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Time-resolved dynamics of electron wave packets in chaotic and regular quantum billiards
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We perform numerical studies of wave packet propagation through open quantum billiards whose classical
counterparts exhibit regular and chaotic dynamics. We show thatfer,( 7y being the Heisenberg timethe
features in the transmitted and reflected currents are directly related to specific classical trajectories connecting
the billiard leads. When= 7, the calculated quantum-mechanical current starts to deviate from its classical
counterpart, with the decay rate obeying a power law that depends on the number of decay channels. In a
striking contrast to the classical escape from chaotic and regular sysexpsnentially faste™ " for the
former versus power-law ¢ for the latte, the asymptotic decay of the corresponding quantum systems does
not show a qualitative difference.
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I. INTRODUCTION the power-law decay can easily be understood with the help
of heuristic arguments based on an averaging over the expo-
Low-dimensional nanometer-scaled semiconductor strucaential decays of many individual states that mediate the
tures, quantum dotsometimes called quantum electron bil- transport through the billiartf The nonexponential decay of
liards), represent artificial man-made systems which are welh quantum system with chaotic classical dynamics has been
suited for the study of different aspects of quantum-indirectly demonstratéd in a weakly coupled microwave
mechanical scatteringThe conductance of quantum dots asstadium billiard. Note that the problem of the escape of a
a function of external parametémagnetic field, Fermi en-  qyantum particle from a chaotic cavity is conceptually simi-
ergy, shape distortion, ejcexhibits seemingly random but |5y to the asymptotic behavior of the current relaxation time
reproducible fluctuations originating from the interference of,, yisordered conductors attached to ideal metallic 1&3s.
coherent electron waves inside the dot. The majority of stuthe latter case the asymptotic behavior of the corresponding

les of electron fransport in such systems have focused MaNYistribution deviates strongly from the corresponding classi-

on th? stationary electron dynamics. In recent years, ho.WéaI decay, with the averaged conductance decreasing more
ever, interest in the temporal aspect of quantum scatterin

has gained prominenéé This includes, e.g., studies of the ?rl]owzit?ar? anyf?]xpc;relntlalligundc:n(l':)rl[. Tryhs k;)ehiv;ror IS Iduc;tc;
ac admittance of mesoscopic capacitbrsime delay € existence of nearly localized states that can trap electrons

distributions® correlation decay in quantum billiards and re- for a long time. i ,
lated system&,and others. The quantum-mechanical power-law decay time for the

Furthermore, many core starting points in the descriptiorPhaOtiC cavity is expected tp deviate frlom.the semiclassical
of stationary scattering in quantum dots rely heavily on the(SC) decay at a crossover tintg;oss, Which is of the order
properties of the system in the time domain. In particular, thef the Heisenberg time;=#/A, A being the mean level
semiclassical approach exploits the difference between thepacing of the cavity” Note thatry also defines the quan-
classical escape rate from the cavities with chaotic and regdtm relaxation time scale for the case of disordered
lar (or mixed dynamics (exponentially faste””* for the conductors?®
former versus power-law ¢ for the lattef). This difference Let us now estimate the Heisenberg time for the sys-
in the classical dynamics translates into the difference in obtem at hand. The main focus of the present study is the
served transport propertiéstatistics of the fluctuatiorfs’ a ~ ballistic semiconductor quantum dots in a regime typically
shape of the weak localizatidfi,fractality of the conduc- accessible in an experiment. A typical size of the dot is in the
tance oscillationd! etc). range ofL=0.5—-2 um; the dot is connected to electron res-

On the other hand, for chaotic cavities, quantum-€rvoirs by means of two quantum point contagesds typi-
mechanical approaches predict the qualitatively differentcally supportinga=1-5 propagating modes, and the Fermi

universal power-law escape rate'? wavelength of electrons ix ~50 nm. With this range of
parameters we are in a semiclassical regilne\& 1) as far
dp(t)/dtwt—BM/Z—{ (1) as the electron dynamics in the dot is concerned. However,

because the number of modess rather small, the coupling
where P(t) is the survival probabilityM is the number of to the environment has a wave nature and cannot be treated
decay channels, an@l=1 (2) for the system witkiwithou) semiclassically(i.e., the diffractive effects in the leads are
time-reversal invariance. Note that the specific power of thexpected to play a roleNote that the majority of studies on
decay law(1) depends on the initial population of the statesmicrowave billiards fall in the same region of parameters
as well as on the strength of the couplftf. The origin of andL/\ (Ref. 16.
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Expressing the Heisenberg timg=m*L?/274 in units i
of the traversal timé,, =L/vg(m* is the effective mass and
ve is the Fermi velocity, we get a simple estimate, /t;,

