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Residual resistivity near a two-dimensional metamagnetic quantum critical point
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The behavior of the residudimpurity-dominated resistivity is computed for a material near a two-
dimensional quantum critical point characterized by a divergen® susceptibility. A singular renormalization
of the amplitude for back scattering of an electron off of a single impurity is found. When the correlation length
of the quantum critical point exceeds the mean free path, the singular renormalization is found to convert the
familiar “Altshuler-Aronov” logarithmic correction to the conductivity into a squared-logarithmic form. Im-
purities can induce unconventional Friedel oscillations, which may be observable in scanning tunneling mi-
croscope experiments. Possible connections to the metamagnetic quantum critical end point recently proposed
for the material SfRu,O; are discussed.
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. INTRODUCTION (c axis) resistivity (oo~ 10° uQl—cm asT—0),’ so its elec-
tronic properties are to a good approximation two dimen-
The interplay of quantum mechanics, disorder and resional. At ambient pressure and no applied magnetic field the
duced dimensionality is a central question in condensedmaterial is paramagnetic, but with a magnetic susceptibility
matter physics. The issue becomes particularly interesting foy which is stronglyT dependentfor T=10 K) and at lowT
materials near guantumcritical point(i.e., one produced at strongly enhanced above the band theory valae.applied
temperaturd =0 by variation of a control parameter such as magnetic-fieldH is increased at lowl (T<2 K) resistivity
pressure or chemical compositionNear such a critical Measurements indicate that the material passes near to a criti-
point, quantum fluctuations may become particularly strongc@l point™® In the vicinity of this critical point the differen-
and may interact with randomness in an important way. Irfial magnetic-susceptibilityyqs=dM/dH becomes large
this paper, we consider the heretofore little studied questiogNd the residual resistivity lim o(T) exhibits a pro-
of the effect of quantum critical fluctuations on the residualnounced CUSB-. o -~ .
resistivity of a metal. We consider two-dimensional systems  The natural interpretation is that the transition observed in
in which the criticality involves long-wavelength fluctuations SisRU0O7 is metamagnetien nature. Metamagnetic materi-
and a conventional gradient expansion of the action exist&IS exhibit a phase diagram in the field X-temperatureT)
and find that the critical fluctuations lead to a singular, angP'@ne characterized by a line of first-order transitions across
possibly divergent, renormalization of the amplitude for anwr.".Ch the_magnetlzann Jumps. Thg first-order line ends in a
electron to backscatter off of an isolated impurity atom. For'itical point at temperaturgy and fieldHy, . In SERW,O,,

a system with a nonvanishing density of impurities, we fingParameters are apparently such that at ambient pre3gpre

that this physics leads to a strengthening of thelS very near tor =0 (indeed for one field orientation it can

“Altshuler-Aronov” ! correction to the conductivity from be mad_e to vanish exac}lgo that one hasquantum critical
In(1/T) to IM(L/T) end point*~®® A renormalization-group theory of quantum

Renormalization of some electron-impurity vertices is ex-chtical end points and their application to;8u,0; was

pected in materials near density wave transitions. For exdiven by Ref. 8 In t.h's paper we extend _th|s theory to in-
ample, near a charge-density wave transition, an impurit)FIUde electron-impurity coupling and use it to calculate the

will produce density fluctuations whose component at theresidual .resisyivity. In addition we make a few remarks about
ordering wave vector will diverge as the transition is ap_the applicability of our calculations to more general classes

proached(for an experimental demonstration, see Ref. 2 ©f cfitical points. . . .
However, we show here that long-wavelength spin fluctua- The rest of this paper is organized as follows. Section I

tions can drastically increase backscattering by spinless inréSents the critical theory, Sec. lll gives the analysis of the

purities. Our work is related to a previous analysis, by Alt-"énormalization of the Born approximation amplitude for an
shuler, loffe, Larkin, and Millis, of the staggered SusCep_e_lectron to scatter off pf an isolated impurity, Sec. IV con-
tibility of a model of electrons interacting with gauge SId€rs the single impurity problem beyond the Born approxi-
fluctuations3 mation and applies the_res_ults t038p207, Sec. \./.treats the
Our work is motivated by recent experiments on the pi-extension to a nonvanishing density of impurities and Sec.

