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Inhomogeneous Gutzwiller approximation with random phase fluctuations for the Hubbard model
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We present a detailed study of the time-dependent Gutzwiller approximation for the Hubbard model. The
formalism, labeled GA1RPA, allows us to compute random-phase-approximation-like~RPA! fluctuations on
top of the Gutzwiller approximation~GA!. No restrictions are imposed on the charge and spin configurations
which makes the method suitable for the calculation of linear excitations around symmetry-broken solutions.
Well-behaved sum rules are obeyed as in the Hartree-Fock~HF! plus RPA approach. Analytical results for a
two-site model and numerical results for charge-charge and current-current dynamical correlation functions in
one and two dimensions are compared with exact and HF1RPA results, supporting the much better perfor-
mance of GA1RPA with respect to conventional HF1RPA theory.
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I. INTRODUCTION

The Gutzwiller variational wave function, together wi
the Gutzwiller approximation~GA!,1 is a widely used ap-
proach in order to deal with Hubbard-type models. Ori
nally introduced in order to explore the possibility of ferr
magnetism within the Hubbard model~see, e.g., Ref. 2, an
references therein! its popularity resides in the fact that
captures correlation effects like the band narrowing alre
on the variational level. More recently the GA has also be
used for realistic band structure computations.2–4 Since in
the Hubbard model one has a competition between delo
ization, from the hopping of the charge carriers, and loc
ization, from the onsite interactionU, the idea is to apply a
projector to a given Slater determinant which reduces
number of doubly occupied sites. Within the GA, one has
minimize an energy functional which is composed of a ren
malized kinetic term and the interaction energyUD, where
D denotes the concentration of doubly occupied sites.

On the other hand, mean-field theories, like Hartree-F
~HF! theory, are usually only the first step in a many-bo
computation and it is often desirable to include the effect
fluctuations within the random-phase approximation~RPA!.
In case of the HF approach this has been achieved by nu
ous techniques~for an overview see, e.g., Ref. 5!, however,
the development of a similar scheme in the GA has bee
long-standing problem of the condensed-matter many-b
community. The major step in this direction was the ref
mulation of the GA by Kotliar and Ruckenstein~KR! within
the so-called four slave-boson approach.6 This method maps
the physical hole~or particle! into products of fermionic and
bosonic operators where the latter additionally label the
cupancy of the site. At the saddle-point level the bosons
replaced by their mean-field values and one recovers
GA energy functional showing its underlying mean-fie
character.

The KR slave-boson formulation offers the possibility
going beyond the Gutzwiller result by the inclusion of tran
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versal spin degrees of freedom.7 Moreover, in principle, it
provides a controlled scheme of including fluctuations b
yond the mean-field solution. However, the expansion of
KR hopping factorzSB is a highly nontrivial task, both with
respect to the proper normal ordering of the bosons and w
respect to the correct continuum limit of the function
integral.8 Expansions around the slave-boson saddle p
were performed for homogeneous systems in Refs. 9 an
in order to calculate correlation functions in the charge a
longitudinal spin channels. Furthermore, the optical cond
tivity in the paramagnetic regime of the Hubbard model w
calculated in Ref. 11. A severe difficulty in this approach
the fact that the KR choice for the hopping factor does
lead to controlled sum rules.12 Moreover, to our knowledge
this approach has not been extended to symmetry bro
states due to the complexity of the computation.

Recently, two of us have presented a computation of R
fluctuations on top of GA states~GA1RPA!.13 Our approach
borrows ideas from well developed techniques in nucl
physics,14 and RPA fluctuations are obtained in the sm
oscillation limit of a time-dependent Gutzwiller approxim
tion. Since response functions are derived for systems w
completely unrestricted charge and spin distributions, G
1RPA is also suitable for the calculation of charge exci
tions of inhomogeneous textures. A key point of the G
1RPA approach is the proper determination of the tim
dependence of the variational double occupancy param
We have adopted an antiadiabatic approximation in the se
that the double occupancy adjusts instantaneously to the
evolution of the single particle densities. In this context o
approach can be viewed as a generalization of the Fe
liquid analysis of Vollhardt.15 In this paper we use the GA
1RPA to compute various correlation functions in the on
band Hubbard model and compare them with exact diago
ization and HF1RPA results.

This paper is organized as follows. In Sec. II we pres
the formalism. We concentrate on the case of the one-b
Hubbard model although generalization to more complica
©2003 The American Physical Society08-1
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models is straightforward. From the expansion of the G
energy functional up to second order in the densities,
demonstrate how the RPA response functions can be ca
lated and show that standard sum rules are obeyed.
method is illustrated in Sec. III for the two-site Hubba
model, which can be treated analytically. Finally, in Sec.
we compare the GA1RPA excitation spectra with exact d
agonalization and HF1RPA results respectively.

II. MODEL AND FORMALISM

We consider the one-band Hubbard model

H5(
i j ,s

t i j ci ,s
† cj ,s1U(

i
ni ,↑ni ,↓ , ~1!

whereci ,s
(†) destroys~creates! an electron with spins at site i,

andni ,s5ci ,s
† ci ,s . U is the onsite Hubbard repulsion andt i j

denotes the hopping parameter between sitesi and j.

A. Gutzwiller approximation

In its original formulation, the GA yields an approxima
tion for the energy of a uniform paramagnetic system.1 Only
in the late 80’s this approach has been consistently gen
ized to an unrestricted Slater determinant within the Kot
and Ruckenstein slave-boson approach.6 The same unre-
stricted Gutzwiller energy functional was obtained
Gebhard,16 exploiting the fact that the GA becomes the exa
solution of the Gutzwiller variational problem in the limit o
infinite spatial dimensions.17

In Gebhard’s formulation the variational wave function
written as4,16

uC&5)
i

Û i

Ki
1/2

uSD&, ~2!

Û i5expS 2g ini ,↑ni ,↓2(
s

m i ,sni ,sD ~3!

where Ki5^CuÛ i Û i uC&. In Eq. ~2! uSD& denotes a Slate
determinant which already incorporates the Hartree contr
tion of the local interactions and which has to be determin
variationally. The solution of the variational problem in th
limit of infinite dimensions turns out to be the GA genera
ized to an arbitrary charge and spin distribution of the S
Them i ,s act as local chemical potentials and are determi
within the GA by the infinite dimension prescription that th
diagonal charges are not renormalized:

^Cuni ,suC&5^SDuni ,suSD&.

As a result one obtains, for the GA energy functional,6,16

EGA@r,D#5(
i j ,s

t i j zi ,s
GAzj ,s

GAr j i ,s1U(
i

Di ,
08510
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zi ,s
GA5

A~12r i i 1Di !~r i i ,s2Di !1ADi~r i i ,2s2Di !

