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Residual resistivity near a two-dimensional metamagnetic quantum critical point
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The behavior of the residual~impurity-dominated! resistivity is computed for a material near a two-
dimensional quantum critical point characterized by a divergentq50 susceptibility. A singular renormalization
of the amplitude for back scattering of an electron off of a single impurity is found. When the correlation length
of the quantum critical point exceeds the mean free path, the singular renormalization is found to convert the
familiar ‘‘Altshuler-Aronov’’ logarithmic correction to the conductivity into a squared-logarithmic form. Im-
purities can induce unconventional Friedel oscillations, which may be observable in scanning tunneling mi-
croscope experiments. Possible connections to the metamagnetic quantum critical end point recently proposed
for the material Sr3Ru2O7 are discussed.
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I. INTRODUCTION

The interplay of quantum mechanics, disorder and
duced dimensionality is a central question in condens
matter physics. The issue becomes particularly interesting
materials near aquantumcritical point ~i.e., one produced a
temperatureT50 by variation of a control parameter such
pressure or chemical composition!. Near such a critical
point, quantum fluctuations may become particularly stro
and may interact with randomness in an important way.
this paper, we consider the heretofore little studied ques
of the effect of quantum critical fluctuations on the residu
resistivity of a metal. We consider two-dimensional syste
in which the criticality involves long-wavelength fluctuation
and a conventional gradient expansion of the action ex
and find that the critical fluctuations lead to a singular, a
possibly divergent, renormalization of the amplitude for
electron to backscatter off of an isolated impurity atom. F
a system with a nonvanishing density of impurities, we fi
that this physics leads to a strengthening of
‘‘Altshuler-Aronov’’ 1 correction to the conductivity from
ln(1/T) to ln2(1/T).

Renormalization of some electron-impurity vertices is e
pected in materials near density wave transitions. For
ample, near a charge-density wave transition, an impu
will produce density fluctuations whose component at
ordering wave vector will diverge as the transition is a
proached~for an experimental demonstration, see Ref.!.
However, we show here that long-wavelength spin fluct
tions can drastically increase backscattering by spinless
purities. Our work is related to a previous analysis, by A
shuler, Ioffe, Larkin, and Millis, of the staggered susce
tibility of a model of electrons interacting with gaug
fluctuations.3

Our work is motivated by recent experiments on the
layer ruthenate, Sr3Ru2O7, which apparently can, at ambien
pressure, be tuned through a quantum critical point by va
tion of applied magnetic field.4–6 Sr3Ru2O7 has a layered
crystal structure and highly anisotropic conductivity prop
ties characterized by a very low in-plane (ab) resistivity
(rab;5 mV –cm asT→0) and a much higher out-of-plan
0163-1829/2003/67~8!/085102~7!/$20.00 67 0851
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(c axis! resistivity (rc;103 mV –cm asT→0),7 so its elec-
tronic properties are to a good approximation two dime
sional. At ambient pressure and no applied magnetic field
material is paramagnetic, but with a magnetic susceptibi
x which is stronglyT dependent~for T*10 K) and at lowT
strongly enhanced above the band theory value.7 As applied
magnetic-fieldH is increased at lowT (T,2 K) resistivity
measurements indicate that the material passes near to a
cal point.4,5 In the vicinity of this critical point the differen-
tial magnetic-susceptibilityxdiff5dM/dH becomes large
and the residual resistivity lim

T→0
r(T) exhibits a pro-

nounced cusp.5

The natural interpretation is that the transition observed
Sr3Ru2O7 is metamagneticin nature. Metamagnetic mater
als exhibit a phase diagram in the field (H)-temperature~T!
plane characterized by a line of first-order transitions acr
which the magnetization jumps. The first-order line ends i
critical point at temperatureTM and fieldHM . In Sr3Ru2O7,
parameters are apparently such that at ambient pressurTM
is very near toT50 ~indeed for one field orientation it ca
be made to vanish exactly! so that one has aquantum critical
end point.4–6,8 A renormalization-group theory of quantum
critical end points and their application to Sr3Ru2O7 was
given by Ref. 8. In this paper we extend this theory to
clude electron-impurity coupling and use it to calculate t
residual resistivity. In addition we make a few remarks ab
the applicability of our calculations to more general clas
of critical points.

