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Density matrix approach to electron transport in an arbitrary magnetic field
and negative magnetoresistance

V. E. Kaminskii*
Institute of RadioEngineering and Electronics, Russian Academy of Sciences, 101999 Moscow, Russia

~Received 30 July 2002; published 6 February 2003!

A solution of a kinetic equation for the one-particle density matrix is obtained for deformation potential
scattering. Expressions for conductivity tensor components as sums over states in a magnetic field are derived.
It is shown that without a magnetic field they do not differ from classical expressions. In a weak magnetic field,
the magnetoresistance of a nondegenerate electron gas is positive for high electron mobility and negative for
low mobility. For intermediate mobility, its sign changes with the magnetic-field increase. The magnetoresis-
tance of a degenerate electron gas is nonzero. In a quantizing magnetic field, the conductivity oscillates as a
function of the magnetic field. The oscillation amplitude and the mean magnetoresistance value increase with
the magnetic field or mobility growth.
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I. INTRODUCTION

The classical kinetic theory predicts that magnetore
tance that can be defined asd5rxx(B)/r021 is always posi-
tive for a nondegenerate electron gas and zero for a de
erate electron gas. But in semiconductors1–7 as well as in
metals8 and other conducting objects,9 negative magnetore
sistance~NMR! is frequently observed at sufficiently low
temperatures. Extensive experimental studies of this p
nomenon have revealed two types of conducting objects w
a different NMR behavior. In the first-type objects, NMR
observed at low fields, while at higher fields magnetore
tance become positive.1,2,7 Altshuler et al.10 have explained
this phenomenon by quantum correction to the conductiv
Dsxx

WL ~weak localization WL!. The expressionDsxx
WL(B) is

widely used in the analysis of experimental data to extr
the phase breaking time and its temperature depend
through experimental curve fitting. It should be pointed o
that some deviation of experimental curves fromDsxx

WL(B)
takes place almost without exception. But in some exp
ments the deviation is significant and NMR correction le
than half11 or even a few percent12 of the value predicted by
weak-localization theory10 is observed.

In the second-type objects, NMR is observed up to
onset of Shubnikov–de Haas oscillations and may conti
as a mean value of oscillations.3–6 This high-field effect is
generally attributed to the electron-electron interaction~EEI!
that was considered theoretically in Refs. 13 and 14. T
main contribution to NMR in theB.Btr range comes from
the weak-localization effect. In theB.1/m range, wherem is
the mobility, it results from the correction to the conductivi
due to the EEIDsxx

ee(B). The valuesDsxx
WL(B) andDsxx

ee(B)
differ significantly for different material systems. Th
should lead to different temperature dependencesrxx(B,T),
whereT is the temperature. But in experiments qualitative
similar rxx(B,T) dependences are observed for doped Ga
~Ref. 3! and Ge,7 AlGaAs/GaAs,6 GaAs/InGaAs/GaAs,4 and
Ge/SiGe~Ref. 15 and 16! heterostructures. Therxx(B,T)
decreases sharply at low fields, and continues to decr
slightly at higher fields. The temperature depende
0163-1829/2003/67~8!/085201~6!/$20.00 67 0852
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rxx(B,T) below a characteristic magnetic fieldBe is nonme-
tallic. At the characteristic fieldBe , all curvesrxx(B,T) for
different temperatures intersect each other. According to
theory, the WL and EEI contributions to NMR become mo
prominent when mobility increases at a fixed electron d
sity. However, in practice, the reverse dependence
observed.6 All the aforementioned point to the existence
another NMR mechanism.

Recently, a simple classical mechanism for this effect w
proposed in Refs. 17–19. It leads to an exponentially sm
NMR in a weak magnetic field and to its saturation formB
@1. For this mechanism, NMR also increases when mobi
increases at the fixed electron density. The main idea of
mechanism is that for short-range scattering centers,
Boltzmann approach does not work even as the first appr
mation whenmB.1. In this case, the generalized Bolt
mann equation should be used.19 But at low temperatures
the conditionmB.1 usually corresponds to thea5\v/kT
.1 condition, wherev5qB/m is the cyclotron frequency
In this case, the magnetic-field quantization should be ta
into consideration. Adams and Holstein20 have considered
electron conductivity in the quantizing magnetic field f
mB@1. Isihara and Smrc´ka21 have used the Green-functio
approach to describe the conductivity tensor in lo
intermediate magnetic fields (mB<1) for a two-dimensional
degenerate electron gas. In both cases, the obtained ex
sions describe Shubnikov–de Haas oscillations. But in l
magnetic fields the expressions obtained in Ref. 20
rxx(B) are not valid, since they diverge forB→0. In the
low-field limit the conductivity tensor21 coincides with the
classical one and the magnetoresistance is zero.

