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We present a detailed study of the time-dependent Gutzwiller approximation for the Hubbard model. The
formalism, labeled GA-RPA, allows us to compute random-phase-approximation{fieA) fluctuations on
top of the Gutzwiller approximatiofiGA). No restrictions are imposed on the charge and spin configurations
which makes the method suitable for the calculation of linear excitations around symmetry-broken solutions.
Well-behaved sum rules are obeyed as in the Hartree-R8Ek plus RPA approach. Analytical results for a
two-site model and numerical results for charge-charge and current-current dynamical correlation functions in
one and two dimensions are compared with exact and RIPA results, supporting the much better perfor-
mance of GA-RPA with respect to conventional HFRRPA theory.
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I. INTRODUCTION versal spin degrees of freeddnMoreover, in principle, it
provides a controlled scheme of including fluctuations be-

The Gutzwiller variational wave function, together with yond the mean-field solution. However, the expansion of the
the Gutzwiller approximatior(GA),! is a widely used ap- KR hopping factorz®B is a highly nontrivial task, both with
proach in order to deal with Hubbard-type models. Origi-respect to the proper normal ordering of the bosons and with
nally introduced in order to explore the possibility of ferro- respect to the correct continuum limit of the functional
magnetism within the Hubbard modgee, e.g., Ref. 2, and integral® Expansions around the slave-boson saddle point
references therejnits popularity resides in the fact that it were performed for homogeneous systems in Refs. 9 and 10
captures correlation effects like the band narrowing alreadyn order to calculate correlation functions in the charge and
on the variational level. More recently the GA has also beerongitudinal spin channels. Furthermore, the optical conduc-
used for realistic band structure computatiérsSince in tivity in the paramagnetic regime of the Hubbard model was
the Hubbard model one has a competition between delocatalculated in Ref. 11. A severe difficulty in this approach is
ization, from the hopping of the charge carriers, and localthe fact that the KR choice for the hopping factor does not
ization, from the onsite interactiod, the idea is to apply a lead to controlled sum rulé$.Moreover, to our knowledge,
projector to a given Slater determinant which reduces thehis approach has not been extended to symmetry broken
number of doubly occupied sites. Within the GA, one has tostates due to the complexity of the computation.
minimize an energy functional which is composed of a renor- Recently, two of us have presented a computation of RPA
malized kinetic term and the interaction enetd{, where  fluctuations on top of GA staté&A+RPA).*2 Our approach
D denotes the concentration of doubly occupied sites. borrows ideas from well developed techniques in nuclear

On the other hand, mean-field theories, like Hartree-Foclphysicst* and RPA fluctuations are obtained in the small
(HF) theory, are usually only the first step in a many-bodyoscillation limit of a time-dependent Gutzwiller approxima-
computation and it is often desirable to include the effect oftion. Since response functions are derived for systems with
fluctuations within the random-phase approximati&iPA). completely unrestricted charge and spin distributions, GA
In case of the HF approach this has been achieved by numetRPA is also suitable for the calculation of charge excita-
ous techniquesfor an overview see, e.g., Ref),5however, tions of inhomogeneous textures. A key point of the GA
the development of a similar scheme in the GA has been aRPA approach is the proper determination of the time
long-standing problem of the condensed-matter many-bodygependence of the variational double occupancy parameter.
community. The major step in this direction was the refor-We have adopted an antiadiabatic approximation in the sense
mulation of the GA by Kotliar and RuckensteiKR) within  that the double occupancy adjusts instantaneously to the time
the so-called four slave-boson approdcthis method maps evolution of the single particle densities. In this context our
the physical holdor particle into products of fermionic and approach can be viewed as a generalization of the Fermi
bosonic operators where the latter additionally label the ocliquid analysis of Vollhardt® In this paper we use the GA
cupancy of the site. At the saddle-point level the bosons are-RPA to compute various correlation functions in the one-
replaced by their mean-field values and one recovers thkand Hubbard model and compare them with exact diagonal-
GA energy functional showing its underlying mean-field ization and HR-RPA results.
character. This paper is organized as follows. In Sec. Il we present

The KR slave-boson formulation offers the possibility of the formalism. We concentrate on the case of the one-band
going beyond the Gutzwiller result by the inclusion of trans-Hubbard model although generalization to more complicated
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models is straightforward. From the expansion of the GA 1—p-+D ) o —D)+D(o: —D.
energy functional up to second order in the densities, we z8A= V(=i +Di)(pit o~ D)+ VDilpii, - '),
demonstrate how the RPA response functions can be calcu- Vpii (1= pii o)

lated and show that standard sum rules are obeyed. The 4
method |s_|llustrated in Sec. Il fo_r the tV\_/o-S|te_Hubbard which is a functional of the density matrixp; ,
model, which can be treated analytically. Finally, in Sec. IV _ ;

we compare the GARPA excitation spectra with exact di =(SD CJT '”Ci'”|SD> and the double occupancy parameters
L X " D;. W te th t of all matrix el : D;
agonalization and HFRPA results respectively. (- We denote the set of all matrix elemefys; ,} and{Di}

by p and D. Note that in this paper we do not consider
spin-canted solutions which would have density matrix ele-
ments (Sch;Ucivo_JSD)a&O for o#0'. However, trans-
Il. MODEL AND FORMALISM verse spin degrees of freedom can be straightforwardly in-
corporated within the spin-rotationally invariant slave-boson
formulation’

We will denote by| W) the particular wave function of
H =Z tijcﬁgc]—,0+uz N Ni |y (1)  form[Eq. (2)] that minimizes the energy. In order to obtain

.o ' the corresponding stationary solutigi®,D(® one has to

minimize EG* with respect to the double occupancy param-
etersD and the density matrip, where the latter variation
has to be constrained to the subspace of Slater determinants
by imposing the projector conditiop?= p,&1°

We consider the one-band Hubbard model

whereci(p destroydcreateyan electron with spir at site i,
andn; ,= c;r'gci'g. U is the onsite Hubbard repulsion apg

denotes the hopping parameter between sitesl].

