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Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity
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A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative
decay of an electrically pumped biexciton in a quantum dot. Symmetric dots produce polarization entangle-
ment, but experimentally realized asymmetric dots produce photons entangled in both polarization and fre-
quency. In this work, we investigate the possibility of erasing the ‘‘which-path’’ information contained in the
frequencies of the photons produced by asymmetric quantum dots to recover polarization-entangled photons.
We consider a biexciton with nondegenerate intermediate excitonic states in a leaky optical cavity with pairs of
degenerate cavity modes close to the nondegenerate exciton transition frequencies. An open quantum system
approach is used to compute the polarization entanglement of the two-photon state after it escapes from the
cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon
visibility to the degree of the Bell-inequality violation, deriving a threshold at which Bell-inequality violations
will be observed. Our results show that an ideal cavity will produce maximally polarization-entangled photon
pairs, and even a nonideal cavity will produce partially entangled photon pairs capable of violating a Bell-
inequality.
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I. INTRODUCTION

Recent proposals for quantum communication1,2 and
quantum information protocols3 provide a significant incen
tive to develop practical single-photon sources and entan
two-photon sources. The first requirement for such source
that the emission time of the photons be periodic with
precisely defined clock frequency. Exciton recombination
electrically or optically excited quantum dots is a candid
system for such sources. In this paper, we will discuss
entangled two-photon source based on recent experimen
self-assembled interface quantum dots.4,5 A proposal for pro-
ducing entangled photon pairs on demand based on biexc
emission from a quantum dot was recently presented by B
sonet al.6

A pair of excitons confined in a quantum dot form
bound state known as a biexciton. The decay of the biexc
proceeds by consecutive single-electron-hole recombina
processes. This is estabished experimentally by the temp
correlation of the biexciton emission and the exciton em
sion; time-resolved photoluminescence measurements s
the exciton photon to be emittedafter the biexciton photon.5

A similar time-resolved study of the polarization of the em
ted photons shows that there are two decay paths, and i
been shown that they are coherent with one another.7 While
the biexciton photon and the exciton photon emitted in e
decay path have the same linear polarization, the polariza
in different decay paths are orthogonal. If these decay p
were indistinguishable, then this would be a good candid
for an entangled two-photon source. Unfortunately sm
asymmetries in the physical geometry of the dots makes
0163-1829/2003/67~8!/085317~15!/$20.00 67 0853
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two paths distinguishable, since the asymmetry of the
breaks the degeneracy of an intermediate exciton level
abling the two paths to be distinguished by frequency. T
effect of asymmetry on the spectrum of excitons in dots w
observed experimentally in dots formed by monolayer flu
tuations in a GaAs two-dimensional quantum well8 and has
been addressed theoretically.9 It has also been observed e
perimentally in CdSe or ZnSe dots10 and in self-assembled
GaAs or InGaAs dots.11 In Fig. 1~a!, we indicate the possible
decay paths from a single biexciton level through two no
degenerate exciton levels to the ground state of the dot.
first decay path corresponds to the emission of a biexc
photon with linear polarization in thex direction at fre-
quencyv1 , followed by the emission of the exciton photo
with the same polarization, at frequencyv2 . In the second
decay path, the biexciton emits ay polarized photon at fre-
quencyv3 followed by the exciton emission, also withy
polarization, at frequencyv4 .

The state of the emitted photon pairs may then be writ
as

uc1&5~ ux,v1 ;x,v2&1uy,v3 ;y,v4&)/A2, ~1!

where the notation indicates the mode~polarization and fre-
quency! occupied by each photon of the pa
uphoton 1;photon 2&, with the order reflecting the order o
emission. It has been established experimentally that
weights of the kets are equal.11 In contrast, we wish to pro-
duce a state of the form

uc2&5ux,vA ;x,vB&1uy,vA ;y,vB&/A2, ~2!
©2003 The American Physical Society17-1
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FIG. 1. ~a! Energy-level dia-
gram and available transitions fo
the quantum dot and cavity sys
tem. ~b! Spectrum of exciton tran-
sitions ~dotted line! and cavity
modes~solid line! indicating the
relevant frequencies for the inter
action Hamiltonian.
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and we call such a state polarization entangled, since
entanglement is only in the polarization degree of freedo
This is in contrast to the state given by Eq.~1! which is
entangled in both polarization and frequency. The import
difference between statesuc1& anduc2& is that the second ke
in uc2& may be rotated into the first ket using linear optic
elements such as half-wave plates~HWP! and polarizing
beam splitters~PBS!, and vice versa, whereas this is n
possible for the two kets written in stateuc1&. Thus, for
instance, Bell-inequality measurements and two-photon
terference experiments may be performed with realtive e
usinguc1& but notuc2&, and this translates to a technologic
setting in, for instance, quantum key distribution.

The problem of producing frequency-and-polarization e
tangled states akin touc1& has been considered for photo
pairs produced by spontaneous parametric down-conver
in a nonlinear crystal.12 In this case, photons are also e
tangled both in polarization and frequency, though the f
quency entanglement is more complicated. The frequen
for the two emitted photons are constrained by energy c
servation, so that their sum must be equal to the frequenc
the absorbed pump photon. Since this single constraint d
not determine the frequencies of the two emitted phot
uniquely, each photon of the pair may be emitted over a w
range of frequencies determined by the spectrum of
pump pulse and the phase-matching requirement~which is
an expression of momentum conservation!. Thus, the photon
pair is entangled in its frequency degree of freedom.

A resolution to this problem, presented and experim
tally implemented in Ref. 12 is to pass the signal and id
beams back through the crystal, but with the polarizatio
rotated throughp/2, with the result that the two ways i
which the photons can be emitted with correlated polari
tion are not distinguished by frequency. This scheme in R
12 does not directly translate to the case of biexcitonic em
sion, but we, nevertheless wish to remove the spectral de
dence from the entanglement in stateuc1&, so the objective
of this paper is to present and analyze a proposal to acc
plish this for the biexciton entangled photon source.

In this paper, we demonstrate that the frequency may
disentangled from the polarization by placing the dot in
external cavity with suitably chosen cavity-exciton coupli
strengths and cavity mode frequencies. We will show that
external cavity can erase the ‘‘which-path’’ information co
tained in the frequency components of stateuc1&. The exter-
nal cavity is used to control both the spectral and spa
mode structures of the emitted photons to enable the
08531
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tanglement to be demonstrated in an interferometer. A sim
idea using waveguides for spontaneous parametric do
conversion has been proposed by Banaszeket.al.13 We note
that the original proposal for the two-photon source6 includes
the external cavity, but its presence is only to increase
outcoupling efficiency, and only a brief mention is made
its effect upon the spectral emission properties of the emi
photons.

