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Intersubband gain in a Bloch oscillator and quantum cascade laser
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The link between the gain of quantum cascade structures and the gain in periodic superlattices is presented.
The proposed theoretical model based on the density matrix formalism is able to treat the gain mechanism of
the Bloch oscillator and quantum cascade laser on the same footing by taking into account in-plane momentum
relaxation. The model predicts a dispersive contribution in addition to the~usual! population-inversion-
dependent intersubband gain in quantum cascade structures and—in the absence of inversion—provides the
quantum-mechanical description for the dispersive gain in superlattices. It corroborates the predictions of the
semiclassical miniband picture, according to which gain is predicted for photon energies lower than the Bloch
oscillation frequency, whereas net absorption is expected at higher photon energies, as a description which is
valid in the high-temperature limit. A redshift of the amplified emission with respect to the resonant transition
energy results from the dispersive gain contribution in any intersubband transition, for which the population
inversion is small.
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I. INTRODUCTION

Soon after the original proposal of semiconduc
superlattices,1 two apparently quite different schemes to o
tain optical gain in such novel systems were put forward
a seminal work, Kazarinov and Suris pointed out how
achieve a population inversion, a key ingredient to obt
light amplification, between electronic subbands in
strongly biased superlattice.2 On the other hand, based o
semiclassical arguments, Ktitorovet al.3 and later Ignatov
and Romanov4 predicted optical gain due to Bloch osci
lations within a miniband—despite a missing populati
inversion.

Two decades later, the demonstration of the quantum
cade laser5 affirmed the first proposal. The~conduction! band
structure in each period is carefully designed to allow
injecting electrons into an upper subband state, with a l
nonradiative lifetime, and to enable a fast extraction of el
trons from an accordingly tailored lower state. As a con
quence, population inversion is achieved. Also, by a suita
design, the structure is electrically stable at threshold.
now, the quantum cascade laser technology covers a w
range of the electromagnetic spectrum. Recently, a ro
temperature continuous-wave laser6 emitting at a wavelength
of 9 mm has been demonstrated and stimulated emissio
the terahertz regime at about 66mm ~Refs. 7 and 8! has been
observed.

In contrast to this, the feasibility of the Bloch oscillato
emitting electromagnetic radiation, tunable by an exter
electric dc field, is still under question. Besides the task
stabilizing the electric field domains in a biased superlat
at the point of operation, the description of the gain mec
nism is, so far, based on semiclassical models only. I
naive picture, electromagnetic radiation of photon ene
\v'\vb5eFd is expected, corresponding to the frequen
of Bloch oscillations,vb , which linearly depends on th
applied dc fieldF. For, e.g., a superlattice periodd of some
0163-1829/2003/67~8!/085315~10!/$20.00 67 0853
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nanometers and fields of several tenths of kV/cm, the pho
frequencies are in the terahertz range.

In fact, semiclassical calculations exhibit neither gain n
absorption at resonance, i.e., forv5vb , but transparency
Particularly in the quantum-mechanical picture, it is evide
that only spontaneous transitions can occur at resonance
sufficiently high electric fields, the miniband is split into th
Wannier-Stark ladder, a set of states evenly spaced byeFd in
energy. Resonant stimulated emission processes betwee
jacent states are balanced by absorption processes, be
of the translational symmetry of the system, which dicta
equal occupation for all rungs of the Wannier-Stark ladde

Nevertheless, the semiclassical calculation does pre
gain—without inversion—for nonresonant transitions with
‘‘too small’’ photon energy\v,\vb and absorption for
\v.\vb . But the existence and strength of the gain p
dicted semiclassically in these periodic superlattices is
questioned, despite experimental observation of many rel
phenomena in superlattices, such as negative differen
conductivity,9 the associated Bloch oscillations,10 and the
coupling of the superlattice to external THz radiation,11,12

just to mention a few. In particular, the gain mechanism
lacking an interpretation in terms of the quantum-mechan
Wannier-Stark picture.

In this paper such a quantum-mechanical interpretation
the gain in superlattices is suggested and a link is es
lished between the intersubband gain originating from a
pulation inversion, with its symmetric spectral shape ce
tered at the transition energy, and the dispersive gain
dicted for a periodic superlattice, with its nearly antisymm
ric profile. The quantum-mechanical model, based on
density matrix formalism similar to the one employe
earlier,13 yields a general expression for the gain profile
intersubband transitions. Note that the prediction of amp
cation without population inversion is not related to the
terference of quantum-mechanical paths as in previ
©2003 The American Physical Society15-1
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proposals,14,15but results from the inclusion of in-plane sca
tering.