GA _ 2_ _
A. Gutzwiller approximation SEZTp.D]-tA(p"=p) 1} =0, ®)
In its original formulation, the GA yields an approxima- \yhere A denotes the Lagrange parameter matrix. It is con-

.tion for the energy of a uniform paramagnetic_ syste@nly venient to define a Gutzwiller Hamiltoni&it®
in the late 80’s this approach has been consistently general-

ized to an unrestricted Slater determinant within the Kotliar

and Ruckenstein slave-boson approfchhe same unre- hii,[p,D]=
stricted Gutzwiller energy functional was obtained by fjolPr
Gebhard® exploiting the fact that the GA becomes the exact

solution of the Gutzwiller variational problem in the limit of which is also a functional op andD. Variation of Eq.(5)

infinite spatial dimensions. with respect to the density matrix leads to
In Gebhard’s formulation the variational wave function is
written aé'®

WPjio’ ©

h—pA—Ap+A=0. (7
U
|\If>=H —1'/2|SD), (2)  The Lagrange parameters can be eliminttemhd together
bK; with the variation with respect td we obtain the self-
consistent GA equations
Oi:exl{_%nmni,l_z i oNi o ©)
v [h,p]=0, ®
whereK;=(¥|U;0;|¥). In Eq. (2) |SD) denotes a Slater -
determinant which already incorporates the Hartree contribu- JE -0 )
tion of the local interactions and which has to be determined oD,

variationally. The solution of the variational problem in the

!imit of infinite .dimensions turns ou_t to.be_ the_ GA general- The first equation can be solved by diagonalizing both the
ized to an arbitrary charge and spin distribution of the SD.Gytzwiller Hamiltonian and the density matrix by a linear

The u;,, act as local chemical potentials and are determinegyansformation of the single-particle orbital basis,
within the GA by the infinite dimension prescription that the
diagonal charges are not renormalized:
Ci,UZE lpi,o’(v)aln (10)
<\P|ni,0'|q,>:<SD|ni,o|SD>' !
) . leading toh® =&, ,¢,. Moreover, the diagonalized density
As a result one obtains, for the GA energy functiohtl, 1 4tix pEp‘(‘oV) has an eigenvalue 1 below the Fermi level,
and an eigenvalue 0 above it. We use Greek letters to denote
GA _ GA,GA any state of this particular basis, and the zero indicates evalu-
E [p’D]_i% i Zi'”pji’”+UZ Di. atign in the sachi)Ie point. Additionally, we denote states be-

io
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low the Fermi level as holén) states and the states above thetreated antiadiabatically. As a consequené®, adjusts in-

Fermi level as particle statep). stantaneously to the evolution of the density matrix via the
Notice that in this basep(?)%=p(® is trivially satisfied. ~ condition

p© acts as a projector onto the hole states of the saddle-

point Slater determinant in the space of the density matrices JECN p,D]
v_vhereasf(o)E 1- p'® corresponds to the projector onto par- 96D, 0. (17)
ticle states.

The diagonalization of E¢8) has to be supplemented by |, fact Eq. (17) constitutes the basic hypothesis of the
a minimization of the Gutzwiller energy With_ respect to the present formalism which is necessary in order to derive an
double occupancy parameters of Eg). For this purpose, a effective Gutzwiller interactionbetween particlegsee be-
convenient method in order to obtain inhomogeneous GAqgy). We expect this approximation to be accurate for suffi-
solutions was discussed in Ref. 20. Note that the unrestrlctegenﬂy low-energy excitations. At high energies one can
variational procedure with respect to charge dod spin  check the accuracy and the limits of validity of this approxi-

degrees of freedom prevents the occurrence of thehation by comparing with exact diagonalization, as done
Brinkmann-Rice transition toward localizatidhwhich was i the following sections. Surprisingly, it turns out to be

already shown in Ref. 22 for Neg/pe antiferromagnetism. accurate at least up to energies of the order of the Mott-
Hubbard gap.
B. Derivation of the RPA equation As in any small amplitude approximation, we start by
Before starting our analysis it is convenient for later use®XPanding the GA energj£qgs. (4) and (13)] around the

to define the GA effective operator saddle point. The first pafEg. (4)], is needed up to second
order in the density and double occupancy deviations:

0%A=> (0%Ac! ci,+H.c), (12)
T EGA[p,D]:EO+tr(h°5p)+iJZ tii (28081270
where 057=0;,0;, and g;,=1 if i=j and g, '
GA_GA - - :
=7 .2, otherwise. In order to derive the RPA equation we +7885. 2581850 4+ t. o 5.2CA8. 7CA
introduce a small time-dependent external field added i2r 0125 19Pio ”EU iiPii 0 015,60 9150
to Eq. (1),

+ 2 tipji o[ 2000020+ 2000,270,]. (18
F()=2 (fij.o(t)clcjptH.C), (12 e
7 . Here E, denotes the saddle-poitean-field energy, and
with f;; ,(t)=f;; ,(0)e™'“". As a consequence¥), |SD), the trace includes sum over spins. We have used the follow-
and the variational parameters acquire a time dependendeg abbreviations for the-factor expansion:
and an additional term appears in the energy functional

[Eqa. (4], 9787 P
GA 512%\5 (9[') oD+, L OPii o » (19
Erp.D]()=(¥(O)[H(D|¥(1)) ! o' OPiior
= (f8%pji e ''+He), (13 1%z, Pzn
5 (fipie R i TP NI YRS
oA dD; o' IDidpij o
Wherefij(,:qij(,fij’(,.
The time-dependent field induces small amplitude oscilla- 1 (722%
tions of D andp around the GA saddle point: ) 2 P SPii, o OPi o - (20
oo i, o’ YVii,a”
=D . .
D=D""+4D(v), (14) To proceed further it is convenient to cast the second order
O+ 5p(1) 15 expression in matrix form
p=p p(t).

The density and double occupancy fluctuations are con-
strained by the following requirements:

(i) At all timesp is constrained to be the one-body density 1
matrix associated with a Slater determinant. This can be

) : . + = 6DiK;; 6D+ DS «15P1ke » 21
achieved by imposing 2 T 1SikioOPike (21

GA 0 1 oo’
E™p,D]=Eo+tr(h"5p) + 5 9pji oL iji Pk

p=p°. (16)  where the matrix multiplications imply the Einstein sum con-
vention and the definitions for the matricesK, andS fol-
(i) The double occupancy is assumed to have a muclow immediately from Eqs(18), (19), and(20). The nonzero
faster dynamics than the density matrix so that it can bematrix elements are given by
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! (922| "
LI% =t z

H Z; //(p" //+p" //),
1) ],0 ij,0 ji,o
jo" " 9Pii,ePii o’

’ &Zi o (92] o
LIT =t — T (i it pi o)y P F],
iLjj g ij it o apjj,(r Pij,o” T Pji,o J
Lo ooy, SR, i
11,1] ij,ii 1] &pii,a j, 0" I

