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Continuum bound states as surface states of a finite periodic system
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We discuss the relation between continuum bound st&BSs localized on a defect, and surface states of
a finite periodic system. We model an experiment of Capassb [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco,
S-N. G. Chu, and A. Y. Cho, Natut&éondon 358 565(1992] using the transfer-matrix method. We compute
the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show
how to improve the confinement of a CBS while keeping the energy fixed.
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I. INTRODUCTION fect [Fig. 1(d)] which may be either a well or a barrier. As
emphasized by Webérthe condition for a state localized on
In 1992, an experiment of Capassbal. demonstrated  a defect of an infinite lattice is that the wave function at the
the existence of a well-localized continuum bound stateedge of the defect matches to a decaying Bloch eigenstate of
(CBS) in a semiconductor superlattice consisting of onethe unit cell, that is, the wave function will decay bye™’
thick quantum well surrounded on both sides by severaffom cell to cell. There are also antibound states, where the
GalnAs-AlinAs well/barrier layers constructed to act\dg ~ match is to the growing eigenstate. In either case, the Bloch
Bragg reflectors. As suggested by Lenz and Salzfe, phase must be complex, so such states exist only in the for-
central well was made double the width of the lattice wells,bidden zones, in common with surface states.
to act as a\/2 Fabry-Perot resonator. Subsequently, Weber N Sec. II, we_pnefly introduce the t_ransfer matrix for a
studied the existence of such states using the transfer-matrfystem with position-dependent effective mass. In Sec. Il
method. Among other things, he showed that the Bragg cone apply it to the Capasso experiment. We determine the
dition need not be very well satisfied for a confined state tgVidth of the central well to provide a CBS at a desired en-
exist. Sunget al* have also studied above-threshold con-€rgy- In Sec. IV we discuss the relation between these states
fined states, in a different material system, GaAs/AlGaAsand states in a box, illustrated in Figgaland Xf). In Sec.
Indjin et al® made an exhaustive study of CBSs in systems We compute the transition rate from the ground state to
where the unit cell is piecewise constant, with two layers continuum states in the neighborhood of the CBS, and derive
Finally, Wanget al® have discussed the parity sequence of
subthreshold bound states localized on a defect, and the tran-
sition rates between them. a)
In this paper we provide further insight into the phenom-
enon of CBSs by relating them to surface states, whose prop-
erties were explained by Shockley in a famous péapen. b) |
infinite periodic system, illustrated in Fig(d, allows Bloch W
states with the periodicity of the lattice. If the system is
truncated on one side, or on both sidgsg. 1(b)] then one c) ‘
can discuss scattering states with energies above threshold, [T e i
and bound states below threshold. The transfer-matrix
method is well adapted to discuss such a periodic system. T ’
For convenience we will use the notation of our previous d) |
paper$?®
Among the bound states of a finite periodic array are
Bloch-like states whose amplitude is spread more or less e) |
uniformly over the lattice, and the surface states whose den-
sities are concentrated at the ends. The former usually occur
in the allowed energy bands of the infinite lattice, while the l
surface states necessarily occur in the forbidden bands. Their f)
wave functions decay exponentially outside the array and
like +e~? from cell to cell inside, wherd is the imaginary
part of the Bloch phase. FIG. 1. Schematic drawing df) an infinite array, truncated to
Another way to truncate an infinite lattice is to cut it in the (b) a finite array, and enclosed {g) walls; or with(d) a defect, also
middle and pull the two halves apart. This introduces a defe) truncated, andf) enclosed.
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a sum rule showing that the total strength depends very littlgn the next forbidden band, with c@s<—1, ¢=m+i6 be-

on the number of cells involved. Finally, in Sec. VI we dis- comes complex. In thpth forbidden bandg=p=+i6 and
cuss how to improve the confinement of a CBS of fixedthe eigenvalues are=(—)Pe™".
energy, proposing an experimental arrangement to test this.

A. Surface states
Il. TRANSFER MATRIX )
Because we have assumed reflection symmetry, states of

In the envelope function approximation, an electron in thethe whole system will have either even or odd parity. Sup-
conduction band is described by solutions of the Sdimger  pose that the infinite array is truncated so that thereNare

equation with a variable effective mass cells to right of the origin as in Fig.(lh). Then the condition
) for a bound state is that the wave function at the right edge of
_ ﬁ_i 1 i _ _ the array matches to a decaying solution outditgere we
|+ (V(x)—E)¢=0. ) X .
2 dx|m(x) dx suppose constant potential outside, but that can be changed

. o . . trivially):
For convenience we will discuss the situation where the en- y)

tire system has reflection symmetry, such as in the specific
examples discussed by Weber, Capasso, Indjin, Wahg, 4 —wWN v
al.>+>®Then it is sufficient to consider only>0 and reflect gIm* o' Im*
the solutions in the origin.