The following part of this paper begins by defining
Hamiltonian for a four-level system interacting with optic
cavity modes. A master equation is developed in Sec. III
deal with photons leaking from the cavity and into som
measurement apparatus, as well as to account for deco
ence events such as photon loss. In Sec. IV, we discuss s
operational definitions to quantify the entanglement of
photons produced, such as two-photon visibility and Be
inequality violations, with the aid of which we judge th
efficacy of the cavity in restoring the polarization entang
ment. We then provide some results in Secs. V and VI sh
ing that an ideal cavity does establish maximally entang
photon pairs, and numerical results showing how sensi
the resulting state is to imperfections in the system para
eters. We then provide some heuristic analytic results in
Discussion, which explain the numerical results, as well
comment on implications for experiments, and finally co
clude the paper.

II. SYSTEM HAMILTONIAN

Figure 1~a! shows the energy levels and available dipo
transitions for the biexciton-cavity system. The biexcit
states given byuXX&, uXx& and uXy& are the intermediate
excitonic states in thex and y polarization decay paths re
spectively, anduG& is the dot ground state. The cavity
assumed to support pairs of degeneratex- and y-polarized
modes at frequenciesvA andvB . In our model, we do not
include coupling between, for instance, the cavity mo
uvA ,x& and the transitionuG&↔uXx& which is valid when
assuming that the detuning between them is much larger
the cavity-exciton coupling strength, which is the case
this system. The system HamiltonianHsys under the rotating
wave and dipole approximations14,15 is then

Hsys5v0uXX&^XXu1v2uXx&^Xxu1v4uXy&^Xyu
1vA~ n̂x,vA

1n̂y,vA
!1vB~ n̂x,vB

1n̂y,vB
!

1
i

2
~q1uXx&^XXuax,vA

† 1q2uG&^Xxuax,vB

†

1q3uXy&^XXuay,vA

† 1q4uG&^Xyuax,vA

† 2H.c.!, ~3!
7-2
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FIG. 2. The basisB for the evolution of the system along with transitions generated by the HamiltonianH and cavity leakage. Coupling
strengths between states are indicated. The top line of states spans the subspace of two excitations~i.e., exciton number plus photon number!,
the middle line spans the subspace of one excitation, and the single state on the last line spans the subspace of zero excitation
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whereaj and n̂ j5aj
†aj are the photon annihilation operato

and the photon number operator for modej, respectively, and
for convenience we take\51. We transform to an interactio
picture defined byH05(v0/2)N̂, where

N̂52uXX&^XXu1uXx&^Xxu1uXy&^Xyu

1n̂x,vA
1n̂y,vA

1n̂x,vB
1n̂y,vB

~4!

is the number of excitations in the system. The interact
Hamiltonian,H5eiH 0tHsyse

2 iH 0t2H0 , is given by

H52juXx&^Xxu2~j1D!uXy&^Xyu

1~j1dA!~ n̂x,vA
1n̂y,vA

!2~j1dB!~ n̂x,vB
1n̂y,vB

!

1
i

2
~q1uXx&^XXuax,vA

† 1q2uG&^Xxuax,vB

† 1q3uXy&

3^XXuay,vA

† 1q4uG&^Xyuax,vA

† 2H.c.!, ~5!

where 2j5v12v2 is the biexciton shift,D5v32v15v2
2v4 is the doublet splitting due to dot asymmetry,dA5vA
2v1 is the detuning between cavity modeA and transition
frequencyv1 , and dB5v22vB is the detuning between
transition frequencyv2 and cavity modeB. These frequen-
cies are shown schematically in Fig. 1~b!.

We now define a ‘‘balanced cavity’’ to be one for whic
the two cavity modes fall directly in between each of t
doublets (dA5dB5D/2) and the exciton-cavity coupling
constants are matched (q15q3 and q25q4). An ‘‘unbal-
anced cavity’’ is one for whichdA,BÞD/2, and ‘‘unbalanced
coupling’’ means thatq1Þq3 or q2Þq4). We will show later
that a balanced cavity accomplishes the required which-p
erasure.

The dynamics of states under the action of the time e
lution operator,e2 iHt , generated by the HamiltonianH is
closed in the 12-dimensional space spanned by the basB,
which is shown in Fig. 2.

Finally, we assume that the initial state of the system
biexcitonic,uc(0)&5uXX&u00&u00&.

III. DERIVATION OF MASTER EQUATION

The theory of open quantum systems has been well s
ied ~see e.g., Refs. 16 and 17!, and we adopt this formalism
to analyze the exciton-cavity system interacting with the
ternal continuum modes and measurement devices ou
the cavity.
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Wiseman16 gives an expression for the master equat
for the conditional density matrix,rc , for a single measure
ment channel using imperfect detectors, while Gardiner
Zoller17 give a similar expression for many channels w
perfect detection on each channel. Generalizing these re
to an n-channel conditional master equation with arbitra
efficiency detectors on each channel results in the co
tional master equation

drc52 i @H,rc#dt1(
j 51

n H S h jTr$Jjrc%rc1~12h j !Jjrc

2
1

2
~cj

†cjrc1rccj
†cj ! Ddt1S Jjrc

Tr$Jjrc%
2rcDdNj J ,

~6!

whereH is the interaction Hamiltonian for the system,cj is
the system operator through which the system couples
channelj, Jjrc[cjrccj

† is the jump operator for channelj,
h j is the detection efficiency of jump processes on channj,
anddNj is the jump increment. For the case whereh j51 for
all j, this equation reproduces the result in Gardiner a
Zoller17 @Sec. 11.3.8.d#, and forn51 it reproduces the resul
of Wiseman16 @Sec. 4.1.2#.

For the biexciton decay, there are several baths w
which the exciton-cavity system is coupled. First, the cav
modes decay at a ratek in order to couple the photons gen
erated in the emission process to the outside world. T
decay mode is coupled to the four cavity modes, where
system coupling operators arec15Akax,vA

,c25Akay,vA
,

c35Akax,vB
, andc45Akay,vB

. To quantify the effect of the
cavity in erasing the frequency information, in what will fo
low, these channels are assumed to be perfectly dete
h15•••5h451.

Second, there may be a spontaneous emission into ph
modes apart from those of the cavity. This decay chan
couples via similar system operators, but with different d
cay rates, so thatc55AGsuXx&^XXu, c65AGsuXy&^XXu, c7

5AGsuG&^Xxu, and c85AGsuG&^Xyu. These channels ar
considered to be inaccessible to an observer, so we se
detection efficiency to zero,h45•••5h850. For later sec-
tions, we will refer to these channels as ‘‘leakage channe

Finally, we will add a phenomenological dephasing acti
on the two exciton statesuXx& and uXy&. This is to simulate
the effect of some unspecified bath~e.g., phonons! that is
able to distinguish the intermediate excitonic state during
7-3
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decay process. The system operators to which this b
couples are assumed to bec95AGduXx&^Xxu, and c10

5AGduXy&^Xyu. Again, these channels are inaccessible
observer, so the detection efficiency is zero,h95h1050.