In Sec. II we present the model system, and discuss
sumptions and details of the density matrix calculation. W
less stringent approximations than those made by Kazar
and Suris we find an expression for the coherence betw
two, at first spatially separated, subband states that
coupled by tunneling and broadened by intrasubband sca
ing. The coherence determines current density as wel
optical transitions. Transforming to the basis of eigensta
of the biased heterostructure—the Wannier-Stark basis
the superlattice—the model is extended to describe op
transitions between any pair of subbands.

In Sec. III we apply the theory to superlattices and obt
the quantum-mechanical counterparts to the semiclassica
sults for both the Esaki-Tsu current-voltage characteris
and the dispersive gain predicted semiclassically in Ref
The results are quantitatively compared to the prediction
the semiclassical picture, where good agreement is found
higher electron temperatures.

In Sec. IV intersubband transitions are investigated for
quantum cascade structure and the relation between~anti-
symmetric! gain and Lorentzian-shaped intersubband g
becomes apparent: the theory predicts a transition from
Lorentzian-shaped inversion gain to the dispersive gain w
decreasing population inversion accompanied by a reds
of the peak gain with respect to the transition energy.

II. THEORY

We consider two subbands, confined in adjacent we
that serve as a model system for photon-assisted tunne
structures and, in particular, for transitions within t
Wannier-Stark ladder of a weakly coupled superlattice.
start with, the same basis as in the original work of K
zarinov and Suris is chosen as an appropriate basis set
wave functionsu ik& are given by the product of the envelop
functionsC i(z), maximally localized16 in well i, and plane
waves

^r ,zu ik&5C i~z!eik•r, ~1!

where thez axis is defined by the direction of growth,k
5(kx ,ky)[k denotes the in-plane momentum, andr
5(x,y) the lateral position. The matrix elements of th
Hamiltonian in this basis are given by

Hkk8
i j

5^ ikuHu jk8&5Hk8
i j dkk81Vkk8

i j , ~2!

where the respective contributionsH andV take the form

Hk
i j 5S e2k \V21

\V12 e1k D i j

, Vkk8
i j

5S Vkk8
22 0

0 Vkk8
11 D i j

. ~3!

Thus, electrons are allowed to tunnel between the subb
statei and j by means of the momentum conserving mat
elements\V i j , in each of which they are possibly scatter
out of a virtual intermediate state by an intrawell relaxati
processVkk8

i i as depicted in Fig. 1. For simplicity we restri
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ourselves to elastic~impurity, e.g.! scattering within each
subband and assume a parabolic dispersion relation par
to the layers in the effective mass approximation

e ik5e i1
\2k2

2m*
, ~4!

where e i denotes the lower subband edge andm* is the
effective mass of the electron averaged over the extensio
the wave function in well and barrier.

A. Coherences

Using the equation of motion of the density matr
i\ ] tr̂5@H,r̂ # and separating the diagonal and nondiago
parts with respect to the parallel momentumk,k8 according
to r̂kk8

i j
5dkk8rk

i j 1(12dkk8)rkk8
i j , we obtain two coupled

equations with four terms each, which determine the ti
evolution of the system. Since the coherent termH is diag-
onal with respect to the in-plane momentum and the sca
ing termV is purely nondiagonal, the commutators that d
termine the diagonal and nondiagonal parts of the den
matrix are evaluated as

i\ ] trk
i j 5(

m
~Hk

imrk
m j2rk

imHk
m j!

1 (
m,k8

~Vkk8
im rk8k

m j
2rkk8

im Vk8k
m j

!, ~5!

i\ ] trkk8
i j '(

m
~Vkk8

im rk8
m j

2rk
imVkk8

m j
!

1(
m

~Hk
imrkk8

m j
2rkk8

im Hk8
m j

!, ~6!

where the commutator of the scattering potential with
nondiagonal part ofr has been neglected in the second eq
tion ~Born approximation!. The steady-state values of th
coherences of the density matrixf i j , which determine the

FIG. 1. Mixed momentum- and real-space picture of a two-le
system that serves as a simple model for a diagonal intersub
transition. Tunneling into a virtual intermediate state~dotted! as
well as photon-assisted tunneling is expressed by a transfer m
element\V i j . Relaxation is assumed to take place within ea
subband only.
5-2
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transitionsu ik&→u jk&, the current, and the absorption, a
obtained from a Laplace average17 defined by

f ~s!5sE
0

`

dte2str~ t ! ~7!

and performing the Laplace limits→0 using the relation
lims→01

(v2 is)215P(1/v)1 ipd(v) at the appropriate

stage of the calculation. In this approach the populationsf k
ii

of the density matrix are not accessible and appear in
resulting expression as external quantities. The Laplace
erage gives

i\s fk
i j 5 i\srk

i j ~0!1(
m

~Hk
imf k

m j2 f k
imHk

m j!