We factorizem(x) =mem™* (X) into the bare massi, and  For an even bound statgf=v(x), on the right-hand side
the dimensionlessn*, and usef?/2m,=3.81 eVA in all  WN acts on (1,0) while for an odd state(x), it acts on
calculations. In Weber’s model both the potential and thg0,1). This gives the log derivative
effective mass are piecewise constant functions, but the

(4)

0

method is valid even i#/(x) and m*(x) vary continuously ' ‘ (WN) —x
within the potential cell. = 2= —, (5)
The transfer matrix for the unit cell of widtd of the m*(d):,b‘ g (Whis Mgy

lattice is constructed out of two independent solutiar(),

which has value 1, slope 0 at the left edge of the unit cellwheres=1 (2) for even(odd) statesm* (d) is the effective

andw(x), which has value 0 and slope* (0) there. It is mass inside the edge of the last cell, whit§,; is the value
outside, andE =V ,—#2«?/(2mmf,,). By construction, the

W(d) :( W ) W matrix is real, so the enerdy must lie below the external
v'Im*  w'/m* potentialV,,;. On the other hand, a surface state can exist
- only whenE is in a forbidden zone, with compled=pm
and satisfies +i6. In such a zoné,
1 U _\wN
= W(Nd)=W"(d
(w’/m*) d W(d)(w,/m* i ) (Nd) (d) | |
_ _ (N1 sinhN 6 e psml’(N—l)H
Here the solutions,w without argument are evaluated at the =(-) T einhe

i X ! ¢ sinhé sinh@
right edge,x=d—0, and ¢ is an arbitrary solution. In a

periodic systemW(d) depends only on the length of the (6
cell, not its position. Sincey and ¢'/m* are continuous at

interfaces, to move one interval further to the right, one sim
ply multiplies again by the appropriate transfer matrix. Any
discontinuity in the derivative is automatically taken into ac-
count. B. Continuum bound states

The determinant oW(d) is the Wronskian of two inde- Suppose that the infinite periodic array is cut at the origin
pendent squt|ona(>§), w(_x) and is a constant. Eigenvalues gnq an extra well of width @ is placed between the two
of the transfer matrix satisfy sections, as in Fig.(#l). Let T(c) be the transfer matrikas

2 _ in Eq. (2)] that takes the wave function from the origindo
A2 cospr+1=0, Its columns are the even- and odd-parity solutions within the
where central well. In order for a CBS to exist, the fifsir second
column of T(c) must match to a decaying eigenstate of the
2 cosp=TrW=v+w'/m*, (3 unit cell of the semi-infinite array to the right. In other
words, one of the columns df(c) must satisfy the eigen-
value equations fow(d):3

Equationg5) and(6) allow one to search for energies where
surface states occur.

and when the Bloch phase¢ is a real angle, they arg
=e*'%, Raising the energy from the potential minimum, one
is in a forbidden band wherfeosg|>1. In this region of
energy,¢=i#6 is imaginary. Following this, the first allowed (W(d)—)\l)[ () }: @)
band occurs within whiclp increases from zero te. Then Y’ (c)/m* ’
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In this example, the potential is piecewise constant, so the

FIG. 2. A unit cell of the lattice foa) Weber’'s model, andb)  transfer matrix can be constructed from factors of the type
the split-well configuration of Sec. VI.

cosck, (my /ke)sinck,
g'(c)  N=Wypy(d)  Wyy(d) T(c)=

i , (10
m B - — (ke /m¥
*(c)y(c)  Wid)  A=Wy(d)’ (8) ( )sinck. cosck,

Where k§:2mem’§(E—Vc)/ﬁ2 is the wave number inside
the layer andn? is the effective mass there.

We follow Weber in taking the unit cell to be a well fol-
@wed by a barrier, as illustrated in Fig(a®. Then

Either of these equations can be used to search for CBSs.
they are satisfied with real being the smallen _ (larger
N4 ) eigenvalue, then a CBRr an antibound statéABS)]
exists at that energy. The only difference between them an
surface states is the numerical value of the boundary condi-

tion that has to be satisfied where the lattice meets the defect W(d=w+b)=T(b)T(w). (11

or the surface.
The situation of a central defect being a double width well,

corresponds te=0. Indjin et al> have written out the forms
in all detail.