=L/N. We thus conclude that the characteristic time scale L
during which the quantum-mechanical decay is expected to
take over the classical one in a typical quantum dot ( R

=1 um, A~50 nm) corresponds tay/t,~20 classical
bounces in the billiard. At the same time, the numerical cal-
culations show that the difference between the classical de- FiG. 1. A square and a quarter-stadium shaped billiard con-
cay of chaotic and regular-mixed cavities might become disnected to semi-infinite leadt;=R,L/w=8. The half-width of the
cernible only after~20—-50 bounces—that is, on times that wave packetr=0.4L; att=0 the wave packet is distinct from zero
are comparable or even exceggl (see below, Sec. Il in the interval of 3. The average wavelength of the wave packet
Nevertheless, the semiclassical predictiojessentially —(\)=2m/(k)=0.8w.
based on the classical escape asymptpéos widely used in
experiment to distinguish between the chaotic and regularof the wave packet evolution<1 (t is in units of the tra-
mixed dynamics in quantum billiardsls it thus possible to  versal time. The time-dependent solution of the Saottirger
reconcile the semiclassical and quantum mechanical agduation was typically obtained on the basis of direct

proaches, or should some of the semiclassical predictions ¢hemes approximating the exponential time propagétor.

used with a certain caution or even be revised? Another relVith such methods the task of tracing the long-time evolu-
n of a wave packet in a realistic quantum dot would be

lated question is whether the quantum-mechanical deca
d q y orbiddingly expensive in terms of both computing power

different for chaotic and regular quantum billiarfidote that and memory. In the present paper we therefore implement a
the quantum-mechanical decay, Bg), is obtained for the spectral method based on the Green function techriijue,

case of chaotic dynamidsln other words, does the long- which allows us to@) reach a semiclassical reginti)sL
time decay asymptotics of thguantumsystems reflect the and (b) approach a long-time asymptofits 1 correspond-

underlying classical dynamics (chaotic or reguld Mot- 'E}g to 10"—1C° bounces of a classical particle in a billiard.

vated by these questions we present here results of dire TH . ed ol A brief di ; ¢
guantum-mechanical calculations of the passage and escape N pap;e:. IS olrgantlﬁed as o OWS'S ”ﬁ T;]SCUSS'O“” Of
of electron wave packets in two-dimensional electron bil- € computational method IS given in Sec. 11. The resulls o
liards. numerical simulations for two representative billiar(s

Note that quantum relaxation in open chaotic systems h tegular square and a'chao'nc stad}uame pres'ent.ed in Sec.
been studied in Ref. 17. It was shown there that the quantu I We prowde a d_etglled discussion of our findings for two
dynamics of open chaotic systems follows the classical de_.n‘ferent regimes, initial decay<r,, (Sec. ”!A) and '°T‘9'
cay behavior only up to a new quantum relaxation time scaldMme asymptotics > (Sec. I B). Our main conclusions
ty= m/(T\M), whereT is the strength of coupling ard is are summarized in Sec. IV.

the number of decay channels. When the number of channels

M—oc, the new quantum scalg is much shorter than the Il. METHOD OF CALCULATIONS

Heisenberg timery . This behavior has been verified for a . .
model system of the quantum kicked rotator with absorbtion, We have ;tu_dled the te'mporgllevolutlon O.f wave packets
In the cases of the two-terminal semiconductor quantum dotd! Square, Sinai, and stadium billiards of various shapes. As

studied here, the number of decay chanméls 2a, where all of these exhibit similar features we only present here
w=1-5 and:|'=1. Therefore, the new quantum,relaxation results for two representative geometries, a sqoatgch is

ime is of the order of the Heisenberg tinig= o INM classically _regula)rqnd a quart(.er.—stadiur(which is classi-

: . cally chaotig; see Fig. 1. The billiards are connected to two
~ 7 and we do not expect to see a clear manifestation of th%emi-infinite leads that can support one or more propagating
new hierarchy of the characteristic time scales for the system e :
at hand. Results of our numerical simulations confirm thismOdeS' Magnetic field 'S restricted to zero. We assume a hard

: . . wall confinement both in the leads and in the interior of
expectation. In fact, the classical features persist in the quans - ds
tum current even for times somewhat larger thayy see The dynamics of the wave packet is governed by the time-
below, Sec. lll. It is also important to note that the results Ofdependent Schdinger equation
Ref. 17 focus on the time frame<7,. In contrast, in the
present study we are interested in both characteristic time
framest<ry andt>r,, and we focus on the crossover to
the quantum power-law decay which takes placd g
~TH .