This work eliminates these difficulties by deriving expre
sions for conductivity tensor components that are correc
an arbitrary magnetic field. In Sec. II, for deformation pote
tial scattering we present a steady-state perturbation solu
of the Liouville equation for the one-particle density matri
General expressions for a conductivity tensor are obtain
In Sec. III, these results are applied to the low-field mag
totransport. The NMR dependence on electron-gas par
eters is considered. Theoretical predictions are compa
©2003 The American Physical Society01-1
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with available experimental results. In Sec. IV, we consid
briefly electron transport in a quantizing magnetic field.
Sec. V, a brief summary and concluding remarks are p
sented.

II. THEORY

It is well known that in a quantizing magnetic field, m
trices of electron momentum components perpendicula
magnetic field have no diagonal elements. In this case,
Boltzmann equation cannot be, in principle, used for
electron-transport description. Therefore the density-ma
approach is needed. We restrict the scope of this paper b
description of the electron transport in an isotropic semic
ductor with the parabolic dispersion law. In general, the el
tric current density can be calculated from the expressio

j5Tr~RJ!, ~1!

where Tr(•••) is the operator trace,R is the statistical op-
erator ~density matrix!, J is the operator of current in th
magnetic field.

In our case, the one-particle Hamiltonian of a semico
ductor is given by the following expression:

H5H01W1U5He1He1W1U, ~2!

whereHe is the electron Hamiltonian in magnetic field,Hp is
the phonon Hamiltonian,W is the operator of electron
phonon interaction,U52qExx is the operator of potentia
energy. For simplicity, we assume that the electric field
directed along thex axis and the magnetic field is directe
along thez axis. The statistical operator in the Schro¨dinger
representation is described by the Liouville equation

i\
]R

]t
5@HR#. ~3!

To solve this equation, we consider the sumW1U as a
perturbation. If we take vector potential in the gaugeA
5(0,Bx,0), the wave function~WF! ~eigenfunction! of the
HamiltonianH0 is

c5exp@ i ~kyy1kzz!# f ~h!xsuN&, ~4!

where

h5
x1kyl

2

l
, l25

\

qB
,

k is the electron wave vector,xs is the spin WF,uN& is the
phonon WF in the second quantization representation.
WF ~4! along thex axis in the magnetic field is always no
malized to the unity and determined by

f n~h!5S 1

Apl2nn!
D 1/2

expS 2
h2

2 DHn~h!. ~5!

The electron energy is

E5
\2kz

2

2m
1\vS n1

1

2D1mBgsB, ~6!
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where mB is the Bohr magneton,g is the Lande factor,s
56 1

2 . It can be seen that in our representation the elect
state is described by a set of quantum numbers (n,ky,kz,s).

Since the spin operator does not stand in current and
turbation operators their matrix elements are diagonal w
respect to the spin numbers. Assume also that the pho
system is in equilibrium. Then all matrix elements are dia
onal with respect to the phonon numbers. To shorten
notation, we omit them in all matrix elements and take in
account in sums over the states.

The basis and the procedure of deriving perturbative
lution of Eq.~3! are given in detail in Ref. 22. Using the W
~4! for stationary conditions from Eq.~3!, we get

~E12E2!R121U13R322R13U321 ipS1250, ~7!

where

S125( w~q!3$d~E22E32\V!@~N11!M14
1

3~d432R43!M35R522N~d142R14!M43
1 R35M52#

1d~E22E31\V!@NM14~d432R43!M35
1 R52

2~N11!~d142R14!M43R35M52
1 #

1d~E12E32\V!@~N11!R14M45
1 ~d532R53!M32

2NM13
1 R34M45~d422R42!#

1d~E12E31\V!@NR14M45~d532R53!M32
1

2~N11!M13R34M45
1 ~d422R42!#%, ~8!

\V(q) is the phonon energy,N is the phonon filling number,
w(q) is the function that describes the electron-phonon
teraction,Mi j is the matrix element of electron-phonon in
teraction, the ‘‘1’’ sign denotes the Hermit’s conjugation. I
the Eq.~8!, the sum runs over all electron states, exceptu1&
and u2& , and over phonon wave vectors.

