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Full counting statistic§FCS of charge transfer in mesoscopic systems has recently become a subject of
significant interest, since it proves to reveal an important information about the system which can be hardly
assessed by other means. While the previous research mostly addressed the FCS of noninteracting systems, the
present paper deals with the FCS in the limit of strong interaction. In this Coulomb blockade limit the electron
dynamics is known to be governed by a master equation. We develop a general scheme to evaluate the FCS in
such case, this being the main result of the work presented. We illustrate the scheme, by applying it to concrete
systems. For generic case of a single resonant level we establish the equivalence of scattering and master
equation approach to FCS. Further we study a single Coulomb blockade island with two and three leads
attached and compare the FCS in this case with our recent results concerning an open dot either with two and
three terminals. We demonstrate that Coulomb interaction suppresses the relative probabilities of large current

fluctuations.
DOI: 10.1103/PhysRevB.67.085316 PACS nuni®er73.23.Hk, 05.40-a, 72.70+-m
[. INTRODUCTION metal/superconducting contacts. The very recent develop-

ment in this field is the counting statistics of the charge

The current fluctuations in the various mesoscopic syspumping in the open quantum dots.
tems have been the subject of both theoretical and experi- The use of multichannel scattering matrix of the system
mental research in the last two decades. Traditionally, thevas crucial to obtain the results of the above mentioned
attention was focused on the shot noise phenomenon. Theorks. However, such approach leads to the difficulties in
shot noise is the main fundamental source of current noise afase of practical layouts, where the scattering matrix is ran-
low temperatures. In classical systems shot noise unambigadom and cumbersome. They become apparent especially in
ously related to the discreteness of the electron charge. Icase of multiterminal geometry. To circumvent these difficul-
guantum system the shot noise can be used as unique toolties one evaluates the FCS with the semiclassical Keldysh
reveal the information about the electron correlations andsreen’s function methdbr with its simplification called the
entanglement of different kind. The investigation of the circuit theory of mesoscopic transpdrthe Keldysh method
guantum shot-noise cross-correlations in the multiterminato FCS was first proposed by one of the authors in order to
mesoscopic devices is the new trend in this field, which hasreat the effects of the weak localization corrections onto the
attracted much attention as well. The most achievements iRCS in the disordered metallic wires. The method proves to
the study of the shot-noise phenomena have been summhbe very flexible and has been recently applied to the FCS in
rized in the recent review articfe. superconducting heterostructut8smultiterminal normal

Alternative way to investigate the current correlations inmetal systems as well as in the three-terminal supercon-
the mesoscopic systems has proposed in the pioneering wodkicting beam splitte?
by Levitov et al? This new fascinating theoretical approach, The above research addressed the FCS of noninteracting
known as thefull counting statisticSFCS), yields not only  electrons. Since the interaction may bring correlations and
shot-noise power but also all possible correlations and moentanglement of electron states the study of FCS of interact-
menta of charge transfer. The essence of this method is dng electrons is both challenging and interesting. In this pa-
evaluation of the probability distribution function of the per we present an extensive theory of FCS in mesoscopic
numbers of electrons transferred to the given terminals dursystems placed in a strong Coulomb blockade limit.
ing the given period of time. The first and the second mo- The FCS statistics of electron pumping of interacting
ments of this distribution correspond to the average currentslectrons has been considered by Andreev and
and the shot-noise correlations, respectively. The probabilitiishchenko'® However, they treated this problem with very
distribution also contains the fundamental information abouspecific assumptions. Namely, they considered quantum dot
large current fluctuations in the system. with almost open contact®~Rg, Rq being a resistance

Initially, FCS method made use of the scattering ap- quantum. The Coulomb blockade effect in these circum-
proach to mesoscopic transport. It was assumed that the mstances is very week. Our paper concerns conventional limit
soscopic system was completely characterized by its scatteof highly resistive contactiR>R.
ing matrix. This method enabled to study the statistics of the Note, that the shot noise in the Coulomb blockade devices
transport through the disordered metallic condut#mmd the  has attracted the significant attention. Korotkoand Hersh-
two-terminal chaotic cavit§.Muzykantskii and Khmelnitskii ~ field et al*® presented the first theory in the framework of
generalized the original approach to the case of the normébrthodox” approach to single electron transport. Later on
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Korotkov also studied the frequency dependence of the shot [l. SYSTEMS UNDER CONSIDERATION

noise by means of Langevin approach both in ldulassi- The dynamics of various systems can be described by

ca) and very high-(quantum frequgncy Ilmlts._The fre- master equation. For our purposes it is convenient to write it
guency dependence of the shot noise in the single eIectroawown in the matrix form

transistor was also investigated in Refs. 16 and 17. The fer-

romagnetic single electron transistor was considered by J ~

Bulka et. al'® The shot-noise experiments were performed Elp,t>= —L|p(1), 1)
by Birk, Jong, and Schwenberget? In this work, the nano-

particle in between the scanning tunneling microscope tipvhere each elememt,(t) of the vectorp(t)) corresponds to
and the metallic electrode was used to form the Coulomlithe probability to find the system in the stateThe matrix
blockade island and the quantitative agreement with thelements of operatdr are given by

theory of Hershfielcet al. was found.

The electrons dynamics in Coulomb blockade limit is for-
tunately relatively simple. When the cotunneling phenomena
is disregarded, the evolution of the system is governed by a
master equation. The charge transfer is thus a classical stblerel'n.m stands for the transition rate from the statdo
chastic process rather than the quantum mechanical onthe staten, y, presents tAhe total transition rate from the state
Nevertheless the FCS is by no means trivial and has not begh Thus defined operatdr always has a zero eigenvalue, the
studied yet. In the present work we have developed the gerforresponding eigenvector being the stationary solution of
eral approach to FCS in the Coulomb blockade regime. Thighe master equation.
is the central result of the paper. Our method turns out to be Coulomb blockade mesoscopic systems always obey Eq.
an elegant extension of the usual master equation approachl)- The main advantage of the master equation approach is a

We apply the developed scheme to study the FCS in variPossibility of nonpertubative treatment of the interaction ef-

ous Coulomb blockade systems. We present the number (g cts. In what follows, we first remind the master equation
different results as well as reestablish some old ones. For (Zescnp'uon of two simple systems: single resonant level and

generic model of a single resonance level we establish th any-terminal Coulomb blockade island. On the basis of

equivalence of the new master equation approach to the F ese examples we will sketch the master _equatlon for the
with the well-known scattering approach by Leviteval, general C_oulomb_blockade system. This will prepare us to
. : . . ._the following section, where we derive the FCS method.
This equivalence holds under assumption of noninteracting
particles, when both descriptions becomes applicable.
Further the scheme is used to study the FCS of charge
transfer and shot-noise correlations in the two- and three- An elaborated model of the resonant center was presented
terminal Coulomb blockade island. Our consideration is lim-in Ref. 20. It was subsequently improved in the worto
ited to the temperature reginkgT>AE, AE being the level include the Coulomb interaction. One of the physical realiza-
spacing in the dot. We compare the results, obtained in Couion is disordered tunneling barrier which is placed between
lomb blockade limit with our previous study of noninteract- two leads’? At sufficiently low temperatures the main
ing electrons in chaotic quantum ddtsSurprisingly, we mechanism of transport in this system is the resonant tunnel-
found, that the FCS has a similar qualitative features both iring via localized states formed by impurity centers. Another
weakly and strongly interacting regimes. We show that Couphysical realization is the Coulomb blockade island in the
lomb interaction suppresses the relative probabilities of bidow-temperature regimé&zT<AE, where AE is a mean
current fluctuations. The previous results for the zero-separation between the energy levels in the®d@&y apply-
frequency shot-noise power in the conventional single elecing the gate voltage, one can tune the given level to be be-
tron transistor can be evaluated in our approach as the secotwleen the chemical potentials of the leatBBee Fig. 1. We
moment of charge-transfer probability distribution function. consider below two limiting cases where one disregards ei-
Regarding the Coulomb blockade island with three leads atther double occupancy of the level or on-cite Coulomb inter-
tached we show that the auto- and cross-shot-noise correlaction.
tions exhibit the characteristic Coulomb blockade oscilla- In the strongly interacting case the double occupancy of
tions as functions of the applied voltages and offset chargethe resonant level is entirely excluded due to the Coulomb
The paper is organized as follows. In the Sec. Il we startepulsionU. Then the system can be found only in two dif-
by presenting the two physical systems to be treated withifierent microscopic states: one with no electrons, and another
the master equation. Based on these prototypes we formulavéth a single electron. The transport through the level can be
the general model. We derive our approach to the FCS in thdescribed by master equation approach, provided the applied
Sec. lll. In the Sec. IV we applied the method to study thevoltage or the temperature are not too low, i.e,
FCS of the single resonant level and consider its relation tonaxeVkgT}>#I" . Here I'\(gy are the quantum-
the scattering approach. Two- and three-terminal single eleagnechanical tunneling rates from the ldfight) electrode
tron transistors are considered in Sec. V. We also comparento the resonant level. We will also assume that at the rel-
their FCS in the Coulomb blockade limit with that of nonin- evant energy scale, given by r{@¥,kgT}, the rated’| (g, are
teracting electrons: We summarize the results in Sec. VI. energy independent.