Ar i i ,s~12r i i ,s!
,

~4!

which is a functional of the density matrixr i j ,s

[^SDucj ,s
† ci ,suSD& and the double occupancy paramete

Di . We denote the set of all matrix elements$r i j ,s% and$Di%
by r and D. Note that in this paper we do not consid
spin-canted solutions which would have density matrix e
ments ^SDucj ,s

† ci ,s8uSD&Þ0 for sÞs8. However, trans-
verse spin degrees of freedom can be straightforwardly
corporated within the spin-rotationally invariant slave-bos
formulation.7

We will denote byuC0& the particular wave function o
form @Eq. ~2!# that minimizes the energy. In order to obta
the corresponding stationary solutionr (0),D (0) one has to
minimize EGA with respect to the double occupancy para
etersD and the density matrixr, where the latter variation
has to be constrained to the subspace of Slater determin
by imposing the projector conditionr25r,18,19

d$EGA@r,D#2tr@L~r22r!#%50, ~5!

whereL denotes the Lagrange parameter matrix. It is co
venient to define a Gutzwiller Hamiltonian18,19

hi j s@r,D#5
]EGA

]r j i s
, ~6!

which is also a functional ofr and D. Variation of Eq.~5!
with respect to the density matrix leads to

h2rL2Lr1L50. ~7!

The Lagrange parameters can be eliminated19 and together
with the variation with respect toD we obtain the self-
consistent GA equations

@h,r#50, ~8!

]EGA

]Di
50. ~9!

The first equation can be solved by diagonalizing both
Gutzwiller Hamiltonian and the density matrix by a line
transformation of the single-particle orbital basis,

ci ,s5(
n

c i ,s~n!an , ~10!

leading tohmn
0 5dmnen . Moreover, the diagonalized densit

matrix r[r (0) has an eigenvalue 1 below the Fermi lev
and an eigenvalue 0 above it. We use Greek letters to de
any state of this particular basis, and the zero indicates ev
ation in the saddle point. Additionally, we denote states
8-2
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low the Fermi level as hole~h! states and the states above t
Fermi level as particle states (p).

Notice that in this base (r (0))25r (0) is trivially satisfied.
r (0) acts as a projector onto the hole states of the sad
point Slater determinant in the space of the density matr
whereass (0)[12r (0) corresponds to the projector onto pa
ticle states.

The diagonalization of Eq.~8! has to be supplemented b
a minimization of the Gutzwiller energy with respect to t
double occupancy parameters of Eq.~9!. For this purpose, a
convenient method in order to obtain inhomogeneous
solutions was discussed in Ref. 20. Note that the unrestri
variational procedure with respect to charge and~or! spin
degrees of freedom prevents the occurrence of
Brinkmann-Rice transition toward localization,21 which was
already shown in Ref. 22 for Nee´l-type antiferromagnetism

B. Derivation of the RPA equation

Before starting our analysis it is convenient for later u
to define the GA effective operator

OGA5(
i j s

~oi j ,s
GA cis

† cj s1H.c.!, ~11!

where oi j s
GA5qi j soi j ,s and qi j s51 if i 5 j and qi j s

5zi ,s
GAzj ,s

GA otherwise. In order to derive the RPA equation w
introduce a small time-dependent external field add
to Eq. ~1!,

F~ t !5(
i j s

~ f i j ,s~ t !cis
† cj s1H.c.!, ~12!

with f i j ,s(t)5 f i j ,s(0)e2 ivt. As a consequenceuC&, uSD&,
and the variational parameters acquire a time depend
and an additional term appears in the energy functio
@Eq. ~4!#,

Ef
GA@r,D#~ t !5^C~ t !uH f~ t !uC~ t !&

5(
i j s

~ f i j s
GAr j i ,se2 ivt1H.c.!, ~13!

where f i j s
GA5qi j s f i j ,s .

The time-dependent field induces small amplitude osci
tions of D andr around the GA saddle point:

D5D (0)1dD~ t !, ~14!

r5r (0)1dr~ t !. ~15!

The density and double occupancy fluctuations are c
strained by the following requirements:

~i! At all timesr is constrained to be the one-body dens
matrix associated with a Slater determinant. This can
achieved by imposing

r5r2. ~16!

~ii ! The double occupancy is assumed to have a m
faster dynamics than the density matrix so that it can
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treated antiadiabatically. As a consequence,dD adjusts in-
stantaneously to the evolution of the density matrix via
condition

]EGA@r,D#

]dDi
50. ~17!

In fact Eq. ~17! constitutes the basic hypothesis of th
present formalism which is necessary in order to derive
effective Gutzwiller interactionbetween particles~see be-
low!. We expect this approximation to be accurate for su
ciently low-energy excitations. At high energies one c
check the accuracy and the limits of validity of this appro
mation by comparing with exact diagonalization, as do
in the following sections. Surprisingly, it turns out to b
accurate at least up to energies of the order of the M
Hubbard gap.

As in any small amplitude approximation, we start b
expanding the GA energy@Eqs. ~4! and ~13!# around the
saddle point. The first part@Eq. ~4!#, is needed up to secon
order in the density and double occupancy deviations:

EGA@r,D#5E01tr~h0dr!1(
i j ,s

t i j @zi ,s
GAd1zj ,s

GA

1zj ,s
GAd1zi ,s

GA#dr j i ,s1(
i j ,s

t i j r j i ,sd1zi ,s
GAd1zj ,s

GA

1(
i j ,s

t i j r j i ,s@zi ,s
GAd2zj ,s

GA1zj ,s
GAd2zi ,s

GA#. ~18!

Here E0 denotes the saddle-point~mean-field! energy, and
the trace includes sum over spins. We have used the foll
ing abbreviations for thez-factor expansion:

d1zi ,s
GA[

]zi ,s
GA

]Di
dDi1(

s8

]zi ,s
GA

]r i i ,s8

dr i i ,s8 , ~19!

d2zi ,s
GA[

1

2

]2zi ,s
GA

]Di
2 ~dDi !

21(
s8

]2zi ,s
GA

]Di]r i i ,s8

dDidr i i ,s8

1
1

2 (
s8s9

]2zi ,s
GA

]r i i ,s8]r i i ,s9

dr i i ,s8dr i i ,s9 . ~20!