It is well known that Eq.~3! does not describe irreversibl
motion of the electron system. To introduce irreversibili
additional assumptions are needed.20 This can be done by
modification of the total Hamiltonian or by some artifici
mathematical method that takes into consideration the in
action between the system and the environment. The la
may be the widely used hypothesis on the initial form of t
density-matrix diagonal part, i.e., the distribution functio
We represent the density matrix in the form of

R125F1d121G12d~ky12ky2!, ~9!

where G12[Gn1,n2(kz1 ,kz2). If the electric field does not
break the electron-gas space homogeneity, the Fermi-D
distribution function that depends on the electron energy@Eq.
~6!# and the chemical potential~Fermi energy! Ef is normally
taken asF15F(E12Ef). At high temperatures, this ap
1-2
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proximation is quite sufficient. But at low temperatures, t
combined action of the electric field and electron scatter
changes the form of the distribution function. In the fir
nonvanishing scattering order the correction to the distri
tion function has been obtained in Ref. 20. But it has
physical meaning at high magnetic fields only. The gene
procedure for deriving corrections is described in Ref. 22.
the matter of fact, it is the Gibbs statistical operator exp
sion into a series by orders of interaction. In the linear
proximation by the electric field, the distribution functio
can be represented as

F11
]F1

]E
U11Z,

whereU12 is the potential-energy matrix element,Z is the
function that is the result of summation over all scatter
orders. This function depends on the magnetic field, par
eters of scattering, and distribution functionF1 itself. In this
paper, we do not intend to analyze theZ function. It should
be noted that it is very small or equal to zero only whenB
50. From Eq.~9! we get

R125S F11
]F1

]E
U11ZD d121G12d~ky12ky2!. ~10!

Note here that similar to Eqs.~4!–~6!, solutions can be
obtained if the potential energyU is included into the basic
HamiltonianH0. Such a solution has been used in Ref. 2
But the WF of this Hamiltonian does not meet the conditio
of the Hermit’s conjugation and completeness. It becom
obvious in the limitB→0.

Now we obtain the linear solution byG of Eq. ~7!. For the
acoustic phonon the frequencyV5vsq and for the deforma-
tion acoustic-phonon scattering the interaction function is

w~q!5w0q, ~11!

wherew05\EA
2/2rvs

2 , vs is the sound velocity. If the tem
perature is not very low the phonon number can be written
follows:

N'
kT

\vsq
@1. ~12!

From the semiconductor theory it is well known that forT
.1 K the acoustic-phonon energy can be omitted in the
ergy conservation law. Then, substituting Eqs.~8!–~12! into
Eq. ~7! after simple integration we get

~E12E2!G121U12~F22F1!2 iqExh12Q12

1 i
kTw0

2pl2\
(

3
E dkz3$@d~E22E3!1d~E12E3!#

3@G122d12G33~kz12kz21kz3 ,kz3!#%50,

whereh125* f 1h f 2dh,
08520
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Q125
kTw0

2pl\ (
3
E dkz3F]F2

]E2
~11F22F1!d~E22E3!

1
]F1

]E1
~11F12F2!d~E12E3!GZ.

Note here that in Eq.~8! the integration is simple for detor
mation acoustic~DA! phonons only, since the produc
Nw(q) is independent ofq. For other scattering mechanism
it is impossible to obtain such a simple expression. It is e
to check that the solution of this equation is

G125
U12~F12F2!1 iqh12Q12

E12E21 i\n12
, ~13!

where

n125
kTw0

2pl2\2 (
3
E dkz3@d~E22E3!1d~E12E3!#.

The current and potential matrix elements are easily ca
lated and given by the expressions

j x125 i
p12

l2
D12, j y125S x12

l2
2ky1D D12,

j z1252kz1D12, U1252qExx12,

where

D125
q\

m
d~ky12ky2!d~kz12kz2!,

p125An1

2
dn1 ,n2112An2

2
dn1 ,n221 .

Substituting these matrix elements and Eq.~13! into Eq. ~1!,
we obtain a conductivity tensor

sxx5
q2v

~2p!2\
(
s,n

~n11!

3E dkzF nn,n11~Fn2Fn11!2vQn,n11

v21nn,n11
2 G , ~14!

sxy5
q2v

~2p!2\
(
s,n

~n11!