To the best of our knowledge, all of the studies of wavewhereH is the Hamiltonian operator arjg(t)) is the wave
packets dynamics impen systems presented so far have function. To StUdy the time evolution of the initial state we
mostly been restricted @) a quantum limit where the char- follow Stévneng and Haugdé and perform the Laplace trans-
acteristic size of the systemwas of the order of the average form of Eq. (2), |4(s))=L|4(t)), followed by an integra-

wavelength of the wave packet) and(b) to an initial stage tion by parts,

o d
|ﬁa—t—H)|¢(t))=0, 2
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B i% cording to|m,a)==,f"/mn). The wave function in, e.g.,
|4(s))= T |4(0)). the right lead can then be written in the form
ihs—
Performing the inverse Laplace transform and changing vari- | (1)) = > nga(mm,g% 7)
ables in the Mellin inversion integrah s—z we obtain mg

i [etio _ wherecg‘a gives the probability of finding a particle on the
| ()= 2—f . dzG(z)|(0))e 12V, (3)  slicemin the transverse modg, provided the initial state
T -w+io enters the billiard in the mode. Discretizing the standard
expression for the quantum-mechanical currejx,y)
. , =inl2m* (yVy* —¢* V), we obtain, using Eq(7), the
=(z—H) !, and taken into account the fact that all thefollowing expression for the total current=[dyj(x,y)

poles of the Green function lie in the loweplane. With the 15,k the slicem in the leads expressed via coefficients
help of Eq.(3), the calculation of the temporal evolution of .m (t):
et

the initial state is effectively reduced to the computation o

the Green function of the Hamiltonian operater in the i

energy domain. J=—— 2 [eha(cha™ —ch ™) —ccl. (8)
In order to perform numerical calculations we discretize mta s

the system and introduce a standard tight-binding lattic

where we have introduced the Green function operéor

&Ve calculate the coefficient%fl in Eq. (8) by computing a

Hamiltonian matrix elemen{mg| ) using Eqs.(3)—(7):

HZE [|m,n)(eO+Vnm)(m,n|—u{|m,n>(m,n+l|+|m,n) m _i_ @0 mm’ a—iztlh
=~ Cha(t) =5 _Miodz% G (2) e 2, (9)
X(m+1,n|+H.c}], (4)

where G%‘g‘/(z) stands for the matrix element
whereu is the nearest-neighbor hopping amplitudgjs the  (mp|G(z)|m’ a) of the Green function of the whole system
lattice site electron energy, and,, is the potential energy. (billiard and semi-infinite leadsWe compute the matrix el-
The matrix elemen{m,n|) defines the probability ampli- ements of the Green function by making use of the modified
tude of finding the electron on the site(n), with m=ax,  recursive Green-function technique described in detail in
n=ay, and a being the lattice constank andy are the Ref. 20.

longitudinal and transverse coordinates, respectively. In our Note that the quantum-mechanical current is related to the

calculations we always choosesmall enough such th&ta  survival probability in the billiard, Eq(1), by the obvious
<1, k being the wave vector. In this limit the tight-binding relation
Hamiltonian(4) yields the familiar Scrdinger equation, pro-
vided ep=4u and u=#2/2m*a?, with m* the effective dP(t)/dt=—J,(t)—J, (1), (10
mass. L

Let us consider a minimum-uncertainty wave packet ofVhereJi(t) andJ,(t) stand for the currents flowing into the
average energl which enters a billiard from the left lead in left and right Ieads,. respectively. Note _alsp that the func_tlon
one of the transverse modas We can then write the initial  91(t) T J:(t) can be interpreted as the distribution of the time

state in the left lead at=0 in the form delays in the billiard. o
Special care has been taken to ensure the reliability of the

results of the numerical simulations. In particular, this in-
|,(0))=2, $2f"|mn), (50 cludes a thorough control of the conservation of the total
mn current. We have also calculated the temporal evolution of
the wave packet in the infinite wire of widtv and found
. 1 o (m- mo)zmgzﬂkﬁxm’ ©) excellen_t agreement with th_e alr;aly_tical results for the case of
(277)1/4\/; a one-dimensionallD) lattice.” Finally, the method we
have developed correctly reproduces the conductance quan-
wheref" = \2Awsin(man/w) is the eigenfunction of the trans- tization of the quantum point contact.
verse motion, andav is the width of the lead$measured in

units of a lattice constana). (k)=2m/(\)=E/u is the Il. RESULTS AND DISCUSSION

average wave numberin units of a '), where u -

=#2/2m* a2 andm* being the effective mass. Furthermore, A. Initial decay (=)