To proceed further it is convenient to cast the second or
expression in matrix form

EGA@r,D#5E01tr~h0dr!1
1

2
dr j i ,sLi jkl

ss8dr lk,s8

1
1

2
dDiKi j dD j1dDiSi ,klsdr lks , ~21!

where the matrix multiplications imply the Einstein sum co
vention and the definitions for the matricesL, K, andS fol-
low immediately from Eqs.~18!, ~19!, and~20!. The nonzero
matrix elements are given by
8-3
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Lii ,i i
ss85(

j s9
t i j

]2zi ,s9

]r i i ,s]r i i ,s8

zj ,s9~r i j ,s91r j i ,s9!,

Lii , j j
ss85(

s9
t i j

]zi ,s9
]r i i ,s

]zj ,s9
]r j j ,s

~r i j ,s91r j i ,s9!, iÞ j ,

Lii ,i j
ss85Li j ,i i

s8s5t i j

]zi ,s ‘

]r i i ,s
zj ,s8 , iÞ j ,

Kii 5(
j s

t i j

]2zi ,s

Di
2

zj ,s~r i j ,s1r j i ,s!,

~22!

Ki j 5(
s

t i j

]zi ,s

]Di

]zj ,s

]D j
~r i j ,s1r j i ,s!, iÞ j ,

Si ,i i s5(
j s8

t i j

]2zi ,s8
]Di]r i i ,s

zj ,s8~r i j ,s81r j i ,s8!,

Si , j j s5t i j (
s8

]zi ,s8
]Di

]zj ,s8
]r j j ,s

~r i j ,s81r j i ,s8!, iÞ j ,

Si ,i j s5t i j

]zi ,s

]Di
zj ,s , iÞ j .

Note the formal similarity between Eq.~21! and an electron-
boson problem where particle-hole excitations interact wit
bosonic degree of freedom in place ofD. The matrixK plays
the role of a double occupancy stiffness, andS that of a
double occupancy-electron interaction.

We can integrate out theD fluctuations using the antiadia
baticity condition@Eq. ~17!#. First, we expressdDi in terms
of the density fluctuations via

dDi52~K21! i j Sj ,klsdr lk,s , ~23!

which finally yields an expansion of the energy as a fu
tional of dr aloneẼ@r#[EGA@r,D(r)#:

Ẽ@r#5E01tr~h0dr!1
1

2
dr j i ,s@L02S0

†K0
21S0# i jkl

ss8dr lk,s8 .

~24!

Note that we could also have derived Eq.~24! within the KR
slave-boson approach. The corresponding transformat
for the derivatives are given in the Appendix.

The matrix (L02S0
†K0

21S0) can be considered as an e
fective interaction kernel between particle-hole excitations
the GA. For the paramagnetic regime this kernel reduce
the quasiparticle kernel of Vollhardt’s Fermi liqui
analysis.15 Interestingly, the off-diagonal elements of the m

tricesKi j , Li jkl
ss8 , andSi ,kls can induce intersite interaction

between the GA quasiparticles. This is in contrast to conv
tional HF theory of the Hubbard model which is purely loc

The expansion ofEf
GA@r,D# @Eq. ~13!#, is needed up to

first order only, since it is linear in the external field:
08510
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Ef
GA@r,D#5F01tr~ f 0

GAdr!1 (
i jkss8

r j i ,s
0 f i j ,s

]qi j s

]rkks8

drkks8

1 (
i jks

r j i ,s
0 f i j ,s

]qi j s

]Dk
dDk . ~25!

Here F05 f 0
GAr (0) describes the energy contribution whe

the system would be frozen at the saddle-point level and
used the fact thatqi j s does not depend on off-diagonal de
sities. As before, the double occupancy fluctuations can
eliminated through Eq. ~23!. We define Ẽf

GA@r#
[Ef

GA@r,D(r)# and

f̃ i j s[
]Ẽf

GA@r#

]r j i s
. ~26!

In this paper we will restrict ourselves to density-dens
and current-current response functions, with the current
erator given by

J5(̂
i j &

j i j , ~27!

and

j i j 52 i(
s

t i j ~cis
† cj s2cj s

† cis!.

When only densities are involvedf i j s is diagonal in the site
index, onlyqii s51 is present and the last two terms in E
~25! vanish. If currents are involved it is easy to show d
rectly from Eq.~25! that the last two terms also vanish in th
absence of currents in the ground state, i.e.,f̃ 05 f 0

GA .
Now, we proceed in analogy with the nuclear phys

treatment of effective mean-field theories in which the int
action potential is density dependent.18,19Indeed Eq.~24! can
be viewed as the energy expansion of an effective mean-
theory with the only difference that part of the density d
pendence is due to the GA hopping renormalization fact
in the kinetic part of the Hamiltonian. The advantage of th
method with respect to other methods~e.g., equation of mo-
tion or diagrammatic methods! is that the present derivatio
is solely based on the knowledge of an energy functio
associated with a Slater determinant which is precisely w
the Gutzwiller approximation provides.

The density matrix of an effective mean-field theory
this kind obeys the equation of motion18,19

i\ṙ5@ h̃@r#1 f̃ ~ t !,r#, ~28!

where we have defined an effective Gutzwiller Hamiltoni

h̃i j s@r#5
]Ẽ

]r j i s
, ~29!

which depends on densities only. At the saddle-point,
haveh̃05h̃@r (0)#5h0. The RPA is obtain by considering th
limit of small amplitude fluctuations in Eq.~28!.
8-4
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It is convenient to define the four sub-sectors of the fl
tuations of the density matrix using the projector propert
of the density matrix discussed above:

drhh[r (0)drr (0), ~30!

drpp[s (0)drs (0), ~31!

drhp[r (0)drs (0), ~32!

drph[s (0)drr (0). ~33!

The Slater determinant condition@Eq. ~16!# implies that the
fluctuations@Eqs.~30!–~33!#, are not independent. In fact, i
terms of the fluctuations, Eq.~16! reads

dr5r (0)dr1drr (0)1~dr!2. ~34!

Projecting Eq.~34! onto thehh andpp sector of the saddle
point Slater determinant yields

drhh52~11drhh!21drhpdrph'2drhpdrph, ~35!

drpp5~12drpp!21drphdrhp'drphdrhp, ~36!

where the right-hand equality is valid in the small amplitu
limit. Thus it turns out thatpp andhh density projections are
quadratic in theph andhp matrix elements. Therefore, whe
computingh̃ from Eqs.~24! and~29! one should be aware o
the fact that the term tr(h0dr)5(memrmm ~which is first
order in thepp and hh density projections! yields a qua-
dratic contribution in theph andhp matrix elements:

tr~h0dr!5(
p

epdrpp1(
h

ehdrhh

5(
ph

~ep2eh!rphrhp . ~37!

In addition, one can neglect thepp andhh matrix elements
in the last term of Eq.~24!. Thus, up to second order in th
particle-hole density fluctuations, one obtains, for the ene
expansion@Eq. ~24!#,

Ẽ@r#5E01
1

2
~drhp,drph!S A B

B* A* D S drph

drhpD . ~38!