L= Onm¥n—Cmens 0= E | R (2
m#n

A. Resonant-level model

085316-2



FULL COUNTING STATISTICS OF CHARGE TRANSFE . .. PHYSICAL REVIEW B 67, 085316 (2003

N —_ —_

% B l k_ Vi

B I E— eV Vi Rk’Ck___j__I_lf - Vy
Gl T ”R I] Z:ZI:::::.' IN
1 m C m N
Iz R,CG, ——  RuG
I'n 1

I Vv I I Vg

FIG. 1. The single resonant-level system, formed by the two FIG. 2. The equivalent circuit of the-terminal Coulomb block-
tunnel barriers. The resonant level in the quantum well is shown byde island. Each junctiokis biased by the external voltage source

the dashed line. V.. The island is also capacitatively coupled with the gate voltage
V.
Under above assumptions the transition rates in (&p.
are given by The essential elements of the circuit shown in Fig. 2 are
the resistance®, of the contacts, the mutual capacitances
[y o=20 fL(€)+2TrfRr(eE), Cy between the leads and the island and the external dc
(3)  voltage source¥,. CorrespondinglyC, andV, denote the
Poa=T[1-fL(e)]+Tr[1-fr(€)]. gate capacitance and gate voltage, which is used to vary the

offset change on the island. We assume that the island is
placed in the Coulomb blockade regimeR.>Rq
=2mhle?. In order the Coulomb blockade effect will be
observable the conditiokg T<E.=€?/2Cy is also required.

The microscopic statd®} and{1} denote the situation with

no and one electron, respectively. Fermi functigpg,(e)

={1+exf (e~ r)/KT]}"* accounts for the filling in the

left (right) lead ande; is the position of the resonant level. . . . T oN

The factor 2 in the ratd’;., stems from the fact that two HereE. is a chargmg_ energy of the |sland;2—2i:_1ck
i Cgy is @ sum capacitance of the system adg2 is a

guantum states, with spin up and down, are available for
tunneling. The description in terms of raté®) is correct number of leads attached to the dot. We also assume the

when the Coulomb repulsion is strong enough) temperature to be rather higkgy T>AE, with AE being the

>maxeVkgT}. mean level spacing in the dot, so that the discreteness of the
The opposite limit is the case of vanishing Coulomb in-energy spectrum in the |s_Iand is not _|mportant._ The possible

teraction. In this case the spin-up and spin-down channel§ffects of cotunneling will not be discussed in the paper.

can be treated independently. Each of them can be describddi€refore, the characteristic scale of applied voltayeis

by the master equation, provided the same condition as b@_ssumed to be greater than the Coulomb blockade threshold,

fore is fulfilled: maXeVkgT}>#AI" ). For both spin direc- ev=E.

i i Under the above conditions the multiterminal Coulomb
tions the rates are written as blockade island is fairly well described by the “orthodox”
Iy o=T f(&)+Trfr(e), Coulomb blockade theory. One can consider the excess num-
(4) ber of electrons on the island-(n) as a good quantum num-
Lo 1= [1-f () ]+TR[1-fr(e)]. ber, corresponding to the macroscopic state of the system.

o . The tunneling of electrons will occur one by one, increasing

Here the indiceg0} and{1} denote the filling factor of the . decreasing the charg@,=ne on the island by*e. The

Ievel_ by elec_ton with a chosgn spin.— corresponding tunneling raléﬁki)kn across the junctiok is
D_|s_regard|ng of Coulomb interaction is not adequate for aexpressed via the electrostatic energy differemﬁﬂ‘)

realistic system. However, the latter model is worth to con- etween the initialn) and final 1) confi urationsﬂ%n

sider as well. The point is that the statistics of the chargé) - 9

transfer in this case can be also evaluated in the framework 1 AE®

of the noninteracting scattering appro&cdhus providing the re«w - n*len (5)

way to establish the consistency of two approaches to FCS. nil&n_esz 1—exd —AEX, . /ksT]

The evaluation ofAE(), , can be done along the same

. S . lines as in the case of single electron transiétdare result
The electrical circuit incorporating the Coulomb blockadereads

island with several terminals is shown in Fig. 2. This circuit
is an extension of the usual single electron transfétat.the e?

- AEX . =*e[V—Vo(n)]— o= (6)
present stage of nanotechnology the mesoscopic system, as- n+1len k~ Vo 2Cy’
sociated with this circuit, can be realized with the use of
two-dimensional2D) electron gas in the GaAs/AlGaAs het- whereVy(n) is the electrostatic potential on the island. It is
erostructures. written as

B. Many-terminal Coulomb blockade island

085316-3



D. A. BAGRETS AND YU. V. NAZAROV PHYSICAL REVIEW B 67, 085316 (2003

in case of many resonant-levels systepdenotes the occu-
pation number of the given level.

We now consider the general properties of the master
equation(1) describing the above model. Owing to the fact

S.L,m=0, thel operator has the rightpy), and the left,
(qo|, eigenvectors corresponding to zero eigenvalue

LIpo)=0, (golL=0. (8

FIG. 3. The graph of general modeee the main text The We assume that they are unique. This means that the system

terminals are connected with the system via external junctions 1, 210€s not get stuck in any metastable state. The vepipr

and 3. The nodes, B, and y are either resonant levels or dots, 9ives the steady probability distribution andqp|

linked with each other by internal junctioks. The arrows denote = (1,1, ...,1).Since we are interested, in general, only in

the conventional direction of a current through each junction.  the permanent, but not the transient processes in the system it
is naturally to restrict the consideration only to absorbing
statesn. Thus we will exclude all the transient onge$, for

7 which I',,,,>0 but at the same tim&,,,=0. We assume

that thel operator, bounded to the absorbing states, has a
complete set of left and write eigenvectors

Vo(n)= ! +C.V +1 %Ev
o(n)—c—z(en gVo) C. & Vi

Here EiECi+Cg/N and we also assumed that the dot is A .
biased in such a way, that external voltages are subjected to L|p)=|pIhk, Mdad=(all, X |p{ad=1,
the condition=L,V;=0. In this case the gate voltagé, k

can be used to influence the offset chaggeCyV, on the ©)

island in a controlled way. _ , wherel is a unitary operator in the absorbing subspace. For
Neglecting the quantum correlations between different hvsicall bl torhn=0 and R&\.>0
tunneling processes, we may write down the master equatio, onryki gsma y reasonable operatorio=2u an k

(1). It connects the states with different island charge, th

total transition rate from the stateto n+ 1 being the sum of ~ For the following it is also useful to represehtoperator
tunneling rates over all junction,. ;. ,=3\ ,r®, . intheform
C. General model L=y-T, f‘ZI(Zl (TO+1E), (10)

We now outline the general model which is an extension R
of the preceding two. The possible physical realization ofwherey is the diagonal operator in the basig of the sys-
this model includes an array of Coulomb blockade quantumem configuration andl") are associated with the tunneling
dots and a mesoscopic system with a number of resonamiansitions through the “junctionk=(«a,8):
levels. We assume that all the relevant conditions, mentioned
previously, are satisfied and therefore the description in

terms of master equation is valid. It is convenient schemati- Y= % [n)y(n)(n|, F(ki):% [N (n)(nl. (1D
cally to represent the system as a grdpbe Fig. 3, with
each noder corresponding either to the single dot, the singleThe statgn’)=|n,, ... n., ... ,ng, ...,Ny) results from

resonant level or the external terminal. The like («,B), the statgln) by appropriate changing the corresponding oc-
connecting the nodes and is associated with the possible cupation numbersn,=n,—oy, nz=ng+oy, where oy
electron transfer. Lel be the total number of nodes in this = +1 denotes the direction of the transition.
graph andL is a total number of lines. For a many-dot sys-
tem each linek corresponds to the tunnel junction. For sys-
tems with many resonant levels it corresponds to the possible
transition between different levels, so that it does not neces- In this section we derive the central result for the FCS of
sary correspond to electron transfer in space. The lines atte charge transfer in the system, which dynamics obeys the
assumed to be directed, thus specifying the sign conventiomaster equation. We will solve this problem by making use
for a currentl, through the linek. There areN external of the property of the system, that its random evolution in
junction k=1,... N, (N=<L), connecting the terminals time is the Markov stochastic process.
with the system. The currents through these junctions are In what follows we will partially use notations of the
directly measurable and hence are of our interest. book?® Let us consider the time interval-T/2,T/2]. Sup-