(ky?=k{?+k?, k{=malw, wherek{' andk{ are the lon- Let us first concentrate on the initial phase of the wave

gitudinal and transverse wave vectors, respectively. After thpacket dynamics. Our choice of parameters describing the
wave packet enters the billiard, it will leak out through bothwave packeto and(k), ensures that the spreading of the
of the leads in all the available modgs For computational wave packet becomes noticeable only after relatively long
purposes it is convenient to pass from real space to théme t=50 [here and hereafter we measure time in units of
mixed-space-mode representation of the state végiomc-  the traversal timet,, =L/{v), (v)=L/(A(k)/m*); the cur-

085320-3



I. V. ZOZOULENKO AND T. BLOMQUIST PHYSICAL REVIEW B 67, 085320 (2003

10\1 T T T T T T T “H‘HIEEV T
-1 I
-5y 22 42 62 (32 @36 (106) 10 ¢ Y classical escape
102 | i ] -3 |
0 : b l l 10
|
| /7N Z =
| , A 720 VRN _5 (X=1
1 10 L
= 107 |
~
- i _7
310° [ 406D 6 0 | - —I\<e 1= ?‘\/
1, ~— = ! s % -9
HEBE = 100
\ 2 0=3
100 | < 3 107" N
-13
107 o r
0
time ¢ 10 T
FIG. 2. Quantum-mechanical reflected and transmitted current
through a square billiardupper and lower solid curves, respec- 1077 T
tively). Dashed lines indicate correspondicigssicalcurrents. The
wave packet enters the billiard in the second maege2; (k) 10 .

=2.5wn/7. The insets show classical reflected and transmitted tra- 10 160 10‘00
jectories; the numbers in the parentheses are the so-called windin
numbers indicating how many times an electron traverses the bil-
liard in the longitudinal and transverse directions. The inset to the FIG. 3. Quantum-mechanical transmitted current through a
right show an angular distribution of injected electrdn(@) calcu-  square billiard for different incoming modes of the wave packet,
lated in the Fraunhofer approximation far=2. The Heisenberg «=1,2,3, with(k)7/w=1.5,2.5,3.5, respectively. The upper curve
time 1 is indicated by a dot-dashed line. The curves are shifted foindicates correspondinglassical current. Vertical dotted lines are
clarity. guides for an eye indicating the same positions of the peaks in the
current. Dashed lines give the asymptotic power-law decay obtained

rent is measured in units @f2m* a]. The width of the wave DY the bestfitin the interval 80t<2000. The Heisenberg timg,
packet in thek space is of the ordekk~ L. This allows us is indicated by a dot-dashed line. The curves are shifted for clarity.
to launch a wave packet propagating in one specified mode
in the leads(for the hard wall confinement the distance be-for a given incoming moder. The effect of the latter is
tween consecutive transverse modes in the leads is given tgjearly seen in Fig. 3, where the quantum-mechanical current
lw). in a square billiard is shown for three different incoming
Figure 2 shows the quantum-mechanical current for theénodes of the wave packet,=1,2,3. At the initial stage of
square billiard in the time intervalks 15. The initial period the current decay, <20, the positions of the peaks are the
of time 0<t=3, when the current through the left leadt) same for all incoming modes, although their absolute values
is negative, corresponds to a buildup phase when the wawdffer. This is explained by the fact that the angular distribu-
packet enters the billiard. Having entered the billiard, thetion P(6) is different for differenta, with its maximum
wave packet starts to leak out through the leads and the capeing shifted to largep for higher modesx. We conclude
culated quantum-mechanical curreds, show a series of this discussion by pointing out that all quantum billiards
pronounced peaks. To outline the origin of these peaks watudied here exhibit similar characteristic peaks in the current
calculate the leakage current of a corresponditagsical ~ att=7y which can be explained in terms of corresponding
wave packet in the same billiard. In the classical calculationglassical trajectoriessee, e.g., Fig. 4, where the calculated
we take into account the diffractive effects in the leads in thequantum-mechanical and classical currents in a stadium-
framework of the standard Fraunhofer diffraction approxima-shaped billiard show the same featurestfsrry).
tion by injecting the electrons with the corresponding angu-
lar distributionP(6) (the inset in Fig. 2 shows a calculated
angular probability distribution for the lead geometry under
consideration The very good correspondence between the Let us now focus on the long-time asymptotics of the
qguantum-mechanical and classical results allows us to asvave packet dynamics. As discussed in the Introduction, we
cribe each peak in thguantum-mechanicatransmitted- expect that the quantum-mechanical dynamics starts to devi-
reflected currents to a specifitassicaltrajectory connecting ate from its classical counterpart at tinig,ss~ 7. The
the billiard leads; see the insets in Fig. 2. numerical calculations confirm this expectation. Consider the
The relative height of each peak depends on the density agfquare billiard; see Fig. 3. Its classical escape rate is inde-
the corresponding trajectories and on the angular distributiopendent of the number of modes in the leads and is well