9z ,
Kii=2> tii —2j,o(Pij, o T Pji o)
jo DI
(22)
azi.o’ azj,a’ . .
i D, _&Dj (Pij.oTPjio) 17],

o

t 0?2 o
1 9D dpii o

si,iiozz

jo'

Zj o' (pij,or T Pji o),

Si i &Zi’l,/ 5Zj’0./( n ) i
o= T — 7 (Pij,o' T Pji,e’) 17F),
Jjo 1] . (9D| ﬁp”'g— 1,0 o

S t azi,a P
. ..(r: _Z o I .
i i D, 4 J

Note the formal similarity between E¢R1) and an electron-

PHYSICAL REVIEW B57, 085108 (2003

Iij o
EFA p,DI=Fo+tr(fS*p)+ PJQi,afij,a—5Pkka'
ijkoo’ IPkko
i
0 ijo
+ 0 fii,—="8D,.
ij;o' p]|,o-flj,0 &Dk 5Dk (25)

Here Fo=f5"p(®) describes the energy contribution when
the system would be frozen at the saddle-point level and we
used the fact thag;;, does not depend on off-diagonal den-
sities. As before, the double occupancy fluctuations can be
eliminated through Eq. (23. We define ES4p]
=Efp,D(p)] and

. JENp]

T (26

In this paper we will restrict ourselves to density-density
and current-current response functions, with the current op-
erator given by

J:Z Jij » (27)
(i)

and

S t t
lij= - t;(CivCjo— CjoCic)-
ag

boson problem where particle-hole excitations interact with &Vhen only densities are involvef, , is diagonal in the site

bosonic degree of freedom in place®f The matrixK plays
the role of a double occupancy stiffness, addhat of a

double occupancy-electron interaction.

We can integrate out the fluctuations using the antiadia-
baticity condition[Eq. (17)]. First, we expres$D; in terms

of the density fluctuations via

8Di=—(K™Hij'S ki 0PIk, o (23

which finally yields an expansion of the energy as a func-

tional of 8p aloneE[p]=E®* p,D(p)]:

~ 1 _ ,
E[p]=Eo+1tr(h°3p)+ 5 pji o[ Lo~ SiKo *Sol &) Spiko

(29
Note that we could also have derived E24) within the KR

index, onlyq;;,=1 is present and the last two terms in Eq.
(25) vanish. If currents are involved it is easy to show di-
rectly from Eq.(25) that the last two terms also vanish in the

absence of currents in the ground state, Tg=sf5".

Now, we proceed in analogy with the nuclear physics
treatment of effective mean-field theories in which the inter-
action potential is density dependéft®Indeed Eq(24) can
be viewed as the energy expansion of an effective mean-field
theory with the only difference that part of the density de-
pendence is due to the GA hopping renormalization factors
in the kinetic part of the Hamiltonian. The advantage of this
method with respect to other metho@sg., equation of mo-
tion or diagrammatic methog$s that the present derivation
is solely based on the knowledge of an energy functional
associated with a Slater determinant which is precisely what
the Gutzwiller approximation provides.

The density matrix of an effective mean-field theory of

slave-boson approach. The corresponding transformationgs kind obeys the equation of motitri®

for the derivatives are given in the Appendix.

The matrix (,—S{K,'S) can be considered as an ef-

itip=[R[p]+T(t),p], (28)

fective interaction kernel between particle-hole excitations in

the GA. For the paramagnetic regime this kernel reduces tahere we have defined an effective Gutzwiller Hamiltonian

the quasiparticle kernel of \ollhardt's Fermi liquid

analysis® Interestingly, the off-diagonal elements of the ma- _ JE

tricesKj;, ,‘jf{l , andS; |, can induce intersite interactions hijolp]=

between the GA quasiparticles. This is in contrast to conven-

tional HF theory of the Hubbard model which is purely local. which depends on densities only. At the saddle-point, we
The expansion oES*[p,D] [Eq. (13)], is needed up to haveh,=h[p(®]=h,. The RPA is obtain by considering the

first order only, since it is linear in the external field: limit of small amplitude fluctuations in Eq28).

) 29
IPji o @9
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It is convenient to define the four sub-sectors of the fluc- .
tuations of the density matrix using the projector properties Aph,p'h' = (€p— €n) Spp Shn + > i (P ¥ 5(h)

of the density matrix discussed above: ijo,nmo’
5= p© 5pp®), (30 XMt o (W) (D),
SpPP=0O5ps?, (31) Bphph
5p"P=p(© 5p (), (32) - %ﬂ U A o PIMTT ) o (N i (P,
5pP"=0©pp®. (33 and th? tr)e;nsformation amplitudes ,(v) have been defined
in Eq. (10).

The Slater determinant conditigiq. (16)] implies that the
fluctuationg Egs.(30)—(33)], are not independent. In fact, in
terms of the fluctuations, Eq16) reads

To lowest order, we can now linearize H@8) retaining
only ph andhp matrix elements,

3p=p'00p+5pp'+(3p)”. (34 i op=[ho,p]+ @5p+”f',p<°> , (41)
Projecting Eq(34) onto thehh andpp sector of the saddle %P
point Slater determinant yields where we use the shorthand notation
op""=—(1+6p"") " op"PSpP"~ — 5p"PSpP",  (35) oh Jh Jh
(9—5/3:2 (a—5php+ a_épph)- (42
5ppp:(1_5ppp)—15pph5php~ 5pph5php, (36) p ph \ Php Pph

where the right-hand equality is valid in the small amplitude?rhen from Eqs(29), (38), and(41) one obtains the follow-

limit. Thus it turns out thap p andhh density projections are ing linear response equation:
guadratic in thgoh andh p matrix elements. Therefore, when

~ A B 1 0)\)/8p"" T
computingh from Egs.(24) and(29) one should be aware of { ( . . ) —hw( ) }( ph ) = (J’h) )
the fact that the term thCép)=3 ,€,p,, (which is first BY A 0 —1/J\1op™ fhp
order in thepp and hh density projectionsyields a qua- (43

dratic contribution in theph andhp matrix elements: This inhomogeneous equation can be solved by inverting the

matrix on the left-hand side, yielding a linear relation be-

tr(h%sp) =2, Ep5ppp+2 €n0Phn tween the external field and the change in the density:
p h
op= R(w)f. (44
:% (€p™ €n)PpnPhp- D We are now in a position to compute the response of a one

