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We investigate the elongation and breaking process of metallic nanowires using the ultimate jellium model
in self-consistent density-functional calculations of the electronic structure. In this model the positive back-
ground charge deforms to follow the electron density and the energy minimization determines the shape of the
system. However, we restrict the shape of the wires by assuming rotational invariance about the wire axis.
First, we study the stability of infinite wires and show that the quantum-mechanical shell structure stabilizes
the uniform cylindrical geometry at the given magic radii. Next, we focus on finite nanowires supported by
leads modeled by freezing the shape of a uniform wire outside the constriction volume. We calculate the
conductance during the elongation process using the adiabatic approximation and the WKB transmission
formula. We also observe the correlated oscillations of the elongation force. In different stages of the elonga-
tion process two kinds of electronic structures appear: one with extended states throughout the wire and one
with an atom-cluster-like unit in the constriction and with well-localized states. We discuss the origin of these
structures.
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[. INTRODUCTION atomic distances. In this process, a nanowire is produced
which upon pulling is elongated and narrowed until it even-
The miniaturization of the electronic components is oftually breaks. These methods have allowed the study of
great importance in the development and improvement ofransport properties and stability of nanowires.
new devices for applications in a wide number of fields. The MCBJ techniques have demonstrated the existence of
Although the laws of nature are the same for macroscopi€lectronic and atomic shell structur®s, analogous to those
and mesoscopic systems, the miniaturization process #und in atomic cluster§? In these experiments the conduc-

achieving the limit where the quantum behavior of matteriance has been studied by building histograms of the conduc-
starts to play an important role. tance during the breaking process. The results show that

If the size of the system under consideration is only a few/1€reé aré conductance values that are much more probable

nanometers, the atomic character of matter emerges andtnan others. Due to the relation between the conductance and

cannot be considered as a continuum. The regime of quar%-e radius at the narrowest part__of _the Nanowire, wh!c_h
means that there are magic radii with enhanced stability

tl;r?hbehavtlorusi reraghed daljovzlfnope t?‘f ﬂ::e frg?wl\?':ninion?/hile other radii are less stable, and therefore they appear
ot the system Is reduced do 0 the e avelengin Olggg frequently in the conductance histograms. The atomic

the ponductmg elegtrons. 'Ijhen., thg cqnflqement splits ,thgtructures of nanowires in the last steps before breaking have

continuous electronic band in this direction into a set of disygen also studied with these techniqti&st?

crete energy Ievels._ln both cases, the behavior of t_he system The experiments discussed above have been accompanied

changes from what is expected from the macroscopic case. by, supporting theoretical investigations that can be split in

metallic nanowires the Fermi wavelength is of the same oryyg groups. The first group includes classical atdinitio

der of magnitude as the atomic distance, and both atomic anfiolecular-dynamics simulations, in which the atomic struc-

electronic discrete character compete and/or couple, detefure of nanowires is taken into account. These investigations

mining the properties of nanowires. have been successful in many aspects, e.g., showing the ato-
There are many experimental and theoretical works thatnistic mechanisms of the narrowing procéappearance of

have gone deep into the understanding of the main featuradislocations, order-disorder stages, etnd their link with

of nanowires. Experimental studies have focused on the inether measurable quantities such as the elongation force or

vestigation of the mechanical and electronic properties, sucthe conductancE* Moreover, from the viewpoint of the

as force, atomic structures, and conductance, pointing out theresent work, we notice the predictions of special atomic

close relation between them. Among the experimental setupsrrangements in STM tips and nanowire netkS°The

we want to emphasize the role of the scanning tunnelinggecond group of models is more related to the properties due

microscopé— (STM) and the mechanically controllable to the confinement of electrons in reduced dimensions, and

break-junction (MCBJ) technique$® In both techniques ignores the atomistic structure of matter. In these calcula-

metallic nanowires are produced by putting two protrusiongions, analytic approximations as well as self-consistent