The array constructed by Capasso can be modeled as a The transfer matrix from the origin toc+Nd is
sequence of potential wells of widw=16 A, depthV,, WN(d)T(c). For anyc>—w/2 the central well constitutes a
=0, and barriers of widthb=39 A and heightVV, defectin the superlattice. N—, the argument of Sec. 1| B
=500 meV. The energy-dependent effective mass in eachpplies, and the wave function will only be localized near the

Ill. CAPASSO-WEBER EXAMPLE

layer is given byt origin when one of the columns df(c) is an eigenvector of
W(d) with the decaying eigenvaluee ’. The left-hand
my=0.0431+(E-V,)/E,], side of Eq.(8) [cf. Eq.(10)] is either—k,tank,c/m}, (for an
even state or k,cotk,c/m; (odd stat¢ But the identity
m; =0.073 1+ (E—V,)/Ep], 9) cot(x+m/2)=—tan(x) means that the solutions for odd

states can be found simply by addin@? to the value ok,.c
whereE,,=0.88 eV, andE,=1.49 eV are the effective band of an even state solution. Given any solution, another one,
gaps of InGaAs well and AllnAs barrier materials. which differs only by the number of nodes in the central
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FIG. 4. States in a box, fa=8 A, also showinga) the CBS at 563 me\(b) the ABS at 577 meMc) the CBS at 891 meV, angl)
the ABS at 946 meV. At righty labels the first allowed band from 367387 meV, 8 the second allowed band from 641881 meV, y the
third allowed band from 966-1357 meV, and the fourth allowed band from 1357 meV. Dotted lines show the potential cells, in eV; wave
functions are dimensionless and are drawn with base lines at the energy eigenvalue.

well, can be obtained by adding/k,, to c. Hence, it is the IV. RELATION TO STATES IN A BOX

differencesn width of the central well that go by half wave- Kalotas and Le® considered the states obtained by en-

lengths, not the whole width. closing a finite number of cells between infinite wallSee
To illustrate the close relationship between CBS and SUltigs. 1a) and f) for illustrations] This discretizes the con-

face states, in Fig. 3 we show in the upper panel the rIgh{inuum, so all states become discrete. Well-localized states

side of a six-cell lattice with the central well of widthn2 . .
having the CBS at 563 meV. In the lower part we show athat decay quickly enough will be scarcely affected by the

. . .~walls. States spread over the whole lattice will become a
three-cell lattice with a surface state at the left edge decaying. L L
into the potential barrier, chosen so the slope is exactly th |scre_te set maintaining similar charagter. _An ABS whose
same for both wave functions. The only difference isthatoné“""gn'tucje grows away from the origin will be squeezed
state passes through zero at the origin to make an odd-pari§g@inst the walls of the box.
wave function, while the other decays exponentially; within ~ Figure 4 shows an example where we have takenll
the lattice they are identical. cells on each side of the origin. Figuréaftcan be compared

Weber noted that a well-confined CBS was obtained everWVith the CBS atE=563 meV of thec=0 example of Ca-

when the widthsv andb of the well and barrier were rather passo and Weber. Even with just three cells on either side,
far from the optimal values. Indjiat al> made an exhaustive the state is hardly shifted from its position in the infinite
study of the location of the CBS as, b, andc were varied, array. Figure ) shows the second CBS at 891 meV, in the
so we will only make one comment. If botlv andb are  next higher forbidden miniband. An ABS occurs between
varied while keeping the energy of the CBS fixed, the mini-each pair of CBSs; two examples are shown in Fidls) and
mum value of|\_| is obtained with bothwk, and bk,  4(d). If the box walls were taken away the ABS wave func-
= /2. This should be expected, because once we fix théons would grow without limit, so they are not normalizable
energy of the state, the effective masses are also fixed. Thestates and are of only theoretical interest.
the optimization ofwk,, andbk, proceeds exactly as for an In Fig. 5 we show the spectrum of box states as a function
energy-independent Kronig-Penney potential, for which theof N, again for thec=0 central well case. The energies of
Bragg condition is optimal, as one can easily show analytithe single-cell states change little as more cells are added.
cally. The new states that appear fill up the allowed bands. To
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16 . i ] allowed band. For nonzero one has to multiplyWwN(d)
) + o § ] 3 from the right by the additional transfer matfc) for the
L P S c ] central well, and then the simple factorization won't be ex-
12 b + & g act. In practice the states remain in the allowed band all the
o g Y same
S 1t + 9 g .' . Lo
° I T s Figure 5 provides another example of the similarity of
Bosr, = é g § g B CBSs and surface states. In Figap the CBS lies in the
e 06 b g middle of the first forbidden zone, while in the lower panel
W *Ple o o o o o © there are two such states, one derived from the allowed band
0.4 Peoeoreorevensoranmanogggorereee ggyreesee gy <o 1 a and the Other from banﬁ
TRTETRITRR A | _ _ . .
o2b+ + + + + =+ f + Incidentally, Fig. 5 provides an explanation for the conun-
drum of Wanget al® They were concerned as to what hap-
0= ; y . : y pens to bound states which exist in some potential, when it is
0 2 4 6 8 10 : S . .
a) Number of Cells to the Riaht of Center cladded on each side by an infinite superlattice. As is clear
9 from Fig. 5a), these states continue to exist at the same
1.6 = . . . . . energy. The third state, in bang, alternates in parity de-
al  t o+ 2 8 8 3 | pending on its order in the ladder of states as additional
oo g g potential wells are added on each side, but the energy
+ © Q . . . .
1.2} o 2 & & 3 ¥ scarcely changes. Each of these states is a linear combination
s 1} * + 935 & 3 of the original state and the new ones from the side cells that
2 PP SO S S ¢ lie close in energy. The same situation holds for the fifth
? 08 f R 5 g g ¢ 8 8 state, in bandy. Of course, as the lattice becomes wider the
S o6 f 578 6 e e b states in an allowed band will spread out over the entire
. ? ] width. The difficulty of Wanget al. was that they jumped
0. IS - YO S A | from no lattice to the entire system, and examined only states
02 ! . in the forbidden bands.
0 . . , . .
0 2 4 6 8 10 V. TRANSITION RATES
b) Number of Cells to the Right of Center
Introducing the vector potential into the Hamiltonian, Eq.