The macroscopic or microscopic state of the generapose the system undergoggransitions at random time mo-
model is given by a set of occupation numbérs) mentsr;, so that
=[nq, ... ,ny); n, is equal to any integer for the array of
guantum dots and refers to the excess charge on the iatand +TI2> 7> 7> > 7 1 >7>—TI2, (12

Ill. THE FCS IN THE MASTER EQUATION
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This gives an elementary random sample Hereo, is included to take into account the direction of the
=(71,Ky,01, ... ,75,Ks,06). It corresponds to the set of jump andé(k—ki)zék'ki is the Kroneckeis symbol. Given
subsequent events, when at timehe tunneling happens via this definition at hand, we introduce the generating func-

the junctionk; , o= %1 being the direction of the transition. tional §[{y;(t)}] depending oM counting fieldsy;(7), each
The sampleqs constitute the sef) of all possible random  of them associated with a given terminal

samples.

Then one defines the measyog the probability du () N oo 5
at the set(). For this purpose we may very generally intro- exp(—S[{x;(t)}])={ expy i 21 f drx(nI1M(7)/e
n= — 00

duce the sequence of non-negative probabilities Q

Qs({7i ki, oi})=Q(71.,ky,01, ... ,75,Ks,05)=0 defined in (17)

(1 so that with the average defined by Eq15). We will refer to
e S{xi(t)}] as the action. Its evaluation is the main goal of

this section. Then-order functional derivatives & { x;(t)}]
d“(g):Q°+S§=:l {kz,,.} Q{7 ki oip)dry- - d7. with respect toy; give the irreduciblen-order current corre-
o (13)  lations. First derivatives correspond to the average currents
through terminals; the second derivatives give the shot noise
The functionsQ are normalized according to the condition and noise correlations. In the low-frequency limit of current
correlations one may use the time-independent counting
J J fields x; . In this case the actioS[{yx;}] allows to express
} T2>71> ... >715>—T12
S

JﬂdmoEQwE >

the probability ofN; electrons to be transferred through the

=tk e terminali during the time interval
X ko =1. 14 = N dy
Qsliri ki ’U'})iljl dr, (14 PN} = 11 (;_);e—s({)(i})—iZiNiXi. (18)
—mi=1

Each term in Eq(13) corresponds to the probability of an
elementary samplé;. The above definitions were rather general than construc-
To accomplish the preliminaries, we remind the conceptive, since the probabilitie® have not been specified so far.
of a stochastic process. Mathematically speaking, it can b&o proceed, one has to relate them to transition rates of the
any integrable functiorA(t)=A(t,¢) defined at the sefy ~ master equation. We assume that at initial tirre—T/2 the
and parametrically depending on time. It is sometimes consystem was in the staf(¥}. Then random samplé de-
venient to omit the explicitt dependence. We will use a termines the evolution of charge configuratiom(®}
“check” in this case to stress that the quantity in question is—{n® "} - -{n®}—{n(®} for subsequent moments of
a random variable. Each stochastic procé$§) generates time. The choice Ogs Specifies that the transition between
the sequence of time-dependent functionsneighboring charge statéa®} and{n(~)} occurs at time
{Ao(t),AL(t,71,K1,010), ... Adt,{7i .k ,oi})}. Its average 7i Via the junctionk;=(a;,B;). Therefore, the sequence

o i . . . i—1 _ i i—1
(A(t))q over the spacé) is defined as {n(l)_} is given by the relatlonn(a'i )_ngi)_a-ki' ngi )
=ny)+ oy, andn{~=n{ for all y#«; andp; . To deter-

3 _ _ mine the probabilityQy({; ,ki,oi}) we note that(i) the
(A(t)q fQA(t,DdM(é) Ao(1)Qo sample{, constitutes the Markov chaifii) the conditional

probability of the system to remain at stat®) between the

N § s times 7, and 7; is proportional to exp- y(n(i))_(ri—q-iﬂ)]; _
&y Tosry> . > —TI2 (i) the probability that the transition occurs via the junction
k; during the time intervatl7; at the momentr; is given by

F(k‘i’i)(n(i))dri. These arguments suggest tigis have the
form

S
XAs(t{7i ki, oi})Qs({7i ki ,Ui})iﬂl dr;.
(15 Qo=25 exif — ¥(n®)T]
The analogous expression should be used, for instance, to . o
define the correlationA(t;) B(t,)),, between any two sto- ~ Qs({7i ki, ai})=Zg "ex — ¥(n©)(T/2— )]

chastic processes. (1) 1 (1) —n@ _
For the subsequent analysis we define the random process erl (N)exi = () (r = 72)]

1%(t), corresponding to the classical current through the

(72 (n()y. .. — (s-1)
external junctiork=<N: XL 2 (). exg —y(n™Y)

s ><(Ts—1—Ts)]r(k:S)(n(S))eXF[_7("‘(5))
109(t,69 =3} eaya(t—r) s(k—k). (16) X (rg+TI2)] (19
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v_vhere thg constari, should be_ found from the normaliza- Ox(tl,tz) at y=0 gives the evolution of probability rather
tion condition Eq.(14). As we will see belowZy=1. than the amplitude of probability.
The above correspondence between the random Markov with the use of evolution operatq22) the generating

chain {5 and the probabilitie®’s, Eq. (19), allows one to  function Eq.(20) can be cast into the form
evaluate the generating function E47). By definition Eq.

(16) for any given{s we have Z[{xi(1)}1=(a0|U (T/2,— T/2)|ng). (23
_ N fto ) To prove it we argue as follows. We exploit the fact thyét)
ex In§=:1 _doa(DI(n.d)le and'(7) commute under the sign of time ordering in Eq.
. (22) and regard’(7) as a perturbation. This gives the matrix
:iﬂl explio xic (1)} element(qo|U,(T/2,—T/2)|n;) in the form of series

U (T/2,~T/2)|n
It is assumed here thqtki=0 if the transition occurs via (ol 3 )Ing

internal junctionk;>N, thus no physically measurable cur- _ ot g T2
rent is generated in this case. The averaging of the latter =(dole |I30>+S:l (ol T, expl — L Y(ndr
expression over all possible configuratiots with the
weightdw () yields ~(o
XKE: TI2>7> . ..> >—T/2F(k11)(71)
Z[{xi(n)]=exp(— S{xi(7)}])=Qo 57 T
S
+ o
X el (7). . P97 )e' ok po) [ dri.
+ ce kg V'S 071 i
szl {kizai} f JT/2>71>.,.>TS>T/2 =1
s (24)
X QX({ ki, I dr. (20) It follows from definition (19) that each term in this series
i=1

corresponds to the functio®@¥({7; ,k; ,o;}), namely,

The resulting expression resembles the normalization condi- _
. . Qo=(dole™""[n)
tion (14). Here thexy-dependent function®QX({7 ,k;,o}) S
are defined similar to probabiliti€d9) with the only crucial T .
difference that the ratef(k")(n) should be replaced by Q{7 k ,ai})=<qo|TTexp[ —J ¥( T)dr] Ff(‘lrl)(q-l)
(P (n)explioi xdm)} if k<N. ~T2

Expression(20) can be written in the more compact and
elegant way. For that, we introduce tlyedependent linear _ A _
operatori,, defined as x el 71Xk, (7). . -F(k:S)(Ts)e'”s"ks(’ks)|ns>-