Sinceh j50 for channels five through ten, from Ref. 1
we haveE@dNj (t)#5h jTr$Jjrc(t)%dt50 for j 55, . . .,10,
and since dNj (t) is non-negative, dNj (t)50 for j
55, . . .,10. In accordance with the assumptions regard
channel efficiencies made above, the conditional ma
equation between photon detections~i.e., dNj50, j
51, . . . ,4), becomes

ṙc52 i @H,rc#1(
j 51

4

Tr$Jjrc%rc1(
j 55

10

Jjrc

2(
j 51

10
1

2
~cj

†cjrc1rccj
†cj !. ~7!

The second term in this equation is nonlinear inrc , reflect-
ing the fact that the evolution is conditional on the syst
not emitting a photon. For computational purposes, we c
vert Eq.~7! into an equivalent linear equation for an unno
malized density matrixr̃ by definingrc(t)5 f (t) r̃(t), where
f (t) is a scalar function to be determined. Substituting t
into Eq. ~7! gives

f ṙ̃1 ḟ r̃52 i f @H,r̃ #1 f 2(
j 51

4

Tr$Jj r̃%r̃1 f (
j 55

10

Jj r̃

2 f (
j 51

10
1

2
~cj

†cj r̃1 r̃cj
†cj !. ~8!

Collecting terms that are proportional tof and requiring that
others vanish gives the linear, unnormalized semi-conditio
~i.e., conditioned on only a subset,j 51, . . . ,4, of thechan-
nels! master equation

ṙ̃52 i @H,r̃ #1(
j 55

10

Jj r̃2(
j 51

10
1

2
~cj

†cj r̃1 r̃cj
†cj !, ~9!

along with the constraint equation forf

ḟ r̃5 f 2(
j 51

4

Tr$Jj r̃%r̃. ~10!

This can be integrated to givef 52(* tdt( j 51
4 Tr$Jj r̃%)21.

Taking the trace of Eq.~9! gives Tr$ṙ̃%52( j 51
4 Tr$Jj r̃%,

and so we see thatf 5Tr$r̃%21, which is just the normaliza-
tion condition forrc , i.e., rc5 r̃/Tr$r̃% as required.

IV. QUANTIFYING TWO-PHOTON ENTANGLEMENT

We now develop a measure of the performance of
cavity in erasing which-path information. A polarization
entangled photon pair is an archetypal example of a t
qubit system. Such bipartite systems have been stu
extensively,1 and in particular, the entanglement of such pu
bipartite systems is well quantified by the von Neumann
tropy of one subsystem.
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In the system we are concerned with, there is so
subtlety, however, since although the system plus continu
evolves to a two-photon state, this is only determined onc
measurement has been performed, observing both pho
Before the measurement, the system evolves in a much la
Hilbert space, so it is not entirely trivial to adapt measu
such as entropy to the case of interest here, not least, bec
under certain circumstances, the photon pair is described
a mixed state. Instead, we use an operational measure—
visibility. This arises naturally by considering the result
two-photon coincidence counting at the output of
polarization-sensitive interferometer, depicted in Fig.
through which the photon pair is directed.

It is straightforward to show that a pure, entangled state
the form uxx&1uyy& passing through such an interferomet
with a f phase shift~per photon! on one arm will exhibit
interference fringes in the two-photon coincidence counts
tween the detectors, with the coincidence count rate pro
tional to 12cos~2f!. The factor of 2 in the argument of th
cosine is a direct manifestation of the two-particle nature
the state, and this has been observed experimentally.18

Conversely, neither a completely mixed state such
uxx&^xxu1uyy&^yyu nor a pure, nonentangled state such
uxx& will display interference fringes asf is varied. It is
intuitively clear from these two examples that the visibili
of the interference fringes is an operational measure of b
the purity and entanglement of the input two-photon sta
and is dependent on the off-diagonal elements of the den
matrix, which are zero for nonentangled or completely mix
states.

Interferometric methods for estimating entanglement h
been discussed by Ekert and Horodecki.19 They argue that
d221 separate types of interferometric experiment are
quired to estimate the entanglement of a pair of particlesd
being the dimension of the Hilbert space for each partic
For the case of interest to usd52, we expect that three
parameters will be sufficient to place bounds on the entan
ment of the photon pair. In fact, we assume that antico
lated states such asuxy& are never produced, which i
roughly consistent with experimental observations show
that interexciton transitions are rare,11 and so the number o
experiments required is reduced to one. That is, we only n
to measure a single visibility fringe in order to quantify th
two-photon entanglement.

A. Interferometry

Quantitatively, we relate the output continuum field an
hilation operators of the half-wave plate,bx,v8 ,by,v8 , to the
interferometer input field operators,bx,v ,by,v , according to

FIG. 3. Schematic of a polarization sensitive interferometer
PBS splits the beam intox- and y-polarized paths and a relativ
phasef is added to one path. The paths are recombined, and
polarizations are rotated byp/4 using HWP, then detected with
polarization-sensitive single-photon detectors.
7-4



te

re
th

n
th
in

he
-

e

b
it

on
by

s
t
or

y

n

ges

t-
n-

or

ty

ility
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Fbx,v8

by,v8
G5

1

A2
F eif 1

21 e2 ifGFbx,v

by,v
G . ~11!

We adopt the notation that a prime on an operator indica
that it is transformed consistently with Eq.~11!, for example,
n̂x,v8 5(bx,v8 )†bx,v8 .

The expectation of a two-photon coincidence measu
ment by detectors 1 and 2 will, in general, be given by
normally ordered~denoted by :•••:! two-time correlation
function ^:n̂i ,vB

8 (tB)n̂ j ,vA
8 (tA):&c , where i , j P$x,y%.16,17,20

The subscriptc denotes the fact that the expectation is co
ditioned on the system having emitted zero photons in
interval @0,min$tA ,tB%#, and the ordering of the operators
the correlation function will depend on the ordering oftA and
tB .

We may relate the cavity field output operators for t
continuum model to the cavity input operators and the in
ternal cavity operator according tobout( l ,t)2bin( l ,t)
5Akal(t). We will also assume that the cavity input is th
vacuum sô bin

† ( l ,t)bin( l ,t8)&50.17 Thus, normally ordered
expectations of continuum modes may be replaced
normal- and time-ordered expectations of internal cav
modes, multiplied by a suitable power ofAk. More detailed
discussion of this point is given in Gardiner and Zoller.17

For example, the conditional expectation of detecting c
secutive photons at detector 1 will be given
^:n̂x,vB

8 (tB)n̂x,vA
8 (tA):&c , and if tB.tA , then

^:n̂x,vB
8 ~ tB!n̂x,vA

8 ~ tA!:&c5Tr$Jx,vB
8 ~ tB!T~ tB ,tA!

3$Jx,vA
8 ~ tA!rc~ tA!%%

5k2Tr$~ax,vB
8 !†ax,vB

8 T~ tB ,tA!

3$ax,vA
8 rc~ tA!~ax,vA

8 !†%%, ~12!

whereT(tB ,tA) is the time evolution operator, which evolve
the system from timetA to time tB , and for open systems i
is nonunitary.17 Very similar expressions may be derived f
the case wheretB,tA .