Here the so called RPA matricesA andB are given by:

Aph,p8h85~ep2eh!dpp8dhh81
]h̃ph

]rp8h8

, ~39!

Bph,p8h85
]h̃ph

]rh8p8

, ~40!

where the matrixA contains matrix elements betwee
particle-hole excitations, whereas the matrixB is composed
of matrix elements between the ground state and
particle-hole excitations.A and B are related toM[(L0

2S0
†K0

21S0) via
08510
-
s

y

o

Aph,p8h85~ep2eh!dpp8dhh81 (
i j s,nms8

c i ,s* ~p!c j ,s~h!

3Mi j ,nm
ss8 cn,s8

* ~h8!cm,s8~p8!,

Bph,p8h8

5 (
i j s,nms8

c i ,s* ~h!c j ,s~p!Mi j ,nm
ss8 cn,s8

* ~h8!cm,s8~p8!,

and the transformation amplitudesc i ,s(n) have been defined
in Eq. ~10!.

To lowest order, we can now linearize Eq.~28! retaining
only ph andhp matrix elements,

i\dṙ5@h0 ,dr#1F ]h̃

]r
dr1 f̃ ,r (0)G , ~41!

where we use the shorthand notation

]h̃

]r
dr5(

ph
S ]h̃

]rhp
drhp1

]h̃

]rph
drphD . ~42!

Then from Eqs.~29!, ~38!, and~41! one obtains the follow-
ing linear response equation:

H S A B

B* A* D 2\vS 1 0

0 21D J S drph

drhpD 52S f̃ ph

f̃ hp
D .

~43!

This inhomogeneous equation can be solved by inverting
matrix on the left-hand side, yielding a linear relation b
tween the external field and the change in the density:

dr5R~v! f̃ . ~44!

We are now in a position to compute the response of a
particle observable

O5(
i j s

~oi j ,scis
† cj s1H.c.!,

since, in analogy with Eqs.~12! and~13! its time evolution is
given by

^C~ t !uOuC~ t !&5(
i j s

@oi j s
GAr j i ,s~ t !1H.c.#, ~45!

and the time evolution ofr is known from Eq.~44!.
The linear response matrixR(v) has poles at the eigen

frequencies of the eigenvalue problem corresponding to
~43! with f̃ 50:

H S A B

B* A* D 2\VnS 1 0

0 21D J S X(n)

Y(n)D 50. ~46!

Here \Vn[En2E0 denote the excitation energies of th
system. In analogy with the HF1RPA approximation the
vacuum of these excitations is not the old starting GA st
uC0& but a new state with both Gutzwiller-type correlatio
8-5
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and RPA ground-state correlations. We denote this state
uF0& and the corresponding exited states byuFn&.

The matrix R can be written in the following Lehman
representation:

R~v!ph,p8h85 (
n.0

F Xph
n Xp8h8

n*

v2Vn1 i e
2

Yp8h8
n Yph

n*

v1Vn1 i e
G . ~47!

In analogy with the HF1RPA method, we introduce the fol
lowing notations:

^0uah
†apun&[Xph

n , ~48!

^0uap
†ahun&[Yhp

n . ~49!

The statesun& are not true excitations of the system but re
resent auxiliary objects. Roughly speaking, they can
thought of as RPA states without the Gutzwiller project
For exampleu0& is the analog of the stateuSD& but at the
RPA level ~it contains RPA ground-state correlations b
lacks Gutzwiller correlations!. We will call them unprojected
RPA states. The eigenvector (Xph

(n) ,Yhp
(n)) can be identified

with the particle-hole and hole-particle components of
unprojected RPA excited stateun& with respect to the un-
projected RPA ground stateu0&.

Schematically the four states are related in the follow
way:

uSD&
P
→ uC0&

RPA↓ ↓RPA

u0&
P
→ uF0&,

whereP indicates Gutzwiller projection.
Within the above formalism, it is straightforward to eval

ate the current-current correlation function. The real par
the optical conductivity consists of a Drude part atv50 and
a regular part forv.0:

s~v!5Dd~v!1p (
n.0

u^Fnu j auF0&u2

En2E0
d„v2~En2E0!….

~50!

With the above approximations and notations

^Fnu j auF0&5^nu j a
GAu0&,

where the matrix element on the right-hand side can
evaluated using Eqs.~10!, ~11!, ~48!, and ~49!. Obviously,
the matrix elements withins(v) are renormalized by the GA
hopping factors whereasR(v) does not contain such reno
malization. Thus, the latter quantity does not correspond
physical response function within the GA1RPA approach.

The Drude weightD can be obtained from thef-sum rule
~seeS21 in Sec. II C!

E
0

`

dvs~v!52
1

2
p^Ta&GA , ~51!
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where the kinetic energy in thea-direction^Ta&GA is evalu-
ated within the GA.

In practice, for computational purposes, one can use
the standard formulas of the HF1RPA scheme by substitut
ing GA effective operators and excitations for true operat
and unprojected excitationsun&.

The matrix elementŝ F0uOuFn&5^0uOGAun& can be
used to characterize a given RPA excitation. Specific
amples which will be considered below are the transit
density

dni
m[^0un̂i um& ~52!

and the transition current

d j i j
n [^0u j i j

GAun&, ~53!

which can be interpreted as follows. Consider a wave pac

uc~ t !&5exp~2 iE0t !uF0&1h exp~2 iEmt !uFm&,

consisting of a small admixtureh of an exited statem to the
ground state. For example this can be the result of an e
tation of the modem by an appropriate weak external pertu
bation. The time-dependent expectation value of the cha
is then given by

^c~ t !un̂i uc~ t !&5^0un̂i u0&1hdni
me2 iVmt1H.c.,

and an analogous expression holds for the current. H

^0un̂i u0&5^SDun̂i uSD&, since one-particle densities are n
renormalized by the RPA. We see that the transition char
and currents are proportional to the amplitude of the tim
dependent fluctuation that would occur at frequen
Vm if the state m is excited by a weak perturbation18

~also see Ref. 23!.

C. Sum rules

Sum rules form a very important tool in the theory
collective excitations. In many cases they allow us to cal
late global properties in a simple way and therefore they
useful in testing different approximation schemes. In gene
a sum rule is related to thekth moment of the excitation
strength distribution produced by a single-particle operatoO
~see, e.g., Ref. 24!:

Sk[(
n

~En2E0!ku^CnuOuC0&u2. ~54!

