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Density matrix approach to electron transport in an arbitrary magnetic field
and negative magnetoresistance
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A solution of a kinetic equation for the one-particle density matrix is obtained for deformation potential
scattering. Expressions for conductivity tensor components as sums over states in a magnetic field are derived.
It is shown that without a magnetic field they do not differ from classical expressions. In a weak magnetic field,
the magnetoresistance of a nondegenerate electron gas is positive for high electron mobility and negative for
low mobility. For intermediate mobility, its sign changes with the magnetic-field increase. The magnetoresis-
tance of a degenerate electron gas is nonzero. In a quantizing magnetic field, the conductivity oscillates as a
function of the magnetic field. The oscillation amplitude and the mean magnetoresistance value increase with
the magnetic field or mobility growth.
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[. INTRODUCTION pxx(B,T) below a characteristic magnetic fidk} is nonme-
tallic. At the characteristic fiel8., all curvesp,,(B,T) for
The classical kinetic theory predicts that magnetoresisdifferent temperatures intersect each other. According to the
tance that can be defined @s p,,(B)/pg— 1 is always posi- theory, the WL and EEI contributions to NMR become more
tive for a nondegenerate electron gas and zero for a degeprominent when mobility increases at a fixed electron den-
erate electron gas. But in semiconductofsas well as in  sity. However, in practice, the reverse dependence is
metal§ and other conducting objectsjegative magnetore- observed. All the aforementioned point to the existence of
sistance(NMR) is frequently observed at sufficiently low another NMR mechanism.
temperatures. Extensive experimental studies of this phe- Recently, a simple classical mechanism for this effect was
nomenon have revealed two types of conducting objects witlproposed in Refs. 17-19. It leads to an exponentially small
a different NMR behavior. In the first-type objects, NMR is NMR in a weak magnetic field and to its saturation foB
observed at low fields, while at higher fields magnetoresiss>1. For this mechanism, NMR also increases when mobility
tance become positiveé®” Altshuler et alX° have explained increases at the fixed electron density. The main idea of this
this phenomenon by quantum correction to the conductivitymechanism is that for short-range scattering centers, the
Aot (weak localization WIL The expressioh o)y (B) is  Boltzmann approach does not work even as the first approxi-
widely used in the analysis of experimental data to extractnation whenuB>1. In this case, the generalized Boltz-
the phase breaking time and its temperature dependenceann equation should be usEdBut at low temperatures,
through experimental curve fitting. It should be pointed outthe conditionuB>1 usually corresponds to the=7%w/kT
that some deviation of experimental curves franr).(B) >1 condition, wherew=qB/m is the cyclotron frequency.
takes place almost without exception. But in some experiin this case, the magnetic-field quantization should be taken
ments the deviation is significant and NMR correction lessinto consideration. Adams and Holst&rhave considered
than halt! or even a few percetttof the value predicted by electron conductivity in the quantizing magnetic field for
weak-localization theory is observed. wB>1. Isihara and Smke?* have used the Green-function
In the second-type objects, NMR is observed up to theapproach to describe the conductivity tensor in low/
onset of Shubnikov—de Haas oscillations and may continuéghtermediate magnetic fieldg.8=<1) for a two-dimensional
as a mean value of oscillatiods? This high-field effect is  degenerate electron gas. In both cases, the obtained expres-
generally attributed to the electron-electron interacti®Bl)  sions describe Shubnikov—de Haas oscillations. But in low
that was considered theoretically in Refs. 13 and 14. Thenagnetic fields the expressions obtained in Ref. 20 for
main contribution to NMR in thé8>B;, range comes from .  (B) are not valid, since they diverge f@—0. In the
the weak-localization effect. In tH&>1/u range, wherg. is  |ow-field limit the conductivity tensSt coincides with the
the mobility, it results from the correction to the conductivity classical one and the magnetoresistance is zero.
due to the EEM0S5(B). The valuesi o, -(B) andA o2%(B) This work eliminates these difficulties by deriving expres-
differ significantly for different material systems. This sions for conductivity tensor components that are correct in
should lead to different temperature dependenge&B,T), an arbitrary magnetic field. In Sec. Il, for deformation poten-
whereT is the temperature. But in experiments qualitativelytial scattering we present a steady-state perturbation solution
similar p,,(B,T) dependences are observed for doped GaAsf the Liouville equation for the one-particle density matrix.
(Ref. 3 and G€’ AlGaAs/GaAs® GaAs/InGaAs/GaAS,and  General expressions for a conductivity tensor are obtained.
Ge/SiGe(Ref. 15 and 1B heterostructures. Thg,,(B,T) In Sec. lll, these results are applied to the low-field magne-
decreases sharply at low fields, and continues to decreasatransport. The NMR dependence on electron-gas param-
slightly at higher fields. The temperature dependenceters is considered. Theoretical predictions are compared
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with available experimental results. In Sec. IV, we considemwhere ug is the Bohr magnetong is the Lande factors
briefly electron transport in a quantizing magnetic field. In=+3. It can be seen that in our representation the electron
Sec. V, a brief summary and concluding remarks are prestate is described by a set of quantum numberky,kz,s).
sented. Since the spin operator does not stand in current and per-
turbation operators their matrix elements are diagonal with
Il. THEORY respect to the spin numbers. Assume also that the phonon
i ) . o system is in equilibrium. Then all matrix elements are diag-
It is well known that in a quantizing magnetic field, ma- 54| with respect to the phonon numbers. To shorten the