B. Visibility

Since the transformed operators in Eq.~12! depend on
f according to Eq. ~11!, we see that the quantit
^:n̂x,vB

8 (tB)n̂x,vA
8 (t):& must also depend onf. Many of the

cross terms vanish, leaving the result

^:n̂x,vB
8 ~ tB!n̂x,vA

8 ~ tA!:&5k2~x1y1e2ifz1e22ifz* !,

~13!

where

x[^:ax,vB

† ax,vB
ax,vA

† ax,vA
:&

5Tr$ax,vB

† ax,vB
T$ax,vA

rcax,vA

† %%P@0,1# ,
08531
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y[^:ay,vB

† ay,vB
ay,vA

† ay,vA
:&

5Tr$ay,vB

† ay,vB
T$ay,vA

rcay,vA

† %%P@0,1#,

z[^:ay,vB

† ax,vB
ay,vA

† ax,vA
:&

5Tr$ay,vB

† ax,vB
T$ax,vA

rcay,vA

† %%PC, ~14!

which all depend ontA and tB though this notation has bee
dropped for brevity. We can define the visibilityV from this
expression to be the amplitude of the interference frin
divided by the mean~averaged overf! and it is

V~ tA ,tB!5
2uzu
x1y

. ~15!

Conceptually,V is the visibility of fringes generated by pos
selecting photon pairs that arrive within the two-time wi
dow (tA ,tA1dt)(tB ,tB1dt) as f varies. We note that we
may compute the visibility directly fromr̃ by making the
definition x̃[Tr$ax,vB

† ax,vB
T$ax,vA

r̃ax,vA

† %%, with similar

definitions for ỹ and z̃, so that an equivalent expression f
the visibility is

V~ tA ,tB!5
2uz̃u

x̃1 ỹ
. ~16!

C. Probability density

We may also compute the joint probability densityP for
detecting a photon pair within the two-time window (tA ,tA
1dt)(tB ,tB1dt), as given in Ref. 17@Sec. 11.3.7~d!#,

P~ tA ,tB!5S (
i , j

^:n̂i ,vB
8 ~ tB!n̂ j ,vA

8 ~ tA!:&cD
3S 12E

0

tA
dt (

j
Jj8T~t,0!r~0! D

5(
i , j

^:n̂i ,vB
8 ~ tB!n̂ j ,vA

8 ~ tA!:&cTr$r̃~ tA!%

5k2(
i , j

Tr$Ji ,vB
8 ~ tB!T~ tB ,tA!$Jj ,vA

8 ~ tA!r̃~ tA!%%

5k2~ x̃1 ỹ!, ~17!

where we have again assumedtA,tB , although similar ex-
pressions may easily be derived fortA.tB . The first factor
in the first equality is just the conditional probability densi
for either the detector to register at timestA and tB given no
emission beforehand, and the second factor is the probab
of emitting zero photons in the interval@0,tA#. The second
equality follows from Eq.~10! and its following equations.
The third equality follows from Eq.~12! and recalling the
fact thatrc(t)5 r̃(t)/Tr$r̃(t)%. Finally, Eq. ~17! shows that
the probability density does not depend onf—detecting a
7-5
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photon pair after the interferometer occurs with the sa
probability density as detecting a photon pair before the
terferometer, as expected.

We also define the quantity

P5E
0

`E
0

`

P~ tA ,tB!dtAdtB . ~18!

In the presence of spontaneous emission into noncavity p
ton modes,P,1, indicating that not all biexciton deca
events will be detected by the photodetectors following
interferometer. We, therefore, interpretP as the reduction
factor of the two-photon detection rate, as compared with
biexciton pumping rate.

D. Mean visibility

We now define the mean visibility, which is a figure
merit for the degree of entanglement between the pho
pair,

V̄5
1

PE0

`E
0

`

V~ tA ,tB!P~ tA ,tB!dtAdtB

5
2k2

P E
0

`E
0

`

uz̃~ tA ,tB!udtAdtB , ~19!

where we have divided byP so as to only count those deca
events that are detected through the interferometer. If
visibility is unity ~i.e., perfect erasure of which-path info
mation!, then V̄51, since the probability density is norma
ized byP. On the other hand, ifV is less than unity, so will
be V̄, therefore, performing a two-photon interference e
periment with all photon pairs produced will result in fring
of visibility V̄,1.

We see from Eqs.~16!, ~17!, and ~19! that the quantities
we are interested in may all be determined directly fromr̃,
which makes calculations we perform in following sectio
simpler.

E. Phase accumulation

Whilst the visibility is a very important measure of th
success of the scheme, since the initial state of the sys
uXx&u00&u00&, is not an energy eigenstate, during the em
sion process, phase will accumulate at different rates on
xx and yy decay paths. The phase difference accumula
between each decay path depends on the emission tim
the two photons and is given byw[arg$z(tA ,tB)%
5arg$z̃(tA ,tB)%, corresponding to emission of a state of t
form uxx&1eiw(tA ,tB)uyy&. Since, for a given apparatus,w
depends only on the emission timestA and tB , this may be
calibrated or computed, and hence accounted for, befor
interference experiment~or whatever else is intended for th
output photon pair! is done. If this phase is ignored, then th
mean visibility will be lower thanV̄, since the description o
the phase-averaged state will be mixed.
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F. Relation to Bell-inequality violations

Instead of passing the photon pair through an interfero
eter, we could imagine using an ensemble of such state
measure Bell-inequality violations. In particular, we consid
violations of a Clauser-Horne-Shimony-Holt~CHSH! in-
equality, where each photon is measured in one of two n
orthogonal bases specified by the anglesuA and uA8 for the
photon at frequencyvA and uB and uB8 for the photon at
frequencyvB ,21 as depicted in Fig. 4.

In terms of mode operators, the CHSH inequality requi
the knowledge of correlation functions of the form

E~uA ,uB!5
^:~d1

† d12d2
† d2!~c1

† c12c2
† c2!:&

^:~d1
† d11d2

† d2!~c1
† c11c2

† c2!:&
, ~20!

where photon mode annihilation operatorsc and d are de-
fined as

c15sin~uA!ay,vA
1cos~uA!ax,vA

,

c25cos~uA!ay,vA
2sin~uA!ax,vA

,

d15sin~uB!ay,vB
1cos~uB!ax,vB

,

d25cos~uB!ay,vB
2sin~uB!ax,vB

.

We have not explicitly included time in these expressio
but we note that operatorsai ,vA

act at timetA and ai ,vB
at

tB . It is straightforward to show that

c1
† c11c2

† c25ay,vA

† ay,vA
1ax,vA

† ax,vA
,

c1
† c12c2

† c25cos~2uA!~ay,vA

† ay,vA
1ax,vA

† ax,vA
!

1sin~2uA!~ay,vA

† ax,vA
1ax,vA

† ay,vA
!,

with similar results ford6 . As mentioned earlier, many cros
terms in the numerator and denominator of Eq.~20! cancel
for the physical situation we consider, e.g
^:ax,vA

† ax,vA
ay,vB

† ay,vB
:&50, so we can write it as

E~uA ,uB!5cos~2uA!cos~2uB!1
z1z*

x1y
sin~2uA!sin~2uB!