in contact and then pulling them away from each other oveelectronic-structure models have been used, mainly within
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the jellium framework. The results obtained with these meth-breaking process of a finite cylindrical UJ nanowire sup-
ods are also enlightening, explaining the cohesive and elegorted by leads. Section IV contains the conclusions.
tronic transport properties of nanowires, especially in the
case of alkali metals with strong free-electron charalef: Il. THEORY
The aim of this paper is to simulate the breaking of
nanowires. For this purpose we choose the jellium model and
the self-consistent electronic-structure calculations within the  The jellium model has been widely used in self-consistent
density-functional theory. In spite of their simplicity, jellium €lectronic-structure calculations of nanostructures. It simpli-
models have provided a simple and transparent way to urfies the problem by replacing the ions by a uniform rigid
derstand the physics of metallic nanowires. More specifiPositive-charge-density background that globally neutralizes
cally, we use the ultimate jelliunduJ) model. This model the electron negative charge. The effective potential of the
was first proposed by Mannin&hto investigate the struc- Kohn-Sham' equations is written agatomic Hartree units
tures of alkali-metal clusters. It has been used for the sam@re used throughout this paper in the equations
purpose also in later studié$?’ To our knowledge the
present work is the first time the UJ model is used to simu- v _J n_(r')—n.(r’)
late the nanowire breaking. In practice, we solve the ensuing e(1)= Ir—r'|
Kohn-Sham equations in a real-space point grid using the
powerful Rayleigh quotient multigrf§?° (RQMG) method Wwhere the first term on the right-hand side includes the
implemented in the program packagexa (Multigrid In- electron-electron and electron-positive background Coulomb
stead of K-spAcg® interactions, and the second term gives the exchange-
Within the UJ approach, the background positive chargeorrelation  potential ~ within ~ the  local-density
density is fully relaxed in shape and density so that it equal@pproximatiori>>3
at every point with the electron density. One can think that Different types of jellium approaches have been intro-
this freedom of the positive background charge mimics theduced. The simple jelliuntS) model has the problem that
efficient rearrangement and diffusion of ions at temperaturethere is only one equilibrium charge density,rat=4.18,
close to the melting point at which the shell- and supershellin_=3/(4r3)], corresponding approximately to the aver-
structure studies by the MCBJ techniques have been peage conduction-electron density in Na. This means thatfor
formed for alkali metalé: In principle, there is no restric- values lower (highep than ~4.18&,, the jellium system
tion for the geometry of the constriction. This is in contrasttends to expandcompress In the SJ model, the electron
with the previous jellium calculations that introducad hoc ~ density has the same mean value as the positive background
shapes for the nanowire. In our model the electrons themdue to the electrostatic forces. The SJ model gives incorrect
selves acquire self-consistently the shape, which minimizegalues for properties such as the cohesive energy, surface
the Kohn-Sham energy functional, and carry along the posienergy, and bulk modulus, due to the trend of the system to
tive background charge. However, in order to reduce compueompress or expand. To improve the results, corrections can
tational demands and to highlight the important phenomenhe added to the SJ mod¥le.g., using the so-called stabi-
from the complexity of possible solutions, we restrict thelized jellium model introduced by Perdew co-work&rand
shapes of nanowires to the axial symmetry, i.e., rotationaBhore Rosé&®
invariance with respect to an axis. In this work, we use the UJ model, the philosophy of
One of our main results is that in the narrowest part of thewhich differs from the stabilized jellium model in which it
nanowire, electronic cluster derived structdfég (CDS's) does not try to correct the above-mentioned deficiencies of
appear. This tendency of electrons to form embedded clustetse SJ model. The peculiarity of the UJ model is that the
in the jellium constrictions is analogous to the preferred cluspositive-charge background is allowed to relax. The UJ
terlike arrangements of atoms in contacts, described by thmodel represents the ultimate limit in which the positive
first-principles atomistic calculations by Barnett andbackground is completely deformed to have the same density
Landman'>° CDS's have later been reported also by otheras the electrons locally at every point. In this way, the Cou-
authorst® The main difference is that in our jellium model lomb term in the potential always vanishes, and in Bg.
the atomistic character of the previous works is lost and thenly the exchange-correlation term survives. The total en-
electrons alone are responsible for the phenomenon. Thergy is then minimized in the interplay between the
single-electron states provided by the jellium model can bexchange-correlation and the kinetic energies.
studied in order to gain insight into the localization effects One limitation of the UJ model is that, as in the SJ model,
associated with the CDS. The conductance of the constridghere is only one equilibrium charge densityrat=4.18,.
tion can be estimated either by counting the bands crossinBut, the absence of electrostatic potential disables the
the Fermi level or by using the WKB formula. mechanism to keep the electrons at a given density, and in-
The rest of the paper is organized as follows: in Sec. Il side the UJ the mean electron density becomes equal to the
we describe the practical features of the UJ model and thequilibrium density. Another property of the UJ model, de-
RQMG method to calculate the electronic structure duringived also from the absence of electrostatic potential, is that
the elongation process. In Sec. lll, we discuss the results fahe shape of the electron density is to a large extent uncon-
the electronic properties. As a starting point, we consider thérollable, and it evolves until the ground state is achieved.
results for infinite wires. Then we focus our attention on theThis property has been used to study the most favorable