FIG. 5. Even(crossesand odd(circles state energieén a box (1), leads to the excitation operator

versus numbek of cells to the right of the central defecd) is for A
a central well, andb) for a central barrier. Bands are labeled as in e_
Fig. 4. 2c

1 1
P m(x) * m(x

_—iﬁeAS 14
T 2mec (14

)p

understand this, it is convenient to consider a system with ith dimensions of energy. In defining the opera®tdi-

hard wall at the origin, theN identical cells, followed by a Mensions of inverse lengthwe have factored out the bare
hard wall at the right. The allowed wave functions are those2lectron mass, leaving only the dimensionless effective mass
that vanish at the origifiodd-parity states of the symmetric (M*~0.06) inside. The vector potentiAlis assumed to be a

system, and the hard-wall boundary condition at the right function ofx, so it commutes with the mass. By invoking the
edge isy(x=Nd)=0. In view of Eq.(4), this requires that Coulomb gauge we make it commute with the momentum as

the element\W"),,=0. Since in an allowed band well. ] N )
According to the Golden rule, the transition rate is
sinN sin(N—1
i) = Sy DS, gy 27 [ eAh |2 2
? z w2 wds g oE), (19
e

this can be written
wherep(E;) is the density of final states. The factors before
N sinN¢ the matrix element have dimensions of length squared times
(W) 1,=0= W\le(d)- (13 energy per second, and these are omitted from our calcula-
tions. The matrix element squared times the density of states
This shows that bound states can occur in either of two wayss therefore(energy length-squargd?, and this is what we
First, they can occur as single-cell bound states, where thglot in Figs. 6 and 9. After integrating over energy, we use
second factor vanishes. These states Havedes, and the units of A2 for the total strength.
wave function vanishes at every cell boundary. Alternatively, In the Capasso experiment, the ground state has even par-
the combinatorial factor siN¢/sin¢ may vanish, and in an ity, so its derivative is odd, and transitions are allowed only
allowed band there ard—1 such states wittN¢=mm, m  to odd-parity excited states. Also the lattice is finite rather
=1,2,...N—1. The single-cell state may occur in a forbid- than infinite, so the transitions are to states in the continuum.
den zone, but the others can only occur for reéalin an  In the neighborhood of the CBS, the continuum wave func-
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tion has a large normalization inside the central well, and this 120
causes the transition rate to peak at or near this energy.

We again consider the case of a central well of half width 100}
¢ surrounded byN additional cells on each side. The odd-
parity excited state with Dirac delta-function normalization 8o}
has wave function

60}
W (x)=Bgsin(kyX), [x|<c
1 40}
= —sin(kpx+ ), x>c+Nd, (16
Vr 20
where E—Vb:h2k§/(2mm’§) measures the energy above
the top of the barrier in the asymptotic zone, ak@ ) E(ev)
=2mnt,E/%? is the wave number inside the central well.
Using the transfer matri¥V(d) to crossN cells gives FIG. 6. The transition strength times the density of stébeits
eV 1 A~?) for (a) a central well of width 32 A, andb) a central
1 simky(c+Nd)+ 6] B W sink,,c well surrounded by one cel(c) two cells, and(d) three cells on
Jr | Vo cogky(c+Nd) + 5]/ 0 vy COSk,,C/’ each side.
(17 Wo(x)=Ng cogk,x), [x|<c (22

wherev,, =k, /m} , vp=k,/m,, andW™N =wWN(d), so that _ _ _
and atx=c+ Nd it must match to a decaying exponential, as