5cos~2uA!cos~2uB!

1V cos~w!sin~2uA!sin~2uB!, ~21!

wherex, y, andz are defined in Eq.~14!.

FIG. 4. Schematic setup for performing a CHSH Bell-inequal
measurement. Photons of frequencyvA and vB are split with a
dichroic mirror and then they travel along pathsA and B, respec-
tively, and are measured by rotated polarization-sensitive detec
7-6
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We now define the quantity

B[E~uA ,uB!2E~uA ,uB8 !1E~uA8 ,uB8 !1E~uA8 ,uB!,
~22!

which, for classically correlated states satisfiesB<2.21 This
inequality is violated by certain entangled states such as
states, which are emitted from the biexciton system. We n
thatB depends ontA andtB , sinceV andw do, but we leave
out the explicit notation. From Eqs.~21! and~22!, we derive
a linear relationship betweenB andV given by

B5cos~2uA!@cos~2uB!2cos~2uB8 !#

1cos~2uA8 !@cos~2uB!1cos~2uB8 !#

1V cos~w!$sin~2uA!@sin~2uB!2sin~2uB8 !#

1sin~2uA8 !@sin~2uB!1sin~2uB8 !#%. ~23!

We consider a special choice of angles that maxima
violate the CHSH inequality,uA50,uB5q,uA852q, and
uB853q, and using Eq.~21! in the expression forB, we find
that

B5cos~2q!@322 cos~4q!1cos~8q!#

18cos~2q!3sin~2q!2V cos~w!. ~24!

For V51, this givesB53 cos~2q!2cos~6q!, which has a
maximum atq5p/8 of 2A2.2, violating the CHSH in-
equality. Atq5p/8, Eq. ~24! reduces to

B5A2@11V cos~w!#, ~25!

which is plotted in Fig. 5~lower curve!. We also show the
maximum value ofB for each value ofV ~upper curve!,
allowing q to vary. The upper curve crossesB52 atV cos~w!
'0.316, whilst the lower curve crosses atV cos(w)5A221
'0.414.

From these results, we see thatV andB are very closely
related quantities. SinceB may be computed fromV for ar-
bitrary angles, we will base our computations onV, from
n
ga
-

be
en
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which a reasonable estimate for the maximum valueB may
be evaluated using Eq.~25!. Finally, we define the quantityB̄
as

B̄5
1

PE0

`E
0

`

B~ tA ,tB!P~ tA ,tB!dtAdtB , ~26!

where we have again divided byP in order to count only
those photon pairs that are detected in the experiment.

G. Phase-averaged Bell-inequality violation

ComparingB̄ with Eq. ~24! or Eq. ~25!, we see that we
need to compute the quantity

1

PE0

`E
0

`

PV cos~w!dtAdtB .

We generalize this to account for the possibility of adding
fixed relative phasef to one decay path~e.g., by adding a
phase plate on they-polarized photon path, as in the interfe
ometer stage of Fig. 3!, so that cos~w!→cos~w1f!. We maxi-
mize the above integral overf to arrive at thephase-
averaged visibility

FIG. 5. The quantityB versusV. The lower curve isB for
q5p/8. The upper curve is the maximum value ofB for the corre-
sponding value ofV, allowing q to change withV.
Q5
1

PAS E
0

`E
0

`

PV cos~w!dtAdtBD 2

1S E
0

`E
0

`

PV sin~w!dtAdtBD 2

. ~27!
s
t

as
The phase-averaged visibilityQ gives the visibility of the
fringes in a two-photon interference experiment, where
attempt is made to resolve the phase accumulation. In re
to a CHSH-inequality violation experiment without suffi
ciently fast time-resolved detection, violations may still
seen ifQ.0.316, since the functional relationship betwe
Q and B̄ is the same as that betweenB and V cos~w!, as
shown in Fig. 5.
o
rd

V. ANALYTICAL RESULT FOR BALANCED CAVITY

We now show that for a balanced cavity~i.e., dA5dB
5D/2, q15q3 , andq25q4), in the absence of spontaneou
emission and dephasing,Gd5Gs50, the model predicts tha
the visibility is unity for all (tA ,tB). Since we assumeGd
5Gs50, we may write the unnormalized density matrix
r̃(t)5uc̃(t)&^c̃(t)u and then Eq.~9! may be written as a
Schrödinger equation
7-7
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d

dt
uc̃~ t !&52 iHuc̃~ t !& ~28!

for the state vector,uc̃(t)&, with a non-Hermitian effective
Hamiltonian given by

H5H2 ik/2~ n̂x,vA
1n̂y,vA

1n̂x,vB
1n̂y,vB

!. ~29!

We write the solution to Eq.~28! as uc̃(t)&5e2 iHtuc̃(0)&.
The smooth evolution is of course punctuated by quan
jumps, corresponding to photon detections following the
terferometer.

Reformulating the equations of motion in terms of qua
tum trajectories17 has several advantages, and most ob
ously it reduces the number of unknown quantities, since
can now solve for the state vector rather than the den
matrix. It is straightforward to show that the effective Ham
tonian H only couples states within the same excitatio
number subspace. Coupling between the zero-, one-,
two-excitation subspaces~denotedS0 ,S1 , and S2 respec-
tively! occurs only during the jumps, and the excitation nu
ber irreversibly decreases by one at each jump as pho
leave the cavity. Thus, for the smooth evolution betwe
jumps, we may consider the evolution restricted to sta
within eachSj independently, and for eachSj we consider
the effective HamiltonianHj restricted to that subspace an
acting on the state vectoruc̃(t)& j .

Using the quantum trajectories formalism, we find

x̃5^c̃x~ tA ,tB!uc̃x~ tA ,tB!&, ~30a!

ỹ5^c̃y~ tA ,tB!uc̃y~ tA ,tB!&, ~30b!

z̃5^c̃y~ tA ,tB!uc̃x~ tA ,tB!&, ~30c!

where, assumingtA,tB5tA1t, we have defined

uc̃ i~ tA ,tB!&5ai ,vB
e2 iH1tai ,vA

uc̃~ tA!&

5ai ,vB
e2 iH1tai ,vA

e2 iH2tAuc̃~0!&. ~31!

A very similar expression exists fortA.tB , and the follow-
ing reasoning applies equally to both cases. The state ve
uc̃ i(tA ,tB)&PS0 , since the initial condition uc(0)&
5uXX&u00&u00&PS2 and the effect of the two annihilatio
operators in Eq.~31! is to reduce the excitation number by

The one-dimensional subspaceS0 is spanned by the sys
tem ground stateuG&u00&u00&, so a stateuc̃(t)&PS0 is
mapped smoothly to a scalarc̃(t) by the trivial mapping
c̃(t)[(^Gu^00u^00u)uc̃(t)&. We may, therefore, writex̃,ỹ
and z̃ in terms of the scalar quantitiesc̃x(tA ,tB) and
c̃y(tA ,tB): x̃5c̃x* c̃x ,ỹ5c̃y* c̃y and z̃5c̃y* c̃x , where we
have dropped the time-dependent notation for clarity.