layer ruthenate, SRu,O, which apparently can, at ambient VI is a conclusion and discussion of implications for other
pressure, be tuned through a quantum critical point by varia®Perments.
tion of applied magnetic fiel#-® S;RuU,0, has a layered

crystal structure and highly anisotropic conductivity proper-
ties characterized by a very low in-planahl) resistivity Reference 8 employed the standard approach of Plertz

(pap~5 uQ—cm asT—0) and a much higher out-of-plane and Millis,° which involves integrating out electronic de-

II. METAMAGNETIC QUANTUM CRITICALITY
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grees of freedom to obtain an effective-field theory with M

overdamped bosonic excitations, which is then analyzed. ﬁ
This approach is presently the subject of deBat®n the w
experimental side, the theory is apparently inconsistent with

data obtained on a variety of materials with antiferromag- (a) (b)

netic critical points, and on the theoretical side the validity of £ 1 piagrams representirig) the lowest-order self-energy
Integrating 5 ?Z‘t gapless electronic degrees has beefy) an example of higher-order corrections. The wavy line repre-
questioned?~** both for two-dimensional antiferromagnets sents the bosonic fluctuations.

and for ferromagnetic transitions involving an order param-
eter with continuous symmetry and time-reversal invariancepove its upper critical dimension so the nonlinear term is a
in the disordered phase. For a more general discussion Segangerously” irrelevant operator and may be treated by
Ref. 15. However, the assumptions made in Refs. 12 and 1&andard mearfs®
do not apply to metamagnetic transitions, which involve an  \e have written a two-dimensional theory. At some scale
Ising order parameter and an explicitly broken time-reversal crossover to three-dimensional behavior will occur, but
symmetry, nor do the Fermi-surface nesting complications opresent neutron experiments have so far been unable to ob-
antiferromagnetic transitiofiapply here, because the order serve any correlations along teeaxis Because the transi-
parameter is centered gt=0. tion takes place in a magnetic field, the fluctuating field has
The order parameter for a metamagnetic critical point 0C4sing symmetry and time-reversal invariance is explicitly
curring at a fieldHy is the difference of the local magneti- proken. Neither “precession” terms in the dynamics nor the
zation densityM(x,7) (which we write here in space and anomalougq| momentum dependence proposed in Ref. 12
imaginary time from the average valu®l* produced by the  will occur.
field Hy at T=0. (M*~0.5up for SERY,O7.) It is conve- The action given in Eq(3) describes the critical fluctua-

nient to measure the field and magnetization with respect tgons. In the absence of critical fluctuations we take the ac-
Hy, M*, and to normalize the field to an energy scBle  tion for electrons to be

related to the energy per site of a hypothetical fully polarized

state and the magnetization fluctuations per Ru to a magnetic a2 d?p . _ _
scaleMg,; via Se :_ZTE Z(ﬂa(pa'wn)(_|wn+§p)¢a(p-|wn):
E; on (2m)
M(x,7)—M* (5)
d(X, 7)== —— (1) : hapion
Msat where ¢, represents the electrons with the “spin” index
&p is the electron dispersion ang,=(2n+1)7T. The cou-
(H=Hu)Mgat pling between the electrons and the critical fluctuations can
T E, (2 be written as
whereMg,; is a hypothetical high-field saturation magneti- d?x )
zation, chosen here to Bé,,=2/ug. In a clean(nondisor- S¢_¢=gf gf Eod 1o 0 5pd, (6)
dered system the action describing the fluctuationgpofvas
argued to be (3=1/T), whereo? is thez component of the Pauli matrix.