1 WO sink,,c+WN v, cosk,c in Eq. (5). If the state is well bo_und it i; a good approxima-
—tan ky(c+Nd)+ 8]= W Sink o WD K tion to use the Kalotas state which vanishes at the edge of the
Vb 21" SINKyC Wz Py COSKwC lattice or the Weber state that, in principle, extends to infin-
ity. The normalization constaritl, must be computed by
determiness, and summing the normalization integrals from every cell as well
as from the central well. If one integratés|v),(v|w), and

1 (w|w) over the unit cell, then it is just a matter of multiply-
Tsw{kb(ch Nd)+ 3] ing these integrals by the coefficients in théh cell and
m summing.
_ Bo[W(ﬁ) sinkWC+W(1§)vW cosk,c] (19 Because the effective mass depends both on position and

energy(and therefore momentumit is not obvious how to
gives the normalizatioB,. Note that the matrix elements of evaluate the matrix elements of the transition operatdiris
WM can be easily computed from thoseW{d) using Eq.  reasonable, in the terpm*, to letp act on the excited state
(6) [or Eq. (12 when the Bloch phase is real. One need g and interpret the effective mass as being at that energy.
not solve explicitly for the phase shii(E) because only Conversely, in the (14*)p term, wherep acts on the initial
|Bo|? is required to compute the transition rate, and the idenstate, we use the ground-state effective mma§s Then,
tity sin’z=tarfz/(1+tarfz) can be used in Eq19).

With the above equations we can construct the wave func- diro dyeg 1
tion W(x) as follows. Wave functions(x), w(x) in a unit  {¥elS| 'ﬂo)zf 'JIETW - f X (B PodX
cell of the lattice are defined in E¢R). Within therth cell m*(Eo) m*(E) 29

following x=c, (r=1,2,...) thewave functionW(x) is
written as Since ¢'/m* is continuous at interfaces between wells and
barriers, the integrand is continuous, despite the jumps in
m*. When the effective mas®* is piecewise constant, we
(20 can evaluate the integral over a series of intervals of constant
and from the matching at=c we haveA,=B, sink,c, B, M* [here interpreted asi* (x,E)].
=Bowy, /vy, cOsk,c. In general, The squared matrix element, including the density-of-
states factor, is plotted as a function of energy in Fig. 6,
rr1 ; which is to be compared with Fig. 2 of Capasgal." (How-
(B mt ) ZW(d)( *), r=1,...(N-1). ever, their figure has normalized the peak height to unity in
re1/M B,/m : . .
1) each case, obscuring the fac.t that the _mtegrated strength is
constani. As the number of side wells increases, the com-
Knowing ¥, (x) in each cell allows the calculation of the puted excitation function rapidly becomes very narrow. It

Y (x)=Av(x—c—rd+d)+B,w(x—c—rd+d)

matrix element in Eq(15). shows that even a small number of cells is sufficient to give
The ground-state wave function is computed in a similara well-confined state. We also find increasing strength in the
manner. Inside the central well it is second allowed band near 700 meV as cells are added. The
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FIG. 7. Four representative continuum wave functionscfe8 A, at energiega) E=521 meV,(b) 545 meV,(c) 565 meV, andd) 573
meV. Dotted lines show the potential cells, in eV; wave functions are dimensionless and are drawn with base lines at the corresponding
energy.

integrated strength under the main pgélom 500 to 640 these account for something like 6% of the total strength.
meV) varies by only a few percent. These odd bound states are shown in Fig. 8, for the Base
To illustrate how the continuum wave functions evolve in =2. In this figure, the wave functions are remarkably similar
the region of the CBS, we show in Fig. 7 four cases spanningnside the region where the ground state is large, so they
the energy range. We match the wave function after3  contribute almost equally to the sum rule.
cells; see Eq(17). It can be seen that as one passes over the Turning now to the results, one has to distinguish between
CBS energy at 563 meV, an additional node appears in the
wave function on each side of the origin. Away from this
resonance|Figs. 1a) and 7b)] the wave function consists
mainly of the growing solution in the lattice, so the ampli-
tude is largest at the outside edgehere it is fixed, accord-
ing to Eq.(16)]. Close to the CB$Fig. 7(c)], there is a large 0.05}
component of the decaying solution, making the amplitude in
the central well large. Increasing the energy ad&ig. 7(d)] ot
brings back more of the growing solution. At 577 meV, the
position of the ABS, only the growing solution would con- -0.05}
tribute. If we had more thaN =3 cells, the effects would be
even more pronounced. 01}
While the peak in the transition strength becomes very
narrow as the number of lattice ceNsincreases from zeroto