In what follows, we establish that for a balanced cav
c̃x and c̃y are related by a unitary factor. This means th
they have the same amplitude, from which it follows that t
visibility is unity for a balanced cavity. We do this by con
sidering the transformation of the effective Hamiltonian a
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state vector under exchange of the polarization,uXx&↔uXy&
and u01&↔u10&. This transformation, denoted hereafter by#,
is just a permutation on the basis elements, leaving the
elementsuXX&u00&u00& and uG&u00&u00& invariant. A matrix
representation of# shows that it is both orthogonal and sym
metric.

Consider evolution inS2 . Swappingx andy polarizations
mapsH2→H 2

#52H2* and uc̃(t)&2→uc̃(t)&2
# . As a result

the time evolution operator (e2 iH2t)#5e2 iH 2
#t5eiH2* t when

acting on states inS2 . We note in passing that for an unba
anced cavity or couplingH 2

#Þ2H2* , which is why it is
critical that the cavity be balanced for this argument to
valid.

A similar result applies to evolution inS1 , except that the
effective HamiltonianH1 does not transform under polariza
tion swapping quite as simply. Instead, it may be shown t
H12Hd→H 1

#2Hd
#52(H1* 2Hd), whereHd is a Hermitian

matrix acting on elements ofS1 and satisfies@H1 ,Hd#50.

Thus, H 1
#52H1* 1Hd1Hd

# and (e2 iH1t)#5e2 iH 1
#t

5eiH1* te2 i (Hd1Hd
#)t. The factorUd(t)5e2 i (Hd1Hd

#)t is uni-
tary, sinceHd is Hermitian. In particular,Ud(t) acts on states
of the formai ,vA

e2 iHtAuc̃(0)&PS1 in a simple way: it mul-

tiples the state by a time-dependent unitary scalar,eiut.
Having established the effect of# on the time evolution

operator acting onS1 andS2 we see that, for example,

uc̃x~ tA ,tB!&#5@ax,vB
e2 iH1tax,vA

e2 iH2tAuc̃~0!&] #

5ay,vB
e2 iH 1

#tay,vA
e2 iH 2

#tAuc̃~0!&,

5eiutay,vB
eiH1* tay,vA

eiH2* tAuc̃~0!&,

5eiut~ay,vB
e2 iH1tay,vA

e2 iH2tAuc̃~0!&)* ,

5eiutuc̃y~ tA ,tB!&* . ~32!

The second line follows sinceuc̃(0)&#5uXX&u00&u00&#

5uXX&u00&u00&5uc̃(0)& and ax ,v#5ay ,v and the third
line follows by considering the arguments in the preced
two paragraphs.

On the other hand, sinceuc̃x(tA ,tB)&PS0 it is evident that
uc̃x(tA ,tB)&#5uc̃x(tA ,tB)& as uG&u00&u00& is invariant under
#. Together with Eq. ~32!, this implies uc̃x(tA ,tB)&
5eiutuc̃y(tA ,tB)&* , and we conclude thatc̃x5eiutc̃y* . It

follows that x̃5c̃x* c̃x5c̃y* c̃y5 ỹ, and also uz̃u5uc̃y* c̃xu
5ue2 iutc̃x

2u5 x̃. Using these two results and Eq.~16! we see
immediately that for a balanced cavityV51, proving that the
visibility is unity for all times.

VI. NUMERICAL RESULTS

In this section, we present the results of computations
V̄ for unbalanced systems, and results forQ which charac-
terize the extent to which Bell-inequality violations may b
observed. For the problem parameters, we take experim
7-8
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FIG. 6. ~Color! In each row, from left to right,k50.5,1,2,4 andGd5Gs50 in all figures.~a! Time-dependent probability distribution
P(tA ,tB), for a balanced system.~b! Visibility, V(tA ,tB), for an unbalanced system, whereq1,2,351 andq451.1. ~c! ~Color! Relative phase,
w(tA ,tB), for a balanced system. Superimposed on each panel is a contour plot ofP.
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tally relevant values typical for GaAs self-assembled d
D550 meV,22 j50.5 meV,q550 meV,23,24andk.100meV,
though values ofk much lower than this may be possib
with novel hemsipherical cavities.24 Throughout this section
we rescale all energies so thatqi51, D51, j510. Time is
also rescaled accordingly, so one time unit corresponds t
ps. Figure 6~a! shows plots of the probability distribution o
emission times for a balanced cavity with no leakage ch
nels. Numerically computed visibility is unity to within nu
merical accuracy andV̄51 to within 1024, when integrating
out to tA5tB5200. Notice Rabi oscillations in emissio
time for strong coupling (k,qi51) and exponential deca
for weak coupling (k.q). For strong coupling, there is
significant probability of emitting photons in either order, b
in weak coupling, the ordertB.tA is strongly favored indi-
cated by the sharp edge alongtA5tB .

We also note that in the weak coupling regime,P has a
tendency to broaden with increasingk, which is somewhat
counterintuitive, since largerk corresponds to a more leak
cavity, and one would expect the photon component of
08531
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internal state to leak away more rapidly. However, this p
nomenon may also be seen in the much simpler case
single two-level atom interacting with coupling rateq with a
single optical mode of a leaky cavity. In that case it
straightforward to show that there is in eigenvalue of t
effective Hamiltonian for the open system given b
q2k21/21O(k22), which corresponds to a long-time con
stant for largek. Whenk'q, there is a kind of impedance
matching, and the temporal extent ofP is smallest.

As established previously, the visibility is unity for a ba
anced system. For an unbalanced system, the visibility dr
below unity, as shown in Fig. 6~b! where q451.1 ~with
q1,2,351), for different values ofk. The probability density
P for this case looks very similar to Fig. 6~a! so is not shown
here. We note that the visibility depends only ontB when
tA.tB , i.e., it is frozen at the value it reaches attB . Notice
that the probabilityP of emitting a photon pair is small at th
same time thatV has large excursions from unity, whic
meansV̄ is not affected as much as one might expect, giv
the large fluctuations inV. The difference between stron
7-9



ch

T. M. STACE, G. J. MILBURN, AND C. H. W. BARNES PHYSICAL REVIEW B67, 085317 ~2003!
FIG. 7. Dependence of~a! V̄ and ~b! Q on q4 for variousk. Dependence of~c! V̄ and ~d! Q on dA anddB . V̄ andQ are not sensitive
to the sign ofdA or dB so other quadrants look similar and are not displayed. The gray plane atQ50.316 demarks the threshold, above whi
Bell-inequality violations may be observed.
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and weak couplings is striking, again with oscillations bei
replaced by decay.