1 (
m,k8

~Vkk8
im f k8k

m j
2 f kk8

im Vk8k
m j

!, ~8!

i\s fkk8
i j ' i\srkk8

i j
~0!1(

m
~Vkk8

im f k8
m j

2 f k
imVkk8

m j
!

1(
m

~Hk
imf kk8

m j
2 f kk8

im Hk8
m j

!. ~9!

In a first step, the nondiagonal part in Eq.~9! is approxi-
mated~cf. Appendix A for details!. Specifying to the assump
tions of a two-level system with intrawell scattering only a
neglecting terms of higher order inV i j corresponding to
multiple-tunneling processes gives

~ f !kk8
i j '2 ipd~e ik2e jk8!FVkk8

i i f k8
i j

2 f k
i j Vkk8

j j

1\V i j S Vkk8
j j

~ f k
j j 2 f k8

j j
!

e jk2e jk8

2
Vkk8

i i
~ f k

ii 2 f k8
i i

!

e ik2e ik8
D G , ~10!

which has to be placed into Eq.~8! for the diagonal part.
Simplifying for intrawell scattering here and taking th
Laplace limit yields~cf. Appendix B!

~e ik2e jk! f k
i j 5\V i j ~ f k

ii 2 f k
j j !

2(
k8

@Vkk8
i i

~ f !k8k
i j

2~ f !kk8
i j Vk8k

j j
#, ~11!

where~f! denotes the approximated expression for the n
diagonal part in Eq.~10!. Correlations of the scattering po
tentials may change the strength of in-plane scattering.
the benefit of analytical results, we perform an ensem
average and neglect these correlation terms. Later, in
final expressions, the scattering rate is considered as a g
quantity. The coherencef k

i j is given by
08531
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i j 2 ip f k

i j (
k8

d~e ik82e jk!uVkk8
i i u2

1d~e ik2e jk8!uVkk8
j j u2

5\V i j ~ f k
ii 2 f k

j j !2 ip (
k8

Fd~e ik82e jk!uVkk8
i i u2

\V i j

e ik82e ik

3~ f k8
i i

2 f k
ii !1d~e ik2e jk8!uVkk8

j j u2
\V i j

e jk2e jk8

~ f k
j j 2 f k8

j j
!G ,

~12!

which agrees with the previous result.13 In contrast to the
original treatment, we continue by neither neglecting the d
ference of the arguments in thed functions on the left-hand
side ~LHS! nor omitting the second term on the RHS. Th
coherence associated with the transitionu2k&→u1k& is ob-
tained from

~13!

where we have used abbreviations for the scattering-indu
broadening of the transitiongk

i 5p(k8d(e ik82e jk)uVkk8
i i u2,

the subband separatione5e2k2e1k , and the in-plane mo-
mentum of the final stateq65\21A2m* (ek6e) . The first
term on the RHS, which contains the difference of popu
tions between the two states, corresponds to the central r
of Ref. 13, cited often as the original proposal of the qua
tum cascade laser. The second term, which has been
carded so far, contains differences in the population withi
subband. It is this term which will be responsible for th
second-order type of gain, leading to the characteristic ne
tive differential conductivity and the dispersive gain profi
in a superlattice, and a modified spectral shape of the gai
a quantum cascade laser.

B. Current density

The current density between two states spatially separ
by d5z222z11 is calculated from j 5e Tr( v̂ f ), where v̂
5 i /\@H,z# is the velocity operator andz is the position op-
erator. The current is induced by the nondiagonal matrix
ements of the velocity operatorv i j , which are given byv i j
5 iV i j (zj j 2zii )1ezi j /\. By choice of the basis set, the con
tribution of the dipolezi j is small compared to the tunnelin
term13 and we obtain

j 'ed(
k

i ~V21f k
122V12f k

21!. ~14!

Using the previous equation for the coherencesf k
12 and f k

21

and the current yields
5-3
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j 5
edu\V21u2

\ (
k

gk
1~ f k

222 f q1

11 !1gk
2~ f q2

22 2 f k
11!

e21~gk
11gk

2!2
. ~15!

The current results from differences in population. In t
following section and in contrast to the original work, th
differences are evaluated for nonequivalentk states in the
respective subbands. To obtain the result of Kazarinov
Suris, q6 is set equal tok and a constant broadeningg is
used:

j '
edu\V21u2

\

g

e21g2
Dn.