Within the present scheme we have

Sk5(
n

~En2E0!ku^nuOGAu0&u2, ~55!

and we restrict ourselves ourselves to current or density
erators forO. The energy sum ruleS1 can be written as a
double commutator

S15 (
n51

~En2E0!u^CnuOuC0&u25
1

2
^C0u@O,@H,O#uC0&.

~56!
8-6
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In analogy with the derivation by Thouless,14 one can show
that the sum rule Eq.~56! is satisfied if the left-hand side i
evaluated at the GA1RPA level and the right-hand side
calculated using the GA ground-state wave function. T
same applies for theS21 sum rule, which corresponds to th
f-sum rule in the case of the optical conductivity discuss
above.

In the following, we consider as an example the first m
ment of the charge-charge correlation function by settingO
[ni5(snis for some lattice siteRi . It is straightforward to
evaluate the double commutator and we find for the co
sponding sum rule

Sn
1522(

m,i
~Em2E0!u^0uni um&u252^T&GA , ~57!

where ^T&GA denotes the kinetic energy evaluated with
the GA.

The sum rules of Eqs.~51! and ~57! provide a first en-
couraging argument that the unrestricted GA could impro
the description of charge fluctuation with respect to the c
responding HF method. This is based on the fact that the
kinetic energy is already renormalized on the mean-fi
level. In Fig. 1 we compare the exact kinetic energy w
unrestricted GA and HF results for various hole concen
tions in a Hubbard model (434 lattice! with nearest neigh-
bor hoppingt i j 52t. The GA Slater determinants have be
obtained using the method described in Ref. 20. Note tha
this small system it is in general not a problem to find t
true mean-field ground state via the variational procedu
We usually performed several runs starting from differe
initial configurations and checked the stability of the resu
ing states by adding some noise to the solutions. These a
general characterized by an inhomogeneous charge dist
tion except for the closed shell configurations.

FIG. 1. Kinetic energy per site of a 434 Hubbard model for
U/t54 ~a! andU/t58 ~b! with periodic boundary conditions as
function of hole doping. Filled squares: exact result; circles: un
stricted HF approximation; diamonds: unrestricted GA.
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For small values ofU/t there is almost perfect agreeme
between the GA method and the exact results. In this lim
where kinetic effects dominate the correlation part, HF ov
estimates the value of^2T& since the corresponding quas
particle hopping between sitesi andj is described by the bare
matrix elements ti j . On the other hand, forU/t58 the large
HF on-site renormalization~corresponding to an overest
mate of the spin polarization! is the reason kinetic energy i
lower than the exact result. In contrast, the values of^2T& in
the GA approximation correctly reproduce the exact res
especially in the high-doping regime, where the spin den
is reduced in large parts of the lattice. It follows that the fi
moment of a density-density correlation function will b
more accurate in the GA1RPA approximation than in the
HF1RPA approximation. The same holds for theS21-sum
rule of the optical conductivity.

To summarize this section, the idea of our method is
supplement the Gutzwiller approximation with RPA fluctu
tions analogous to the HF1RPA approach.25 Since the GA
provides a much better initial saddle-point than the HF
proach one can expect that the fluctuation corrections wi
the GA1RPA will allow a more accurate description of co
relation effects than the HF1RPA approach. In the remainin
sections we analyze in detail small data cases to test
domain of applicability of the method, and we finally sho
some applications in larger systems.

III. TWO-SITE HUBBARD MODEL

In order to demonstrate the method developed above,
consider in the following the two-site Hubbard model whi
can be solved exactly and can be studied analytically in b
the GA1RPA and HF1RPA approximations.

Exact ground-state energy and double occupancy at h
filling ~i.e., two particles! are given by

E05
U

2
@12A11~4t/U !2#

and

^n↑n↓&5
1

2

E0
2

4t21E0
2

,

respectively. The exact optical conductivity displays o
transition between the ground state and an excited state
energyEU5U resulting in the excitation energy

EU2E05
U

2
@11A11~4t/U !2#.

The corresponding matrix element of the current operato

u^0u j uU&u25
16t4

~E0
214t2!

.

Upon minimizating the GA energy functional of the hal
filled two-site model one finds a paramagnetic soluti
below

-

8-7
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Ucrit
GA /t58~A221!'3.31,

and a Nee´l-type state withm1
052m2

0, where

mi5^ni ,↑&2^ni ,↓&Þ0

for U.Ucrit
GA . Within the HF theory the corresponding crit

cal value isUcrit
HF /t52.

Clearly the transition in either case is nonphysical sinc
does not occur in the exact solution. In this sense the
crease ofUcrit

GA with respect toUcrit
HF is in favor of the GA

since it extends the parameter range of the right singlet p
magnetic solution. At largeU, disregarding the nonphysica
broken symmetry, the Nee´l-type state in the GA allows the
system to reduce the double occupancy and at the same
prevents the occurrence of the Brinkmann-Rice~BR! transi-
tion toward localization atUBR58t.

Since the analytic expressions for the symmetry-bro
regime become quite lengthy we restrict the derivation be
to the paramagnetic case. In this limit the mean-field par
the energy is given by

tr~h0r!5t~12u2!(
s

~rpp,s2rhh,s!, ~58!

which defines the diagonal Gutzwiller Hamiltonian in E
~6!. The hole ~particle! state is the bonding~antibonding!
state andu5U/(8t).

The GA kinetic energy reads

Ekin522t~12u2!,

and the expansion of the GA energy functional leads to@see
Eqs.~22!#

Lii ,i i
ss 5

4t~213u22u4!

12u2
, ~59!

Lii ,i i
s,2s5

8t

12u
, ~60!

Lii , j j
ss852

8tu2

12u2
, iÞ j , ~61!

Lii ,i j
ss852tu, iÞ j , ~62!

Kii 5
32t

12u2
, ~63!

Ki j 52
32tu2

12u2
, iÞ j , ~64!

Si ,i i s52
16t

12u2
, ~65!

Si , j j s5
16tu2

12u2
, iÞ j , ~66!
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Si ,i j s524tu, iÞ j . ~67!

One of the peculiarities of the present approach is the app
ance of onsite interactions for quasiparticles with the sa
spin (Lii ,i i

ss Þ0). These interactions do not occur in the sta
dard RPA since they would violate the Pauli exclusion pr
ciple but appear here because of the density dependenc
the effective interaction between particles. Also notice t
many of the matrix elements would diverge at the BR tra
sition if it were not hidden by the spin-density-wave~SDW!
transition.

Eliminating the double occupancy fluctuations with t
help of the antiadiabatic condition@Eq. ~17!#, the following
interaction matrix is obtained:

Mii ,i i
ss 5

4tu2~32u2!

12u2
, ~68!

Mii ,i i
s,2s5

8tu

12u2
, ~69!