The rest of this paper is organized as follows. Section
presents the critical theory, Sec. III gives the analysis of
renormalization of the Born approximation amplitude for
electron to scatter off of an isolated impurity, Sec. IV co
siders the single impurity problem beyond the Born appro
mation and applies the results to Sr3Ru2O7, Sec. V treats the
extension to a nonvanishing density of impurities and S
VI is a conclusion and discussion of implications for oth
experiments.

II. METAMAGNETIC QUANTUM CRITICALITY

Reference 8 employed the standard approach of He9

and Millis,10 which involves integrating out electronic de
©2003 The American Physical Society02-1
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grees of freedom to obtain an effective-field theory w
overdamped bosonic excitations, which is then analyz
This approach is presently the subject of debate.11 On the
experimental side, the theory is apparently inconsistent w
data obtained on a variety of materials with antiferroma
netic critical points, and on the theoretical side the validity
integrating out gapless electronic degrees has b
questioned,12–14 both for two-dimensional antiferromagne
and for ferromagnetic transitions involving an order para
eter with continuous symmetry and time-reversal invaria
in the disordered phase. For a more general discussion
Ref. 15. However, the assumptions made in Refs. 12 and
do not apply to metamagnetic transitions, which involve
Ising order parameter and an explicitly broken time-rever
symmetry, nor do the Fermi-surface nesting complications
antiferromagnetic transitions14 apply here, because the ord
parameter is centered atq50.

The order parameter for a metamagnetic critical point
curring at a fieldHM is the difference of the local magnet
zation densityM (x,t) ~which we write here in space an
imaginary time! from the average valueM* produced by the
field HM at T50. (M* '0.5mB for Sr3Ru2O7.! It is conve-
nient to measure the field and magnetization with respec
HM , M* , and to normalize the field to an energy scaleE0
related to the energy per site of a hypothetical fully polariz
state and the magnetization fluctuations per Ru to a magn
scaleMsat via

f~x,t!5
M ~x,t!2M*

Msat
, ~1!

h5
~H2HM !Msat

E0
, ~2!

whereMsat is a hypothetical high-field saturation magne
zation, chosen here to beMsat52/mB . In a clean~nondisor-
dered! system the action describing the fluctuations off was
argued8 to be (b51/T),

S5
E0

2 E d2x

a2 E0

b

dtF2hf1j0
2~¹f!21

1

2
f4G1Sdyn ~3!

with f(q,n)5E0a22*d2x*0
bdteiq"x2 intf(x,t) and, in a

clean system,

Sdyn5
a2

2E0
E d2q

~2p!2
T(

nn

unnu
vq

uf~q,inn!u2, ~4!

wherenn52pnT. For Sr3Ru2O7, E0'7000 K;8 a value for
j0 has not been established. A natural guess would be so
thing of the order of the in-plane lattice constanta'4 Å.
However in many ferromagnetic materials band theory s
gests that the momentum dependence of the magnetic p
izability is very weak, implyingj0,a; while if the consid-
erations of Ref. 12 are relevant, a considerably larger va
might be appropriate. A value forv has also not yet bee
established; the natural expectation is that it is of order
planar-band Fermi velocityvF'1 eV–Å. The theory is
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above its upper critical dimension so the nonlinear term i
‘‘dangerously’’ irrelevant operator and may be treated
standard means.8,10

We have written a two-dimensional theory. At some sc
a crossover to three-dimensional behavior will occur, b
present neutron experiments have so far been unable to
serve any correlations along thec axis.16 Because the transi
tion takes place in a magnetic field, the fluctuating field h
Ising symmetry and time-reversal invariance is explici
broken. Neither ‘‘precession’’ terms in the dynamics nor t
anomalousuqu momentum dependence proposed in Ref.
will occur.

The action given in Eq.~3! describes the critical fluctua
tions. In the absence of critical fluctuations we take the
tion for electrons to be

Sel5
a2

E0
2

T(
vn

E d2p

~2p!2
ca

†~p,ivn!~2 ivn1jp!ca~p,ivn!,

~5!

whereca represents the electrons with the ‘‘spin’’ indexa,
jp is the electron dispersion andvn5(2n11)pT. The cou-
pling between the electrons and the critical fluctuations
be written as

Sf2c5gE d2x

a2 E E0dtcasab
z cbf, ~6!

wheresz is thez component of the Pauli matrix.
To obtain the propagatorD describing the metamagneti

fluctuations we expand the action about the mean-field va
f0 given by]S/]f50 and read off the quadratic term, ob
taining

D~q,inn!5
1

unnu
vq

1j0
2q21h2/3

. ~7!