Ly(n=y=T\(7), (25
(21 Therefore Eqs(24) and (23) are reduced to previous result
(20). This completes the proof. Note, that owing to the prop-
erty Eq. (8), Zo=(qo|exp(—TL)|ny=1 identically aty=0.
Therefore, probabilitie$19) are correctly normalized.
Equation(23) for the generating functioZ[{x;(t)}] de-
Kk ko /- pends on the initial-state) of the system. It can be shown
) . ) ) o that the choice ofng) does not affect the final results. We
In line with consideration above we multiplied each operatorassyme thag,(t)—0 whent— —T/2. Physically, it means
(™) (k=1,...N), that corresponds to the transition that the measurement is limited in time. To be specific one
through the external junction, by an exjyedependent factor may assume thag,(t)=0 when—T/2<t<-T/2+At and
e X7 The diagonal part and internal transition operatorsy,(t)#0 if t>—T/2+At. If the time intervalAt is suffi-
I'(*) with k>N remained unchanged. Then we consider theCie?t'y large as compared with the typical transition time
. o ; ; ; '™, then the system will reach the steady state during this
Ev?ll;tliosnir?peeri::gl’(gitr; ’gzzjeases:géﬁd(rvltr )EiZl)i;IeSr:nge period of time. The latter follows from the fact that
N g P ot 15 g y exp(—L At)|ng—|po) when At>T""1. Thus one can substi-
the time-ordered exponent : : .
tute [ng) to |po) in Eq. (23). Assuming also the limifT
—oco, we arrive to the main result of this section

N
f‘X( )= kZ:L (f‘f(‘*‘)eiXk(T)_}_ f‘(k_)e_iXk(T))

~ t ~ A
UX(tl,t2)=TTEXW’—ftl[y(f)—l“x(f)]dr .22

+oo
expl— i(t = T, exp — L d .
The similar construction is widely used in quantum statistics. X = SO = (ol T, XW’ f—w K7 T]|p°>
The difference in the present case is that the operator (26
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We see that the generating function can be written in the The average physical currents fo<N are given byl_k

form of the averaged evolution operator. This operator cor—|,({xi})|,=o. Expanding the vector notation in E¢R9)

responds to master equation with the rates modified by thgne gets the usual relation for the current in the master equa-

counting fieldsy;(r). ~ tion method. The current is expressed via transition rates and
Further simplification is valid in the low-frequency limit the steady probability distributiopy({n}).

O.ft.the CLirrgnttﬁorrelattlonTyTrF. (Ij{ere'z['l“ is a typical tran- We also introduce the particle number operaﬁé‘i‘} in
sition rate in the systemln this situation one can assume each node, given by a usual formula

that the counting fieldg,(t) are turned on and switched off
adiabatically. Then, it,>I""1 is the time of measurement, R
the action[Eq. (26)] reduces to n{“}=% [nyn, (n|. (30)
n
SHxi) =toA min({xi}), (27)  Then after few algebra one see that the relation

whereA in({x;}) is @ minimal eigenvalue of the operalb;. . P
As one can see the problem of statistics in question, provided > =JePl=—e[nl L] (3D
the transition rates in the system are known, is merely a p
problem of the linear algebra. The probabilR¢{N;}) of N;  always holds at any node. Here the summation is going
electrons to be transferred through the corresponding termpver all nodess, connected tax. The choice of the sign in
nal during the time, is then expressed Vi&({x;}) with the  front of each term under the sum depends on the situation
use of relation(18). whether the given directed link={a,B8} is going out or

It is worth to mention that the another definition of FCS, coming into the chosen node. The Eq. (31 gives the
different from that given by Eq27), is widely used in quan-  charge conservation law in the operator language. Averaging
tum optics?’~*° The definition of FCS in quantum optics the latter expression over the steady distribution,
makes use of the sudden turning on of counting figldg) (dol- - -|po), and using Eqs(9) and (29) we arrive at the

at time zero and subsequent abrupt switching them of aftegonservation law for the-dependent currents at each node
time ty. Under this assumption the actié®6) becomes a

expl — S({xih)} = (ol Py exp — toA n({xi DA™ o).

Here(q{"| and|p{") denote the eigenvectors of the op-
erator, and A,({x;}) is its spectrum. The probability This also ensures the conservation of the physical current in
P({Ni}.to) can be found as before via relatigt8). Then so  the modelS,l, =0, where the sum is extended only to the
defined FCS can be used to find different two-point correlapxternal junctionsk. It follows from summing up relations
tion functions of two photoelectrori§*® Note, that above (32) over all internal nodes: and settingy="0 afterwards.
relations holds at time scalég of the order of average wait-
ing time between two successive photocount events. Con-
trary to that, definition27) of FCS, accepted in mesoscopics
physics makes sense at time scale, which greatly exceeds then this section we consider the current statistics of the
average time between two successive events of charge trangsonant-level model. First we focus on the noninteracting
fer. case. Then we apply the general result of the Sec. Il to the

Consider now the question of the current conservation irstrongly interacting case and compare the statistics in these
the nodes. For this purpose we associate the counting fieldgo different regimes. In the end of the section we rederive
xk with each linek={a,B} of the graph and in the appro- the results of the previous works concerning the shot noise in
priate way modify theL, operator. Then we define the clas- these systems.

; *1io m({xiH) =0. (32)

IV. RESONANT-LEVEL MODEL

sical current operatoag(k)zji(a’ B} through each line by FoIIowinq definition(21) and the expression for the rates
means of the relation Eq. (4), theL ,-matrix of the single resonant-level model in
the noninteracting regime reads as
. aL o A
IW=je—X =gl Nex—T{e ), (29) . I, —To._
X Xk (I'k k ) LX_ 10 0—1(X) , (39

. . _FL—O(X) I‘o<_1
Its average value can be found via relation

where
e IS _ (030 (© -ix ~ix
Ik({Xi}):E&_Xk:@{X 130 p?). (29) i o(x) =T fle X4 Trfre Xz, s
It follows from the Eq.(27) and the fact thatA mn({xi}) Fo 100 =T1(1-f )M+ Tr(1-fg)e'2.
=<q(X°)|5X|p‘X°)> with <Q‘X°)| and | p§°)> being the eigenvectors Eyaluating the minimal eigenvalue of this matrix one obtains
of the L, operator. the current statistics in the form
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S(x)=to{T' +T'r—VD(x)}, On integrating it over y one finds for the S(x)
' (35) =(to/ie) [§I(x")dx’ the result Eq(35) obtained by means
D(x)=(I' +Tr)*+4T Tl () (e ¥—1) of master equation. Thus, we have verified the correspon-
. dence between two approaches to statistics in the noninter-
+ (&) (eX=1)], acting regime.
Here fy(e)=fL(e)[1-Tfr(e)], frry(e)="Tr(e)[1 To proceed we address the strongly interacting regime. In

—f_(&)], and y=x1— x». We have also accounted for the this case the (22) I:X-matrix is formed with the use of
double occupancy of the level by multiplying the result by rates Eq.(3). It has a structure similar to E¢34), provided

two. the y-dependent rates are written as

Since the Coulomb blockade phenomenon is completely . .
disregarded in this model, one might have come to the same Iy o(x)=20 f e "1+ 2Irfre 112,
result in the framework of the pioneering approach by Levi- _ ix iy (39
tov and co-workeré We will show now that it is indeed the Foa(X)=TL(1-f e+ Tr(1-fre2
case.

Evaluating the corresponding eigenvalﬁg one can write
Hown the expression for statistics in the strongly interacting
limit

According to Ref. 2 the general expression for the curren
statistics through a single contact is written as

so0=-23) Jdeln{l+Tn(e)(fL(e)[1—fR(e)](e‘iX SO = (to/2{T L [1+ ()] + T/ 1+ fr(e)]— DO},

(40)
39  POO={TUI+fu(e)]+TH1+fr(e)])?
+80 TRl f(y(€)(€X=1)+f (&) (e X=1)].

—1)+fr(e)[1-fL(e)](eX—1))}.