Mii , j j
ss850, iÞ j , ~70!

Mii ,i j
ss850, iÞ j , ~71!

Mi j ,i j
ss85Mi j , j i

ss852tu2, iÞ j . ~72!

Remarkably, intersite interactions vanish except for the
pearance of a new interaction term between off-diago

charges (Mi j ,i j
ss8). Using Eqs.~35! and~36! one can show tha

these new off-diagonal interactions do not contribute to
RPA matrices and the expansion of the energy reads

E5EGA1(
i 51

2

@Us~dmi !
21Uc~dr i !

2#, ~73!

where the charge- and spin-interaction coefficients are gi
by

Uc5u
~22u!~11u!

12u
t, ~74!

Us52u
~21u!~12u!

11u
t, ~75!

and naturally coincide with the Landau parametersF0
s and

F0
a derived by Vollhardt in Ref. 15.
The RPA matrices read

A5S DE1U1 U2

U2 DE1U1D , ~76!

B5S U1 U2

U2 U1D , ~77!

with the GA particle-hole excitation energyDE52t(1
2u2) andU65Uc6Us.
8-8
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Upon diagonalizing the RPA problem one obtains t
eigenvalues

v6
2 5DE@DE12~U16U2!#, ~78!

which correspond to a singlet (v1) and a magnetic excita
tion (v2), respectively. The former is the charge excitati
which contributes to the optical conductivity, whereas t
latter can be identified with the Goldstone mode driving
transition from the paramagnetic to the SDW state. This tr
sition occurs atv2

2 505DE14Us, so that the transition to
the symmetry-broken state is only determined by the s
interaction Us. Notice that for the HF approximation w
haveUc5U/452Us, so that in this case the transition o
curs atUcrit

HF /t52, as stated above.
When we expand the RPA charge excitation energy of

GA approach for smallU/t we obtain

v1
2 52t~2t1U !1

1

4
U21O~U4! ~GW1RPA!, ~79!

v1
2 52t~2t1U ! ~HF1RPA!, ~80!

which has to be compared with the expansion of the ex
excitation:

vexact
2 52t~2t1U !1

1

2
U21O~U3!. ~81!

Thus the RPA corrections to the Gutzwiller approximati
partially include higher order contributions inU which are
not contained in the HF1RPA approach.

The eigenvectors of Eq.~46! are given by

X↑
651/2a6@11v6 /~DE!#, ~82!

X↓
6561/2a6@11v6 /~DE!#, ~83!

Y↑
651/2a6@12v6 /~DE!#, ~84!

Y↓
6561/2a6@12v6 /~DE!#, ~85!

and the normalization factor isa6
2 5DE/(2v6).

We are now able to compute the RPA double occupa
by evaluating the corresponding correlation function
(m56^0un↑um&^mun↓u0& leading to

DGA
RPA5

1

4
1

1

8
DE~1/v121/v2!. ~86!

Approaching the SDW transition leads to an increase of s
fluctuations to a divergent DRPA at the transition point due to
the Goldstone modev2→0 ~see inset of Fig. 2!. From the
double occupancy we can compute the corrections to
ground state energy using the coupling constant integra
trick,24,26 i.e., Eint5*0

UdxDRPA(x) which yields

Eint
GA1RPA522t1U/212t@221A22~12u!2

1A22~11u!2#. ~87!
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We thus obtain the GA1RPA ground-state energy which i
displayed in Fig. 2 together with the corresponding HF1RPA
and the exact result.

Naturally for such a small system any mean-field tre
ment would result in large errors, however, due to the
creased value ofUcrit

GA and the extra contributions inU dis-
cussed above, GA1RPA performs much better than H
1RPA. In general, RPA corrections overshoot the ex
energy, which becomes significant when one approaches
nonphysical SDW transition.

For larger systems, where the broken symmetry m
field can correspond to long-range order or quasi-long-ra
order in the exact solution, the agreement is much bette
shown in Ref. 13. In addition the performance improves w
increasing dimensionality as in any mean-field1RPA theory.

Finally it is straightforward to check that standard su
rules are obeyed. For example the current operator ma
elements between ground state and the charge (1) and the
magnetic (2) excitation are given by

u^0u j GAu2&u250, ~88!

u^0u j GAu1&u25t~12u2!v1 . ~89!

As a result one thus obtains that thef-sum rule
u^0u j GAu1&u2/v11(1/2)Ekin

GA50 is satisfied within the GA
1RPA approach.

IV. RESPONSE FUNCTIONS IN THE 1D AND 2D
HUBBARD MODEL

In this section we apply our method to the calculation
response functions in the 1D and 2D Hubbard models. In
first part, we show that already on the saddle-point level,
GA yields rather accurate excitation energies as compare
the HF approach. Inclusion of RPA corrections then leads
an additional redistribution of spectral weight in the corre

FIG. 2. Comparison of the GA1RPA, HF1RPA, and exact re-
sults for the ground-state energyE0 of the two-site Hubbard model
The inset shows the double occupancy as a function ofU/t within
the same approaches.
8-9
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tion functions, which is demonstrated in the second part
a detailed comparison of exact diagonalization results w
the GA1RPA and HF1RPA. This comparative study is es
pecially intended for ana posteriori justification of the
antiadiabaticity assumption@Eq. ~17!#.

A. Optical conductivity of the half-filled Hubbard model
in the Gutzwiller approximation

After Ref. 13 was published we became aware that
RPA residual interaction for the SDW vanishes in the ch
nel relevant for the optical conductivity~zero momentum
and odd parity!. This is a pathology of the Hubbard model
half-filling, and occurs both in the HF1RPA and in the GA
1RPA, whereas it does not occur for more complicated m
els ~like multiband Hubbard! or symmetry-broken ground
states, like polarons or stripes. As a consequence the op
conductivity s(v) is the same on the GA1RPA and GA
level. It is nevertheless quite instructive to examines(v)
within the mean-field approximation since this demonstra
the better starting saddle-point of the GA in comparison
the HF approach, with respect to the one-particle excita
energies. For this purpose, in the following we compare
GA and HF optical conductivity with numerical results, an
present the results for charge-charge correlation funct
where the mentioned pathology does not occur and ins
the GA1RPA introduces nontrivial corrections to the d
namical response functions.

Figure 3 displayss(v) for a half-filled Hubbard chain
and U/t53 convoluted with a LorentzianL(v)5«/@p(«2

1v2)# and «50.1t. For both GA and HF approaches, th
ground state is characterized by long-range SDW order,
the regular part ofs(v) is given by

s~v!5
D2

2v2
RA 16te f f

2

v22D2
21, ~90!