A. Jellium models

dr'+Vin_(n], (@
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shapes of simple-metal-atom clustéts2’”In the present vanish at the ghost points corresponding to the radial surface
work, however, we have to deal with open systems and wef the cylindrical computation volume, whereas at the axis
have to impose certain controlling restrictions in order tothe values at ghost points can be evaluated by noting that
model the pulling of the nanowires. The description of theU(—r,z)=(—1)"U(r,z). The Bloch condition[Eq. (3)]
solutions to these requirements is postponed to Sec. Il C. gives the recipe for obtaining the values at the ghost points
of the periodic boundary.
B. Numerical methods The problem with standard real-space relaxation methods
o . N . for Eq. (4) is the so-called critical slowing-down phenom-
. n S_ec. lll A, infinite uniform cyI|ndr[caI wires are stud- enon resulting from the fact that at a time they use informa-
ied. Since these systems are translationally invariant alongo't.0 a rather localized region of space. As a result of the
the wire axis, the relaxation of the positive backgroundloca”ty the high-frequency error, corresponding to the
charge and electron density is limited in the radial direction.length ,scale of the grid spacing is’ reduced very rapidly in
Consequently, it is necessary 1o sqlve numerically or12I2y &he relaxation. However, once tr'1e high-frequency error has
radial part of the.Schmnger equatior(see Zabalzt al- been effectively removed, the very slow convergence of the
for technical details Lo low-frequency components dominates the overall error re-
For the S.ySte”?S S“%d'ed n Secs. lll B and Ill C.’ howe.v.er’duction rate, i.e., critical slowing down occurs. Multigrid
the translational invariance is not required. But, in a\ddltlonmethods avoid this problem by treating the low-frequency
to the rotational invariance, periodicity in the axial direction components of the error on coarser grids, where their wave-
is assumed with unit-cell length.;. Thus, the wave func- length is comparable to the grid spacing.,
tions are indexed by the quantum numbensn, and kZ.' Applying the multigrid methods to the Schtiager equa-
Here,mis the angular momentum quantum number BA%  yion s 3 fairly complicated task because one has to solve
the Bloch wave vector along the wire axis. Withandk, 4t the eigenvalue and the wave function simultaneously—
given, n enumerates the orthogonal states in the order of,is makes the problem nonlinear. Also, one has to solve
increasing energy eigenvalue. The UJ system is solved bygyeral wave functions simultaneously, avoiding the bottle-
finding the self-consistent solution to the following set of hocy of orthogonalizations as well as possible. The standard
equations: methods based on the full-approximation-stofagaethod
_im require that the wave functions are well representable on the
Ymign(r.2,4)=¢ ¢Um"z”(r’z)’ @ coarsest grid used, implying severe limitations on the accel-
L eration obtained by the multigrid idea. We use the recently
Umin(r,Z+ Leen) = €72l iy (T, 2). (3 developed generalization of the RQMG metf@das imple-
mented in thevika package® which avoids the problems
111 9 92 m? 92 described above. In short, one applies the Gauss-Seidel
-3 F&TJFP_ r_ZE+2Veﬁ(ryz) Unmin(r,2) method on the finest grid. On the coarser grids one applies
coordinate relaxations on the functional