It is valid for any two-terminal geometry provided the region
in between two electrodes can be described by the one-
particle scattering approach and the effects of interaction arg

of no importancelTy(e) is a set of ransmission eigenvalues as shown in Fig. 2. Then the temperature fluctuations be-

that are in general energy-dependent. Fermi functions in(':ome nonessential and both statisti@s) and (40) take a
clude the effects of applied voltage and the temperature. Fq,r

: . ; " " _tather simple form
a single resonant level there is a single resonant transmission

eigenvalueT, (€), its energy dependence being given by the —t AT +To— (To—T )2+ 4T Tae X
Breit-Wigner formula S()|y=0=to{ [ +Tr—(Tg—T) Ll r€ },(41)

To proceed we consider the shot-noise regené>kgT
d assume that the voltage is applied to the right electrode

_ I''I'g
(e—€)2+ (I +TR)%4

Ti(e) S S<x>|uﬁx=%to{zn+rpe—¢<2FL—FR>2+8FLFRe*'X}-
Here ¢; denotes a position of a resonant level. The result Eq. (42)

(36) is more general, than E¢35). When electrons do not Given the latter expressions at hand one can rederive the
interact Eq.(36) is valid for any temperature. We will show known result for the average currehvt=(ie/to)(?S/(?)AX:(J
below that one can reproduce the statistics @§) on sub-  and the shot-noise pow&.= (€/to) 9°S/dx?|, - in these
stituting T,(€) into Eq. (36) and assuming the regimeT  models. It is conventional to represe8, in the form
>#T". As it was discussed previously, this is the condition,Sso=€lF, whereF is the so-called Fano factor. Its impor-
when the master equation approach, and hence its const@nce to the mesocscopic transport has been pointed out in

qguence Eq(35), are valid. the work®° Its deviation from the unity indicates to the non-
It is easier to perform the calculation if one first evaluatesPoissonian type of electron counting statistics. The latter
the y-dependent currert(x) = (ie/ty)9S/dx. It reads fact, in its turn, reveals the presence of correlations of the

successive electron transfer. For the single resonant-level

1 - IR model one obtaing = (I'2+T'2)/(I" +T'g)? in the noninter-
— ix_ ix 1 L R L R
0 wJ deff(ry()e =Ty ()e KT ~(e) acting regime and = (I'2+40'2)/(T' +2I'g)? in the Cou-
iy Iy lomb blockade limif®
o (e(e™ ¥ =D+ (e)(eX—1)]}. (39 As one can see from the E@i1), at low temperatures, the

In what follows we assume that the resonant level is placedlifference of statistics in the lardélimit from the one in the
between the chemical potentigls iz, in the leads. Since noninteracting case is an effective suppressioli pfate by
keT>T (g, the main contribution comes from the Lorentz @ factor of two. To find the probability distributioR(N,to)
peak and one can put=¢; in the Fermi functions. There- ©One can estimate the integral H38) by means of steepest
fore, we left only with the two poleg; ;)= e, =ivVD(x)/2 descent method. It is applicable in the given case of low-
under the integrand E¢38). Closing the integration contour requency regimeo<I', which we consider, since both the

in the upper or lower half plane we arrive at action_S()L)>1 and the average number of transmitted elec-
_ _ tronsN=1t,/e>1. Then one has to find the saddle-pojpt
I(X):2eFLFR[f(+)(ei)e'X—f(,)(ei)e*'X]/\/D(X). of the functionQ(x)=S(x) +ixlty/e, which is defined by
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: ' —_ — I',+1.p Of these transitions are equal to the suniNef 2 or
0.0 i 3 independent probabilities ), through the different
junctions, those are given by EqS) and(6). Along with the
057 i lines of Sec. Il we have to modify the raté§,.. , into
= 104 | x-dependent quantitieEX. ;. , in accordance with the rule
= | Eqg. (21). After that, in order to find the FCS of the charge
Q 154 ' N | transfer through the island, one has to evaluate the minimal
% I S I =r_, Blockade ?\\\ \ - e?genvalue/}n?in of the.three-dia_gonal matriiX. In the
= 204 3——r=10T,,U=0 N - given case it is convenient to write down the latter problem
4 — — -Poisson statistics 1%:2 N as the eigenvalue problem for the following set of linear
-2.5 N - equations
] s A
'30 T T T T T T T T T T T T ‘ v T T
00 05 10 15 20 25 30 35 40
1/2T t, (A— '}’n)pn+rﬁgn+lpn+l+I‘?\(Hn—lpnflzoa (43
FIG. 4. The current statistics through the single resonant level. 1 _ Y
and 4, noninteracting model; 2, interacting model; 4, Poisson statis‘f"he’\‘re ; 7n_£‘.an—1+rnen+la and | NS
tics. =3xN 1®. _ e*X The index+(—) corresponds to elec-
k=1% nx1len
tron transition from(to) the island.
the equation = (ie/ty)[ 9S/dx]. It is turned out thaty, al- In general, we have treated the problem Ef) numeri-

ways lies on the imaginary axis. This equation can be recally. At sufficiently low temperaturekgT<E., which is
garded as a parametric relation betwéemd y, , and with  mainly the case of the following discussion, the temperature
the exponential accuracy we obtain the estimation for the&lependence in rates E) is nonessential. Then one can set
probability P(1) ~exd —Q(x,)]- r{I(n)=AEX, /(e’R) whenAEX, ./(e’R)=0 and
The results for statistic$41) are shown in Fig. 4. The r'{*)(n)=0 otherwise. Thus defined rates are linear func-
statistics are compared with the Poisson-type statiSi{sd  tions inn. The possible set dfn!, corresponding to nonva-
=2T'tg[exp(x)—1] with the effective rate given by nishing rates, is limited to some interval,,<n<nmax.

_ 71 71 . . . . . . .
=I' "+ I'g". Both statistic{41) approach the Poisson one, yence Eq.(43) becomes a finite linear problem. At higher

provided the system is strongly asymmetiig>I'g. temperature&g T<E, we have found that the increagge-
creasg of both n,;, and n,,, t0 extra 7/8 states gives the
V. THE FCS IN THE COULOMB BLOCKADE QUANTUM results up to 10'° degree of accuracy in course of the nu-
DOTS merical procedure.

In this section we discuss the application of the method ta The matrixI:X of Eq. (43) is non-Hermitian. This fact may
. ppiica . tause an instability in the numerical algorithm when the
the many-terminal Coulomb blockade island. The consider-

ation will be limited to the two- and three-terminal layouts. rapge[nmin,nmaﬂ 'S Iargg. However, in most pract|cE1I cases,
Our treatment will be mainly numerical, though some anathis problem can be circumvented by transforming to
lytical results in the two-terminal setup are also plausible. [nf€rmitian form. First we note, that one only needs to work
the beginning of the Sec. a few technical details, which ar&Vith pure imaginary counting fieldg,, as long as the prob-
common for both cases, are given. In particular, we establisRPility P({Ni},to) is estimated in the saddle-point approxi-
the relation of the FCS approach with the preceding paperdhation.(See the discussion in the end of the Sec) Hlence
concerning the shot noise in the conventional single electrof€ rated’y_ ., become the positive real numbers. Then we
transistor. In the following we consider the FCS, first for can apply the linear transformatigrj=A,p,, . It leads to the
two-terminal, and then for three-terminal configurations. Werates in the new gaugE'X_,.,=A,,.I'X_,.,A,'. The
will also compare the FCS in the strongly Coulomb blockadeunknown A,’'s may be chosen in a way that the symmetry

limit with our recent results, concerning the FCS in many-relationT"’X_,.,=T""X.,_, would hold. This gives the re-
terminal chaotic quantum dot with contacts being the tunneturrent relationA,, /A = (I'}_ . /TX, 1<_n)1/2- With the
junctions. use of latter the Eq(43) takes the Hermitian form when it is
written in terms of p, and transformed rate§'} .,
A. General remarks =(TX_p+1T%. 1 )Y2 The diagonal termy, is not affected

under this transformation.

In the framework of the “orthodox theory” the macro- ; . .
Y Let us also discuss a useful relation for the shot-noise

scopic state of Coulomb blockade island is characterized b .

the excess charg®=ne, which is quantized in terms of _xorre_lat'onsskm:(EZ/EO)A‘?ZS/O(?XF‘?X”‘|X=0' One can use the
electron charge+ €). This chargeQ can be changed only by identity Amin(bxih) =(aIE P in order to express them in
+e in course of one tunneling event. Therefore, the masteferms of eigenvector)iq)n% (gnl and eigenvaluea, of the
equation connects the given macroscopic stateith only  matrix L. With the use of standard algebra and assuming the
the neighboring statem=1. The corresponding rates normalization(q,|p,:)= &, We can cas8, in the form
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0.95 - ' - ' - '
V2 =— = V2 . _
R,C; R,C, 0-901
i‘,_migm_}}_‘ 0.85 1
1 2 ]
% 5 0804
1 = 0.754
Vg S ]
lT £ 070
FIG. 5. The equivalent circuit of the two-terminal Coulomb 0.65 -
blockade island. ]
0.60 4
" 1 “ " T T T T T T T
Scm= 92<CI0|S(k’m)|po>+ezZ 7\_{<%|Jk| pi){alJi|po) 1.0 05 00 05 10
=0 A1 Offset charge (q /e)
+{(qolImlPr){ail I Po)} (44) FIG. 6. The Fano factor versus the offset charge in the two-

3 ; &(k,m) terminal Coulomb blockade island. The parameters @re=C,,
where theJ, operator was defined by E§28) and S R,—10R,. T—0.01€%/2Cs . (1) V=1.56/Cy , (2) V—2.06/Cs.