The relative phasew is shown in Fig. 6~c! for a balanced
system. Also superimposed on each panel is a contour pl
the emission probability densityP. In the strong-coupling
regime, during Rabi oscillation peaks, the phase accumul
relatively slowly, with rapid phase rotations in between.
the weak-coupling regime, the phase accumulates at a f
constant rate, which is roughly proportional toD. The diag-
onal stripes indicate that in weakly coupled cavities,
phase accumulation depends only on the time interval
tween photon emission,tB2tA , in contrast to the much mor
complicated dependence of the phase in the strong-coup
regime, which shows phase singularities.

Figure 7~a! shows the variation ofV̄ versusq4 for various
k. For q450, one decay path is turned off so we expe
completely nonentangled photon pairs, and this is eviden
Fig. 7~a! as V̄50 when q450. We also expect thatV̄51
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whenq451, since then the couplings are again balanced,
this also is evident in Fig. 7~a!. The variation withq2 is

identical to that displayed here, whilst the variation ofV̄ with
q1 and q3 is qualitatively very similar, so it is not shown
here.

As discussed earlier,Q is a significant quantity that deter
mines whether the photon pair can produce Bell-inequa
violations in the absence of time-resolved detection, so
the phase is ignored. In particular, as shown in Fig. 5, wh
ever Q.0.316, then the photon pair can produce Be
inequality violations, even in the case thatw is ignored. Fig-
ure 7~b! showsQ for the same values ofq4 andk as in Fig.
7~a!, where the gray plane demarks the threshold,Q50.316,
to see Bell-inequality violation, as it will in all following
plots ofQ. Whilst Q is everywhere less than unity, there a
parameter values where Bell-inequality violation may still
observed without using time-resolved detection.

If the cavity geometry is such thatdAÞD/2 or dBÞD/2,
7-10
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then the cavity is unbalanced. This has the effect of reduc
V̄ below unity, as shown in Fig. 7~c!. Results are only dis-
played for dA,B.D/2, but the other quadrants are simila
Figure 7~d! showsQ for the same parameter values, aga
with the plane denoting the threshold for Bell-inequality vi
lation.

The phase accumulates in between the photon detec
events roughly at a rate proportional toD, the splitting due to
dot asymmetry, and this directly affectsQ, since for smaller
D, we expect the phase to be more nearly constant o
the photon emission lifetime. This may be seen in Fig.
where for small D, Q approaches unity, although Bel
inequality violation may still be seen for a wide range ofk
andD.

The two different leakage channels that we consider
this paper are spontaneous emission into noncavity mo
which occurs at a rateGs , and dephasing which happens a
rateGd .

The spontaneous emission does not affect the visibility
those photon pairs that arrive at the detector, but it d
change the rate of detection, since some photons are lost
reduction in photon detection rate, given byP, is shown in
Fig. 9~a!. The roll-off in P is roughly proportional toGs

21 .
Surprisingly, the spontaneous emission enhancesQ, which
may be seen in Fig. 9~b!, although, we note that the source
then no longer deterministic. Experimentally, the fraction
photons emitted into the cavity mode, known as theb factor,
has been observed as high as 0.83~Ref. 25! and there is a
suggestion thatb50.9 may be attainable.26 InterpretingP as
the b factor, from Fig. 9~a!, we surmise that forP'0.9, the
experimentally relevant range of the spontaneous emis
rate isGs!0.155 meV, which is a regime in which sponta
neous emission is negligible.

Figures 9 and 9~d! show the effect of the phenomenolog
cal dephasing termGd for different values ofk. V̄ and Q
decay roughly asGd

21 . In all panels of Fig. 9, there is a pea
alongk'q, which is due to the fact thatP is temporally the

FIG. 8. Q versusD for k. Varying D changes the rate of phas
accumulation between the photon detection events. Gray plane
Fig. 7.
08531
g

on

er
,

n
s,

f
s
he

f

on

narrowest when this condition is met, and hence there is
time for leakage to take place. For very low temperatur
around 1 K or lower, pure dephasing rates have been o
served to be around 1meV,27 corresponding toGd50.02,
which is negligible. For higher temperatures, the pu
dephasing has been observed to increase at roughly 0.5
meV/K.27,28From Fig. 7~d!, the pure dephasing becomes im
portant nearGd&1, corresponding to a temperature betwe
30 and 100 K for the experimentally relevant range giv
above.

VII. DISCUSSION

In the preceding section, we found that the numerical
sults for a balanced system concur with the analytical re
derived in Sec. V, where we established that the visibility
unity in this case. We also noted thatV̄ is degraded by any
effect which may cause the cavity or couplings to be unb
anced. Imperfections in the cavity geometry will result in
unbalanced cavity sodA,BÞD/2, and it was shown above
that this reducesV̄. Similarly, unbalanced coupling constan
also results in decreased visibility.

Both of these effects may be understood heuristically
ing a much simpler model which captures the gross featu
seen in Figs. 6~b! and 7~c!. First, we note that a two-photo
state given byaxuxx&1ayuyy& will produce two-photon in-
terference fringes with visibility

V5
2uaxayu

uaxu21uayu2
. ~33!

Second, we make twoad hoc simplifications of the level
structure of the quantum dot shown in Fig. 1~a!. These sim-
plifications are~i! to ignore the crystal ground stateuG& and
the corresponding transitions thereto, and~ii ! to treat the re-
maining three-level system, composed ofuXX&, uXx&, and
uXy& as a pair of independent two-level systems~TLS!,
$ug&1 ,ue&1%, and $ug&2 ,ue&2%, each of which interact with
one of a pair of degenerate cavity modes distinguished
polarization. With these two assumptions, the energy-le
structure becomes that shown in Fig. 10~a!.

The physical motivation for these seemingly arbitrary a
sumptions is first that once the biexciton decay proce
along thex- or y-polarized paths of Fig. 1~a!, the resulting
two-photon amplitudesax,y are determined, even though th
dynamics of the emission are not complete. Thus, the t
photon amplitudes are largely determined by the init
single-photon decay process, justifying~i!. Second, while the
sum of probabilities to take thex- or y-polarization decay
paths is unity, apart from this constraint the rate equations
the two decay processes are otherwise uncoupled, so tha
system is similar to a pair of uncoupled TLS’s, one for ea
decay path, justifying~ii !. Ultimately, this highly simplified
model will be verified by its qualitative agreement with th
more realistic model discussed throughout this paper, an
value is in the intuition it lends about the origin of the effec
seen in the numerical calculations.

A TLS interacting with a cavity mode is well understoo
in terms of the Jaynes-Cummings model.14 For TLS’s ini-

in
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FIG. 9. ~a! P and~b! Q versus spontaneous emissionGs , for different values ofk. ~c! V̄ and~d! Q versus dephasing rateGd for various
k. Gray plane as in Fig. 7.
e

e
ity
th

s
va-
tially in the stateue& i ( i 51,2 is the TLS label! with energy
spacingsn i , oscillator frequencyv i , and detuningd i5n i
2v i , with TLS-cavity coupling rateV i @see Fig. 10~a!#, the
time-averaged photon population is given bypi

5V i
2/(2Ri

2), whereRi5Ad i
21V i

2, and we conclude that th
average amplitude of photon occupation satisfies

uax,yu5
V1,2

A2R1,2

. ~34!