The coupling constantg may be determined because th
damping term inSdyn arises from processes in which a crit
cal fluctuation decays into one particle-hole pair9,10 and is

g25
4p2

a2E0

vF
2

vSF
~8!

with SF the length of the Fermi surface in two dimensio
(SF52ppF for a circular Fermi surface!.

Using these definitions we find that the one-loop se
energy atT50, shown in Fig. 1~a!, is

FIG. 1. Diagrams representing~a! the lowest-order self-energy
~b! an example of higher-order corrections. The wavy line rep
sents the bosonic fluctuations.
2-2
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RESIDUAL RESISTIVITY NEAR A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 085102 ~2003!
S1~p,iv!5
2ivF

SFj0
2E0

`

dx x lnS vj0

v
1x31h2/3x

x31h2/3x
D . ~9!

Notice that asv→0 at fixedhÞ0,

S1~p,iv!5
2vF

vSFj0

iv

h1/3

while ash→0 at fixedv we have

S1~p,iv!5
i sgn~v!uvu2/32p~v/j0!1/3

A3SFj0~v/vF!
.

In spatial dimensiond.2 the fact that the theory is abov
the upper critical dimension guarantees that a one-l
~Migdal-like! approximation yields an asymptotically exa
approximation to the self-energy, but ind52 this is not the
case.17–19 While higher corrections such as those shown
Fig. 1~b! do not change the powers, they do introduce
dependence on momentumdp5p2pF and induce a depen
dence onv/@v* (h)# with v* (h)5vh/j0. The scaling func-
tion for the self-energy has only been computed in largeN
and small-N expansions, whereN is the number of order-
parameter components. Unfortunately, in the metamagn
problem of interest hereN51.

III. ELECTRON-IMPURITY VERTEX:
BORN APPROXIMATION

We now consider the effect of critical fluctuations up
the amplitude,Ap1 ,p2

for an electron initially in a state o

momentump1 to scatter off of an isolated impurity atom int
a state of momentump2 . The basic electron-impurity verte
is shown in Fig. 2~a!; we assume that this is structureles
corresponding to scattering amplitude independent ofp1,2.
The first correction due to critical fluctuations is shown
Fig. 2~b!, and is found to be divergent whenp1,2 are on the
Fermi surface and are such that the Fermi surface tangen
these two points are parallel. For a circular Fermi surface

FIG. 2. Diagrams corresponding to the renormalization of
impurity scattering amplitude.~a! the bare vertex,~b! the lowest-
order correction,~c! the sum of the ladder diagrams, and~d! an
example of higher-order corrections.
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condition corresponds top11p250 and up1u5pF . In this
case, choosing thex coordinate to be parallel top1 andp1,2 to
be on the Fermi surface we have«p11q5vF(qx1qy

2/2q0)

and«p21q5vF(2qx1qy
2/2q0) with q0 a quantity of the or-

der ofpF parametrizing the curvature of the Fermi surface
p252p11p with upu!up1u, we find that the correction
shown in Fig. 2~b! is

A1~p,h!5A0I S 2pq0

SF
D lnS 1

max@h2/3,~pyj0!2#
D ~10!

with

I ~b!5
2b

p E
0

`

dy

S 2

A3
bD y

~11y3!F S 2

A3
bD 2

1y4G
and A0 is the bare scattering amplitude;I (1)'0.23, I (10)
'0.5, andI (b) is an increasing function ofb. Notice that if
p2u is the angle betweenp1 andp2, thenpyj0}u.

A very similar result was obtained in the context of th
U(1) gauge theory of the ‘‘RVB’’ regime of the two
dimensionalt-J model,17 where the 2pF spin susceptibility
was considered. The U(1) gauge theory possesses an
action~mediated by an internal gauge field! with a very simi-
lar mathematical structure to our interactionD(q,inn) @Eq.
~7!#, except that in the U(1) problem gauge invariance d
tates that in the RVB regime the mass (h in our notations!
vanishes. Further, in the vertex computation two additio
minus signs occur~but compensate each other!, one from the
fact that gauge interaction involves currents which are op
sitely directed at momentum transfer 2pF and one from the
transverse nature of the gauge interaction.