=smenUm|&n(r,Z). (4)
alHIg S (Wil
N(N=23 (2= dom) kel UmignI (9) R AR R A A

SEJN(r,2)]

Ver(r,2) = Vy(r,2)= (6)  This functional, which is actually defined on the finest grid,

on(r,z) is the sum of the Rayleigh quotient and a penalty functional,
. . which is introduced to ensure the orthogonality. Moreover,
The effective potentialVey(r,z) equals the exchange- the relaxations are performed simultaneously for all wave

correlation potentiaV/,(r,2). The electron densita(r,2) is functions. See Heiskanast al?° for a more thorough discus-

obtained by summing single-electron densities with the C%ion of technical details.

cupatign numbers,, ,. The degeneracies of the states are™ 1 . '« onn-Sham equations have to be solved self-
taken into account by the factor 2¢25,), and the occupa-  consistently. In other words, one has to iterate until the out-
tion numbersfm@ obey the Fermi-Dirac statistics with the put potentialV ¢ obtained from Eq(6) equals the input po-
Fermi level Eg) so that the system is neutral. A finite tem- tential V4 that is used in Eq.4). In typical cases of
perature of 1200 K is used to stabilize the solution of the seelectronic-structure calculations, to avoid divergence due to
of equations. charge sloshing, one uses sophisticated strategies to construct

The Schrdinger equatior(4) is discretized on a regular the input potential for the next iteration as an optimized mix-
two-dimensional (,z) point mesh. We use standard fourth- ture of input and output potentials of previous iteratidh¥’
order central-difference discretizations for the first and thdn the UJ iterations, however, the output potential can be
second derivatives. The grid is surrounded bfyaamewith  taken directly as the input potential of the next iteration re-
the thickness of two grid points. Thegbost pointsare nec-  sulting in a rapid convergence. This is because of the absense
essary for the evaluation of the derivatives near the edges aff the long-range Coulomb interaction, which is the cause of
the computation volume. The wave functions are required tethe charge sloshing phenomenon.
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are shifted to higher radii. The reason is that the UJ potential
is softer at the surface than the stabilized jellium potential

28 | g \ ﬂ 11 for Na?®
& w SF 1 d
$ el g Ll M nfia o]
> 26 | k] pal £l i o
) i 3 W U v UIEAAARE B. Periodic systems
> 5[ 11
g,’ 24 | g ol 13678 507 1 Now we change the scheme and allow the wire to deform
o H 43 55102 ] also in the axial direction. However, we impose periodic
@ L L I I I oy . . p p
S Lol " 0w w0 s ] boundary conditions with the unit-cell length,, along the
3 Radius (a;) ] wire axis.L s is thus the maximum perturbation wavelength

in our calculation. From the liquid-drop model point of view,
neglecting the small contribution of the curvature energy, the
liquid wire attempts to achieve the shape that minimizes the
surface, and thereby the total energy. Under this assumption
i an infinite periodic liquid wire is a uniform cylinder for
Radius (a,) lengths Lo <4.5R. For Le>4.5R, it deforms trying to
N . —_ achieve the energetically most favorable state, an infinite
1es a2 a uncion of e nominal wire radiase text 1 the inse, . C1an Of Spheres. However, Kassulstial* showed using a
semiclassical model and perturbation theory that due to the

the energy oscillations are shown and the first magic radii are,. - - - .
9y g discreteness of electronic structure, the wires with magic ra-

‘Z Liqui-drop model surface energy

0 10 20 30 40 50 60 70

marked. dii remain uniform also at large./R ratios. With this re-
Ill. RESULTS AND DISCUSSION sult they argued that in the narrowing process of an infinite
. ) o ) wire, when the radius is crossing an unstable zone before the
A. Infinite uniform cylindrical wires next stable radius is achieved, the wire would spontaneously