3E dkzFv~Fn2Fn11!1nn,n11Qn,n11

v21nn,n11
2 G , ~15!

where

Fn[F~En!, En5
\2kz

2

2m
1\vS n1

1

2D1mBgsB,

nnm5
\v

4AkTtDA
(

l
Fu~znl!

Aznl

1
u~zml!

Azml
G ,
1-3
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Qnm5F\nnn

2

]Fn

]En
~11Fn2Fm!

1
\nmm

2

]Fm

]Em
~11Fm2Fn!GZ,

znl5\v~n2 l !1
\2kz

2

2m
, tDA5

p\4rvs
2

A2~mkT!3/2EA
2

.

Using the obtained results it is easy to show that

szz5
q2v

~2p!2\
(
s,n

E dkz

kz

nn,n
S 2

]Fn

]kz
D . ~16!

If the magnetic field is so strong thatv@n, Eq. ~14! is
transformed into the equation that has been obtained in
20. If in this case for a degenerate electron gas the Poiss
formula is used for summation in Eqs.~14! and ~15!, we
obtain expressions that are identical to ones obtained in R
20 and 21.

The conductivity tensor components~14!–~16! are finite
in an arbitrary magnetic field. Their general analysis is v
complicated. Therefore, let us consider some simple cas

III. WEAK-FIELD MAGNETOTRANSPORT

In the weak-field limit ata!1, the energy of the spin
interaction with the magnetic field can be assumed to be z
and integration can be used instead of summation overn in
Eqs.~14! and~15!. After transformation of variables and in
tegration over angular variables, the conductivity tensor
be written as

sxx5sBxx1
2q2

Apm
NcaE Axdx

n

n21v2 S 2
]F

]x D , ~17!

sxy5sBxy1
2q2

Apm
NcaE Axdx

v

n21v2 S 2
]F

]x D , ~18!

wheresBxx , sBxy are the components of Drude conductivi
tensor that can be calculated from the Boltzmann equat
Nc is the conductivity band density of states,x5E/kT,

n5
1

2tDA
~Ax1Ax1a!.

To derive Eqs.~17! and ~18!, we assumeZ50. In this ap-
proximation, theszz ~16! coincides with a classical expres
sion. It can be seen that there are additional terms in E
~17! and ~18!, as compared with classical expressions. Th
reflect the magnetic-field effect on electron motion. As
well known, in the transverse magnetic field the electr
motion is diffusion. Using identity l2(n11)[xn,n11

2

5(ky)n,n11
2 l2 it follows from Eqs.~14! and ~15! that in the

magnetic field the diffusion coefficient is
08520
ef.
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DH5v2K nn,n11xn,n11
2

nn,n11
2 1v2 L .

For vt!1, we obtain

DH5
1

m
K En1

\v

2

nn,n11

L 5D1
\

2m
vt,

where D is the diffusion coefficient without the magnet
field, t is the momentum relaxation time, and the brack
denote statistical averaging. As can be seen in a weak m
netic field, the diffusion coefficient and hence the electr
mobility increase. This results in NMR.

Equations~17! and ~18! are formally obtained for defor-
mation potential scattering. But atB50 they coincide with
classical expressions. Therefore, they should be valid
other scattering mechanisms at least in a weak magn
field. It is well known that the classical magnetoresistan
rxx(B)5r(B).r(0). In Eq. ~17!, there is an additiona
term that is linear by the magnetic field. It results in a d
ferent r(B) dependence. In the 0,B,B1 range it has the
minimum rm,r(0)5r(B1). The values ofB1 and rm de-
pend on parameters of the electron system and the temp
ture. It follows from Eq.~17! that for nondegenerate electro
gas (Ef,0) the valued5Dr/r(0) is independent of the
electron density. In this case the parametersB05mkT/q\
andg5kTt/\ determine therm andB1 values.

Figure 1 showsd(B) dependences for differentg values.
They are calculated for a wideband semiconductor with e
tron conductivity andEf /kT525. At constant temperature
the calculated dependences correspond to semicondu
with different electron mobilities. For the room temperatu
and the effective mass equal to the free-electron mass
mobilities are 200, 800, and 4000 cm2/V s, respectively. Un-
der these conditions the magnetic field varies from 0 to 10
As can be seen from Fig. 1 for a low electron mobility, M
is negative within the whole range andB1 is infinite. For a
high electron mobility, MR is positive andB150. For inter-

FIG. 1. Classical magnetoresistance field dependence~curve 1,
g55; curve 2,g520; curve 3,g5100).
1-4
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DENSITY MATRIX APPROACH TO ELECTRON . . . PHYSICAL REVIEW B67, 085201 ~2003!
mediate mobility valuesB1 is finite and MR changes th
sign. Note here that dependences that are similar to the c
for g55 are observed in three-,1 two-,11 and
one-dimensional23 semiconductors. In Fig. 1, the depe
dences are calculated for the DA-phonon scattering.
other scattering mechanisms, the MR dependences ong are
qualitatively similar. Therefore the NMR temperature depe
dences should be similar too and the dependences of F
can be used for qualitative description of experimental
sults. Then(E) dependence determines quantitative para
eters of NMR.