. ) particle observable
In addition, one can neglect thEp andhh matrix elements

in the last term of Eq(24). Thus, up to second order in the N
particle-hole density fluctuations, one obtains, for the energy O:;T (0ij,¢CiyCjo T H.C),
expansior Eq. (24)], '
since, in analogy with Eq$12) and(13) its time evolution is

N 1 A B\/&pP" given by
— h h
E[p]=Eo+ 5(5p"", 5p >(B* A*)<5php . 39
— GA
Here the so called RPA matricésand B are given by: <\If(t)|O|\If(t)>—ijZU [oijopii.()+H.C], (49
P and the time evolution g is known from Eq.(44).
Aph,p'h' = (€p— €n) Sppr Opp + , (39 The linear response matriR(w) has poles at the eigen-
IPp'hr frequencies of the eigenvalue problem corresponding to Eq.
. (43) with T=0:
dhpp
Bph,p'h':&p ) (40) A B 1 0 XM
h! ’ _ _
P {(B* A*) hQn(o _1)} Y(”))_O' (46)

where the matrix A contains matrix elements between
particle-hole excitations, whereas the matixs composed Here 4Q),=E,—E, denote the excitation energies of the
of matrix elements between the ground state and twaystem. In analogy with the HFRPA approximation the
particle-hole excitationsA and B are related toM=(L, vacuum of these excitations is not the old starting GA state
—S(“;Kalso) via | W) but a new state with both Gutzwiller-type correlations
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and RPA ground-state correlations. We denote this state byhere the kinetic energy in the-direction(T,)ga is evalu-

|@,) and the corresponding exited states|y,). ated within the GA.
The matrixR can be written in the following Lehmann In practice, for computational purposes, one can use all
representation: the standard formulas of the HIRPA scheme by substitut-
ing GA effective operators and excitations for true operators
XprXornr Yoo Yon and unprojected excitatior}a).
R(“’)ph,p’h’:go 0o—Q.tie otQ tie| (47) The matrix elements(®,|O|®,)=(0]0%*n) can be

_ _ used to characterize a given RPA excitation. Specific ex-
In analogy with the HF-RPA method, we introduce the fol- amples which will be considered below are the transition

lowing notations: density
(Olafap|n)=Xgy, (48) sn™=(0|A;|m) (52)
(O|agah|n)EYﬂp. (49)  and the transition current

The stategn) are not true excitations of the system but rep- 8jii=(0lj n), (53

resent auxiliary objects. Roughly speaking, they can be ) )

thought of as RPA states without the Gutzwiller projector.Wh'Ch can be interpreted as follows. Consider a wave packet
For example|0) is the analog of the statgSD) but at the _ . .

RPA level (it c>ontains RPA ground-state cgrrelations but |#(0) =exp(—iEot)[Po) + 7 eXp —IEnt) [ Pm),
lacks Gutzwiller correlationsWe will call them unprojected consisting of a small admixturg of an exited staten to the
RPA states. The eigenvectoxx;,) ,Yﬂ;}) can be identified ground state. For example this can be the result of an exci-
with the particle-hole and hole-particle components of thetation of the moden by an appropriate weak external pertur-
unprojected RPA excited state) with respect to the un- bation. The time-dependent expectation value of the charge

projected RPA ground staté). is then given by
Schematically the four states are related in the following . . ,
way: (@(O)|ni| (1)) =(0|n;|0) + ponie™ "+ H.c.,
p and an analogous expression holds for the current. Here
ISDy W) (0|n{|0)=(SDIn;|SD), since one-particle densities are not
renormalized by the RPA. We see that the transition charges
RPA| |RPA and currents are proportional to the amplitude of the time-
dependent fluctuation that would occur at frequency
=) Q,, if the statem is excited by a weak perturbatith
0y . [P, (also see Ref. 23

whereP indicates Gutzwiller projection.

Within the above formalism, it is straightforward to evalu- ) ]
ate the current-current correlation function. The real part of Sum rules form a very important tool in the theory of
the optical conductivity consists of a Drude partuat0 and ~ collective excitations. In many cases they allow us to calcu-

C. Sum rules

a regular part forw>0: late glqbal proper_ties in a simpk_—:- way and therefore they are
useful in testing different approximation schemes. In general,
(D oljol®o)|? a sum rule is related to thkth moment of the excitation
o(w)=Dé(w)+ 7720 T E-E, (w—(En—Ep)). strength distribution produced by a single-particle oper@or
n

(50  (see, eg., Ref. 24

With the above approximations and notations

(©plj ol o) =(nlj$"0), Within 1 A A
ithin the present scheme we have
where the matrix element on the right-hand side can be P

evaluated using Eq<10), (11), (48), and (49). Obviously,

the matrix elements withio-(w) are renormalized by the GA S=2 (En—Eo)*(n[O°40)[2, (55)

hopping factors whereaR(w) does not contain such renor- "

malization. Thus, the latter quantity does not correspond to and we restrict ourselves ourselves to current or density op-

physical response function within the GARPA approach. erators forO. The energy sum rul&' can be written as a
The Drude weighD can be obtained from thiesum rule  double commutator

(seeS ! in Sec. 110

skE; (En—Eo) (W40 W) |2 (54)

1
§'= 2 (En=Eo)(W4|O|Wo)|”= 5 (Wol[O,[H,0]| o).

o 1
J;) doo(w)=— §7T<TQ>GA- (51) (56)
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1.6 - - - 13 - ‘ - For small values o/t there is almost perfect agreement
a) b) 2 between the GA method and the exact results. In this limit,
/A where kinetic effects dominate the correlation part, HF over-
15 ¢ A 121 / ‘5 1 estimates the value d¢f~T) since the corresponding quasi-
/ 5' AN particle hopping between siteandj is described by the bare
! VAR AN matrix elements;f. On the other hand, fdd/t=8 the large
/ /,/ﬁ v 1 /o \\gg HF on-site renormalizatioricorresponding to an overesti-
T Lo r/ : mate of the spin polarizatigrs the reason kinetic energy is
4 @f lower than the exact result. In contrast, the value§-oT) in
! the GA approximation correctly reproduce the exact result,
especially in the high-doping regime, where the spin density
is reduced in large parts of the lattice. It follows that the first
moment of a density-density correlation function will be
more accurate in the GARPA approximation than in the
U=8t HF+RPA approximation. The same holds for tBe'-sum
i . ‘ . o8 . ‘ . rule of the optical conductivity. . _
"0 2 4 6 8 "0 2 4 6 8 To summarize this section, the idea of our method is to
N[holes] N[holes] supplement the Gutzwiller approximation with RPA fluctua-
tions analogous to the HFRPA approach® Since the GA
provides a much better initial saddle-point than the HF ap-
proach one can expect that the fluctuation corrections within
the GA+RPA will allow a more accurate description of cor-
relation effects than the HFRPA approach. In the remaining
sections we analyze in detail small data cases to test the
domain of applicability of the method, and we finally show
some applications in larger systems.