time ¢

B. Long-time asymptotics(t=7y)
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bouncing-ball trajectory. Dashed lines give the asymptotic power-
law decay obtained by the best fit in the intervak868<2000. The

107
107°
107"

107

107"

Ty

NN/,

J() NI

S

\

Classical escape\,

J,«(t) N

10

100
t (time)

1000

PHYSICAL REVIEW B 67, 085320(2003

specific features of the geometry under consideratsuch
as details of the lead position, existence of periodic orbits,
etc).

Let us now discuss the wave-packet evolution in a
stadium-shaped billiard. Classically, this billiard exhibits
chaotic dynamics, and its classical long-time escape shows
fast exponential decay; see Fig. 4. The corresponding long-
time quantum-mechanical decay for such a system is, how-
ever, qualitatively different. The difference between the clas-
sical and quantum-mechanical escapes becomes clearly
discernible at the same time scale as for the square. Namely,
whent=2r, it is no longer possible to provide a reliable
identification of the peaks in the quantum-mechanical current
in terms of classical trajectories. At this time scale the
guantum-mechanical escape start to follow a power law
similar to the one observed for the square. In this respect it
should be noted that for the quantum billiards studied here
the initial stage of evolution including the crossover region
teross™ TH IS dominated by the pronounced peaks related to
the geometry-specific classical trajectories. Therefore, with-
out an ensemble averaging it is rather difficult to indicate an

FIG. 4. Quantum-mechanical reflected and transmitted curren@Xact value of time when a crossover to a quantum decay
through a stadium-shaped billiard. Lower curves show correspondakes place for a billiard of a given geometry. Therefore, our
ing classical currents. The wave packet enters the billiard in theestimation of the crossover timg,,ss~ 74 necessarily in-
second moder=2; (k)=2.5n/7. The inset show a long-time as- cludes some uncertainty, typically of the range fl0
symptotics of classical escape along with the example of &ounces.

The long-time asymptotics of the quantum decay of a
classically chaotic stadium follows the similar power-law de-

Heisenberg time is indicated by a dot-dashed line. Time is mea- pendence as for the classically regular square. This is in
sured in the units of the traversal time of the equivalent square Of_;triking contrast to the corresponding classical de@xypo-

the same area. The curves are shifted for clarity.

nentially fast for chaotic versus power law for regular sys-
temg. This makes us conclude that quantum mechanics

approximated by a power lawt~3. Comparison with the smears out the difference between classical chaotic and regu-
guantum-mechanical escape shows that classical trajectories motion.

can still be traced in the quantum current even for the times Note that the billiard at hand is designed in such a way
somehow larger that .
However, at the time scate= 2, the identification of the asymptotics from the exponential one to a slower power-law