:ﬂZ.EX/anaXm|X_:O- N(_)te, that rglatior(44) ho.Id_s in any (3) V=4.0e/Cs , (4) V=6.0€/Cs .

basis. One may, in particular, use it for the bagjgliscussed

above. In this case one must define the matrix elementg of chosenC,=C, and plotted the Fano factor for different val-

as[Jdn+1n=(19/dx)T'¥_,-, and to evaluat&®™ inthe  ues of ratioR,/R; and offset chargej,. The curves are

same manner. truncated below the Coulomb blockade threshold, where the
It follows from relation (44) that the shot-noise correla- considered “orthodox” theory is not applicable. At high val-

tions are defined by the whole spectrum of the relaxationues of the ratidR,/R; they exhibit the strong characteristic

times 7, *=\ in the system. In case of two-terminal geom- Coulomb blockade oscillations. The special points at the

etry it coincides with preceding results of Refs. 14 and 15. Voltage dependences occur when eithgf, or npq, are
changed by 1. At high bias voltages the noise-to-current ratio

saturates to the valu&=(R?+R3)/(R;+R,)? indepen-

) L ) dently of the capacitances, and the offset chargg,. (See
The electrical circuit with a two-terminal Coulomb block- e giscussion below as weéliAn increase of a temperature
ade island is shown in Fig. 5. The dot is biased in sUCh §g54s to the smearing of oscillations due to the additional
way, that Vo=—V,=V/2. At low-temperaturesksT  thermal noise. The above results coincide with those, ob-

<e?/Cy the x-dependent rateEy._ ., reads as tained previously by Hershfileet al®
To proceed we turn to the question of the FCS. For the

B. Two-terminal Coulomb blockade island

X |GV " CyVy " 1)| e sake of clarity we first present our recent analytical results
n+l—n— !
e e 2] R, Cy
3 | (45) 0.9 ' : : :
rx |GV s CyVy 1)|e'n
n—-l<n— n e 2 R1C2’ 05 |

where (~31(2)=C1(2)+ Cg4/2 are effective capacitances. The
gate voltageV, can be used to control the offset chagg
=C4V, on the dot. It can be varied continuously in the range

—el2=qy=<e/2. The resulting dimension of the matrﬁ');( is
given by the number of absorbing stat@g,—Nmin, Where ,
Nmin (Nmay) iS the maximal(minimal) integer closest to the 0641
pointsn; , where the rate§'}_,_, vanish.

First, we briefly consider the voltage dependence of the

0.7

Fano factor

shot noise in the systef#t}°It was calculated with the use of 0.5
Eq. (44). The results for the noise-to-current raffeano fac- ] n : 3 10
tor) are presented in Figs. 6—8. The Coulomb blockade fea- Vi e /Cy]

tures are strongly pronounced in case of asymmetric junc-

tions only. The resistances of the contacts are much easier to F|G. 7. The Fano factor versus the applied voltage in the two-
vary than the mutual capacitances in the experimental situaerminal Coulomb blockade island. The parameters @re=C,,
tion, when the dot is made up with the use of 2D-electron gag,T<e?2Cs, qo=0. (1) R;/R,=1, (2) R;/R,=2, (3) R, /R,

in the semiconducting heterostructure. Therefore, we have-4, (4) R,/R,=10.
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1.0 L L 1 L IR/VY
00 05 10 15 20 25 30 35 40
0.0 1 L0.0
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~ 05 L-0.5
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5 ?
g > 109 L0 2
B = f
S 07 % 1.5 15 o
é C1=C2=C/2 (1) k, T=0.01E = C=C, R=10R, %
- (2) k,T=0.1E F  -20- 2 - L-2.0
R=10R, 3 Kk T<<e/2C, q,=0
0.6 1 2 _ (3) k,T=0.3E_ o, ET
E=¢/C;, q,=0 @) k,T= 25 R'=R 4R, L 25
05 T T T T T T T T -3.0 T T T T T T T -3.0
2 4 6 3 10 00 05 10 15 20 25 30 35 40
Vi e /CE] I R/[V-e/C ]

FIG. 8. The Fano factor versus the applied voltage at differentP FIG. 9. The cu;]rent statls::cs Iln thé two-tergmlnzzl guan_tumddott).
temperatures. Parameters are shown on the plot. Temperature jgrameters are shown on the plot. Curves 3 an coincide but
given in terms of charging energy. correspond to different axe¢l) V=1.5e/Cs, (2) V=2.0e/Cs,

(3) V=3.0e/Cs, (4 V=4.0e/Cy, (5) noninteracting regime.

for the FCS of the chaotic quantum dot with two tunnel
junctions, when their resistancBg<<7#/€?. In this case the special pointsV, at the Coulomb blockade staircase when
effects of Coulomb interaction are negligible. Then we tracethe ratioC, /C, is close to a rational along with the special
the differences in the FCS, when the dot is placed in thehoice of the offset chargg,. (E.g., for the configuration
strongly interacting regime, > /e, C,=C,, shown in Figs. 6 and 8, this is the case wh@n
In the noninteracting limit the actio8(x) is expressed g =0," v,=(2k+1)e/Cs and (i) qo==*e/2, V,
via the voltageV and the resistanceRy only.* At low- =2k(e/Cy) with k being integel. In this situation we may
temperature&gT<eV it has a form similar to Eq(41) show analytically(see Appendix B for the propfthat the
actionS(y) at pointsV, takes the form similar to the statis-
tics in the noninteracting regim@6). The only difference is
that the voltage/ has to be substituted t¢\(,| —€/Cs). The
reduction ofV by the amount of the threshold voltage value
e/Cy is thus the manifestation of the Coulomb interaction.
The given statistics is also valid as a limit at high voltages
It would be Completely equivalent to the statistics of thev>e/C2_ One may conclude it from the physically reason-
charge transfer by noninteracting particles through the resqgple arguments that the result for the action in this limit
nant level if one regards the ratid§ r=V/(eR; ;) as the  should be linear function in voltage and must not depend on
effective tunneling rates. The generating fzynctmn E‘tﬁg the capacitance rati6, /C,. Hence, the statistics is insensi-
gives the above mentioned vallie=(Ri+R3)/(Ry1+R) tive to the fact, whethen, , are integers or not. This also
for the Fano factor. o . explains the saturation of the Fano factor at Figs. 6—8 to the
In the strongly Coulomb blockade limit the acti@{y), noninteracting current-to-noise ratio.
in general,_remarkably deviates from E46). St.ill,_there are To access the general situation, the whole problem has
two exceptions, whe(x) resembles the statisti¢41) and  peen treated numerically. We have evaluated the probability
(46). ] ] Eqg. (18) in the saddle-point approximation along with the
The first case occurs at low voltages, slightly above thesame lines as it was done for the resonant-level model. The
Coulomb blockade threshold value, when only one chargmgtq_ (29) was used as the parametric relation between the
state is available for tunneling. This situation can be easilyrent1 and the counting fieldy=x,— x; in the saddle-
realized in the asymmetric dot witR,# Rl.AThen mere tWo  point v, . In Fig. 9 we give the example of the logarithm of
states withn=0 andn=1 are involved and. , is reduced to  probability distributionP(1) for the number of different volt-
the 2x 2 matrix Eq.(33). The only difference is that the rates agesV and offset charggo=0. All curves are normalized by
I'| g contain the voltage dependence as given by @8).  the reduced value of the voltag¥ € e/Cy). For the value
Thus the actiorS(y) reproduces the result E¢41), where  v=3e/Cy the renormalized logarithm of probability coin-
the rated’| g are assumed to be voltage dependent. cides with the one, obtained from the noninteracting limit
To proceed we describe the second exceptional situatio(6). We have also plotted the same statistics in Fig. 4 in the
when the actiorB(x) can be found analytically. Lat; , be  resonant-level model for the ratio of ratégs/I'g=10, when
zeros of rate¢45), i.e.,I'f. ;. ,(n1)=0. We now interested the interaction effects are disregarded. We see, that in general
in the situation when both zeroas , simultaneously become the probability distribution is strongly affected by the Cou-
integers. This situation may occur at the limited number oflomb blockade phenomenon, as compared to the noninteract-