trices of electron momentum components perpendicular tqtation, we omit them in all matrix elements and take into
magnetic field have no diagonal elements. In this case, thg.count in sums over the states.

Boltzmann equation cannot be, in principle, used for the  The pasis and the procedure of deriving perturbative so-
electron-transport description. Therefore the density-matrixtion of Eq.(3) are given in detail in Ref. 22. Using the WF

approach is needed. We restrict the scope of this paper by tr(g) for stationary conditions from Eq3), we get
description of the electron transport in an isotropic semicon-

ductor with the parabolic dispersion law. In general, the elec- _
tric current density can be calculated from the expression (E1—E2)R12t U13Ra— RigUgp+i17S1,=0, (7)

j=Tr(RJ), (1)

where Tr(- - -) is the operator traceR is the statistical op-
erator (density matriy, J is the operator of current in the

where

magnetic field. Sio= >, W(Q)X{8(E;—Ez—#Q)[(N+1)M,
In our case, the one-particle Hamiltonian of a semicon-
ductor is given by the following expression: X (843~ Rag) M 35Rs— N( 814~ R1) M 1iR3:M 5]
H=Ho+W+U=H+H+W+U, ) + 8(E;— Eg+ R Q)[NMyy( 843~ Rag) M 3Rs,
whereH. is the electron Hamiltonian in magnetic field,, is CINF D Sea— RiAM saRacM 2
the phonon HamiltonianW is the operator of electron- ( (01~ RidMaaRsM s,
phonon interaction = —qE,x is the operator of potential + 8(E;—E3— A Q)[(N+1)R14M 4o 55— Rsa)M 3,
energy. For simplicity, we assume that the electric field is .
directed along thex axis and the magnetic field is directed ~NM3R3M45( 642~ Ry2) ]

along thez axis. The statistical operator in the Sctirger

_ _ +
representation is described by the Liouville equation + 8(E1~ Eg T A Q)[NR1M 45 853~ Rsg) M

R ~(N+1)M1gRsaM g S22~ Re2 1}, ®)
ihﬁz[HR]. (3)
1 Q(q) is the phonon energy is the phonon filling number,
To solve this equation, we consider the sWh+U as a  w(q) is the function that describes the electron-phonon in-
perturbation. If we take vector potential in the gauge teraction,M;; is the matrix element of electron-phonon in-
=(0,Bx,0), the wave functiofWF) (eigenfunction of the  teraction, the “+” sign denotes the Hermit's conjugation. In
HamiltonianH, is the Eq.(8), the sum runs over all electron states, exdépt
) and|2) , and over phonon wave vectors.
y=expli(ky+kz)1f(7) xsIN), (4) It is well known that Eq(3) does not describe irreversible
where motion of the electron system. To introduce irreversibility,
additional assumptions are need@drhis can be done by
X+ ky)\2 , h modification of the total Hamiltonian or by some artificial
7N =q—B, mathematical method that takes into consideration the inter-
action between the system and the environment. The latter
k is the electron wave vectos is the spin WF|N) is the  may be the widely used hypothesis on the initial form of the
phonon WF in the second quantization representation. Theensity-matrix diagonal part, i.e., the distribution function.