With this approximation, the current density is solely driv
by the density of excess electrons in either stateDn
5(k( f k

222 f k
11). For a superlattice, this approximation do

predict the resonant current peaks that occur whene
ground and excited states align, but fails to account for
current between equivalent states in the Wannier-S
ladder.

C. Absorption and gain

Optical properties are deduced from the high-freque
response to an additionally applied ac field. In the case
photon-assisted tunneling transition, the Hamiltonian
supplemented by

dH~ t !52
e

c
v̂A5S 0

ed fv
v

V21e
2 ivt

ed fv
v

V12e
ivt 0

D
~16!

for a vector potentialA5(c/ iv) f ve2 ivt with an amplitude
f v of the high-frequency field. Noting the similar structure
dH and the nondiagonal part ofH, the corrections to the
coherences in linear responsed f k

21 andd f k
12 are related tof k

21

and f k
12 by

d f k,v
21 52

ed fv
\v

f k,e2\v
21 , d f k,v

12 5
ed fv
\v

f k,e1\v
12 , ~17!

which are evaluated at an energye6\v instead ofe due to
the time dependence of the ac field. This relation reflects
similarity of tunneling and photon-assisted tunneling p
cesses in a diagonal transition. The photon-induced cur
becomes

d j ~v!'ed(
k

i ~V21d f k,v
12 2V12d f k,v

21 !. ~18!

The high-frequency conductivity is related to the current
s(v)5]„j 1d j (v)…/] f v and directly linked to the absorp
tion ~cf. Appendix C for details! according to
08531
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a~v!5
Re@s~v!#

«0nrc

52
e2d2uV21u2

«0nrcv (
k

gk
1~ f k

222 f k1

11 !1gk
2~ f k2

22 2 f k
11!

~e2\v!21~\tk
21!2

.

~19!

The in-plane momenta of the final states are denoted byk6

5\21A2m* @ek6(e2\v)#. The preceding expression con
tains the two gain mechanisms as limiting cases of a m
general intersubband gain profile with a simple physical
terpretation. Before we discuss the quantum-mechan
paths involved, the expression may be generalized to an
bitrarily located pair of subband states.

To account for vertical as well as diagonal transitions
basis of eigenstates of the biased system—the Wannier-S
basis for a superlattice—is chosen. Due to the assumptio
intrawell scattering only, the dark current vanishes as
tunneling matrix element\V i j is incorporated in the ex-
tended wave functions. The photon-induced current, ho
ever, is then mediated by the dipole matrix element betw
the two subband states, which can no longer be considere
small in this basis. The nondiagonal part of the velocity o
erator is given byv i j 5 i ezi j . Since the operator of the high
frequency fielddH52e/cv̂A does not change its purel
nondiagonal structure, inspection of the previous equati
and replacement ofidV i j by i ezi j /\ naturally extends the
equation for the gain profile to any intersubband transit
and permits us to omit the rather arbitrary distinction b
tween a diagonal and vertical transition:

a~v!52
e2uz21u2e2

«0nrc\2v
(

k

gk
1~ f k

222 f k1

11 !1gk
2~ f k2

22 2 f k
11!

~e2\v!21~gk
11gk

2!2
.

~20!

As will be shown in the following, expression~20! allows a
simple explanation of the gain mechanism in a superlat
and in a quantum cascade structure. It is instructive to
write the differences in populations as

~21!

which directly translate into the paths depicted in Fig. 2. T
two processes above relate the statesu2k& and u1k1& by the
emission or absorption of a~nonresonant! photon,\vÞe for
kÞk1 , assisted by relaxation within the lower state viagk

1 ,
which ensures momentum transfer. The second differenc
Eq. ~20! is interpreted accordingly, where the relaxatio
takes place within the upper state.

If one assumes constant and equal in-plane scatte
times t5\/g, a Fermi distribution with the same temper
ture T in each subband, and chemical potentialsm1 andm2,
respectively, the gain is analytically expressed as
5-4
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a~v!5
e2uz12u2e2

«0nrc\2v

m* kbT

p\2

g

d21g2

3 lnS e(m12e1)/kbTe2d/kbT1 û~d!

e(m22e2)/kbT1 û~d!
D , ~22!

whered5e2\v characterizes the off-resonant nature of t
photon transition andû(d)5u(d)1u(2d)e2d/kbT reflects
the asymmetry between ‘‘too small’’ and ‘‘too large’’ photon
with regard to the resonant transition.