FIG. 3. Optical conductivity of the 1D Hubbard chain~120
sites! for U/t53. Solid: DDMRG; dotted: GA; dash-dotted: HF
DDMRG data by courtesy of E. Jeckelmann.s(v) has been con-
voluted with a Lorentzian with a width«50.1t.
08510
y
h

e
-

-

cal

s
o
n
e

s
ad

nd

wherete f f contains thez-factor renormalization in the case o
the GA (te f f

GA5tz↑z↓), te f f
HF5t and R denotes the real part

The SDW gap in the HF approach is related to the on
magnetizationDHF52UuSzu, whereas within the Kotliar-
Ruckenstein formulation of the GA~Ref. 6! it is determined
by the difference in the local spin-dependent Lagrange m
tipliers DGA5l↑2l↓ . It is quite interesting to observe tha
the onset of excitations coincides rather well in the DDMR
~Ref. 27!, and GA approaches, whereas the HF appro
gives a gap which is by far too large. However, although G
leads to excellent results for the gap energies it turns out
the corresponding intensity is overestimated. This has
consequence that most of the high-frequency evolution
s(v) is compressed close to the threshold, whereas
DDMRG approach shows a much broader spectrum.
have checked the broadness of the exact spectrum by
forming exact diagonalization in small clusters. From E
~90! one obtains that the large frequency tail for GA and H
approaches behaves ass(v@D);1/v3, whereas the correc
field theoretical result iss(v@D);1/v.27

To summarize, the optical conductivity results are t
same at mean field or mean field plus RPA, and, therefore
corrections are introduced by our method in this~rather
pathological! case. As compared to the DDMRG results, t
GA performs much better than the HF approach since it
produces the onset of excitations with a better accura
However, the width of the spectrum is underestimated
both mean-field approaches.

B. Comparison with exact results

In order to compare the GA1RPA approach with exac
results, we investigate the on-site density-density respo
function

Sc~v!5(
i

(
m.0

u^Cmuni uC0&u2d@v2~Em2E0!#.

~91!

In this case, GA and GA1RPA solutions are different, sinc
the pathology discussed in Sec. IV A is not present. The
lowing sum rule is obeyed@see Eq.~57!#:

E dvvSc~v!52^T&GA . ~92!

In Fig. 4 we showSc(v) for a half-filled Hubbard chain
with 14 sites calculated with exact diagonalization, the G
1RPA, and the HF1RPA. For U/t53 the lowest energy
excitation is atv;1.4t ~exact!, v;1.3t ~GA1RPA! andv
;2.1t ~HF1RPA!, respectively, so that the GA1RPA ap-
proach is much more accurate than the standard HF1RPA
approach. Also the higher energy excitations computed w
the GA1RPA are in remarkable agreement with the ex
results. Moreover, the oscillator strength of the two low
excitations coincides rather well with the intensity obtain
with exact diagonalization. The small high-energy featu
betweenv;5t andv;7t present in the exact result do no
show up in the GA1RPA correlations. As a consequence, t
GA1RPA slightly overestimates the intensity betweenv
8-10
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INHOMOGENEOUS GUTZWILLER APPROXIMATION WITH . . . PHYSICAL REVIEW B67, 085108 ~2003!
;3t and v;5t, since from^T&GA'^T&exact, the sum rule
requires the integrated spectral weight to be approxima
the same in both the GA and the exact result.

The accuracy of the GA1RPA approach is also remark
able with respect to the fact that the underlying mean-fi
solution ~the GA! corresponds to a SDW state, whereas
exact solution in one dimension does not show long-ra
order. However, it is well known that correlation function
decay slowly and thus are quasi-long-ranged. Hence only
very low energies does one expects disagreement due to
problem, and since excitations in the system under consi
ation are gapped this discrepancy does not really show

Figure 4~b! reveals that GA1RPA provides a better de
scription of the low-energy excitations than the HF1RPA,
even at larger values ofU/t. In addition, in Fig. 4~b! we
show the charge-charge correlations for the bare GA. In
case, the corresponding excitations are located in a na

FIG. 4. Charge correlation functionSc(v) for a half-filled Hub-
bard chain~14 site! in cases ofU/t53 ~a! and U/t56 ~b!. For
clarity the curves for HF1RPA and GA@in ~b!# have been shifted
upwards. The inset in~b! shows the integrated weight as a functio
of frequency for GA and GA1RPA, respectively.
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energy window on the low-energy side of the exact spectr
with rather incorrect oscillator strength. Thus, RPA corre
tions induce a broadening and shift of excitations to hig
energies with a simultaneous redistribution of intensity. T
can also be deduced from the inset of Fig. 4~b!, which shows
the evolution of the integrated spectrum*0

vSc(n)dn for the
GA and GA1RPA. From the sum rule@Eq. ~92!# it is obvi-
ous that both the GA and the GA1RPA approach the sam
integrated spectral intensity but with the GA1RPA spectral
evolution broadened and shifted to higher energies with
spect to the bare GA.

In systems with large dimensionality we expect our a
proach to improve, since the GA is an exact solution of
Gutzwiller variational problem in infinite dimensions. Fu
thermore, quite generally mean-field theories become be
as the dimensionality is increased. Figure 5 displays Sc(v)
for a half-filled 434 system~i.e., 16 particles! with U/t
510. The lowest prominent energy peak in the exact so
tion occurs atvmin

ex 58.4t and a second bunch of excitation
starts atU/t'10t . . . 11t decaying in intensity toward highe
energies. The lowest energy excitation within the GA1RPA
(vmin

GA1RPA58.7t) is remarkably close to the exact value
contrast to the HF1RPA where the lowest peak appears
vmin

HF 59.8t. Moreover, the center of high energy excitatio
in the exact solution is represented by two peaks in the
1RPA spectrum at 9.7t and 11.2t, whereas they are shifte
to slightly higher energies within the HF1RPA. It is inter-
esting to observe that also in this energy range the GA1RPA
method gives a better~although rather crude! approximation
than the HF1RPA method despite the expected failure of t
antiadiabaticity condition Eq.~17! for energies larger than
the Mott-Hubbard gap.

Finally we would like to demonstrate the importance
an accurate mean-field solution for the quality of the R
excitation spectrum. For this purpose Fig. 6 showsSc(v) for
a 434 system and ten particles. In the caseU/t54 @Fig.
6~a!# the HF1RPA and the GA1RPA give a good approxi-
mation to the lowest excitation, both with respect to the
cillator strength and the energy. ForU/t54 and 10 particles

FIG. 5. Charge correlation functionSc(v) for the half-filled 4
34 Hubbard model~16 particles! in the case ofU/t510.
8-11
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~corresponding to a closed shell configuration! the underly-
ing mean-field solutions are homogeneous with respect to
charge and do not show a SDW order. However, whereas
homogeneous GA solution also remains a stable saddle p
for large values ofU/t, the HF solution becomes instab
with respect to a disordered charge and spin texture. T
obviously has dramatic consequences for the dynam
properties as shown in Fig. 6~b!. In fact, the GA1RPA spec-
trum still shows a remarkable agreement with the exact
lution in contrast to the RPA on top of the inhomogeneo
HF solution.