The main results of this paper concerning the nanowiregleform acquiring a wavy or deformed shape. We corroborate
breaking process are discussed in Secs. Il B and Il C. As #&hese results nonperturbatively using the UJ model as
preliminary work, and in order to gain insight into the UJ follows.
model in comparison with the stabilized jellium model, we We choose a certain radii&and solve for the UJ elec-
study the stability of infinite uniform cylindrical UJ wires.  tronic (and positive-charge densjtgtructures imposing in-

We calculate the surface energy of the nanowires and thereasingly longer supercell lengths, by increasing the
oscillations in the energy per unit length as it was made imumber of electrons in the cell. Thereby we determine the
our previous work describing Al, Na, and Cs nanowirescritical supercell lengtlithe wavelength of a perturbatipat
within the stabilized jellium mode?' The results are Which the wire starts deforming. For magic wires we find no
shown in Fig. 1 as a function of the wire radiRsHere the =~ Wwavy solutions, the wires remain uniform. For example, for
radius is defined as the radius of the positive backgroun®=7.3a, the wire is still uniform atl..;/R~36. The wires
charge in the SJ system with,=4.18, and the same corresponding to the radii at the maxima of the energy oscil-
amount of charge per unit length. In order to separate théations in Fig. 1 are the most unstable ones. These wires are
energy oscillation from the average behavior, the so-callediniform up to a critical value oL, but above it they
liquid-drop modeft* is used. In this model the energy of the spontaneously deform to a wavy or nonuniform density pro-
jellium system can be written as the sum of two terms—ondile along the wire axis. As an example, Fig. 2 shows the
proportional to the volume and the other proportional to thebehavior of a wire with radiuR=5.5a, when the number of
surface area. For the first term, the energy/volume ratio corelectrons in the unit cell is 6, 7, 8, and 10 and the unit-cell
responds naturally to the homogeneous electrof?gaish  lenghtL . increases as 1%3, 22.5,, 25.7a, and 32.4,,
r<=4.188,. This view has been tested in clusters andrespectively. The unit cell with eight electrons corresponds to
nanowire$’~?? and it describes correctly the mean energy,a magic spherical cluster and that of ten electrons corre-
i.e., without the characteristic oscillations due to the quantunsponds to the pair of magic clusters of eight and two elec-
confinement. We fit the self-consistently calculated total entrons. The critical values for the unstable radii &
ergy per unit length to a liquid-drop-model-type function. =5.5ag, 8.6a9, 11.6,, and 1%, arelL . /R=4.1, 3.2, 4.2,
Then, subtracting this smooth energy function from the totaknd 4.8, respectively; i.e., we obtain values near the classical
energy we get the pure energy oscillations, which are showwalue of 4.5. At the unstable radius Bf=15.5,, the wire is
in the inset of Fig. 1. Note that there are radii for which thenot deformed at least up ta.,;,/R= 10 (the largest length we
energy is at minimum. They correspond to wires that aréhave calculated probably due to the fact that this radius lies
more stable than wires with slightly different radii and higherin a beat of the supershell structure and it is actually rela-
energies. The first magic radii aR=4.3a,, 7.3y, 10.3,, tively stable. We start all the calculations with a converged
13.6,, 17.83,, and 20.3,. We use these radii for the initial uniform potential profile along the wire ax{see Sec. Il A
uniform wires in the nanowire breaking simulation in Sec.In this way we do not “add any energy” to the system when
[l C. The shell and super shell structures studied in previougnitiating the calculation. Therefore, if the wire starts to de-
calculationd®?! are also quite clear. In comparison with the form in the iteration process the reason is the disappearance
energy oscillations of Na, we observe that the beat positionef the local energy minimum.
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151932, (a) 511 F2253, (b)
" 0 Leai= Lo +A L
s 5 s 5
-5 -5
-10 -10 :
15 15 left left right rigth
20 40 0 10 20 20 40 0 10 20 periodic|  frozen o frozen periodic
Radius (a,) Radius (a,) image contact ECONSTRICTION contact image
151 #2573, (© 5 (d)
10 10
> 5 > 5fLa=32.14 = .
£ 0 L " g 0 L Zedge Zedge
N 5 e’ N 5 cell
-10 10
-15 15
20 10 0 10 20 20 10 0 10 20 FIG. 3. Schematic view of the model system for simulations of
Radius () Radius (&) breaking of finite nanowires supported by two leads.