III. RESULTS

In this part the theoretical model is evaluated and int
preted with respect to the gain profile of a superlattice a
quantum cascade laser.

A. Bloch oscillator

In the case of a superlattice, populations and scatte
times are equal for symmetry reasons,f k

115 f k
22 and gk

1

5gk
2 . The characteristic negative differential conductivity

the current-voltage characteristicj (F) is recovered from Eq.
~15! if one identifies the subband spacing with the field dr
per period,e5eFd, whereF is the applied electric field. The
current density reads

j ~F !5
edD2

4\ (
k

gk~ f k2
2 f k1

!

~eFd!21~2gk!
2

, ~23!

where we omitted the state indices and introduced the m
band width viaD'4\V12. The populations may be de
scribed by thermal distributions, either by Fermi-Dirac
Boltzmann statistics. The current-voltage characteristic
sembles the Esaki-Tsu characteristic and agrees quan
tively with the result by Wacker18,19 within the sequential
tunneling picture20 valid for weakly coupled superlattices
This assumption is implicit in the present approach, as

FIG. 2. Possible quantum-mechanical paths: for an incident p
ton with energy\vÞe, absorption or stimulated emission may o
cur due to a nonresonant absorption or emission into an interm
ate and a subsequent relaxation into the final state. Energy
momentum are conserved in this second-order process.
08531
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allow only for next-neighbor interactions and multiple tu
neling is excluded, corresponding to a limited coherence
spatially extended states.

Rewriting the gain profile of Eq.~20! specifically for a
superlattice yields

a~v!52
e2d2u 1

4 Du2

«0nrc\2v
(

k

gk~ f k2
2 f k1

!

~eFd2\v!21~2gk!
2

. ~24!

Note that, as the miniband width of a superlattice,D, and the
dipole matrix element,zi j , are related by21 zi j 5dD/4eFd in
the Wannier-Stark basis, the diagonal expression of Eq.~19!
and the general expression of Eq.~20! for a(v) provide
identical results. At resonance, the incoming photon p
vokes transitions between equivalent states,k65k, and ab-
sorption and emission balance each other as expected fr
system with no population inversion,Dn5(k( f k

222 f k
11)

50. In the case of photons with energy\v,e the lower
state involved in this second-order transition will be less
cupied than the upper state, leading to an asymmetry
tween emission and absorption in favor of gain. In contra
for a photon energy exceeding the subband spacing abs
tion occurs. As illustrated in Fig. 3, Eq.~24! recovers the
dispersive shape of the gain predicted semiclassicall
giving rise to absorption above and~stimulated! emission
below the field-dependent Bloch frequencyvb5eFd/\.
Note that we have neglected any particularity of the act
scattering processes here. A detailed investigation in
framework of second-order perturbation theory22 reveals a
complex interplay of population effects and the influence
the momentum transfer for the relaxation processes in a
perlattice.

We compare the gain derived within the present appro
with the results obtained from the standard model based

o-

di-
nd

FIG. 3. Bloch oscillator ate5eFd515 meV: a dispersive gain
contribution arises atDn50 from second-order processes b
nonresonant photon emission and absorption followed by scatte
events that ensure conservation of momentum. Whereas stimu
emission is predicted for\v,e ~cf. inset: path of stimulated
emission!, absorption dominates for\v.e. A constant in-plane
relaxation time oft50.2 ps is used. Parameters of the GaAs/Al
superlattice ~Ref. 23!. D520.3 meV, d55.1 nm, and n(2)

51010 cm22.
5-5
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H. WILLENBERG, G. H. DÖHLER, AND J. FAIST PHYSICAL REVIEW B67, 085315 ~2003!
semiclassical calculations. In the semiclassical approach3 the
Boltzmann equation is solved in the relaxation time appro
mation for the distribution functionf (kz ,ki) of miniband
electrons subject to an external dc and ac fieldF(t)5F
1Fvcos(vt), where Fv!F. In the case of a Maxwel
distribution4 this yields

asc~v!5
e2d2

«0nrc

D

2\2
n(3)

I 1~D/2kBT!

I 0~D/2kBT!

t

11~vbt!2

3ReS 12 ivt2~vbt!2

~vbt!21~12 ivt!2D , ~25!

in the single-relaxation-time approximation, and

asc~v!5
e2d2

«0nrc

D

2\2
n(3)

I 1~D/2kBT!

I 0~D/2kBT!

tp

11vb
2tetp

3ReS 12 ivte2vb
2tetp

vb
2tetp1~12 ivte!~12 ivtp!