To obtain the propagatdd describing the metamagnetic
) , 1, fluctuations we expand the action about the mean-field value
2N+ &(Vh)™+ 567+ Suyn B 4, given byaS/a¢=0 and read off the quadratic term, ob-
taining

o Eof dzxfﬁd

2] @l
with ¢(q,v)=Eqa 2fd®x[Edre'9*"*7¢(x,7) and, in a

clean system, _ 1

n 2.2 n2I3
_vq +&,9°+h

a® [ d%q ool
deﬁff 5 )ZTE ﬁ|¢(qylvn)|2, (4)
ol (2m n The coupling constang may be determined because the

wherev,=27nT. For SERu,0;, Eq~7000 K2 a value for damping term iSgyn ar@ses from processes in which a criti-
¢, has not been established. A natural guess would be somg@! fluctuation decays into one particle-hole pafrand is
thing of the order of the in-plane lattice constant4 A. 5

However in many ferromagnetic materials band theory sug- 2 4m? vi

gests that the momentum dependence of the magnetic polar- 9 _aZEO vSe (8)
izability is very weak, implyingéy<a; while if the consid-

erations of Ref. 12 are relevant, a considerably larger valuwith Sg the length of the Fermi surface in two dimensions
might be appropriate. A value far has also not yet been (Sg=2mpg for a circular Fermi surfage

established; the natural expectation is that it is of order the Using these definitions we find that the one-loop self-
planar-band Fermi velocitwe~1 eV—A. The theory is energy afT=0, shown in Fig. 1a), is
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condition corresponds tp;+p,=0 and|p;|=pg. In this

case, choosing thecoordinate to be parallel {o, andp, ,to
Koo X be on the Fermi surface we hawg . q=vg(dx+d;/200)

andep, ; q=vr(—0xt q§/2q0) with gy a quantity of the or-

(a) (b) der of pg parametrizing the curvature of the Fermi surface. If
p,=—pi+p with |p|<|p,|, we find that the correction

shown in Fig. 2b) is
%--- *%--- B 27, 1
A1(p,h)=Agl S In ma>{h2’3,(py§0)2] (10

FIG. 2. Diagrams corresponding to the renormalization of the
impurity scattering amplitudela the bare vertex(b) the lowest- 2
order correction(c) the sum of the ladder diagrams, afd) an ob [ (Eb>y
example of higher-order corrections. I(b)= _f dy >
0 2
(1+y°) (—b) +y*
2ive [ ng()+x3+h2/3x V3
2i(piw)= S ngo dx xIn BRIV (9 andA, is the bare scattering amplitudg1)~0.23, 1(10)
S0 ~0.5, andl(b) is an increasing function df. Notice that if
Notice that asw—0 at fixedh#0, m— 6 is the angle betweep; andp,, thenp, &, 6.
A very similar result was obtained in the context of the
) 20 i U(1) gauge theory of the “RVB” regime of the two-
2i(piw)= VS &g H13 dimensionalt-J model!” where the g spin susceptibility
was considered. The U(1) gauge theory possesses an inter-
while ash—0 at fixedw we have action(mediated by an internal gauge figldith a very simi-
lar mathematical structure to our interactibr{q,i v,) [EQ.
, i sgn(w)|w|?2m(vl )R (7)], except that in the U(1) problem gauge invariance dic-
2a(piw)= : tates that in the RVB regime the mads ifi our notation$
V3Seéo(vlve)

vanishes. Further, in the vertex computation two additional
In spatial dimensionl>2 the fact that the theory is above MiNUS signs occufbut compensate each otheone from the

the upper critical dimension guarantees that a one-loo;Ba_Ct tha_t gauge interaction involves currents which are oppo-
(Migdal-like) approximation yields an asymptotically exact Sitély directed at momentum transfepand one from the
approximation to the self-energy, butdh=2 this is not the ~TansSverse nature of the gauge interaction. _
caset’"19While higher corrections such as those shown in Higher-order diagrams such as those shown in Fig) 2
Fig. 1(b) do not change the powers, they do introduce @@/ be evaluated similarly; we find that the leading behavior
dependence on momentup=p— pr and induce a depen- ©f thenth order term is
dence orw/[ w* (h)] with * (h)=vh/&,. The scaling func-

tion for the self-energy has only been computed in la¥ge- A A 1 | 2mq | 1 " 11
and smallN expansions, wher&\ is the number of order- nTo0n Se n ma{ h??, 2] (11)
parameter components. Unfortunately, in the metamagnetic '
problem of interest herbl=1. so that finally we obtain

lll. ELECTRON-IMPURITY VERTEX: A(6,h)~Ag(max h?362]) ¥ (12)

BORN APPROXIMATION
with ¢=1(Sg/27qy) at one-loop order.