WF (4) along thex axis in the magnetic field is always nor- \We represent the density matrix in the form of
malized to the unity and determined by

1 1/2
fn(ﬁ):(m) ex%_7)Hn(77)- ®) .
where G1,=Gp112(Kz Ky2). If the electric field does not

The electron energy is break the electron-gas space homogeneity, the Fermi-Dirac
0.2 distribution function that depends on the electron engEgy
E= ok, the (6)] and the chemical potentiéfFermi energy E; is normally

taken asF;=F(E;—E;). At high temperatures, this ap-

Rio=F 1610+ G120(ky1 —Ky2), 9

+ usgsB, (6)

+1
2m n 2
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proximation is quite sufficient. But at low temperatures, the

PHYSICAL REVIEW B57, 085201 (2003

kTwy

Wo
combined action of the electric field and electron scattering  Q12=5 2 J Z3L?E (1+F,—F1)8(E;—Ea)

changes the form of the distribution function. In the first
nonvanishing scattering order the correction to the distribu-
tion function has been obtained in Ref. 20. But it has the
physical meaning at high magnetic fields only. The general

F,)d(E1—Ejg) |Z

A VS
07_El( 1

procedure for deriving corrections is described in Ref. 22. Ad\ote here that in Eq(8) the integration is simple for detor-
the matter of fact, it is the Gibbs statistical operator expanmation acoustic(DA) phonons only, since the product
sion into a series by orders of interaction. In the linear apNw(q) is independent ofl. For other scattering mechanisms,
proximation by the electric field, the distribution function it is impossible to obtain such a simple expression. It is easy

can be represented as

F
—u 112,

Fut JE

) ) ) . where
where U, is the potential-energy matrix elemei,is the

function that is the result of summation over all scattering

orders. This function depends on the magnetic field, param-
eters of scattering, and distribution functibn itself. In this

paper, we do not intend to analyze thdunction. It should
be noted that it is very small or equal to zero only whgn
=0. From Eq.(9) we get

dF,
Ripp=| F1t —= JE 112)512+6125(ky1 Kyo).  (10)

Note here that similar to Eq$4)—(6), solutions can be
obtained if the potential energy is included into the basic
HamiltonianH,. Such a solution has been used in Ref. 20.
But the WF of this Hamiltonian does not meet the conditions
of the Hermit’s conjugation and completeness. It becomes
obvious in the limitB—0.

Now we obtain the linear solution b$ of Eq. (7). For the
acoustic phonon the frequen€y=uv g and for the deforma-

where

V1=

to check that the solution of this equation is

UiF1—F2)+ig71.Q12
El_E2+ihV12 ’

(13

KTwg
PN ; fdkzg[a(Ez—E3>+6(E1—E3>].

The current and potential matrix elements are easily calcu-
lated and given by the expressions

. P12 . X12
Ixi=i— N2 D12, Jy12:<F_ky1 D1,
J212= =Kz1D12,  U1p= —qEXao,
ah
D= m O(ky1—Ky2) (K1 —Ky2),

ng n;
P12= ?5n1,n2+1_ ?5n1,n271-

tion acoustic-phonon scattering the interaction function is Substituting these matrix elements and E) into Eq. (1),
we obtain a conductivity tensor

w(q)=Wo0, (11)
2
J°w
wherew,=%E4/2pv?2, v, is the sound velocity. If the tem- To= oo > (n+1)
perature is not very low the phonon number can be written as (2m)h sn
follows:
Fo—Fni1)—
Xf dkz Vn,n+1( n2 n-;l) an,n-%—ll, (14)
N ol >1 (12 T e
hvy
From the semiconductor theory it is well known that for Txy™ (2 )Zh 2 (n+1)
>1 K the acoustic-phonon energy can be omitted in the en-
ergy conservation law. Then, substituting E€®—(12) into o(Fr—Fni1) Fvnn+1Qnn+1
Eq. (7) after simple integration we get X | dk, > 2 ., (19
O Ve
(E1—E2)Gaat Uy(Fo—F1) —iqEx71Q12 where
h2K2 1
2 )\Zﬁ E Jdkze){[(s E3)+6(E1_E3)] :F(En), En=ﬁ+ﬁw n+§ +ILLBgSB,
X[G1o— 315G 33(Ksr — Kzt Kza Kz3) 1} =0, Lo 0(zy) N 0(Zm1)
nm— —
where 7712:ff17]f2d n, 4\/k—TTDA \/Z_nl Zm|
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hivgn OF 0.10 ' T ' T ' T ' T
Qnm= (1+Fn_Fm)
2 JE,
0.08 4
Avem IF i
%ﬁ(lﬂrm—m Z, 0.06 i
21,2 42 0.04 T
hoks Thpug > I
Zn|:ﬁw(n—|)+m, TDA:\/E(TT)?’/ZEi. 0.02 i
Using the obtained results it is easy to show that 0.00 .
2 -0.02 .
w k JF
P q 2 de_Z __n ) (16) N 1 N 1 . 1 " 1
(2m)%h & Vin Kk, 0.00 0.01 0.02 0.03 0.04
B/B