FIG. 2. Periodic infinite UJ wire with the nominal radius &f particular choice of this matching because the physical

=5.53, and 6(a), 7 (b), 8 (c), and 10(d) electrons in the periodic  ¢oq1res are determined by the narrowest part of the con-
unit cell. The figures show the electron density of one unit cell. The,

contour spacing is 0.15 times the UJ bulk density value striction.
preng B = Y ' We perform simulations starting with radii betweenag 3

In addit tabl i e by i and 20.3,, and changing the number of electrons initially in
n addition, we narrow a stablé uniiorm wiré by INCréas-y, o ¢qnstriction. The elongation of the wire is made in steps

Ing tlge Ie?g}thce” of the ‘ze”to?z'c Cﬁ” Iand Tamt?mmg th? %c;Labout lay, and always starting from the previous con-
number of electrons constant. =ach €longation Step 1S solv rged density, so that the grid spacing of the point mesh is

seli-consistently until convergence is reached. We Observﬁmreased to enlarge the cell. In order to overcome the inter-
that during the first steps the wire remains uniform, but alctions between the constriction and its periodic regtfca
some point, before breaking into isolated clusters, the Wir%ve choose the length of the lead part to be 6 or more Fer,mi
spontaneoqsly deforms. Thus., we confirm SeljgconSiSteml\ﬁ/avelengths X;=13.73,). Throughout the rest of
and dynamically the hypothesis by Kassuttlal. the paper we will us@\L for the elongationAL=0 for the
first step.
C. Breaking of supported finite nanowires In Fig. 4, we show snapshots of the electronic density for

In order to study the formation and evolution of nanocon-& Wire with the starting radius of 1Gg. The UJ part corre-
strictions between two supporting leads, we follow the next
procedure. First, we fix the number of electrons in the peri-
odic supercell and solve self-consistently for the electronic !
structure of a uniform UJ wire having a stable magic radius
Then, the potential at both ends of the periodic cell is “fro- 4!
zen.” This means that, although the Kohn-Sham equation
are solved in the whole wire, in these regions the potential it 4l ] 0 11 0
not updated in the self-consistency process. The function c_
this “frozen” part is to emulate the lead parts where ion =
rearrangement does not occur as efficiently as at the constri™
tion. In our calculation, these leads serve as handles to gre | 0 ] 0
the UJ and pull it. The rest of the wire, the UJ at the middle o
part of the supercell, is the place where the wire will stretch. |
A sketch of the configuration is shown in Fig. 3. A sharp
change in the potential between the constriction and the leac ;|
turned out to cause difficulties in numerical calculations.
Therefore, we smooth out the potential at the left edge usin
the form

@ (b) (© ()

(=]
(@)
<)

(=]

O

o

20 0 202 0 22 0 22 0 2
Radius (a0)
| | FIG. 4. Supported UJ wire. The UJ constriction contains eight
F(Z_Zedge)vfrozen+ F(Zedge_ 2)Vyy, (8) electrons. Density contour plots for four different elongation
lengths:AL=7.9, (a), 19.&, (b), 20.8, (c), and 25.8, (d) are
whereF is a Fermi function with half-width of 0&, Viozen  shown. The snapshots ifb) and (c) are from consecutive self-
is the “frozen” potential, andVy; is the self-consistent UJ consistent calculations and the snapsfubtis the last step before
potential. For the right edge an analogous mixing is usedihe nanowire breaking. The contour spacing is 0.15 times the mean
The main properties of the nanowire will not depend on theuJ bulk density value.
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sponds to eight UJ electrons placed initially in the neck re- 25 (a)' ' '