We now consider the effect of critical fluctuations upon e should further consider the effect of higher-order dia-
the amplltudeApl‘p2 for an electron initially in a state of grams, such as those shown in Figd)2 These do not change
momentunp; to scatter off of an isolated impurity atom into the basic power counting, and may, therefore, be expected
a state of momenturmp,. The basic electron-impurity vertex not to alter the basic power law we have found; they will,
is shown in Fig. 2a); we assume that this is structureless; however, change the numerical value of the exponent. Ac-
corresponding to scattering amplitude independenp,of. cording to the result of smalt expansiort, the effect of
The first correction due to critical fluctuations is shown in “crossed diagrams” is to increase the exponent. We conclude
Fig. 2(b), and is found to be divergent whem , are on the that the Born-approximation amplitude for an electron to
Fermi surface and are such that the Fermi surface tangentslaack-scatter off of an impurity suffers a singular renormal-
these two points are parallel. For a circular Fermi surface thigzation near criticality.
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X X X (note that we have defined angular coordinates so ¢hat
| e S A =0 corresponds to backscatterind3ecause we are con-
i ;o Lo cerned with a scattering amplitude strongly peaked about the
back-scattering direction, the c@¥(factor is unimportant.
FIG. 3. Diagrams representing multiple scattering of electronsThen I';, is given by the imaginary part of the diagonal
off of an impurity. The shaded triangle represents the renormalizaT-matrix I";,~ImT(0;h) in the usual approximation. There-

tion of the Born scattering amplitude given by FigcR fore, we obtain
IV. BEYOND BORN APPROXIMATION; RESISTIVITY *
. . o ~Im[Tg]+2 ImT,,. 15
The preceding section presented the renormalization of Pres IM[To] mEzl m (19

the leading-order term in the electron-impurity vertex. In this

section we consider effects arising when the Born approxiAS noted above, within this appI’OXimation the reSiStiVity di-
mation is not justified, either because the initial scattering’erges as criticality is approached, but the approximation
amplitude is not small or because the renormalizations inltself breaks down when the mean-free-path implied by Eq.
crease an initially weak interaction beyond the regime of(15) becomes smaller than the correlation length. The ques-
Va||d|ty of the Born approximation_ Corrections to the Born tion of a dlvergent reSlSthlty is further examined in Sec. VII.
approximation result for the electron self-energy correspond

to multiple scattering of the electron off of the same impu- V. APPLICATION TO DATA

rity, and are represented diagrammatically in Fig. 3. Within ) . )

the “noncrossing” approximation used in the previous sec- In this section we attempt tq relate calculations of the
tions we find that the leading renormalization near criticalitydePendence op. to data obtained on §Ru,0;. We first
comes from the correcting each impurity vertex individually. Note that it is sensible to discuss the scattering from an iso-
The series for the self-energy may be summed by definin ted impurity only if the elastic mean-free-pdtlis greater

. . . . i — —-1/3
the T matrix which for incident electron energies very closethan the correlation lengtéi=&h ™~ =*. The observed low-
to the Fermi surface becomes resistivity of clean samples of §Ru,O; is of the order of

5uQ—cm corresponding to pgl~250, i.e., to an of the
T(6—0",h)=A(6—6',h) order of 300-400 A. The appropriate value &f is not
do known at present, but if it is of the order of the lattice con-
; 1 / stant or smaller then almost all the available data are in the
|f§N(01)A(0 01,MT(0,=60"h) regime in which the calculation applies.
SpRW,O; presents an interesting issue in modeling. If the
(13 ) . .
estimates presented in Ref. 8 are correct, then even in zero
with N0=f(d2k)/(277)25(8p) the single-spin Fermi-surface field the material is close to a ferromagnetic critical point, so
density of states. Assuming for simplicity a circular Fermithat renormalizations of impurity vertices could be substan-
surface with density of statd,, we may solve the equation tial, even at vanishing applied fielgrovided, of course, that
by resolving T and A into their angular component$,,  a sufficiently wide regime exists in which the| effects of
= [(d627)T(6,h)e™ and A= [(d6/27)A(6,h)e™ so  Ref. 12 are not importapntWhat is unambiguously measur-

that able, however, are the effects caused by a varying magnetic
field. Further, the parameters presented in Ref. 8 allow a