14

<—T>
\

<-T>
[ ]
\\

12} 4

U=4t

FIG. 1. Kinetic energy per site of aX4 Hubbard model for
U/t=4 (a) andU/t=8 (b) with periodic boundary conditions as a
function of hole doping. Filled squares: exact result; circles: unre
stricted HF approximation; diamonds: unrestricted GA.

In analogy with the derivation by Thoule¥spne can show

that the sum rule E(q56) is satisfied if the left-hand side is
evaluated at the GARPA level and the right-hand side is
calculated using the GA ground-state wave function. The

same applies for th8~* sum rule, which corresponds to the lll. TWO-SITE HUBBARD MODEL

f-sum rule in the case of the Optical CondUCtiVity discussed In order to demonstrate the method deve'oped above’ we
above. _ . _ consider in the following the two-site Hubbard model which

In the following, we consider as an example the first mo-can be solved exactly and can be studied analytically in both
ment of the charge-charge correlation function by sethg the GA+RPA and HF-RPA approximations.

=n;=2,n;, for some lattice sitd; . It is straightforward to Exact ground-state energy and double occupancy at half-
evaluate the double commutator and we find for the correfilling (i.e., two particlesare given by

sponding sum rule

Eo:%{l—\u+«4UU)ﬁ
Sh=—22 (Eqn—Eo)|(O[n|[m)[*=2(T)ga,  (57)
m,i and

where (T)ga denotes the kinetic energy evaluated within
the GA.

The sum rules of Eq951) and (57) provide a first en-
couraging argument that the unrestricted GA could improve
the description of charge fluctuation with respect to the corespectively. The exact optical conductivity displays one
responding HF method. This is based on the fact that the GAansition between the ground state and an excited state with
kinetic energy is already renormalized on the mean-fielnergyEy=U resulting in the excitation energy
level. In Fig. 1 we compare the exact kinetic energy with U
unrestricted GA and HF results for various hole concentra- rEYTYITY
tions in a Hubbard model (44 lattice) with nearest neigh- Ey—Bo=7[1HV1+(4U/U)7.
bor hoppingtj; = —t. The GA Slater determinants have been , ) ,
obtained using the method described in Ref. 20. Note that fof '€ corresponding matrix element of the current operator is
this small system it is in general not a problem to find the
true mean-field ground state via the variational procedure. 10]j|U) 2=
We usually performed several runs starting from different J (ESJF a2’
initial configurations and checked the stability of the result-
ing states by adding some noise to the solutions. These are Wpon minimizating the GA energy functional of the half-
general characterized by an inhomogeneous charge distribfiled two-site model one finds a paramagnetic solution
tion except for the closed shell configurations. below

() 1 E2
nn)=--——,
P2 424 B2

4

085108-7



G. SEIBOLD, F. BECCA, AND J. LORENZANA PHYSICAL REVIEW B57, 085108 (2003

Ugh/t=8(y2-1)~3.31, Siijo=—4tu, i#]. (67)
and a Néktype state withmi=—m), where One of the peculiarities of the present approach is the appear-
ance of onsite interactions for quasiparticles with the same

mi=(n; ;)—(n; ;)#0 spin (L% #0). These interactions do not occur in the stan-

for U>UGAt_ Within the HF theory the corresponding criti- d_ard RPA since they would violate the Paul? exclusion prin-
cal value iISUHF /=2 ciple but appear here because of the density dependence of
CI’I'[ - . . . . . .
Clearly the transition in either case is nonphysical since itthe effective Interaction between par§|cles. Also notice that
does not occur in the exact solution. In this sense the in- oY of the matrix elements would diverge at the BR tran-

crease ofuS% with respect toU!l, is in favor of the GA tsrlgr?gitlifolr: were not hidden by the spin-density-wal@DW)

since it extends the parameter range of the right singlet para- Eliminating the double occupancy fluctuations with the

magnetic solution. At largeJ, disregarding the nonphysical | o . e .
" . p of the antiadiabatic conditidiEq. (17)], the following
broken symmetry, the Négype state in the GA allows the interaction matrix is obtained:

system to reduce the double occupancy and at the same time

prevents the occurrence of the Brinkmann-RiB&) transi- Atu2(3—u?)
tion toward localization atlgg=8t. M7 =————", (68)
Since the analytic expressions for the symmetry-broken ' 1-u?
regime become quite lengthy we restrict the derivation below
to the paramagnetic case. In this limit the mean-field part of - 8tu
the energy is given by Miii 7= i (69)
tr(hop) =t(1—U?) X (Ppp.o—Phhe)s (58) Mg7i=0, i#], (70)
which defines the diagonal Gutzwiller Hamiltonian in Eqg. M2 =0 i%i (71)
(6). The hole (particle state is the bondingantibonding i I
state andu=U/(8t). oo oo —
The GA kinetic energy reads Mi%i=Mili=—tus,  i#]. (72)
Epin=—2t(1—u?), Remarkably, intersite interactions vanish except for the ap-

. _ pearance of a new interaction term between off-diagonal
and the expansion of the GA energy functional leadssae charges Mﬁ”i;)- Using Eqs(35) and(36) one can show that
Egs.(22)] these new off-diagonal interactions do not contribute to the

RPA matrices and the expansion of the energy reads
41(2+ 30— u) P 9y

I(Tfyl.l = 1 _ u2 1 (59) 2
E=Egat 2, [U6m)*+U%(Sp)%),  (73)
=1
Li(ir‘,ﬁa:mv (60 where the charge- and spin-interaction coefficients are given
by
8tu?
oo’ _ P 2—u)(1+u
L= o2 'Th (61) pe=y ETREED 1)_(u L (74)
Lgo =2tu, i#], 62 2+u)(1-u
ii,ij J ( ) USZ—U( 11_(u )t, (75)
32t
Kii= > (63)  and naturally coincide with the Landau parametégsand
1-u F? derived by Vollhardt in Ref. 15.
The RPA matrices read
32u®
e (64 AE+UT  U-
= _ + 1 (76)
U AE+U
16t
iic— ’ (65) + -
Si,n 1_u2 B U U (77)
u- ut)
2
iio 16tu2, i+, (66)  With the GA particle-hole excitation energhE=2t(1