D , ~26!

for the improved two-relaxation-time approximation give
by Ignatov and Romanov4 where distinct momentum an
energy relaxation timestp andte are used and which agree
with detailed Monte Carlo studies.24 The ratio of Bessel
functions contains the temperature dependence for a no
generate electron gas. Figure 4 shows a comparison o
semi-classical results and the quantum-mechanical pre
tions for the same constant relaxation timet5\/g50.2 ps at
different temperaturesT. No independent parameters a
used. The two approaches agree remarkably well at h
temperatures in the semiclassical limiteFd,D. The narrow-
ing of the gain profile with lower temperature, compared

FIG. 4. Semiclassical~dotted line! vs quantum-mechanical re
sults ~solid line! for the absorption in a superlattice for differe
temperaturesT. We assume a temperature-independent scatte
time t50.2 ps in the quantum-mechanical model and settk,e5t in
the semiclassical model. In the semiclassical picture the peak
scales with the ratioI 1(D/2kBT)/I 0(D/2kBT). The quantum-
mechanical gain profile exhibits an additional narrowing with low
temperature.
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the semiclassical curve, reflects an explicit influence of
electron distribution within the subband. This influence
absent in the semiclassical treatment, regardless of the
proximation for the distribution function. In real device
however, the electron temperature reaches 100 K and ab
if the superlattice is biased beyond the onset of Bloch os
lations, according to a self-consistent theoretical analysis
the in-plane distribution function in the Wannier-Sta
picture.23 Still, at electron temperatures of about 77 K, t
considered superlattice, e.g., with a sheet density ofn(2)

51010 cm22, exhibits a peak material gain of abou
15 cm21, which exceeds the estimated value for wavegu
losses in the terahertz range.8

B. Quantum cascade laser

In the quantum cascade laser, the populations of the
spective subband state depend on the design as well as
rent and temperature. Then, the direct and scattering
contribution add up as shown in Fig. 5. For a negligib
lower state populationDn/n'1, where n5(k( f k

221 f k
11),

Eq. ~20! is dominated by resonant photon emission due to
population inversion between equivalentk states. It re-
sembles the Lorentzian-shaped inversion gain profile,
early depending on the population inversionDn. On the
other hand, in the limiting case of equal populations,
Bloch-type contribution results in a dispersive gain profile
in the superlattice. In between, there is a smooth transitio
the ~usual! intersubband gain profile to the dispersive ga
with decreasingDn/n as shown in Fig. 6.

Thus, Eq.~20! for the gain profile states thatthere is a
dispersive contribution to the gain profile in any intersu
band transition, with a rising significance forDn/n tending
to zero. This result implies two predictions for an intersu
band emitter such as the quantum cascade laser. First
gain does not linearly depend onDn, but there is a non-
negligible intersubband gain even without a population

g

in

r

FIG. 5. Full line, generalized intersubband gain in the ca
whereDn/n50.5. Dashed line, direct contribution@first term in the
right-hand side of Eq.~13!#. The sample parameters correspond
the terahertz quantum cascade lasers~Refs. 7 and 8! at about\v
518.7 meV. A constant relaxation timet50.5 ps and populations
n2533109 cm22 andn1513109 cm22 are used.
5-6
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version, scaling approximately linearly with the electr
densityn in the system. Second, above threshold, the p
gain and, thus, the laser signal are expected to shift to lo
energies with increasing current or temperature, as the r
Dn/n generally decreases.

IV. DISCUSSION

In Secs. II and III of this paper, the homogeneous bro
ening gk

i of intrasubband relaxation processes has been
troduced, without specifying it in detail. It may be taken
elastic impurity scattering or quasielastic phonon scatter
For the numerical evaluations it was taken as
k-independent quantity. As mentioned before, a realistic
culation for microscopic interaction processes in a super
tice will be given elsewhere.22 Moreover, the effect of inho-
megeneous level broadening due to interface roughness
not yet been discussed. Inhomogeneity can be considere
a simplified approach such as the ‘‘local quantu
mechanical model.’’25,26 This model assumes a ‘‘globa
quasi-Fermi level’’ in each subband, independent of the
plane position. Within this model the dispersive shape of
gain is not obscured by inhomogeneous broadening. T
holds true even in a diagonal structure,27 where the subband
fluctuations are not correlated, though the linewidth will
determined by inhomogeneous broadening.28 Furthermore,
intersubband plasmons are known to alter the line shap
the intersubband transition and to cause a blueshift of
intersubband resonance due to dynamical screening of
dipole field.29 However, the subband states of a Bloch osc
lator or quantum cascade laser are generally weakly po
lated '1010 cm22 compared to the onset of the collectiv
phenomena30 beyond some 1011 cm22.