An quantitative determination of the parametesbove in terms
Tm:m- (14 of the applied magnetic field. We have used the parameters

Uee=—3500 K, v¢.c=58000 K, r=100 K defined and

We note that the sign of ,, and, therefore, the sign of the given below Eq(6) of Ref. 8 to compute the “mass” in Eq.
angular momenturm channel phase-shift alternates with  (7) for applied fields from 0 to 10 T, and have used this and
so that the Friedel sum rule is straightforwardly satisfied. Eq. (15) to calculate the field dependence of the residual

The final result depends on the parametgr ANy and  resistivity for various choices of exponegitand initial scat-
on the exponeny. If y<<1/2, then none of thd;, or T, are  tering amplitude. Representative results are shown in Fig. 4.
divergent ash—0. The distance to criticality, parametrized The values at applied field =0 depend on the behavior of
by h, controls the numbem,,,, of angular momentum chan- the theory at higher-energy scales, which is not known for
nels for which A, and T, are non-negligible ., the reasons given above. However, the change in behavior
~h~*). On the other hand, i>1/2, then in each angular near the metamagnetic fieldbout 7 T for the parameters
momentum channel the amplitudediverges a$i—0 so that  used hereshould be reliable. We observe that there is some
the resulting phase shift saturatesm® in each channel, and interplay between exponent and initial scattering strength but
again the number of channels that are relevant divergethat sharpness and relative height of the resistivity peak de-
rather strongly at—0. pend most strongly on the exponent. Comparison to°data

The contribution of this scattering amplitude to the prob-shows that our calculation is consistent with a moderate bare
ability that an electron is scattered through an angle scattering amplitude and an exponent 3/4. We stress that
W(6), is given by|T(6)|?. The impurity scattering rate re- the exponent estimate is obtained from the relative height of
vealed by the resistivity';,=[(d6/27)[1+cos@)]W(6)  the resistivity peak, and not from a fit of the shape of the
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servable in scanning tunnel microscoi®I M) experiments.

We note, however, that the effect discussed here is a long-
wavelength, low-energy effect. It does not imply that the
density modulations are greatly enhanced near to an impu-
rity; only that they decay much legsr more rapidly with
distance than in a noncritical material.

Itis also interesting to consider the situatiorHat 0, i.e.,
near to a 2D ferromagnetic transition, and indeed we note
that for the S§Ru,O; parameters given in Ref. 8=0 cor-
responds tdi~ 102 so one might expect the enhancements
to be noticeable even at zero field. The Friedel oscillations
from a nonmagnetic impurity would indeed be long ranged,
however, it is interesting to note that the RKKY interactions
are suppresse(@n a system with Heisenberg symmetiye-
cause the spin commutation relations lead to a minus sign in
the renormalization ofr, vertex byo, or o fluctuations.

We also note that field-dependent STM studies might
present an interesting test of the reSuthat for 2D Heisen-
berg materials the leading momentum dependencigg.isn
this case, the renormalizations we have discussed would not
exist. AsH is increased, the effects that prodycg are be-
lieved to be cut off, and the unconventional Friedel oscilla-

FIG. 4. Residual resistivity calculated for different exponentstions should reappear.
and initial scattering amplitudes and scaled to Hhe0 values. Finally, we observe that the presence of the Friedel oscil-
Dashed linesy=1; heavier solid linesy=0.75; light solid lines, ~lations implies that the state of a critical system is in some
=0.5. Three panels show the results of different initial scatteringsense a random charge-density wave, characterized by infi-
amplitude:(a) go=0.5, (well below unitarity limit for initial point-  nite ranged charge oscillations emerging from the various
impurity scattering amplitude (b) go=1.0 (roughly half way to  impurity sites. The resistivity and other properties of such a
unitarity limit), and(c) go=>5.0, (close to unitarity limi. state are an interesting issue for future research.

