a long-time as
symptotics of classical escape along with the example o
bouncing-ball trajectory. Dashed lines give the asymptotic pow
law decay obtained by the best fit in the interval 50,t,2000. The
Heisenberg timetH is indicated by a dot-dashed line. Time is me
sured in the units of the traversal time of the equivalent squar
the same area. The curves are shifted for clarity.
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specific features of the geometry under consideration~such
as details of the lead position, existence of periodic orb
etc.!.

Let us now discuss the wave-packet evolution in
stadium-shaped billiard. Classically, this billiard exhib
chaotic dynamics, and its classical long-time escape sh
fast exponential decay; see Fig. 4. The corresponding lo
time quantum-mechanical decay for such a system is, h
ever, qualitatively different. The difference between the cl
sical and quantum-mechanical escapes becomes cle
discernible at the same time scale as for the square. Nam
when t*2tH it is no longer possible to provide a reliab
identification of the peaks in the quantum-mechanical curr
in terms of classical trajectories. At this time scale t
quantum-mechanical escape start to follow a power
similar to the one observed for the square. In this respe
should be noted that for the quantum billiards studied h
the initial stage of evolution including the crossover regi
tcross;tH is dominated by the pronounced peaks related
the geometry-specific classical trajectories. Therefore, w
out an ensemble averaging it is rather difficult to indicate
exact value of time when a crossover to a quantum de
takes place for a billiard of a given geometry. Therefore, o
estimation of the crossover timetcross;tH necessarily in-
cludes some uncertainty, typically of the range of;10
bounces.

The long-time asymptotics of the quantum decay o
classically chaotic stadium follows the similar power-law d
pendence as for the classically regular square. This is
striking contrast to the corresponding classical decay~expo-
nentially fast for chaotic versus power law for regular sy
tems!. This makes us conclude that quantum mechan
smears out the difference between classical chaotic and r
lar motion.

Note that the billiard at hand is designed in such a w
that the classical escape through the left lead change
asymptotics from the exponential one to a slower power-
decay att;500. This behavior is caused by bouncing-b
orbits22 which are accessible via the left lead only~see the
inset in Fig. 4!. It is interesting to note that the correspondin
quantum-mechanical current through the left lead also st
to show slower decay att;500 in comparison to the righ
lead. We therefore speculate that, even though the long-
asymptotics of the quantum-mechanical and classical de
are qualitatively different, the quantum-mechanical dec
still reflects some features of the underlying classical dyna
ics.

Finally, we point out some possible implications of th
obtained results for the interpretation of experimental da
As stressed in the Introduction, the difference in theclassical
decay rate in chaotic, regular, or mixed systems is often u
in various semiclassical approaches to describe obse
transport properties of the quantum systems~statistics of the
fluctuations, the shape of weak localization, fractal cond
tance fluctuations, etc.!.1,8–11 However, an inspection of the
classicaldecay in regular and chaotic billiards~Figs. 3 and 4;
see also Ref. 23! demonstrates that corresponding asympt
ics ~power law for the former and exponential decay for t
later! becomes clearly discernible only aftertclass520–50
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bounces in the billiard.~Initial stages of the evolutiont
&tclass, regardless of the character of the electron dynam
are dominated by the pronounced geometry-specific feat
related to the specific trajectories characteristic for a gi
shape!. At the same time, our numerical findings demonstr
that the crossover to the quantum-mechanical power-law
cay occurs on the time scale of the order of the Heisenb
time tH . In a typical quantum dottH is comparable~and can
even be smaller! than the above-mentioned time scaletclass,
when the difference betweenclassical regular and chaotic
systemsbecomes discernible. Our findings thus strongly
dicate that application of some of the semiclassical pre
tions ~essentially based on the classical escape asympto!
might not always be justified because the quantum relaxa
can occur on a time scaletcross smaller thantclass. Note
that different aspects of applicability of semiclassic
approaches to quantum dot systems have been discuss
Refs. 23 and 24.

IV. CONCLUSIONS

We study temporal dynamics of electron escape in cha
and regular quantum dots in regimes typically accessible
the experiment. We find that during the initial phaset
&tH(tH being the Heisenberg time!, the quantum-
mechanical decay closely follows the classical one, so
all features in the quantum-mechanical current leaking ou
the billiard can be explained in terms of geometry-spec
classical trajectories between the leads.

The time scaletcross;tH determines the crossover t
quantum-mechanical decay. Whent*tH , the calculated
quantum-mechanical current starts to deviate from its cla
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