We now compare the predictions of this simple mod
with the more complete one for an unbalanced cav
wherein the cavity mode is not tuned to the mean of
transition frequencies,vÞ(n11n2)/2. If the TLS’s are de-
tuned by an amountd1,25d7D/2, respectively, from the
08531
l
,
e

degenerate cavity modes,@see Fig. 10~a!#, each with the
same cavity-coupling strengthV1,25V, the visibility is then
given by

V5
2R1R2

R1
21R2

2
, ~35!

where we have takenuax,yu from Eq.~34!. This expression is
plotted in Fig. 10~b! as a function ofd ~using V50.61, D

51) along with V̄ ~using q1,2,3,451, k50.4, D51, dA
5D/2, j510, Gd,s50). Clearly, the forms of the two trace
are in qualitative agreement demonstrating the heuristic
lidity of the simple model. The valueV50.61 is selected to
fit Eq. ~35! to the numerically computedV̄, but it is of the
same order asqi51.
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FIG. 10. ~a! Energy levels for independent two-level system.~b! Equation~35! ~solid! versusd and alsoV̄ ~dotted! versusdB . ~c!

Equation~36! ~solid line! versusd and alsoV̄ ~dotted line! versusdB . Parameters as usual exceptk50.4.
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We also compare the predictions of the simple model
unbalanced coupling to the realistic model, and so we t
V1ÞV2 , but assume the detunings between the two-le
systems and their respective harmonic oscillators are eq
d152d25d. It is straightforward to show that

V5
2R1V1R2V2

~R1V1!21~R2V2!2
, ~36!

which is plotted in Fig. 10~c! ~usingV150.42,d51.69 both
fitted parameters!, along withV̄ @other parameter values as
Fig. 10~b!#.

The simple, heuristic model of two uncoupled two-lev
systems predicts a visibilityV that is qualitatively in agree
ment with V̄ calculated using the complete model discuss
in earlier sections. Thus, we can understand the most sig
cant effect of variation ofqi and d i on V̄ is to change the
relative amplitudes to take each of the two decay paths il
trated in Fig. 1~a!. Since the photon pair is only maximall
entangled when the amplitudes of theuxx& and uyy& compo-
nents are equal in magnitude@i.e., for the state (uxx&
1e2 ifuyy&)/A2], parameter variations that result in unequ
decay path amplitudes result in submaximally entangled p
ton pairs. Such parameter variations correspond directl
the situation of an unbalanced system.

The analysis above gives us some further insight into
decay process. The maximum amplitude of the photon e
tation isV2/R2 and so the leakage rate of photons from t
cavity will be suppressed by this factor. That is, we exp
that the rate of decay of excitation from the cavity will b
roughly kV2/(V21d2). Therefore, as the detuningd in-
creases, the photon emission rate slows roughly as;1/d2 for
d.V. This will mean that for detunings significantly large
than the coupling strength, leakage effects will beco
significant—the lifetime of the excitation in the cavity wi
become comparable to the decay rate for dephasing or s
taneous emission.

It is also worth noting that whend;2j ~i.e., the exciton-
cavity detuning is near the biexciton shift!, the model devel-
oped in Sec. II breaks down, since significant cross coup
between exciton states and cavity modes will set in.
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Spontaneous emission decreases the detection probab
which could be corrected with post selection, since o
events in which two-photons are registered count towards
measurement, and as mentioned previously, experime
work has shown that this is negligible for experimenta
relevant systems.26 Dephasing of intermediate states d
creases the visibility exponentially in time. Temperatures o
few Kelvin provide sufficiently low dephasing rates such th
it is negligible, but the excitonic dephasing becomes imp
tant at temperatures of several tens of Kelvin.27,28 In prin-
ciple, these effects may be distinguished using sufficien
fast time-resolved spectroscopy, since spontaneous emis
will result in fewer photons reaching the detector, where
dephasing would result in a time-dependent visibility th
degrades exponentially with time.

So far, we have not addressed the issue of how to exp
mentally construct a cavity with the required spectru
shown in Fig. 1~a!, and a detailed proposal for its impleme
tation is beyond the scope of this paper. The enhanced e
ton emission into the cavity mode is known as the Purc
effect and requires small cavity volumes, so that the excit
cavity mode coupling strength is large and the density
available photon modes is small.26,29 Thus, small cavities
are necessary, and the high Purcell factors have b
demonstrated experimentally in single-wavelength siz
cavities.26,30

In contrast to the need for small cavities is the relative
small biexciton shift, 2j, which is around 1 meV. In order fo
a single Fabry-Pero´t resonator to accommodate mod
spaced by 1 meV~i.e., the free spectral range, FSR!, the
cavity length would need to be of the order of 100mm or
more. For monolithic dot-in-cavity systems, this is too lo
for several reasons, primarily because the Purcell factor
such a long~planar! cavity would be small, so leakage t
other modes would be large, and also because growth of s
a large heterostructure would be prohibitively difficult. As
result, the cavity to which we have been referring through
this paper would need to be based on a more complica
geometry than merely a pair of planar distributed Bragg
flectors~DBR! forming a linear resonator.

We stress that a more complex geometry is not jus
requirement of this proposal, but that it would be necess
for a system even with symmetric quantum dots. If the cav
7-13
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did not have separate modes near the exciton and biexc
doublet frequencies, then only one transition could cou
strongly to the cavity, and the other transition would be s
ficiently off resonance (d.q) such that the Purcell effect fo
this frequency would be suppressed, i.e., either the biexci
exciton or exciton-ground transitions may be well coupled
the cavity, but not both.

It may be possible to engineer a small cavity with a p
of closely spaced modes using photonic crystals. If dur
the growth of each DBR stack, one layer was permitted
grow to larger thanl/4, then the cavity would look more like
two coupled cavities, which may have the desired s
modes. Certainly, geometric effects in micropillars have b
shown to produce a pair of modes spaced by;5 meV,30

though this was due to lifting polarization degeneracy w
elliptical cross-section cavities, which is undesirable for o
scheme.

Experiments using hemispherical cavities, consisting o
planar Bragg reflector at the focal plane of a hemispher
reflector, of length 50–1000mm are currently underway fo
quantum information processing purposes.24 In this configu-
ration, the cavity mode waist diameter is of comparable s
to the optical wavelength and coincident with a quantum
so that the exciton-cavity mode coupling strength is reas
ably large. This arrangement may provide the two requ
ments of the present paper: both strong coupling between
dot excitations and the cavity mode~up to several tens o
meV! and small FSR so that each doublet is on resona
with a nearby mode. It is quite plausible that by tuning t
cavity length to vary the FSR and applying an external
electric field to induce a Stark shift in the doublet freque
cies, one may bring both doublets close to cavity mo
simultaneously, as depicted in Fig. 1~b!, thereby realising the
requirements of this proposal.

VIII. SUMMARY

We have shown analytically that by using a cavity with
particular mode structure facilitates the production
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