Vi B
S0 =55 {RI+R,

— V(R 1=R; H2+4(R(R,) ~tellaxD}, (46)
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FIG. 10. The equivalent circuit of the three-terminal Coulomb 1 2 3 4 5
blockade island. The voltages;,y are used to control the bias U/ e/C,]
between the third and the firsthe secongterminals,U;;=V;
—Vy(2). The third terminal is biased at voltagé=(U;+U,)/3 FIG. 11. The matriX¥ of auto- and cross-shot-noise correlation

with respect to the ground. This setup assures the condifion Versus voltag&J, for the three-terminal quantum dot setup. Param-
+V,+V;=0. Then gate voltag&/, can be used to control the e€ters are shown on the pldl) F1s, (2) [F1Jl, (3) [Figl, (4) Fzo,

offset chargego=CyV, on the |sland (5) [F2d, (6) Fas.
|ng reg|me It approaches to the non|nteract|ng limit On'y atThe Valueq IS n0n|nteger in general It SatISerS the Condltlon
rather high-voltage¥'>e/Cs . I'{7(q+1/2)=T{"(q—1/2)=0. The dimension of thé
matrix is equal ta 2 Nimin» Wheren ., (Nmin) can be found
C. Three-terminal Coulomb blockade island from the conditions'$ )(n)=0 (I'{*)(n)=0). The value

The electrical circuit with a three-terminal Coulomb € Mmax, (€ Miin) gives the maximumiminimum) charge that

blockade island is presented in Fig. 10. It is biased by thre§27 D€ In the island for a given voltages, Uy, andV.

external voltage sources so that the current, flowing throughrovélgsggg z?iri;melzt%iz)fé?ﬁ; t?k?eresa;(tae:;)u;t(alfx?::r?rira-
the third terminal, would split into the first and the second” 9 Y P

ones. As in the preceding section we discuss the only Iowtufs(f eﬁCh of them 'Sf t;]emg assog&tsed \é\"th,)t(?e prefactor
temperature regim&gT<e?/Cs . In what follows it is as- dT N Eresf:ance ort ef exfpone h r?nd € ccl)rre- h
sumed thatU,>U,. Then, according to Eqs5)—(7) and sponds to the charge transfer from the third terminal into the
(21) the y-dependent rates of the system are written as fol. island and from the island into the second terminal, respec-
lows: tively. Hence, the random current through the thisdcond
junctions always has the positiyeegative sign. Two factors
X =T (n)exa+ T (n) 6(m— 1/2—n)elx e= X1 stems from the charge transfer through the first junction
ntlens o3 ! ’ in the direction either from the island into the first contact or
=T (n)e %2+ T{)(n) 6(n—m—1/2e" .X£47) vice versa. Therefore, the random currépis able to fluc-
tuate in both directions.
where Consider first the shot-noise correlations in the system.
For that it is useful to introduce the &3) matrix F with
N +y_ CgVvy 1} 1 elements .= Sym/€ls , Where the current correlatior®,,,

I =aj )+(n+Ti§) R(Cs 89 are given by Eq(44) andls=332_,|I;|. The matrixF is a
generalization of the Fano factor for the multiterminal sys-
tem. It is symmetric and obeys the relatlﬁﬁ_lF,k— It

~ ~ follows from the general law of the current conservation in
(C1+Cg)U,—CiU, the system. For the considered three-terminal dot we have
eR, Cy ’ found that the cross-correlatioris,,, (k#m) are always
negative for any set of parameters.
C,U,—(C3+Cy)U, In Fig. 11 we give the illustrative example of the voltage
1'=% eR, Cs : dependence of the shot-noise correlatibpg, for the certain
choice of parameters. As in the two-terminal case the Cou-
The effective capacitances, are defined aék:ck+ Cy/3 lomb blockade features are strongly pronounced only for the
and the pointy is determined by the relation asymmetric setup. The results in Fig. 10 correspondR;to
=R3=R,/10, C;=C,=C;, andU,/U,=4. The latter ratio
of voltages has been chosen on the basis of arguments that
for a given value of resistancé it would split the average
(49 currentls into two equal current$l,|=|l,|=14/2 provided

l_‘X

n—1«<n"—

and

Cc,U;+C,U,

(+)—
a3 eR; CE '

ab )=

1. I
q(ul,uz,vg)zg{czuz—(034r Co)U3—CyVyl.
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FIG. 12. The matrix of auto- and cross-shot-noise correlation LR/,
versus the offset charge for the three-terminal quantum dot setup. F|G. 14. The logarithm of current distribution R(l,,I,) in the
Parameters are the same as on Fig. 11. The voltageU,/4  three-terminal quantum dot as a function of curreptunder con-
=1.2%/Cy . (1) Fa1, (2) [Fad, () [Fad, (4) F2o, (5) [F2dl, (6)  dition I,=(1,). Parameters are the same as in Fig. @3.U,;
Fas. =1.25e/Cy, (2) U;=2.0e/Cy, (3) U;=4.0e/Cy, and curve4)
corresponds to the noninteracting regime.

one could apply the usual linear Kirchgoff rules to this cir-
cuit. In Fig. 12 the dependence of the shot noise correlationgieans of the steepest descent method. The difference with
on the offset charge is shown for the same set of parametetBe two-terminal geometry is that three currehtsind three
and the value ofJ,=1.25e/Cy . The special points of both counting fieldsy, are now involved. Due to the current con-
these dependences occur when eithgf,, Nmax OF the inte- servation2,l,=0 for any plausible fluctuation, only two
ger part ofq are changed by-1. As the result we observe currents are independent. Thus the act®&{fiy;}) depends
multiperiodic Coulomb blockade oscillations in the offset on the differenceg;; = x; — x; only. In what follows we have
charge dependences in contrast to the single periodic oscithosenl; and |, as the independent variables to plot the
lations in the two-terminal case. logarithm of probability InP(l14,l,). With the exponential ac-

We now proceed with the consideration of the FCS. Ascuracy it is given by IrP(11,1,)~e ®W"). Herey* is a saddle
before, the actios({ x;}) has been calculated with the use of point of the functionQ(x)=S(x)+ix1lito/e+ixal to/e.
Eq. (27). Afterwards probability(18) has been estimated by The results for IP(l3,I,) are shown in Figs. 13—15. From
the contour map on Fig. 15 we see tit 1,1,) is nonzero

L in the quarted <0, 1,<0 of a current plaini(,l,) and in
0.0 4 L the regionl,<|l,| providedI,;>0, 1,<0. This range of
plausible current fluctuations stems from thedependence
of rates EqQ.(47). Any current fluctuation automatically
_ 04 - satisfies the constraiX,l,=0 and conditionsl,<0 and
;- 13>0.
~~ -0.84 . -
x | J/ C,=C,=C, k 0.0 " :
,;'.} . R =R =R /10 oz
T U=4U,
= ' kT<<e’2C,, 4=0 | g4 i
1.6 - ~
-4
1 s '_'N-O.6* -
-2.0 —7r T+ ' T * T ‘* T T T T T ‘* T ™ 1T
-16 14 12 10 -08 -06 -04 -02 00 0.2 -0.8 - -
LR /U,
-1.0 AN TN N N ~ . .
FIG. 13. The logarithm of current distribution R{l,,I,) in the 1.0 -08 -06 -04 02 00 02 04 06 08 10
three-terminal quantum dot as a function of currbntunder con- IR /U
dition 1,=(l,). Parameters are shown on the plét) - U,
=1.25e/Cy, (2) U,;=2.0e/Cs, (3) U;=4.0e/Cs, (4 U, FIG. 15. The contour maps of the current distribution
=10.0e/Cy, and curve(5) corresponds to the noninteracting re- log[P(l,,l,)] in the three-terminal Coulomb blockade island. Param-
gime. eters are the same as in Fig. 18,=U,/4.0=1.25e/Cs .
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Before discussing the above results it is worth to setup that different energies. Providad,>U,, the generating func-
reference point for such discussion. This reference will beion S({x;}) in the given case is a sum of the two indepen-
our previous results for the FCS in the three-terminal cha- dent processes
otic quantum dot when its contact are tunnel junctions with
resistance®R, *>e?/ «#i. In this limit the effects of interac- S(x1:X2:X3) = S1(X1:X2:X3) T Sa(X1:X2:X3). (50)
tion are negligible and electrons are scattered independentiyere

Ut
S1(X1.X2:X3) = g {G1+ Go+ G— (G1+ Gy~ Ga)?+4G5e™3(Gre i+ Goe 7)),

(Ux—Uptg 7 —Tx X X
Sz(XLXz,Xa):T{Gl"‘Gz"‘Ga_\/(Gﬁ'Gs_Gz) +4Ge (G e+ Gae'3)},

andGy= Rk‘1 are the conductances of the junctions. Coulomb interaction always suppresses the relative prob-
The logarithm of probability IPy(11,1,), evaluated with ~ abilities of big current fluctuations. This behavior stems from
the use of statistic§50), is shown by the dashed line in the fact, that any big current fluctuation in Coulomb block-
addition to the previous curves in Figs. 13 and 14. Its contoupde island is related with the large accumulation deple-
map for the same values of parameters is also separate’i n) of the charge on the |_sland. The latter process results_ in
presented in Fig. 16. The maximum of Bl,,l,), as ex- the excess of electrostatlp energy. Therefore, the relative
- — probability of such fluctuation is decreased, as compared to
pected, occur at;=1,=U;/3R;.