that the classical escape through the left lead changes its

characteristic peaks in the guantum-mechanical current is ndecay att~500. This behavior is caused by bouncing-ball
longer possible and the quantum-mechanical decay showsbits’? which are accessible via the left lead orisee the
qualitative new features. In particular, the calculatedinsetin Fig. 4. Itis interesting to note that the corresponding
quantum-mechanical decay depends on the number of modgsantum-mechanical current through the left lead also starts
in the leads and follows the power-law decay with the expoto show slower decay at-500 in comparison to the right
nents £=2.3,3,3.5 for modesa=1,2,3 correspondingly. lead. We therefore speculate that, even though the long-time
These values are somehow different from those expecteasymptotics of the quantum-mechanical and classical decays
from Eq. (1), £=2,3,4.(In a billiard with two leads a num- are qualitatively different, the quantum-mechanical decay
ber of decay channels is given =2a.) still reflects some features of the underlying classical dynam-
One of the reasons for the above discrepancy may bes.
related to the fact that in a billiard system the details of the Finally, we point out some possible implications of the
coupling between the leads can be important for the selectioabtained results for the interpretation of experimental data.
of particular states that mediate transport through the systerms stressed in the Introduction, the difference in ¢heessical
Furthermore, in the case of open cavitig®., strong cou- decay rate in chaotic, regular, or mixed systems is often used
pling), the broadening of some resonant states has essentially various semiclassical approaches to describe observed
non-Lorentzian charactér[on the contrary, Eq(1) corre-  transport properties of the quantum systestatistics of the
sponds to the case when all resonant states are excited wiflluctuations, the shape of weak localization, fractal conduc-
the same probability at=0 and have the Lorentzian line tance fluctuations, etc'®** However, an inspection of the
shapé. It is also worth to mention that E@1) is based on the classicaldecay in regular and chaotic billiar@sigs. 3 and 4;
random  matrix theory and similar  stochastic see also Ref. 23demonstrates that corresponding asymptot-
approache3?The predictions of these theories tend to beics (power law for the former and exponential decay for the
rather general in nature, and they usually fail to account fotater) becomes clearly discernible only aftgjj,s<=20-50
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bounces in the billiard(Initial stages of the evolution  cal counterpart, with the decay rate obeying a power law that
=<t.ass, regardless of the character of the electron dynamicsjepends on the number of decay channels. The exponents
are dominated by the pronounced geometry-specific featurezbtained were somehow different from those expected from
related to the specific trajectories characteristic for a giveriEq. (1); we provide possible explanations for this discrep-
shape. At the same time, our numerical findings demonstrateancy. In striking contrast to the classical escape from chaotic
that the crossover to the quantum-mechanical power-law deand regular system@xponentially fase™ " for the former
cay occurs on the time scale of the order of the Heisenbergersus power-lavi™¢ for the lattey, the asymptotic decay of
time 7y . In a typical quantum dot, is comparabléand can  the corresponding quantum systems does not show a quali-
even be smallgrthan the above-mentioned time schlgss, tative difference. This makes us conclude that quantum me-
when the difference betweerlassical regular and chaotic chanics smears out the difference between classical chaotic
systemsecomes discernible. Our findings thus strongly in-and regular dynamics.
dicate that application of some of the semiclassical predic- We also discuss possible implications of the obtained re-
tions (essentially based on the classical escape asymptoticsults for the interpretation of the experimental data. In par-
might not always be justified because the quantum relaxatioticular, our findings strongly indicate that application of
can occur on a time scalg,,ss smaller thant.,ss. Note  some of the semiclassical predictiofessentially based on
that different aspects of applicability of semiclassicalthe classical escape asymptotiosight not always be justi-
approaches to quantum dot systems have been discussedfied because the crossover to the power-tpyantum decay
Refs. 23 and 24. can occur at the time scalg ss Shorter thari s, the time
when theclassical escape asymptotibecomes clearly dif-
IV. CONCLUSIONS ferent for chaotic and regular systems.

) ) ~ Finally, the results reported in the present paper can be
We study temporal dynamics of electron escape in chaotigijrectly tested experimentally in the variety of systems in-

and regular quantum dots in regimes typically accessible igjyding semiconductor quantum  ddts, microwave
the experiment. We find that during the initial phase, cavities!®?5 acousticaf® and optical billiards”

<ty4(7y being the Heisenberg time the quantum- '

mechanical decay closely follows the classical one, so that

all features in the quantum-mechanical current leaking out of

the billiard can be explained in terms of geometry-specific

classical trajectories between the leads. Financial support of Vetenskapsiet (1.V.Z.) and the Na-
The time scalet, s~ 7y determines the crossover to tional Graduate School of Scientific Computirt@.B.) is

quantum-mechanical decay. Wheee ry, the calculated greatly acknowledged. Discussions with M. tBker are

guantum-mechanical current starts to deviate from its classigreatly appreciated.
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