Notice that the GA1RPA oscillator strength for the
charge-charge correlations is distributed in a much be
way than for the optical conductivity~see Fig. 3!. To some
extent, this can be attributed to the constraints imposed
the sum rules. Both correlation functions satisfy a sum r
which involves the kinetic energy on the right-hand si
@Eqs.~51! and~57!#; however, in case of the optical condu
tivity the high-energy states contribute much less to the s
rule than in the case ofSc(v) due to thev factor. Therefore,
the high-energy part ofSc(v) is much more constrained t

FIG. 6. Charge correlation functionSc(v) for the 434 Hubbard
model and ten particles in the case ofU/t54 ~a! andU/t510 ~b!.
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be accurate than the high-energy part ofs. This argument
assumes that at least the excitation energies are app
mately correct; otherwise one can satisfy the sum rule b
compensation between the incorrect excitation energies
the incorrect matrix elements as it occurs within the bare
for the charge correlation function@Fig. 4~b!#.

Finally, it is remarkable that the GA1RPA dynamical cor-
relation functions perform rather well even at energies mu
larger than the charge gap~Figs. 4, 5, and 6! where the an-
tiadiabatic condition@Eq. ~17!# is not expected to hold. To
some extent this may be due to the constraints imposed
sum rules. It shows that at least for some correlation fu
tions ~charge-charge! the domain of applicability of our
theory may be much wider than expected.

V. CONCLUSION

In summary, we have presented a method for the calc
tion of dynamical correlation functions in the Hubba
model, based on the Gutzwiller approximation. Our meth
obeys well-behaved sum rules and we have demonstr
that it is suitable for practical computations: excitation en
gies compare remarkably better with exact diagonalizat
results than the related HF1RPA approach. Moreover, sinc
the performance of any RPA computation crucially depen
on the quality of the underlying mean-field solution, we co
clude from our analysis that the GA provides a much be
starting point for this purpose than HF.

The dynamical matrix has been calculated as a quadr
expansion of the GA energy functional in the densitie
which allows us to construct the RPA eigenvectors and
genvalues. Essential assumption for carrying out this exp
sion is the antiadiabaticity condition@Eq. ~17!#. Despite the
fact that charge and double occupancy dynamics seem t
governed by different time scales, it would be desirable
relax the antiadiabatic approximation and to treat the dou
occupancy dynamics explicitly. This is in principle possib
via the Kotliar-Ruckenstein slave-boson scheme; howe
attempts in this direction are rendered difficult due to t
hopping factor expansion.

Compared to numerical methods28,29 our approach can be
pushed to much larger systems. Our experience in mode
real data30,31 is that often finite-size effects are more seve
than the inaccuracies introduced by mean-field1RPA ap-
proaches. A more recent approach for dynamical proper
consists of mapping the problem onto quantum impur
models~dynamical mean-field theory! which becomes exac
in the limit of large dimensions.32 This has enormously in-
creased our understanding of these systems. However, w
making the limit of large dimensions important parts of t
physics are lost. For example, all acousticlike collective
havior, like spin waves, disappears. On the other hand, th
collective effects are naturally captured in our approach.

The GA1RPA formalism can also be applied to mult
band Hubbard models, which are relevant for a more qu
titative analysis of excitations in the cuprate high-Tc super-
conductors. It has been shown recently that the GA provi
an excellent starting point to describe the physics of stri
in cuprates including the behavior of incommensurabili
8-12
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chemical potential and some transport experiments w
doping.33 In this context it is very important to make a RP
analysis on top of GA states, since within the HF appro
mation one obtains a ground state which does not corresp
to experiment. Work in this direction is in progress.
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APPENDIX: RELATIONSHIP TO THE KOTLIAR-
RUCKENSTEIN SLAVE-BOSON APPROACH

In the Kotliar-Ruckenstein slave-boson approach to
Hubbard model6 the original Hilbert space is enlarged b
introducing four subsidiary boson fieldsei , si ,↑ , si ,↓ , anddi
for each siteRi . These operators stand for the annihilation
empty, singly occupied states with spin up or down, a
doubly occupied sites, respectively. Since there are only
possible states per site, these boson projection operators
satisfy the completeness constraints

ei
†ei1(

s
si ,s

† si ,s1di
†di51 ~A1!

and

ni ,s5si ,s
† si ,s1di

†di . ~A2!

In the saddle-point approximation, all bosonic operators
treated as numbers, and the resulting effective one-par
HamiltonianHKR describes the dynamics of particles whe
the hopping amplitude between states (i ,s) and (j ,s) is
renormalized by a factorzi ,s

SBzj ,s
SB with
08510
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zi ,s
SB5~ei

21si ,2s
2 !21/2~eisi ,s1si ,2sdi !~di

21si ,s
2 !21/2.

~A3!

The total energy ofHKR is given by

ESB5(
i j ,s

t i j zi ,s
SBzj ,s

SBr i j 1U(
i

di
2 , ~A4!

which has to be minimized~i! with respect to the bosonic
fields within constraints~A1! and ~A2! and ~ii ! with respect
to r within the subspace of Slater determinants.

The slave-boson energy functionalESB is a function of
4N boson variables whereN is the number of lattice sites
Since these bosons obey the constraints~A1! and ~A2! one
can eliminate 3N of them which leads to the Gutzwiller e
ergy EGA when one keeps the double occupancy varia
D5d2 for each lattice site. Thus the expansions ofESB and
EGA are connected via the transformations

]zi ,s
GA

]D
5

]zi ,s
SB

]d2
2

]zi ,s
SB

]ss
2

2
]zi ,s

SB

]s2s
2

1
]zi ,s

SB

]e2
,

]zi ,s
GA

]r i i ,s
5

]zi ,s
SB

]ss
2

2
]zi ,s

SB

]e2
,

]zi ,s
GA

]r i i ,2s
5

]zi ,s
SB

]s2s
2

2
]zi ,s

SB

]e2
, ~A5!

and the derivatives have to be taken at the saddle po
Upon inserting this transformation in Eqs.~19! and ~20!
leads to an analogous energy expansion than Eq.~24!, but
now within the KR scheme. For paramagnetic solutions t
corresponds to the analysis done in Ref. 10.
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