—u?) andU*=U°=US,
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Upon diagonalizing the RPA problem one obtains the 0 ' ' '
eigenvalues ' ' -

- HF+RPA

o
S
T

Exact
N ——— GA+RPA

w3 =AE[AE+2(UT+U")], (79

which correspond to a singleto(,) and a magnetic excita-
tion (w_), respectively. The former is the charge excitation
which contributes to the optical conductivity, whereas the _, \
latter can be identified with the Goldstone mode driving the,}’ -y \ 7
transition from the paramagnetic to the SDW state. This tran- 0 1 2 3 -
sition occurs aw? =0=AE+4US, so that the transition to ut e N
the symmetry-broken state is only determined by the spin sl N
interaction US. Notice that for the HF approximation we
haveU°=U/4= —US3, so that in this case the transition oc-
curs atUH% /t=2, as stated above.
When we expand the RPA charge excitation energy of the -2 '
GA approach for smalU/t we obtain 0

.
double occupancy
©
e
T
Vd
P

un

FIG. 2. Comparison of the GARPA, HF-RPA, and exact re-
sults for the ground-state enerfgy of the two-site Hubbard model.
The inset shows the double occupancy as a functiod /ofwithin

w2+ =2t(2t+U) (HF+RPA), (80) the same approaches.

1
W% =2t(2t+U)+ =U2+O(U%) (GW+RPA), (79
4

which has to be compared with the expansion of the exaciVe thus obtain the GARPA ground-state energy which is
excitation: displayed in Fig. 2 together with the correspondingtH&PA
and the exact result.

Naturally for such a small system any mean-field treat-
ment would result in large errors, however, due to the in-
) _ .. creased value oS/, and the extra contributions id dis-
Thus the RPA corrections to the Gutzwiller approximationssed above, GARPA performs much better than HF
partially include higher order contributions lu which are | rpa In general, RPA corrections overshoot the exact

1
w2, o= 2t(2t+ U)+§U2+O(U3). (81)

not contained in the HFRPA approach. energy, which becomes significant when one approaches the
The eigenvectors of Eq46) are given by nonphysical SDW transition.
. For larger systems, where the broken symmetry mean
Xy =12a.[1+w. /(AB)], (82) field can correspond to long-range order or quasi-long-range
. order in the exact solution, the agreement is much better, as
X[ =*12a.[1+ w. /[(AE)], 83 shown in Ref. 13. In addition the performance improves with
increasing dimensionality as in any mean-fieRIPA theory.
Yi=12a.[1-w./(AE)], (84) Finally it is straightforward to check that standard sum
rules are obeyed. For example the current operator matrix
Yf= +12a.[1-w+ /(AE)], (85) elements between ground state and the chatge dnd the

L Lo magnetic (-) excitation are given by
and the normalization factor 8% =AE/(2w.).

We are now able to compute the RPA double occupancy [(0]j €A —)|?=0, (89)
by evaluating the corresponding correlation function as
S m=+(0[n;|m){m|n,|0) leading to (O] CA+)?=t(1-u?)w, . (89
1 1 As a result one thus obtains that thesum rule
DERA=7 + gAE(Ww, ~ L. ). (86)  (0]j%A +)|%w, +(12)ESA=0 is satisfied within the GA
+RPA approach.
Approaching the SDW transition leads to an increase of spin
fluctuations to a divergent BY’A at the transition point due to IV. RESPONSE FUNCTIONS IN THE 1D AND 2D
the Goldstone mode - —0 (see inset of Fig. 2 From the HUBBARD MODEL

double occupancy we can compute the corrections to the _ . _
ground state energy using the coupling constant integration In this section we apply our method to the calculation of

trick,24?%i.e., E;n = YdxDRPA(x) which yields response functions in the 1D and 2D Hubbard mpdels. In the
first part, we show that already on the saddle-point level, the
ESATRPAZ _Dt+U/2+2t[ — 2+ \2—(1—u)? GA yields rather accurate excitation energies as compared to
the HF approach. Inclusion of RPA corrections then leads to
+y2—(1+u)?]. (87) an additional redistribution of spectral weight in the correla-
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4 ; ;

wheret¢; contains the-factor renormalization in the case of
the GA (tSfi=tz,z)), tif;=t and % denotes the real part.
The SDW gap in the HF approach is related to the onsite
] magnetizationA"F=2U|S,|, whereas within the Kotliar-
..... GA Ruckenstein formulation of the G&Ref. 6 it is determined

? I by the difference in the local spin-dependent Lagrange mul-
i tipliers A®#=X\,;—X\ . It is quite interesting to observe that
i the onset of excitations coincides rather well in the DDMRG
!' \\ (Ref. 27, and GA approaches, whereas the HF approach
A

j

o(w)
n

gives a gap which is by far too large. However, although GA
| leads to excellent results for the gap energies it turns out that
the corresponding intensity is overestimated. This has the
consequence that most of the high-frequency evolution of
o(w) is compressed close to the threshold, whereas the
DDMRG approach shows a much broader spectrum. We
6 8 have checked the broadness of the exact spectrum by per-
forming exact diagonalization in small clusters. From Eq.
FIG. 3. Optical conductivity of the 1D Hubbard chaig2o0  (90) one obtains that the large frequency tail for GA and HF
sites for U/t=3. Solid: DDMRG; dotted: GA; dash-dotted: HF. @Pproaches behaves @éw>A)~1/w®, whereas the correct
DDMRG data by courtesy of E. Jeckelmanr(w) has been con- field theoretical result igr(w>A)~1/w.*’
voluted with a Lorentzian with a widtlh=0.1t. To summarize, the optical conductivity results are the
same at mean field or mean field plus RPA, and, therefore, no
tion functions, which is demonstrated in the second part byForrections are introduced by our method in tiiiather
a detailed comparison of exact diagonalization results wittPathological case. As compared to the DDMRG results, the
the GA+RPA and HF+RPA. This comparative study is es- GA performs much better than the HF approach since it re-
pecially intended for ana posteriori justification of the Produces the onset of excitations with a better accuracy.
antiadiabaticity assumptiofEq. (17)]. However, the width of the spectrum is underestimated in
both mean-field approaches.