0

If the magnetic field is so strong that>v, Eq. (14) is . . )
transformed into the equation that has been obtained in Ref. FIG. 1. Classical magnetoresistance field dependémnaee 1,
20. If in this case for a degenerate electron gas the Poisson¥™2: Curve 2,y=20; curve 3,y=100).
formula is used for summation in Eq&l4) and (15), we
obtain expressions that are identical to ones obtained in Refs. 5] Vnn+ 1Xﬁ,n+1
20 and 21. Dh=o™\ 50—

The conductivity tensor components4)—(16) are finite
in an arbitrary magnetic field. Their general analysis is veryFor w7<1, we obtain
complicated. Therefore, let us consider some simple cases.

2 2
Vn,n+l+ w

ho
Ent—
I1l. WEAK-FIELD MAGNETOTRANSPORT _ 1 2 _ h
Dy=— =D+ —owr,
M\ Vnn+1 2m

In the weak-field limit ata<<1, the energy of the spin
interaction with the magnetic field can be assumed to be zerehere D is the diffusion coefficient without the magnetic
and integration can be used instead of summation ovar field, 7 is the momentum relaxation time, and the brackets
Egs.(14) and(15). After transformation of variables and in- denote statistical averaging. As can be seen in a weak mag-
tegration over angular variables, the conductivity tensor cametic field, the diffusion coefficient and hence the electron
be written as mobility increase. This results in NMR.

Equations(17) and (18) are formally obtained for defor-

2072 v 9F mation potential scattering. But &=0 they coincide with
Oyy= O'Bxx+_Ncaf Yxdx 2 2l o) a7 classical expressions. Therefore, they should be valid for
Jm Vitw other scattering mechanisms at least in a weak magnetic
field. It is well known that the classical magnetoresistance
2072 » JF pxx(B)=p(B)>p(0). In Eq. (17), there is an additional
Oyxy=Ogxyt mNCaJ &dxm - 5) (18)  term that is linear by the magnetic field. It results in a dif-

ferent p(B) dependence. In the<OB<B; range it has the
minimum p,<p(0)=p(B;). The values oB; andp,, de-
end on parameters of the electron system and the tempera-
ure. It follows from Eq.(17) that for nondegenerate electron
gas E:<0) the valued=Ap/p(0) is independent of the
1 electron density. In this case the paramet8gs- mkT/g#
__ = . and y=kT7/h determine the,, andB; values.
v 27-DA(\&Jr X+a). Figure 1 showsl(B) dependences for different values.
They are calculated for a wideband semiconductor with elec-
To derive Eqs(17) and (18), we assum&=0. In this ap-  tron conductivity andE;/kT= —5. At constant temperature,
proximation, theo,, (16) coincides with a classical expres- the calculated dependences correspond to semiconductors
sion. It can be seen that there are additional terms in Eqsith different electron mobilities. For the room temperature
(17) and(18), as compared with classical expressions. Theyand the effective mass equal to the free-electron mass the
reflect the magnetic-field effect on electron motion. As ismobilities are 200, 800, and 4000 &' s, respectively. Un-
well known, in the transverse magnetic field the electronder these conditions the magnetic field varies from 0 to 10 T.
motion is diffusion. Using identity \>(n+1)=x3,,;  As can be seen from Fig. 1 for a low electron mobility, MR
=(ky)ﬁ'n+l)\2 it follows from Eqgs.(14) and (15) that in the  is negative within the whole range afj is infinite. For a
magnetic field the diffusion coefficient is high electron mobility, MR is positive and;=0. For inter-

whereog,y, oy, are the components of Drude conductivity
tensor that can be calculated from the Boltzmann equatio
N, is the conductivity band density of statess E/KT,
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¢ FIG. 3. Low-temperature magnetoresistance field dependence in

FIG. 2. The Hall constant as a function of the magnetic field@ degenerate electron gesirve 1,y=43; curve 2,y=866).
(curve 1,y=5; curve 2,y=20; curve 3,y=100).