0.15

15 : . . . .
3, the integrated strength is almost constant. This can be -300  -200 -100X (an gtroms) 100 200 300
understood from the sum rule which follows from E@5), 9
and is discussed in Appendix A. The total strengdtt,, is FIG. 8. The derivative of théa) ground-state wave function

defined in Eq(A2). In addition to the integral over the con- (over m*) and (b) and (c) the first and second odd-parity excited
tinuum, when there arl Bragg reflectors on either side of wave functions, for a five well potentiéiwo identical cells on each

the central defect, there will b discrete odd-parity bound side of a central we)] enclosed in a box, illustrating the similar
states, which must also be included in the sum. Typicallyoverlap near the origin.
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the no-reflector case and tihereflector case. In the former, a w,(a)
the integrated transition strengtiTS), M,, is about S
1.4 A2, The strength is very broadly distributed above Wlfz Wp(b)
threshold; see Fig.(6). We have looked ail=1-5 cells on
each side. For these cases, the ITS is around 1.35 Af
which about 0.09 comes from the bound odd-parity excitecg
states. AsN increases, the ITS fluctuates only a little. The
strength remains highly concentrated into the CBS peal

(about 80%, the remainder being spread quite widedg in parts. In the system studied by Capastal, the logical

o )
the bound states and 14% in the continjuiecause the division is into the two layers of GalnAs and AllnAs. In that

CBS peak becomes so narrow, we estimate the integral under. .. L B
it by assuming a Breit-Wigner shape, and deducing thesnuatmn, the off-diagonal elements have the fow] ;=

height and width from the calculations. —sinkc/v;, where ve=k./mg(c=a, b) is the velocity. If
The sum rule, calculated according to E43), is always ~ the Bragg reflection condition holds, then kjo==1, and
about 6% to 10% higher than the ITS, if warbitrarily) set N=—v,/v, is just the ratio of velocities in the two parts of
the doorway state masse to be atE=Ecgs=563 meV the cell.[This is analogous to the problem of waves on a
The main term in Eq.(EA3) is proport(ijoBr?al to (]Uho. string, with one part thin and the other thick. At the join, the

+1/mg)2, so we can easily adjust the doorway energy todisplacemeny(x) is continuous, and the ratio of the slopes

ensure that the sum rule will agree with the ITS. We call thisY (L)/Y'(R) is the ratio of the velocities squarg¢®ne sees
the effective doorway energiip . With no reflectorsEp, is that in thea ceI_I, the s_olutlonwa(x) rises to the value
about 740 me\(535 above the ground-state energphis is ~ Wa(@) =1/va, while starting fromd and moving backwards
reasonable since the excitation strength is very broadly didhrough the barrier region, the corresponding solution falls to
tributed above threshold. With one reflecton each side e valuewp(—Db)=—wy(b)=—1/v,. Normalizing theb

E,, drops to 660 meV, but then it slowly rises, at least up toSClution to ensure continuity at=a requires the factox.
N=5, where it reaches 670 meV. The result, Eq.(25), is quite surprising because in the

general situation where the potential and effective mass vary
arbitrarily, the dividing line can be placed anywhere. To
VI. OPTIMAL CBS CONFINEMENT makg the eigenvalue small, one must mak) as large as
possible throughout the second part cell and as small as pos-
In this section we discuss general principles for designingsible in the first. As observed by Weber, the first aspect can
a CBS with a narrow distribution of transition strength. Con-be achieved by choosing an energy just above the barrier
sider a general unit cell of widtt, within which the poten-  (smallk,). To meet the Bragg condition, this forces a large
tial and the effective mass are arbitrary functions.dfSince b, and the linear variation afi,(x) over the barrier leads to
we will fix the CBS energy, this allows for energy depen-a large wave function ak=b. That is why lowering the
dence of the effective magdNow let us arbitrarily divide the energy of the CBS in general improves confinement.
cell into two parts so that widtha andb add tod, and we However, our aim is to improve confinement whileep-
denote byW?, WP the transfer matrices of the two parts. ing the energyf the CBSfixed We split thea part cell into
When a is on the left, we havav?=WPW2, If the whole  two sectionsa,, a,, making the left side more attractive,
array is symmetric about the origin, there will be two typpe- and the right side less so/{,;<V,,<V,,). This is illus-
portions together at the origin, and the sequence of potentialgated in Fig. 2b). The greater curvature af,(x) near the
is ...baba...balab...abab... . (This is a special origin, balanced by less curvature to the right, will lead to a
case corresponding t=0.) When we look for odd-parity smaller value ofv,(a), even if the average attraction is the
confined states of such an array, it is equivalent to putting @ame. We leave the cell fixed, but a similar strategy with
hard wall at the origin, and solving only the right side. Theless repulsion on the right side can obviously be employed
wave function at the edge of the first cell will be, using Eqg.there. A very complete study of surface stai@st not CBSs
), generated by a three-layer unit cell has been made by Ku-
charczykr et al'* Of relevance here, their Fig(@ shows
that the strategy we developed above yields much better lo-

(25

What this tells us is that to make the eigenvalue as small as
ossible, we must make the,(x) solution as small as pos-
ible at the right edge of tha part cell, and conversely,
Kvb(x) as large as possible at the right edge oflitpart cell.