Higher-order diagrams such as those shown in Fig. 2~c!
may be evaluated similarly; we find that the leading behav
of the nth order term is

An5A0

1

n! F I S 2pq0

SF
D lnS 1

max@h2/3,u2#
D G n

~11!

so that finally we obtain

A~u,h!;A0~max@h2/3,u2# !2c ~12!

with c5I (SF/2pq0) at one-loop order.
We should further consider the effect of higher-order d

grams, such as those shown in Fig. 2~d!. These do not change
the basic power counting, and may, therefore, be expe
not to alter the basic power law we have found; they w
however, change the numerical value of the exponent.
cording to the result of small-N expansion,17 the effect of
‘‘crossed diagrams’’ is to increase the exponent. We concl
that the Born-approximation amplitude for an electron
back-scatter off of an impurity suffers a singular renorm
ization near criticality.

e

2-3
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IV. BEYOND BORN APPROXIMATION; RESISTIVITY

The preceding section presented the renormalization
the leading-order term in the electron-impurity vertex. In th
section we consider effects arising when the Born appro
mation is not justified, either because the initial scatter
amplitude is not small or because the renormalizations
crease an initially weak interaction beyond the regime
validity of the Born approximation. Corrections to the Bo
approximation result for the electron self-energy corresp
to multiple scattering of the electron off of the same imp
rity, and are represented diagrammatically in Fig. 3. With
the ‘‘noncrossing’’ approximation used in the previous se
tions we find that the leading renormalization near critica
comes from the correcting each impurity vertex individual
The series for the self-energy may be summed by defin
the T matrix which for incident electron energies very clo
to the Fermi surface becomes

T~u2u8,h!5A~u2u8,h!

2 i E du1

2p
N~u1!A~u2u1 ,h!T~u12u8,h!

~13!

with N05*(d2k)/(2p)2d(«p) the single-spin Fermi-surfac
density of states. Assuming for simplicity a circular Fer
surface with density of stateN0, we may solve the equatio
by resolving T and A into their angular componentsTm
5*(du/2p)T(u,h)eimu and Am5*(du/2p)A(u,h)eimu so
that

Tm5
Am

11 iAmN0
. ~14!

We note that the sign ofTm and, therefore, the sign of th
angular momentumm channel phase-shift alternates withm,
so that the Friedel sum rule is straightforwardly satisfied

The final result depends on the parameterg05A0N0 and
on the exponentc. If c,1/2, then none of theAm or Tm are
divergent ash→0. The distance to criticality, parametrize
by h, controls the numbermmax of angular momentum chan
nels for which Am and Tm are non-negligible (mmax
;h21/3). On the other hand, ifc.1/2, then in each angula
momentum channel the amplitudeA diverges ash→0 so that
the resulting phase shift saturates atp/2 in each channel, and
again the number of channels that are relevant diver
rather strongly ash→0.

The contribution of this scattering amplitude to the pro
ability that an electron is scattered through an angleu,
W(u), is given byuT(u)u2. The impurity scattering rate re
vealed by the resistivity,G tr5*(du/2p)@11cos(u)#W(u)

FIG. 3. Diagrams representing multiple scattering of electr
off of an impurity. The shaded triangle represents the renorma
tion of the Born scattering amplitude given by Fig. 2~c!.
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~note that we have defined angular coordinates so thau
50 corresponds to backscattering!. Because we are con
cerned with a scattering amplitude strongly peaked about
back-scattering direction, the cos(u) factor is unimportant.
Then G tr is given by the imaginary part of the diagon
T-matrix G tr;ImT(0;h) in the usual approximation. There
fore, we obtain

r res;Im@T0#12 (
m51

`

ImTm . ~15!