mediate mobility values, is finite and MR changes the used for qualitative description of different dependences that

sign. Note here that dependences that are similar to the cunf€ , 9bserved in degenerate two-dimensional electron
for y=5 are observed in threé-, two-! and as.“>“*Particularly, expressiofil9) describes experimen-
one-dimension&f semiconductors. In Fig. 1, the depen- @ dependencésfor a<1.

dences are calculated for the DA-phonon scattering. For

other scattering mechanisms, the MR dependences are IV. LOW-TEMPERATURE ELECTRON TRANSPORT
qualitatively similar. Therefore the NMR temperature depen- IN QUANTIZING MAGNETIC FIELD

dences should be similar too and the dependences of Fig. 1 At low temperatures, MR should be an oscillating func-

can be used for qualitative description of experimental %on of B~ in a strong magnetic field. Figure 3 shows the

sults. Thev(E) dependence determines quantitative param-d(B) dependence for two different values ¢f At the room
eters of NMR. !

As is known, the scattering rate increases when the do femperature they correspond fovalues of 5 and 100. The

R is calcul 4) for DA-ph -
ing concentration is increased. As a result thealue should dependence is calculated by &) for phonon scatter

. ing atT=4 K andE;/kT=50.
decrease. It follows from Fig. 1 that NMR decreases when It is assumed thaZ=1. It corresponds to the approxima-

the v value gets higher. This dependence might be a possiblﬁzon of Ref. 20. If atw> v we omit the first term in Eq(14)

reason f(_)r different resu_lts obtained in samplesith d|ffer7 ._and the second term in E(L5) we obtain the results of Ref.
ent doping concentrations. When the temperature is in:

T X . . 20. It can be seen from Fig. 3 that fB¢>% « the parameter
creased the ionized impurity scattering rate decreases for an . : . . X v}
. ) 7 oscillates with a period that is proportional B -. The
doping concentration and the value increases. It should - . .
L2 . scillation amplitude and the mean value are increased when
qualitatively result in NMR temperature dependences tha

) . -B increases or the scattering rate decreases. The calculation
are observed in Refs. 1, 7, and 23. Figure 2 shows magnet'%'hows that in this case the Hall constét is independent
field dependence of the Hall constaRy) for different y b

values. The parameters of Fig. 1 were used for the calculaqf B. At the same time the oscillation amplitude depends

. . strongly onZ. For Z<1 (Boltzmann electron gasthere are
tion. It can be seen that tHe,(B) tends to decr_easg slightly no oscillations andl smoothly increases witB,

for all y values. Since the electron concentration is assume

constant for the calculation these dependences reflect the
magnetic-field dependence of the Hall factor.

In degenera_lte electron gas, cl_assical MR is_eql_JaI l0 Z€r0 The modern kinetic theory attributes NMR to the weak
andd=0. In this case, the derivative of the distribution func- ocalization that needs irregular distribution of scattering
tion in Eq. (17) can be replaced by thé function and we  centers. In this work, a kinetic equation for the density ma-

V. CONCLUSION

obtain trix is solved for deformation potential scattering in quantiz-
ing magnetic field. It is shown that transverse NMR can be

d=— fiw -0 (19 observed in an electron gas without weak localization. It is
Eitho the result of consistent consideration of magnetic quantiza-

tion. It should be noted that the used kinetic approach is
Equationg14), (15), (17), and(18) are formally obtained for valid for a nondegenerate electron gas onlyyat1l. The
bulk semiconductor. But in a weak magnetic field there is naobtained expressions, opposite to Ref. 20, are valid for an
strong difference between three- and two-dimensionabrbitrary magnetic field. In a strong magnetic field the pre-
electron-gas properties. Therefore, these equations can bailing term of oy, (Eq. 14 is similar to the expression in
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Ref. 20. But in this paper it is shown that unlike the implicit GaAs9, low electron mobility is realized in heavily doped
assumption of Ref. 20 the value Bfis not equal to unity and samples. But in this case the weak localization can be also
depends on the magnetic field and temperature. The calculabserved and there is no single interpretation for NMR. But
tion shows that the NMR predicted in this work should bein some undoped semiconductdsuich as GaN, graphite
observed at low magnetic fields in semiconductors with lowthe electron mobility is low. In such semiconductors, NMR
electron mobilities. In traditional semiconducto{Si, Ge, should be observed in perfect crystals.
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