A. Optical conductivity of the half-filled Hubbard model . .
) . L B. Comparison with exact results
in the Gutzwiller approximation

After Ref. 13 was published we became aware that the In order to compare the G’ARPA appFOaCh W.'th exact
RPA residual interaction for the SDW vanishes in the chan-reSUIf[S’ we investigate the on-site density-density response
nel relevant for the optical conductivitzero momentum function
and odd parity. This is a pathology of the Hubbard model at

half-filling, and occurs both in the HFRPA and in the GA Se(@)=2, > (| ¥e)|26w—(Epn—Eo)].
+RPA, whereas it does not occur for more complicated mod- rom=0
els (like multiband Hubbard or symmetry-broken ground (92)

states, like polarons or stripes. As a consequence the optical this case, GA and GARPA solutions are different, since

conductivity o(w) is the same on the GARPA and GA  the pathology discussed in Sec. IV A is not present. The fol-
level. It is nevertheless quite instructive to examingw) lowing sum rule is obeyefsee Eq(57)]:
within the mean-field approximation since this demonstrates

the better starting saddle-point of the GA in comparison to
the HF approach, with respect to the one-particle excitation f dowSy(w)==(T)ca- (92
energies. For this purpose, in the following we compare the
GA and HF optical conductivity with numerical results, and  In Fig. 4 we showS.(w) for a half-filled Hubbard chain
present the results for charge-charge correlation functionwith 14 sites calculated with exact diagonalization, the GA
where the mentioned pathology does not occur and insteattRPA, and the HF-RPA. For U/t=3 the lowest energy
the GA+RPA introduces nontrivial corrections to the dy- excitation is atw~ 1.4 (exac), o~1.3 (GA+RPA) and w
namical response functions. ~2.1t (HF+RPA), respectively, so that the GARPA ap-
Figure 3 displayso(w) for a half-filled Hubbard chain proach is much more accurate than the standare-RIFA
and U/t=3 convoluted with a Lorentziah(w)=g/[ m(e? approach. Also the higher energy excitations computed with
+w?)] ande=0.1t. For both GA and HF approaches, the the GA+RPA are in remarkable agreement with the exact
ground state is characterized by long-range SDW order, antesults. Moreover, the oscillator strength of the two lowest
the regular part otr(w) is given by excitations coincides rather well with the intensity obtained
with exact diagonalization. The small high-energy features
A2 162 betweena_wSt andw~ 7t present in the exact result do not
o(w)= R eff 4. (90)  show up in the GA-RPA correlations. As a consequence, the
2w? w?—A? GA+RPA slightly overestimates the intensity between
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FIG. 4. Charge correlation functids,(w) for a half-filled Hub-
bard chain(14 site in cases ofU/t=3 (a) and U/t=6 (b). For
clarity the curves for HF-RPA and GA[in (b)] have been shifted
upwards. The inset itb) shows the integrated weight as a function
of frequency for GA and GARPA, respectively.

~3t and w~5t, since from(T)ca~(T)exact, the sum rule

PHYSICAL REVIEW B57, 085108 (2003

3
exact Uni=10
~— GA+RPA g "l
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FIG. 5. Charge correlation functioB.(w) for the half-filled 4
X 4 Hubbard mode(16 particleg in the case ofJ/t=10.

energy window on the low-energy side of the exact spectrum
with rather incorrect oscillator strength. Thus, RPA correc-
tions induce a broadening and shift of excitations to higher
energies with a simultaneous redistribution of intensity. This
can also be deduced from the inset of Figh)4which shows
the evolution of the integrated spectruifjS.(v)dv for the

GA and GA+RPA. From the sum rulgEq. (92)] it is obvi-

ous that both the GA and the GARPA approach the same
integrated spectral intensity but with the GRPA spectral
evolution broadened and shifted to higher energies with re-
spect to the bare GA.

In systems with large dimensionality we expect our ap-
proach to improve, since the GA is an exact solution of the
Gutzwiller variational problem in infinite dimensions. Fur-
thermore, quite generally mean-field theories become better
as the dimensionality is increased. Figure 5 display&w$
for a half-filled 4x4 system(i.e., 16 particles with U/t
=10. The lowest prominent energy peak in the exact solu-
tion occurs atw;,=8.4 and a second bunch of excitations
starts alJ/t~10t. .. 11t decaying in intensity toward higher
energies. The lowest energy excitation within the -GRPA
(wSHRPA=8 Tt) is remarkably close to the exact value in
C(LnFtrast to the HFRPA where the lowest peak appears at

requires the integrated spectral weight to be approximatelw,;,=9.8. Moreover, the center of high energy excitations

the same in both the GA and the exact result.
The accuracy of the GARPA approach is also remark-

in the exact solution is represented by two peaks in the GA
+RPA spectrum at 9t7and 11.2, whereas they are shifted

able with respect to the fact that the underlying mean-fieldo slightly higher energies within the HFRPA. It is inter-
solution (the GA) corresponds to a SDW state, whereas theesting to observe that also in this energy range ther&@RA
exact solution in one dimension does not show long-rangenethod gives a bettéalthough rather crudeapproximation
order. However, it is well known that correlation functions than the HR-RPA method despite the expected failure of the
decay slowly and thus are quasi-long-ranged. Hence only foantiadiabaticity condition Eq(17) for energies larger than
very low energies does one expects disagreement due to thise Mott-Hubbard gap.

problem, and since excitations in the system under consider- Finally we would like to demonstrate the importance of
ation are gapped this discrepancy does not really show up.an accurate mean-field solution for the quality of the RPA

Figure 4b) reveals that GARPA provides a better de-
scription of the low-energy excitations than the -HRPA,
even at larger values dfi/t. In addition, in Fig. 4b) we

excitation spectrum. For this purpose Fig. 6 sh&u&w) for
a 4x4 system and ten particles. In the cds&=4 [Fig.
6(a)] the HFRPA and the GA-RPA give a good approxi-

show the charge-charge correlations for the bare GA. In thisnation to the lowest excitation, both with respect to the os-
case, the corresponding excitations are located in a narrogillator strength and the energy. Fort=4 and 10 particles
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16 be accurate than the high-energy partoof This argument
assumes that at least the excitation energies are approxi-
14 - a) Ut=4 - mately correct; otherwise one can satisfy the sum rule by a
_ compensation between the incorrect excitation energies and
12 - i N=10

ii the incorrect matrix elements as it occurs within the bare GA
for the charge correlation functidirig. 4(b)].