The above is true foany division of the cell into two

7 W 0 calization than an alternative one shown in their Fig)4
o' I = we =\ 1) (24 To illustrate our method, we have selected a set of hetero-
d 22 structures based on quaternary alloysl&a ,As,P, _,, lat-

tice matched to InPx=0.468/). We took information from
The second equality holds if we imagine an infinite array,Figs- 1.17(for band gapsand 1.20(for effective massgsof
and demand an eigenstate with the wave function in each Ceﬁwam[r(lsathan and Macrandgr. For the band offsets,
differing only by a factor\. This wave function will vanish Adacht® gives
at bothx=0 andd, and in the second cell, the value of

' Im* will differ by a factor\ from the first. The condition AE =268/ +3y?,
that must be satisfied &/<,=0, and ther\ =WJ,. One can
then show(see Appendix Bthat the eigenvalue is AE, =502 — 152y (26)
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TABLE |. Optimized three-layer potentials indicating the changes in the widihs,, w(a), and v,
=k,/m*, and eigenvaluex. In all cases b=44.2851450 A, w,(b)=2.1450935, andEcgs

=563.0 meV.

Case a, a, w(a) v, N
(Q,Q) 7.9109 7.9109 0.8636 1.1579 —0.4026
(0H), 9.3535 9.3535 0.8495 0.9092 —0.3960
(0H), 10.4995 7.9109 0.8031 0.9092 —0.3744

The band alignments are also discussed on p. 87 of DaVies. We then compute the CBS properties for a finite array
Putting together this information, we arrived at the following based on the above materials, with results shown in Tables I
set of parameters: and Il and Fig. 9, wher&l is the number of Bragg reflectors
placed on each side of the central defect. The transition
strength is significantly narrower and more strongly peaked
for the split-well examples. The strength to the bound states
in the split-well cases is only 25%—-30% of that of (g Q)

y=1.0, m§=0.043, E,=0.880 eV,

y=0.5, m} =0.061, E;=1.080 eV, reference case, and the strength to the continuum states is
g much larger.
o The differences in the total strength are reflected in the
y=0.0, my=0.081, E4=1.360 eV, (27) portion concentrated in the CBS peak. The decay constant

strongly influences both the sharpness of, and the area under,
whereE, are effective band gaps in the sense of Nelebn the peak. Although the eigenvalie(last column of Table)l
al.1o0 differs by only a few percent among the three cases, there is

In this way we can have conduction-band potential step@ dramatic increase in peak height and decrease in peak
of 125 meV[from Ga,AnsAs to Gaygdn ;7AssPs or 250  width shown in the first six columns of Table IlI. This shows
meV to InP §y=0)]. These are a quartédenotedQ) or a  that the decay constant by itself is not a direct indicator of
half (denoted H) step up to the 500-meV barrier of the concentration of transition strength. o
Al 4dn 5As. Reducing the decay constant even a little has a significant

As our baselinddenoted Q,Q) below], we take thea  effect on both th'e t(_)tal §trepgth, and its continuum and
well to consist entirely of) (y=0.5) material, so the poten- bound-state co_r1tr|but|or_13 |nd|V|duaIIy. A lower vaIL_Je of the
tial floor at 125 meV is 375-meV below the barrier. The decay constanin magnitude results in better confinement
barrier width was fixed at 44.3 A, which satisfies the BraggPf theé CBS as is evidenced by the width of the peak in the
condition. For a widtha=15.82 A, the CBS is at 63 meV transition strength curve. We conclude that the split-well
above the top of the barrier, as in the original experimentStrategy can produce much better confinement of the CBS. It
The eigenvalue\ = —0.4026 is not as favorable as in the shou_ld be feasible to conflrm this method of improving the
original work because the well is not so deépapassetal.  confinement of CBSs, experimentally.
evidently selected the materials to have the greatest possible
well-barrier potential differencgThe potential properties are
summarized in Table I, top line.

Next we divide thea well into two parts, one of GalnAs  We have shown that continuum bound states are closely
(y=1) and the other of InP. We adjusted the widéhsand  related to surface states, because both arise as a result of
a, to keepEcpsfixed. In the second line of Table I, denoted perturbing an infinite periodic system. The results of W&ber
(OH),;, a,=a,=9.353 A, and the eigenvalue ia= concerning the experiment of Capastal. were verified. In
—0.396. In the third line, denoted (9),, the deeper well addition, by enclosing a finite array in a box, we have traced
has width a,=10.50 A, and the shallower pars, the evolution of the Bloch states in the allowed bands as the
=7.911 A, giving\ = —0.374. This may seem a small gain, number of Bragg layers is increased.
but we shall see that the improvement is significant. The experimental measure of confinement is not the ei-