In conclusion, the proposed model provides a unified
scription of optical transitions between two-dimensional s
bands. The upper and lower subbands can be either o
same kind~superlattice! or of different kind ~quantum cas-
cade laser structure!.

FIG. 6. Evolution of the generalized gain profile from the dire
gain—linearly depending on the population inversion—to t
scattering-assisted gain with decreasingDn/n and increasing the
lower state populationn1, respectively, while keeping the uppe
state densityn2 constant.
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In a superlattice a population inversion between equi
lent states differing in energy bye5eFd cannot occur, as
f k

225 f k
11, due to the translational symmetry of the syste

Consequently, resonant-stimulated photon emission p
cesses are exactly balanced by the corresponding absor
processes. However, nonresonant second-order processe
hibit gain for \v,e, whereas net absorption occurs f
\v.e. This inversionless gain at\v,e represents the
quantum-mechanical analog to the gain predicted by se
classical models, which had not been described previou
The quantum-mechanical approach agrees remarkably
with the semiclassical results in the high-temperature lim
In contrast to the miniband picture,31 it provides an easily
conceivable interpretation of the gain mechanism.

In a quantum cascade laser structure, upper and lo
states generally exhibit a different population and, in t
ideal case, an inverted population. If the inversion decrea
the quasisymmetric gain spectrum at a high degree of
version, whereDn/n'1, evolves to a dispersive gain, fo
Dn/n'0 and below. In contrast to the peak inversion ga
which does not depend on temperature and decreases
scattering, the latter decreases with temperature as the d
ences in occupation between initial and final states dimin
but increases with more frequent scattering processes.

The theory predicts amplification without inversion belo
the intersubband resonance of two broadened states.
peak gain in any amplified intersubband transition relying
a poor population inversion, i.e.,Dn/n'0, exhibits a red-
shift of the order of the level broadeningg with respect to
the transition energy. This dispersive gain contributio
which has escaped observation so far, is expected to be
perimentally accessible in a quantum cascade structure
search for the attributed redshift.
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APPENDIX A: NONDIAGONAL PART F kk8
i j

Equation ~9! governs the dynamics of the nondiagon
part in k,k8

i\s fkk8
i j ' i\srkk8

i j
~0!1(

m
~Vkk8

im f k8
m j

2 f k
imVkk8

m j
!

1(
m

~Hk
imf kk8

m j
2 f kk8

im Hk8
m j

!. ~A1!

Assuming intrawell scattering only, the second and th
terms on the RHS yield

(
m

~Vkk8
im f k8

m j
2 f k

imVkk8
m j

!'Vkk8
i i f k8

i j
2 f k

i j Vkk8
j j ,

t
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(
m

~Hk
imf kk8

m j
2 f kk8

im Hk8
m j

!

5~e ik2e jk8! f kk8
i j

1\V i j ~ f kk8
j j

2 f kk8
i i

!.

Neglecting the nondiagonal matrix elementrkk8
i j (0) and tak-

ing the Laplace average equation~A1! gives

f kk8
i j

52S P 1

e ik2e jk8

1 ipd~e ik2e jk8!D
3@\V i j ~ f kk8

j j
2 f kk8

i i
!1Vkk8

i i f k8
i j

2 f k
i j Vkk8

j j
!]. ~A2!

The nondiagonalf kk8
i j still depends onf kk8

j j
2 f kk8

i i . The coher-
ences between statesk andk8 within the same subband ar
derived from the special version fori 5 j of Eq. ~A1!:

i\s fkk8
i i ' i\srkk8

i i
~0!1(

m
~Vkk8

im f k8
mi

2 f k
imVkk8

mi
!

1(
m

~Hk
imf kk8

mi
2 f kk8

im Hk8
mi

!, ~A3!

where the second and third terms are evaluated as

(
m

~Vkk8
im f k8

mi
2 f k

imVkk8
mi

!5Vkk8
i i

~ f k8
i i

2 f k
ii !,

(
m

~Hk
imf kk8

mi
2 f kk8

im Hk8
mi

!

5~e ik2e ik8! f kk8
i i

1\V i j f kk8
j i

2 f kk8
i j \V j i '~e ik2e ik8! f kk8

i i

and terms of higher order in the tunneling matrix elem
corresponding to multiple-tunneling processes are neglec
Taking the Laplace average yields

f kk8
i i

52P 1

e ik2e ik8

Vkk8
i i

~ f k8
i i

2 f k
ii !