0.04

0.02

p (arb. units)

p(B) traces, and that the estimate is royglhough it seems VII. NONVANISHING IMPURITY DENSITY

that an exponent of 1/2 is clearly too small and of unity is ) ) ) )

clearly too large We also note that the rather small resistiv- 1€ Ppréceding treatment is valid for correlation lengths
ities observed in experimental systems suggest either that t#igSS than the mean-free path. We now consider what happens
initial scattering amplitude is weak or that the renormaliza-When parameters are tuned so that the correlation leagth
tions associated with the nearby ferromagnetic quantum criti€Xceeds the mean-free-pdtive first note that the problem
cal point are not large, perhaps for the reasons given in Refl@s two energy scales: the impurity scattering rate

12. Finally, we remark that the data in Ref. 5 exhibit addi-=VF/! ?nd the characteristic quantum critical frequency
tional B-dependence not accounted for in the present theory?* =v&o/€® so that near criticality, whe>¢, we have

We believe that the main source of this additional field de-w* 7<1.

pendence is @2 orbital magnetoresistance, but the issue For length scales longer than the mean-free path the dy-

deserves further investigation. namic term in the action is modified to be
a2 dzq |Vn| . 2
VI. FRIEDEL OSCILLATIONS de"vdi“yzz_Eo (277)2T% D’q2|¢(q’lvn)| (16)

The physics which gives rise to the singular correction to
the conductivity also gives rise to a singular behabiorthe ~ with D of the order of the diffusion constaBt=vz7/2. We
susceptibility at wave-vecton=2pg which is proportional noteD’/D=uv/ve from the definition ofg? in Eq. (8). Here
to (2pe—q)1 3" this leads to a change in amplitude and 1/7=2mu?N, is the impurity scattering rate? is the renor-
distance dependence of the Friedel oscillations induced by amalized squared impurity scattering strengtenormalized
impurity in two dimensions. We find that i/<1/6 the ef- due to the effects discussed in Sec),l¥ndN, is the density
fects considered here are a subleading correction to the conf states at the Fermi energy. Thus the dynamical critical
ventional behavior while if 1/6& <5/6 the Friedel oscilla- exponent isz=4 in this case and the nonlinearity in the
tions decay as cos(R)/R®Z3¥). For ¢>5/6 a more critical theory remains dangerously irrelevant.
sophisticated treatment is needed. At nonzero field, the The leading order correction to the conductivity is given
spin-up and spin-down Fermi surfaces are characterized byy the sum of two diagrams in Fig.'Swhere the wavy line
different Fermi wave vectors so we predict two superposedepresents the metamagnetic fluctuations with the propagator
oscillations emerging from each impurity site, each decayindd(q,iv,)=1[(|v,|/D'g?) + g?£3+h??]. Notice that there
with a characteristic power. These oscillations should be obexist three more diagrams at the same order, but they cancel
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A dependence wheh>T,, and at the critical point{=0). (ii)

If T<T,, the coefficient of the logarithmic term explicitly
depends orh and it increases as the critical point is ap-
% proached until it is cutoff by temperature.
Now let us estimate the size of the perturbative quantum
correction in S§Ru,0;. We assume thdd’'~D and§ is of
FIG. 5. Diagrams contributing to the leading order correction tothe order of the in-plane lattice constant4 A. Using v
conductivity. The black triangles and the dotted lines represent the_ 1 e\v_A and|~300-400 A, we get ¥#~30 K and D
vertex correction by impurity scattering and the Diffuson ladder. __45_60 crésec. Let us consideth~1078, then T,
. ) ~10 % K. In this case,T>T, for experimentally relevant
each othet. Each interaction vertex that represents the COUtemperature range and E€L7) should be used. Using the
pling between the electrons and the bosonic mode is réNOfzading-order resultg,=(e2/2m4)kel, in two dimensions

i ; ; 2y-1,_-1
malized by the Diffuson correction|y| +Dq%) "7 *. We  ihe relative size of the correction can be estimated as
find that the leading correction to the dc conductivity at finite solay~0.07 atT=2 K and 8o/ op~0.1 at 0.1 K. Thus the