. ) . . the probability of the similar current fluctuation in the non-
We can derive the following conclusions on comparing

the FCS in the Coulomb blockade and noninteracting ”mits_lnteractmg regime.

In spite of the different regimes, we see that the qualitative VI. CONCLUSIONS

dependence of probabilities versus the currents is similar for

both statistics. The probability distribution in both cases has To conclude, in the present paper we have developed the
a single maximum, corresponding to the average values afonstructive scheme to evaluate the FCS of charge transfer in
currents. The tails of distribution are essentially non-the Coulomb blockade systems. This scheme is rather gen-
Gaussian both in the weak and strong interacting limit. Theeral and universal and is applicable to any strongly interact-
statistics approaches to the Gaussian-type one in the strofigg system, provided the latter can be described classically in
Coulomb blockade limit only, when the applied voltage tothe framework of the master equation approach. The method
the system is only few above the Coulomb blockade threshproposed consists in the transformation of the initial linear
old. [See curveg1) and (2) in Fig. 13] At higher applied operator L of the master equation into the auxiliary
voltages the probability distribution has a tendency to apy-dependent linear operatdr,. Each nondiagonal term of
proach to the current distribution of the noninteracting systhis new operator, associated with the particular transition in
tem. However, they never become identical, even in the limithe system, is modified by the exponential prefaetox in
U,>el/Cy. [Curves(4) and(5).] The same is true for the order to take into account the electron jump through the
shot-noise correlations. Generally, we conclude, that th¢unction k during the tunneling event. The generating func-

. . . . tion of the charge transfer through the whole system is then

0.0 . .. .
proportional to the minimal eigenvalue of the operatgr.
02 | We have applied this scheme to study the FCS in two
| different Coulomb blockade systems. For a generic case of a
" 04 | single resonant-level model we have established the equiva-
- I lence of the developed method with the scattering approach
0.6 4 L to the FCS, when the particles in the system are noninteract-
ing.
084 L Afterwards we have considered the FCS and the shot-
, noise correlations in the two- and three-terminal Coulomb

1.0 . . . . . : , ‘ , blockade islands. The consideration was limited to the tem-
-1.0 08 06 -04 02 00 02 04 06 08 10 perature regim&kgT>AE, with AE being the mean level

IR /U spacing in the dot. In this regime we made use of the “or-

et thodox theory” of Coulomb blockade phenomenon. For the

FIG. 16. The contour maps of the current distribution case of two-terminal Coulomb blockade island we have re-

log[P(I,I,)] in the three-terminal chaotic quantum dot with tunnel established all the known results for the shot-noise in this

contactsU;=U,/4.0=1.25e/Cy . system. For the Coulomb blockade island with three leads

IR /U
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attached we have shown that the auto- and cross-shot-noise

correlations exhibit the characteristic Coulomb blockade os- P(n,t)=j o(n—n(t,£)du(?),

cillations as the functions of the applied voltages and the o

offset charge. (A4)
We have considered the question of the FCS in the abOVP(nl,tl;nz,tz)zf Sny—n(ty,)]18[n,—n(ty,0)]du(?).

two types of dots as well. In the general situation we evalu- Q

ated the probability _distribution num_erically. However, we Their ratioP(ny,ty| Ny, to) =P(Ny,ty Ny, t,)/P(N,,t,) gives

havg managed to find FC.S analytically in case of two- e conditional probability to find the system at stateat

terminal Coulomb blockade island at some special values cﬂ?&

. metq, given that at time, it was at staten,. The integrals,
parameters. In these exceptional cases the FCS resembles ( '&4)9 can be eﬁicientzly evaluated aléng with thge same

statistics of the charge transfer 'ghr_ough the single resonarPIaasoning as we have used to prove the normalization con-
level. Then we compared the statistics in the Coulomb bIOCkaition As the result one ends up with

ade island with our previous results concerning an open cha-
otic quantum dot with two and three terminals. We found that ) _ "

. : . . Ny, ty| Ny, to)=(Nq|U(ty,to)|Ny). A5
the Coulomb interaction suppresses the relative probability (n1,1a] N2, t2) =(ny| U(ty, t2) ) (AS)

of the big current fluctuations. The latter expression is the usual way to describe the sys-
tem in terms of master equation. The conditional probability
ACKNOWLEDGMENTS P(ny,t4| ny,t,) regarded as a function af; andt; obeys
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the “Nederlandse Organisatie voor Wetenschappelijk Onder-

20ek” (NWO), This appendix contains the derivation of the acti(ry)

at low temperatures at some special poMisin the Cou-
lomb blockade staircase in the two-terminal island. We intro-
APPENDIX A duce the notatiod"{)(n)=T¥._,, that enables to write

In this Appendix we show that the construction of the 4oWn Eq.(43) in the form
probability measure on the basis of Markov chajgswhich _ + B
was used to derive the main result of Sec. lll, leads to the (A_V”)p”Jng( )(n+1)pn+l+l“§( )(n_l)p”*1_0'81
usual description of the system dynamics in terms of master BD
equation. This correspondence is achieved in the standaifl all y,=0 then the stationary solution of this equation,
way of probability theory by introducing the stochastic pro- corresponding to\ =0, satisfies the detailed balance condi-
cessn(t) corresponding to the island charge at a givention Prral's )(n+1)=p, (). In general situation,
time t when y,# 0, one may try to resolve E¢B1) making use of

the substitution

S
n(t,&)=ng+ 2, o 6(t=17). (A1) poes UM poy yTOm)
Pn yI'J(n+1)" Pa T(n-1)

(B2)

Similarly one can consider the random number of electrons
n®(t) transferred through the junctidnaftert=—T/2 with unknown constany to be found. This reduces the dif-
ference Eq(B1) to the relation

n<k>(t,gs):21 o, 6(t— 1) 8(k—k,). (A2) (A=y)+TO(ny+T )y t=0. (B3

§ 5 Here y,=T{(n)+T{7(n), andT'{)(n) are linear func-
The random variablea(t) and n(¥(t) are subjected to the tions inn, given by Eq.(45). Then one might find the two

relations unknowny and A, on comparing the constant and lineamin
N terms in relationB3). It yields
n(t,z)=net 2 (1L, y=(R; =Ry 1+ VD(x))/2R; te~ 1,
(A3)

1
|(k)(t,é~s):e%n(k)(tygs)_ Ax)= E(V—e/cz)[RIlJr R, *=\D(x)], (B4)

_p-1_p-12 —1ai(x2—x1)
After that we can introduce the probability distribution DX)=(Ry " =Ry )"+ 4(RR,) et 1),
P(n,t) and the joint probability distributiof(ny,t1;n2,t2) |t looks like we have found in such a way the required solu-

(t;=t,) of the process(t) tion. However, it is not valid at all possible values of param-
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eters. The matter is that the expressipgg. (45)] are not
correct at points=n,;,, and n=n,,, in the most general
case. One has to satisfy the boundary condifign’ (N,

=T (Nyi)=0. This violates the analytical dependence of

PHYSICAL REVIEW B 67, 085316 (2003

(B1), corresponds to the casg= Ny, Na=Niax, With Ny ()
being the zeros of functior!")(n). In this case the substi-
tution Eqg. (B2) gives p(Nmaxt1)=p(Nmin—1)=0 and hence
the actual values of { ) (Npact1) andl'y (N —1) in Eq.

Egs.(B1) and(B3) at the boundaries. The only exceptional (B1) play no role. Then we arrive to the actio®(y)

situation, when expression®2) and (B4) solve the Eq.

=t,A(x) in the form which was claimed in Sec. ().
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