As noted above, within this approximation the resistivity d
verges as criticality is approached, but the approximat
itself breaks down when the mean-free-path implied by E
~15! becomes smaller than the correlation length. The qu
tion of a divergent resistivity is further examined in Sec. V

V. APPLICATION TO DATA

In this section we attempt to relate calculations of theh
dependence ofr res to data obtained on Sr3Ru2O7. We first
note that it is sensible to discuss the scattering from an
lated impurity only if the elastic mean-free-pathl is greater
than the correlation lengthj5j0h21/3. The observed low-T
resistivity of clean samples of Sr3Ru2O7 is of the order of
5mV –cm corresponding to apFl'250, i.e., to anl of the
order of 300–400 Å. The appropriate value ofj0 is not
known at present, but if it is of the order of the lattice co
stant or smaller then almost all the available data are in
regime in which the calculation applies.

Sr3Ru2O7 presents an interesting issue in modeling. If t
estimates presented in Ref. 8 are correct, then even in
field the material is close to a ferromagnetic critical point,
that renormalizations of impurity vertices could be subst
tial, even at vanishing applied field~provided, of course, tha
a sufficiently wide regime exists in which theuqu effects of
Ref. 12 are not important!. What is unambiguously measu
able, however, are the effects caused by a varying magn
field. Further, the parameters presented in Ref. 8 allow
quantitative determination of the parameterh above in terms
of the applied magnetic field. We have used the parame
ucc523500 K, vcccc558 000 K, r 5100 K defined and
given below Eq.~6! of Ref. 8 to compute the ‘‘mass’’ in Eq
~7! for applied fields from 0 to 10 T, and have used this a
Eq. ~15! to calculate the field dependence of the resid
resistivity for various choices of exponentc and initial scat-
tering amplitude. Representative results are shown in Fig
The values at applied fieldH50 depend on the behavior o
the theory at higher-energy scales, which is not known
the reasons given above. However, the change in beha
near the metamagnetic field~about 7 T for the parameter
used here! should be reliable. We observe that there is so
interplay between exponent and initial scattering strength
that sharpness and relative height of the resistivity peak
pend most strongly on the exponent. Comparison to d5

shows that our calculation is consistent with a moderate b
scattering amplitude and an exponentc'3/4. We stress tha
the exponent estimate is obtained from the relative heigh
the resistivity peak, and not from a fit of the shape of t

s
a-
2-4
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RESIDUAL RESISTIVITY NEAR A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 085102 ~2003!
r(B) traces, and that the estimate is rough~although it seems
that an exponent of 1/2 is clearly too small and of unity
clearly too large!. We also note that the rather small resist
ities observed in experimental systems suggest either tha
initial scattering amplitude is weak or that the renormaliz
tions associated with the nearby ferromagnetic quantum c
cal point are not large, perhaps for the reasons given in
12. Finally, we remark that the data in Ref. 5 exhibit ad
tional B-dependence not accounted for in the present the
We believe that the main source of this additional field d
pendence is aB2 orbital magnetoresistance, but the iss
deserves further investigation.

VI. FRIEDEL OSCILLATIONS

The physics which gives rise to the singular correction
the conductivity also gives rise to a singular behavior3 in the
susceptibility at wave-vectorq52pF which is proportional
to (2pF2q)123c; this leads to a change in amplitude a
distance dependence of the Friedel oscillations induced b
impurity in two dimensions. We find that ifc<1/6 the ef-
fects considered here are a subleading correction to the
ventional behavior while if 1/6<c<5/6 the Friedel oscilla-
tions decay as cos(2pFR)/R(5/223c). For c.5/6 a more
sophisticated treatment is needed. At nonzero field,
spin-up and spin-down Fermi surfaces are characterized
different Fermi wave vectors so we predict two superpo
oscillations emerging from each impurity site, each decay
with a characteristic power. These oscillations should be

FIG. 4. Residual resistivity calculated for different expone
and initial scattering amplitudes and scaled to theH50 values.
Dashed lines,c51; heavier solid lines,c50.75; light solid lines,
c50.5. Three panels show the results of different initial scatter
amplitude:~a! g050.5, ~well below unitarity limit for initial point-
impurity scattering amplitude!, ~b! g051.0 ~roughly half way to
unitarity limit!, and~c! g055.0, ~close to unitarity limit!.
08510
he
-
ti-
f.