temperature is given bjwe assumd <1/7) relative correction is only 7—10%. Given that the residual

resistivity is about 5u{)—cm, it will be hard to see the
effect of these corrections. If the material were more dirty,
for T>Tn (A7 oy kel~50, we would get T~150-200 K andT,
=10 * K. Similar estimation would predict that the relative
2 correction is 30-50% af=0.1-2 K. It would be interest-
e” A 1 AD . . . .
S —In(—) In(—) for T<Tj, (18 ing to test these predictions in more dirty samples.
h 372 \h S To conclude this section we note that the scattering time
_ s ) ) is the impurity scattering rategs renormalized by critical
whereA=vg /v and T, =h""AD/&;. Thus at a given tem- q,,cqations at scales less than the (renormalized)/é also
perature the conductivity will decrease as the critical point iypserve that our result is perturbative in both the disorder
approached{—0) but whenh<hy with hy=(&5T/AD)**  girength and the interaction. Presumably when the resistivity
(or equivalently T>Ty) it levels off at a temperature- pecomes of the order of the Mott value a crossover to insu-
dependent constant value. The corresponding behavior of thgting behavior occurs. The insulating state should presum-
resistivity as a function ofh at a fixed temperature is aply be interpreted in terms of the random charge-density

sketchedsomewhat exaggerated for clajiip Fig. 6. Notice \ave state discussed at the end of Sec. VI, but the issue
that these results are valid as far as we are in the perturbativeserves more careful investigation.

regime, i.e..,60<oy=(€%/2mh)kel.
This result should be compared with the well-known be-
havior of the quantum correction to the conductivifr=

—(€?/2*h)In(1/T7), in weakly disordered interacting two-  |n summary, the effect of critical fluctuations on the re-
dimensional electron systerhs'he notable differences are: sjdual resistivity is studied near a two-dimensional metamag-
(i) 6o in the present case has more singular temperaturgetic quantum critical point. When the correlation length is
smaller than the mean-free path, the critical fluctuations in-
/] duce a singular renormalization of the amplitude of the back-
scattering off an impurity of an electron. This leads to a
pronounced cusp in the residual resistivity near the meta-
magnetic critical point in accordance with the experimental
results. When the correlation length becomes larger than the
mean-free path, the critical fluctuations convert the
“Aronov-Altshuler” logarithmic correction to the conductiv-
ity to the more singular squared-logarithmic behavior near
the critical point. Our results imply a divergent resistivity at
criticality. We argued that the state which gives rise to this
divergence is some sort of randomly phased charge-density
> wave, but a detailed investigation of its properties has not
hT h h been performed.
! Our results may have broader implications. The appar-

FIG. 6. The schematic behavior of the resistivity as a function Ofently Successfu_l comparison of Ol_” C_alcullation to da}ta Sug-
h at a fixed temperature. Hete=(¢2T/AD)¥* and h,=(£&,/)3.  9ests that the singulamiz renormalization discovered in the

Whenh>h;, &= &h~Y3<| so that the considerations of Secs. Iv 9auge theory context in Ref. 17 is more than a theoretical
and V apply whileh<h, we haveé<lI. If hy<h<h,, Eq. (18) curiosity, and therefore, motivates examination of other sys-
applies and the resistivity increases logarithmically rass de-  tems where P effects might be important; for example in
creased. Wheh<h;, Eq.(17) applies and the resistivity becomes the transresistance of bilayer 1/2 quantum Hall systems.
a temperature-dependent constant. Work in this direction is in progress. The relevance of the

S e’ \
o= ﬁ4w2n

AD
TE]

2

VIIl. CONCLUSION

i)
1
1

085102-6



RESIDUAL RESISTIVITY NEAR A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 085102 (2003

results to other systems is an interesting issue. The essentiditect (e.g., neutropstudy of the momentum dependence of
ingredients in our calculation were two dimensionality, a susthe susceptibility is impractical.
ceptibility diverging atg=0 and a leading momentum de-

pendence involving a power gfgreater than unity. A mate- ACKNOWLEDGMENTS
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