VIlI. CONCLUSION

TABLE Il. Evolution of the transition strength () with increasing number of Bragg reflectobs,

Bound Continuum Total strength

(Q:Q) (OvH)l (O!H)Z (Q:Q) (OlH)l (O!H)Z (Q:Q) (OlH)l (O!H)Z

N

0 0 0 0 0.912 1.279 1.324 0.912 1.279 1.324
1 0.108 0.0267 0.0319 0.762 1.188 1.234 0.870 1.215 1.266
2
3

0.117 0.0281 0.0334 0.759 1.188 1.233 0.876 1.216 1.267
0.118 0.0282 0.0335 0.754 1.183 1.229 0.872 1.211 1.263
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TABLE lll. Total strength under the CBS peak: dependence on number of Bragg reflédtors,

Peak height (evV*A~?) Width T (eV) Peak/total strengttb)
N (Q:Q) (O!H)l (O,H)2 (Q!Q) (OvH)l (O!H)Z (Q!Q) (OiH)l (OrH)Z
1 27.5 38.2 456  1.7810°% 1.49<10°2 1.33x102 858 73.7 75.5
2 165 247 328  2.4210°% 2.07x10°% 1.68<10°% 71.6 66.1 68.4
3 1026 1609 2383 3.8410°* 3.16x10°* 2.33x10°* 70.5 66.0 69.1
genvalue but rather the transition strength to the CBS. We APPENDIX A: SUM RULE FOR INTRASUBBAND

have systematically examined the strength in the peak region TRANSITIONS
where about 70% is concentrated, and have derived a sum
rule, within the conduction-band-only model, that explains
the integrated transition strength from the ground state to th
continuum. Finally, we have identified the factors that allow
one to improve the confinement of a continuum bound stat

and proposed a way of testing this.

Sirtori et al*® discussed the sum rule for excitations to the
CBS within a two-band Kane model. Here we limit our dis-
Gussion to what can be done within a conduction-band-only
model, Eq.(1). The difficulty which arises in this context is
Shat having an energy-dependent effective mass means that
the Hamiltonian does not have a complete orthonormal set of
excited states, so the sum rule can only be approximate.

We take the operator to be
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FIG. 9. Transition strength to continuutanits eV A~?) for
(a) the case Q,Q), (b) (O,H)4, and(c) (OH),, showing the evo-

To obtain this expression we moved tpeoperators until
they act on the ground-state wave function directly. In the
case of a constant effective masg,=mg=1, only the first
integral survives. In this case the sum rule must be exact, and

lution of the CBS peak. Note change of scale between the uppewe found close agreement between the sum-rule expression,

panel for theN=1 reflector and the lower panel fdi=2.

and direct integration:
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" dk
M2=f (o|S |¢E>d_E<¢E|S|¢o>dEa
where

dk 1 2m

B 2(E—V,)
dE 2k 2 Mo M T,

=

: (Ad)

which includes nonparabolicity. The wave numlkeis de-

PHYSICAL REVIEW B 67, 085318 (2003

evaluatemg . Thinking in terms of the doorway state ap-
proximation, initially we took the CBS energy. Then we de-
fined an effective doorway energy.

The second term in EqA3) involves the square of a
Dirac delta function, and is undefined. We simply omit this
contribution.

APPENDIX B: EQUATION (25)

fined by the energy above the barrier. At high energy the The stated conditions lead to
density of states tends to a constant, rather than going to

zero, as it would for constant mass. The case without energy

dependence can be recoveredjf— .

When we introducex dependence to the effective mass,

the terms involving the derivative of (hE) contribute.
When the mass is piecewise constant, the derivative is
Dirac delta function times the discontinuity in (df). The
integral in the last line of Eq(A3) is then a sum of values
evaluated at the layer edges.

When we introduce energy dependence as well, both here,

and in the first integral, factors such g@g/mg are discon-
tinuous, because the masg is taken at one energy and the

ground-state wave function at another. To resolve this ambi-

W,=WE Wi, -+ WE,W3,=0

b a
W11_ Wa,

or T T oA
W12 V\/12

a

a

wWa
b b b b 22
\/\/g2:W21W3‘2+W22W62‘2=)\=(W21+W22—Wa) 12

12
a
12
1
Wb

Wi,
= ( Wtz)l_Wgzw_b 12= (W21W22_W12)2W?1)
12

12

guity we took the average of the two values on either side of

the discontinuity. For these materials, the well and barrier
masses are similar, so it is not a large uncertainty. This is the
stage at which the sum rule can only be approximate. More-

over, we need a prescription for the enefgyt which we

_ W?Z _ Wa(a)

A= .
wh,  wp(b)

(B1)

In the last step we have used the form\iifas in Eq.(2).
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