-
y.
-

o

an

n-

e
by
d
g
b-

servable in scanning tunnel microscope~STM! experiments.
We note, however, that the effect discussed here is a lo
wavelength, low-energy effect. It does not imply that t
density modulations are greatly enhanced near to an im
rity; only that they decay much less~or more! rapidly with
distance than in a noncritical material.

It is also interesting to consider the situation atH50, i.e.,
near to a 2D ferromagnetic transition, and indeed we n
that for the Sr3Ru2O7 parameters given in Ref. 8,H50 cor-
responds toh;1023 so one might expect the enhanceme
to be noticeable even at zero field. The Friedel oscillatio
from a nonmagnetic impurity would indeed be long range
however, it is interesting to note that the RKKY interactio
are suppressed~in a system with Heisenberg symmetry! be-
cause the spin commutation relations lead to a minus sig
the renormalization ofsz vertex bysx or sy fluctuations.

We also note that field-dependent STM studies mi
present an interesting test of the result12 that for 2D Heisen-
berg materials the leading momentum dependences isuqu. In
this case, the renormalizations we have discussed would
exist. AsH is increased, the effects that produceuqu are be-
lieved to be cut off, and the unconventional Friedel oscil
tions should reappear.

Finally, we observe that the presence of the Friedel os
lations implies that the state of a critical system is in so
sense a random charge-density wave, characterized by
nite ranged charge oscillations emerging from the vario
impurity sites. The resistivity and other properties of such
state are an interesting issue for future research.

VII. NONVANISHING IMPURITY DENSITY

The preceding treatment is valid for correlation lengt
less than the mean-free path. We now consider what hap
when parameters are tuned so that the correlation lengj
exceeds the mean-free-pathl. We first note that the problem
has two energy scales: the impurity scattering ratet21

5vF / l and the characteristic quantum critical frequen
v* 5vj0

2/j3 so that near criticality, whenj.j0 we have
v* t,1.

For length scales longer than the mean-free path the
namic term in the action is modified to be9

Sdyn,dirty5
a2

2E0
E d2q

~2p!2
T(

nn

unnu

D8q2
uf~q,inn!u2 ~16!

with D8 of the order of the diffusion constantD5vF
2t/2. We

noteD8/D5v/vF from the definition ofg2 in Eq. ~8!. Here
1/t52pu2N0 is the impurity scattering rate,u2 is the renor-
malized squared impurity scattering strength~renormalized
due to the effects discussed in Sec. IV!, andN0 is the density
of states at the Fermi energy. Thus the dynamical criti
exponent isz54 in this case and the nonlinearity in th
critical theory remains dangerously irrelevant.

The leading order correction to the conductivity is giv
by the sum of two diagrams in Fig. 5,1 where the wavy line
represents the metamagnetic fluctuations with the propag
D(q,inn)51/@(unnu/D8q2)1q2j0

21h2/3#. Notice that there
exist three more diagrams at the same order, but they ca

g
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each other.1 Each interaction vertex that represents the c
pling between the electrons and the bosonic mode is re
malized by the Diffuson correction, (unnu1Dq2)21t21. We
find that the leading correction to the dc conductivity at fin
temperature is given by~we assumeT,1/t)

ds52
e2

\

l

4p2
ln2S lD

Tj0
2D for T.Th ~17!

52
e2

\

l

3p2
lnS 1

hD lnS lD

Tj0
2D for T,Th , ~18!

wherel5vF /v and Th5h4/3lD/j0
2. Thus at a given tem-

perature the conductivity will decrease as the critical poin
approached (h→0) but whenh,hT with hT5(j0

2T/lD)3/4

~or equivalently T.Th) it levels off at a temperature
dependent constant value. The corresponding behavior o
resistivity as a function ofh at a fixed temperature i
sketched~somewhat exaggerated for clarity! in Fig. 6. Notice
that these results are valid as far as we are in the perturb
regime, i.e.,ds!s05(e2/2p\)kFl .