As is known, the scattering rate increases when the d
ing concentration is increased. As a result theg value should
decrease. It follows from Fig. 1 that NMR decreases wh
theg value gets higher. This dependence might be a poss
reason for different results obtained in samples1,7 with differ-
ent doping concentrations. When the temperature is
creased the ionized impurity scattering rate decreases for
doping concentration and theg value increases. It shoul
qualitatively result in NMR temperature dependences t
are observed in Refs. 1, 7, and 23. Figure 2 shows magn
field dependence of the Hall constant (RH) for different g
values. The parameters of Fig. 1 were used for the calc
tion. It can be seen that theRH(B) tends to decrease slightl
for all g values. Since the electron concentration is assum
constant for the calculation these dependences reflect
magnetic-field dependence of the Hall factor.

In degenerate electron gas, classical MR is equal to z
andd50. In this case, the derivative of the distribution fun
tion in Eq. ~17! can be replaced by thed function and we
obtain

d52
\v

Ef1\v
,0. ~19!

Equations~14!, ~15!, ~17!, and~18! are formally obtained for
bulk semiconductor. But in a weak magnetic field there is
strong difference between three- and two-dimensio
electron-gas properties. Therefore, these equations ca

FIG. 2. The Hall constant as a function of the magnetic fi
~curve 1,g55; curve 2,g520; curve 3,g5100).
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used for qualitative description of different dependences
are observed in degenerate two-dimensional elec
gas.11,23,24Particularly, expression~19! describes experimen
tal dependences11 for a,1.

IV. LOW-TEMPERATURE ELECTRON TRANSPORT
IN QUANTIZING MAGNETIC FIELD

At low temperatures, MR should be an oscillating fun
tion of B21 in a strong magnetic field. Figure 3 shows th
d(B) dependence for two different values ofg. At the room
temperature they correspond tog values of 5 and 100. The
dependence is calculated by Eq.~14! for DA-phonon scatter-
ing at T54 K andEf /kT550.

It is assumed thatZ51. It corresponds to the approxima
tion of Ref. 20. If atv@n we omit the first term in Eq.~14!
and the second term in Eq.~15! we obtain the results of Ref
20. It can be seen from Fig. 3 that forEf.\v the parameter
d oscillates with a period that is proportional toB21. The
oscillation amplitude and the mean value are increased w
B increases or the scattering rate decreases. The calcul
shows that in this case the Hall constantRH is independent
of B. At the same time the oscillation amplitude depen
strongly onZ. For Z!1 ~Boltzmann electron gas!, there are
no oscillations andd smoothly increases withB.

V. CONCLUSION

The modern kinetic theory attributes NMR to the we
localization that needs irregular distribution of scatteri
centers. In this work, a kinetic equation for the density m
trix is solved for deformation potential scattering in quant
ing magnetic field. It is shown that transverse NMR can
observed in an electron gas without weak localization. I
the result of consistent consideration of magnetic quant
tion. It should be noted that the used kinetic approach
valid for a nondegenerate electron gas only atg@1. The
obtained expressions, opposite to Ref. 20, are valid for
arbitrary magnetic field. In a strong magnetic field the p
vailing term of sxx ~Eq. 14! is similar to the expression in

FIG. 3. Low-temperature magnetoresistance field dependenc
a degenerate electron gas~curve 1,g543; curve 2,g5866).
1-5
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V. E. KAMINSKII PHYSICAL REVIEW B 67, 085201 ~2003!
Ref. 20. But in this paper it is shown that unlike the implic
assumption of Ref. 20 the value ofZ is not equal to unity and
depends on the magnetic field and temperature. The calc
tion shows that the NMR predicted in this work should
observed at low magnetic fields in semiconductors with l
electron mobilities. In traditional semiconductors~Si, Ge,
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