gion. Electrons are free to move inside or outside the leads
depending on the requirements of the self-consistent solt s 29
tion. However, there are always about eight electrons in th«g
constriction. Although this is one of the smallest wires we's s
have calculated, it shows all the main features observe§
when simulating also larger wires.
If the breaking of an UJ nanowire would happen as forg
fluid between the leads, the electron density should evolv: &
forming a catenoid-shaped surface. Similar shagesh as 5¢
hyperbolic*® parabolic?® cosine?® etc) have been used be-
fore to model the nanoconstriction in simple free-electron ol . . ‘ .
jellium simulations. The main results, when the comparisor (b) 12
is possible, have been essentially the same irrespective of ti 20
actual shape. In Fig.(d), the electron density is shown after >
the elongation oAL =7.9,. The catenoidlike density pro- -
file appears as expected for a classical fluid. When we cor.E 16
tinue elongating the nanowire the shape of the electron derg |, |
sity changes dramatically from the classical one. If the
distance between the leads is short, the electrons are stron¢g 12
trapped at the narrowest part and they do not have muce 10 Brrrr e
freedom in the rearrangement process. When the length &
the constriction is large enough, the electrons have mor  ® ...l oo oo
space and freedom to achieve different types of energeticall s s ‘ s
preferred shapes. In Fig(l®), AL=19.8a, and the electrons (c)
in the constriction form a CDS. The electron density per unitz; 02 | ]
length has two minima at both sides of the CDS and there arS 3
7.1 electrons between these narrowest cross sections. T8

Conductance (G/G )

10 |

nduct:

18

10 15 20
Elongation (a)

embedded cluster reminds the closed-shell cluster of eigh& -04 ]
electrons, but there are some differences. There are n§ .05 g 1
enough electrons and the symmetry is not exactly spherica*cc?:'0 06 5 ]
It seems that the, orbital (z along the cylinder axisof the & “g

cluster has disappeared. We will analyze the structure i@ -0.7 g_;:j LI E
more detail below. Figure (4) shows the next consecutive 08 & ]
elongation step witlAL =20.8,. Note that the CDS disap- e i "
pears and a sudden change in the mean radius happens. -0.9 o 1'0 2'0 3‘0 4'0

fact, the conductance changes simultaneously abruptly fror
3G, to 1G, [see the inset in Fig.(8)]. At this point it is also
remarkable that the shape of the constriction is again far
from.the caterlmd having a constant magic radius. I:'gur%triction, and elongation force for a wire with initial radid®
4(d) is for AL=25.8,, the last step before the nanowire =20.7ay and about 60 UJ electrons in the constriction. Insets: the

breaks. Again a CDS appears during the elongation from thg; e quantities for the wire in Fig. 4 with initial radiis=10a,
third to the fourth snapshot. There are 1.8 electrons betweeghq eight UJ electrons in the constriction. The arrows mark the

the two minimum cross sections at both sides of the CDSpoints where the density has been plotted in Fig. 4 .
This CDS can be interpreted as an embedded two-electron
cluster. We observe that the radius of the constrictions ishe CDS formation is a process different from the stability of
more or less constant with the same value as in the previows uniform cylindrical wire against the formation of a chain of
snapshot in Fig. @). spheres studied in Sec. Il B. In that section, the quantum-
At this point we want to focus on one characteristic prop-mechanical shell structure may conserve the cylindrical
erty of UJ found when simulating the wire breaking: the UJstructure that is not classically stable, whereas now the
matter deforms very easily. This ability to deform allows thequantum-mechanical shell-structure effect destroys the
formation of the cylinders of magic radii glued to the leads.classical catenoid type of solution producing a CDS in the
The radius jumps from one magic radius to the next througltonstriction.
an abrupt charge reorganization. The CDS’s of about two or In Fig. 5, we show the conductance, the effective radius,
eight electrons appear before the last charge reorganizatiomsid the elongation force as a function of the elongation for
and the wire breaking. If there is enough UJ between thewo different wires. The main figures correspond to an initial
leads, suspended long thin cylinders appear and in the lasbnfiguration with the radius of 20ag and 60 electrons in
steps they alternate with chains of CDS’s producing a verthe UJ constriction. The insets display the results for a wire
extended elongation process. Here we want to underline thatith an initial radius of 10.#, and eight electrons in the