This result should be compared with the well-known b
havior of the quantum correction to the conductivity,ds5
2(e2/2p2\)ln(1/Tt), in weakly disordered interacting two
dimensional electron systems.1 The notable differences are
~i! ds in the present case has more singular tempera

FIG. 5. Diagrams contributing to the leading order correction
conductivity. The black triangles and the dotted lines represent
vertex correction by impurity scattering and the Diffuson ladder

FIG. 6. The schematic behavior of the resistivity as a function
h at a fixed temperature. HerehT5(j0

2T/lD)3/4 and hl5(j0 / l )3.
Whenh.hl , j5j0h21/3, l so that the considerations of Secs.
and V apply whileh,hl we havej, l . If hT,h,hl , Eq. ~18!
applies and the resistivity increases logarithmically ash is de-
creased. Whenh,hT , Eq. ~17! applies and the resistivity become
a temperature-dependent constant.
08510
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dependence whenT.Th and at the critical point (h50). ~ii !
If T,Th , the coefficient of the logarithmic term explicitly
depends onh and it increases as the critical point is a
proached until it is cutoff by temperature.

Now let us estimate the size of the perturbative quant
correction in Sr3Ru2O7. We assume thatD8'D andj0 is of
the order of the in-plane lattice constant;4 Å. Using vF
;1 eV–Å and l;300–400 Å, we get 1/t;30 K and D
;45–60 cm2 sec. Let us considerh;1026, then Th
;1023 K. In this case,T.Th for experimentally relevant
temperature range and Eq.~17! should be used. Using th
leading-order result,s05(e2/2p\)kFl , in two dimensions
the relative size of the correction can be estimated
ds/s0;0.07 atT52 K andds/s0;0.1 at 0.1 K. Thus the
relative correction is only 7 –10%. Given that the residu
resistivity is about 5mV –cm, it will be hard to see the
effect of these corrections. If the material were more dir
say kFl;50, we would get 1/t;150–200 K and Th
51024 K. Similar estimation would predict that the relativ
correction is 30–50% atT50.1–2 K. It would be interest-
ing to test these predictions in more dirty samples.

To conclude this section we note that the scattering timt
is the impurity scattering rate,as renormalized by critical
fluctuations at scales less than the (renormalized) l. We also
observe that our result is perturbative in both the disor
strength and the interaction. Presumably when the resisti
becomes of the order of the Mott value a crossover to in
lating behavior occurs. The insulating state should presu
ably be interpreted in terms of the random charge-den
wave state discussed at the end of Sec. VI, but the is
deserves more careful investigation.

VIII. CONCLUSION

In summary, the effect of critical fluctuations on the r
sidual resistivity is studied near a two-dimensional metam
netic quantum critical point. When the correlation length
smaller than the mean-free path, the critical fluctuations
duce a singular renormalization of the amplitude of the ba
scattering off an impurity of an electron. This leads to
pronounced cusp in the residual resistivity near the me
magnetic critical point in accordance with the experimen
results. When the correlation length becomes larger than
mean-free path, the critical fluctuations convert t
‘‘Aronov-Altshuler’’ logarithmic correction to the conductiv
ity to the more singular squared-logarithmic behavior n
the critical point. Our results imply a divergent resistivity
criticality. We argued that the state which gives rise to t
divergence is some sort of randomly phased charge-den
wave, but a detailed investigation of its properties has
been performed.

Our results may have broader implications. The app
ently successful comparison of our calculation to data s
gests that the singular 2pF renormalization discovered in th
gauge theory context in Ref. 17 is more than a theoret
curiosity, and therefore, motivates examination of other s
tems where 2pF effects might be important; for example i
the transresistance of bilayern51/2 quantum Hall systems
Work in this direction is in progress. The relevance of t
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results to other systems is an interesting issue. The esse
ingredients in our calculation were two dimensionality, a s
ceptibility diverging atq50 and a leading momentum de
pendence involving a power ofq greater than unity. A mate
rial near a two dimensionalferromagnetictransition might
fulfil these criteria, but known materials have~weakly! first-
order transitions. Also theoretical arguments have been
vanced suggesting that the asymptotic momentum de
dence might beuqu12,15 ~while for largerq the conventional
q2 dependence might be dominant!. Thus the relevance o
our results to ferromagnetic transitions depends on whe
the first-order transition is sufficiently weak, and the regi
of uqu is sufficiently narrow, to allow an intermediat
asymptotic regime. Conversely, we suggest that experime
study of the residual resisitivity might clarify this issue
.
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08510
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tal

direct ~e.g., neutron! study of the momentum dependence
the susceptibility is impractical.
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