Finally, it is remarkable that the GARPA dynamical cor-
relation functions perform rather well even at energies much
larger than the charge gdpigs. 4, 5, and pwhere the an-
tiadiabatic conditiofEq. (17)] is not expected to hold. To
some extent this may be due to the constraints imposed by

41 g GA+RPA | sum rules. It shows that at least for some correlation func-
.l 1 —-—- HF+RPA | tions (charge-chargethe domain of applicability of our
i theory may be much wider than expected.
gt .
0 2 4 6 8 10
o/t V. CONCLUSION
10 : : : In summary, we have presented a method for the calcula-
tion of dynamical correlation functions in the Hubbard
b) Uit=10 model, based on the Gutzwiller approximation. Our method
8 r 1 obeys well-behaved sum rules and we have demonstrated
,'-‘ A ."‘ Np=1o that it is suitable for practical computations: excitation ener-
/,’ o NN~"'-\ N gies compare remarkably better with exact diagonalization
6" e I - . results than the related HRRPA approach. Moreover, since
3 1 the performance of any RPA computation crucially depends
0 i on the quality of the underlying mean-field solution, we con-
4r f i clude from our analysis that the GA provides a much better
,l‘: fél exact starting point f_or this purpose than HF. _
ol 1 | —— GA+RPA | The Qynamlcal matrix has been cglcula’ged as a quapl_ratm
\‘ |1  —-—- HF+RPA expansion of the GA energy functional in the densities,
- \‘ which allows us to construct the RPA eigenvectors and ei-
0 2 genvalues. Essential assumption for carrying out this expan-
0 2 4 6 8 10 sion is the antiadiabaticity conditiditqg. (17)]. Despite the

w/t fact that charge and double occupancy dynamics seem to be
governed by different time scales, it would be desirable to
relax the antiadiabatic approximation and to treat the double
occupancy dynamics explicitly. This is in principle possible
via the Kotliar-Ruckenstein slave-boson scheme; however,
(corresponding to a closed shell configurajitme underly-  attempts in this direction are rendered difficult due to the
ing mean-field solutions are homogeneous with respect to thieopping factor expansion.
charge and do not show a SDW order. However, whereas the Compared to numerical methd@$°® our approach can be
homogeneous GA solution also remains a stable saddle poipushed to much larger systems. Our experience in modeling
for large values ofU/t, the HF solution becomes instable real datd’>!is that often finite-size effects are more severe
with respect to a disordered charge and spin texture. Thithan the inaccuracies introduced by mean-fidRPA ap-
obviously has dramatic consequences for the dynamicgroaches. A more recent approach for dynamical properties
properties as shown in Fig(l§). In fact, the GA-RPA spec- consists of mapping the problem onto quantum impurity
trum still shows a remarkable agreement with the exact somodels(dynamical mean-field theoryhich becomes exact
lution in contrast to the RPA on top of the inhomogeneousn the limit of large dimension¥ This has enormously in-
HF solution. creased our understanding of these systems. However, when
Notice that the GA-RPA oscillator strength for the making the limit of large dimensions important parts of the
charge-charge correlations is distributed in a much bettephysics are lost. For example, all acousticlike collective be-
way than for the optical conductivitsee Fig. 3. To some havior, like spin waves, disappears. On the other hand, these
extent, this can be attributed to the constraints imposed bgollective effects are naturally captured in our approach.
the sum rules. Both correlation functions satisfy a sum rule The GA+RPA formalism can also be applied to multi-
which involves the kinetic energy on the right-hand sideband Hubbard models, which are relevant for a more quan-
[Egs.(51) and(57)]; however, in case of the optical conduc- titative analysis of excitations in the cuprate highsuper-
tivity the high-energy states contribute much less to the sunconductors. It has been shown recently that the GA provides
rule than in the case @&.(w) due to thew factor. Therefore, an excellent starting point to describe the physics of stripes
the high-energy part 05.(w) is much more constrained to in cuprates including the behavior of incommensurability,

FIG. 6. Charge correlation functid®(w) for the 4x 4 Hubbard
model and ten particles in the caseldft=4 (a) andU/t=10 (b).

085108-12



INHOMOGENEOUS GUTZWILLER APPROXIMATION WITH . .. PHYSICAL REVIEW B57, 085108 (2003

chemical potential and some transport experiments with zisgz (ei2+ SiZ_U)—l/2(eiSi ,Tsi —adi)(di2+sizg)_l/2-
doping® In this context it is very important to make a RPA ’ ’ ’ ' ’ (A3)
analysis on top of GA states, since within the HF approxi-

mation one obtains a ground state which does not corresponthe total energy oHXR is given by

to experiment. Work in this direction is in progress.
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Since these bosons obey the constrait) and (A2) one
APPENDIX: RELATIONSHIP TO THE KOTLIAR- can eliminate 3N of them which leads to the Gutzwiller en-
RUCKENSTEIN SLAVE-BOSON APPROACH ergy EG* when one keeps the double occupancy variable

. . D =d? for each lattice site. Thus the expansions€EGf and
In the Kotliar-Ruckenstein slave-boson approach to theEGA are connected via the transformations

Hubbard mod@l the original Hilbert space is enlarged by

introducing four subsidiary boson fielés, s; ;, s; |, andd; .

for each siteR; . These operators stand for the annihilation of azer a9zt az’t  0zpS  azd
empty, singly occupied states with spin up or down, and 0D 12 g2 a2 2
. . . - ad s ds. de
doubly occupied sites, respectively. Since there are only four v o
possible states per site, these boson projection operators must
satisfy the completeness constraints aziGﬁ aZiSE gzisg
Pio 952 o€
ele+> sl s ,+dld=1 (A1) 7
GA SB SB
and azi,o’ _ azi,o’ . azi,o’ (AS)
pii —. 2 2’
U:S:USi’U+drdi . (AZ) Pii,—o Js” e

In the saddle-point approximation, all bosonic operators arand the derivatives have to be taken at the saddle point.
treated as numbers, and the resulting effective one-particlgpon inserting this transformation in Eq&l9) and (20)
HamiltonianHXR describes the dynamics of particles whereleads to an analogous energy expansion than(24), but
the hopping amplitude between statéso) and (j,o0) is  now within the KR scheme. For paramagnetic solutions this

renormalized by a factar; >z5 with corresponds to the analysis done in Ref. 10.
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