2 ipd~e ik2e ik8!Vkk8
i i

~ f k8
i i

2 f k
ii !'

Vkk8
i i

~ f k
ii 2 f k8

i i
!

e ik2e ik8

.

~A4!

The last term vanishes as either thed function or the differ-
ence in populations is zero. Placing the approximations
f kk8

i i and f kk8
j j in Eq. ~A1! and neglecting the principal valu

yields
08531
t
d.

r

f kk8
i j

52 ipd~e ik2e jk8!F\V i j S Vkk8
j j

~ f k
j j 2 f k8

j j
!

e jk2e jk8

2
Vkk8

i i
~ f k

ii 2 f k8
i i

!

e ik2e ik8
D 1Vkk8

i i f k8
i j

2 f k
i j Vkk8

j j G . ~A5!

APPENDIX B: DIAGONAL PART F k
ij

Equation~8! determines the dynamics of the diagonal p
in k:

i\s fk
i j 5 i\srk

i j ~0!1(
m

~Hk
imf k

m j2 f k
imHk

m j!

1 (
m,k8

@Vkk8
im

~ f !k8k
m j

2~ f !kk8
im Vk8k

m j
#, ~B1!

where~f! denotes the previous approximations of the non
agonal part. The second term on the RHS is given by

(
m

~Hk
imf k

m j2 f k
imHk

m j!5~e ik2e jk! f k
i j 1\V i j ~ f k

j j 2 f k
ii !.

Performing the Laplace limits→0 we obtain

~e ik2e jk! f k
i j

5\V i j ~ f k
ii 2 f k

j j !2(
k8

@Vkk8
i i

~ f !k8k
i j

2~ f !kk8
i j Vk8k

j j
#. ~B2!

If one assumes no correlation between the scattering cen
in different wells, i.e., if one were to drop terms containin
the productVkk8

i i Vkk8
j j for iÞ j , the product of scattering po

tentials and the approximated nondiagonal part becomes

Vkk8
i i

~ f !k8k
i j

5 ipd~e ik82e jk!uVkk8
i i u2S 2 f k

i j 1
\V i j ~ f k8

i i
2 f k

ii !

e ik82e ik
D

and similarly

~ f !kk8
i j Vk8k

j j
5 ipd~e ik2e jk8!uVkk8

j j u2S f k
i j 2

\V i j ~ f k
j j 2 f k8

j j
!

e jk2e jk8
D .

Rewriting Eq. ~B2! and sorting terms finally leads to a
equation for the relevant coherences between the two st
which determine transport properties such as the cur
density:
~B3!
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It corresponds to the results of Kazarinov and Suris13 after performing a noncorrelated ensemble average on their equ
and specifying on a two-level system.

APPENDIX C: ABSORPTION

The ac-field-induced coherence is given by the transformation

d f k,v
21 52

ed fv
\v

f k,e2\v
21 , ~C1!

which yields

d f k
2152

ed fv
\v H \V21~ f k

222 f k
11!

e2\v2 i ~gk
21gk

1!
1

i\V21@gk
2~ f k2

22 2 f k
22!2gk

1~ f k1
11 2 f k

11!#

~e2\v!@e2\v2 i ~gk
21gk

1!#
J .

As eachd f 5d( f qc1 f bo) the absorption consists of two contributions

a~v!5aqc~v!1abo~v!, ~C2!

like the two contributions on the RHS of Eq.~B3! add up with respect to the current density. We obtain

~C3!

and

~C4!
of
p
h
-

nd

-
th
no
t t
e
If
s

c-

A.

Il-

E.
where we set k65\21A2m* @ek6(e2\v)#, l 6

5\21A2m* @ek6(e1\v)#, and \tk
215gk

11gk
2 . The first

term aqc(v) depends on the difference in population
equivalentk states and yields the usual Lorentzian line sha
for the gain profile in the case of a population inversion. T
second contributionabo(v) contains differences of popula
tions between differentk states within the respective subba
state and will be discussed later.

In the following, we will omit the nonresonant contribu
tion. The contribution accounts for the situation where
upper state lies below the lower state. However, it is
neglected in the numerical calculations as it is importan
prevent the divergence atv50, which alters the line shap
for \v;O(g), i.e., in the far-infrared or terahertz regime.
one regards the resonant contribution only, the gain read
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e2d2uV21u2

«0nrcv (
k

\tk
21~ f k

112 f k
22!

~e2\v!21~\tk
21!2

,

whereas the scattering-assisted contribution gives

abo~v!5
e2d2uV21u2

«0nrcv (
k
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1~ f k1

11 2 f k
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2~ f k2
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