Elongation (a )

FIG. 5. Main figures: conductance, effective radius at the con-
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FIG. 6. (a) Electron band structure of the wire having eight UJ electrons and the elongatibin-019.8a, [Fig. 4b)]. The difference
between the vertical dashed lines is one reciprocal lattice vectefl(2;). The label for each branch represent therf) subband for the
infinite wire. The energy eigenvalues are solved at kwpoints: at the origin and at the zone boundary of the supercell Brillouin Zbpe.
LDOS integrated between the two narrowest points of the electron density in ([Bigisddisplayed. The solid line represents the total
ILDOS, the dashed lines are the contributions to the ILDOS of the statesmwitll (long-dashed lineandm= 1 (short-dashed line The
dotted lines show the DOS of hypothetical localized states. The states marked with squares in the band structure are the main states
contributing to the ILDOS. In the inset, the analogous plot for the ILDOS in the constriction of @gwith AL=7.9, is shown. The
origin of energy is the Fermi level.

constriction. The electron density of the latter wire is plottedeffective radius, accompanied by a step in the conductance,
in Fig. 4 at certain elongation stages. is due to the sharp charge rearrangements in the constriction.
The conductance is calculated with the adiabatic and The elongation force, shown in Fig(d, is evaluated as
semiclassical approximation used by Brandbggel?® The  the negative derivative of the total energy with respect to the
constriction is divided into transversal slices. Then for eactelongation. The rearrangement of the wire charge leads to
slice a uniform wire with the radial extent of the slice is built discontinuous upward steps in the force, while if the radius
and the energy eigenvalues of the subband bottoms are c&banges smoothly the force draws a continuous buckling
culated for this slice. The subband bottoms give effectiveEUrVe. At this point we want to point out the superiority of
potentials along the wire axis. If we look at the dependencdh€ UJ model in the force calculation over other jellium
of one of them on the position, we see that it raises at th&0dels?*** In contrast with the experiments, the latter
constriction due to the strong confinemésee Fig. 8 The Show a continuous behavior of the force without any steps.
electrons in this subband at the Fermi energy of the lead¥loreover, for narrow constrictions positive values are ob-
have to overcome this barrier in order to carry current. Tolined when the wire crosses an unstable zone. Note that in

evaluate the transmission probability of the electrons at th@Ur model tr;e force is always negative, ?flEEYSQVVGd in the
Fermi level through the barrier, the semiclassical WKB for-€XPeriments® and in atomistic simulations:*'*“'Figure 5
mula is used. shows clearly that the transport, geometrical, and mechanical

The properties of the nanowires have been demonstratdyoperties of the nanowires under elongation are related.

to be dominated by the narrowest part of the constriction.
Therefore we calculate an effective radius by evaluating the
electron density per unit length at the middle of the wire. It is
obtained with the value of the bulk electron dengitprre- Let us now analyze more closely the CDS appearing in
sponding tor,=4.176,). Figure 8b) shows the effective Fig. 4(b). In order to enlighten the origin of this structure, we
radius as a function of the elongation of the wire. The pla-plot in Fig. 6a) the single-particle energy spectrum of the
teaus or shoulders are in good coincidence with the infinitavire. The extended zone scheme is used for clarity. The la-
wire magic radii of 10.3,, 7.3a5, and 4.2,. For the larger bels on the left of each branch represent the corresponding
wire shown in Fig. b) also a small kink can be seen at (|m|,n) subbands for the infinite wire. In practice,is ob-
AL=15.5,, which corresponds to the magic radius of tained by calculating the number of radial nodes at the cell
13.685. Wider magic radii do not appear because of the beaboundariegsee Fig. 3. The branches have the characteristic
region of the supercell structure. In the inset at the end of thearabolic shapes, but they show two different stages. In the
plateaus the effective radius increases when elongating tHewer part of the parabolic subbands the eigenvalues form
wire due to the CDS formation. The sudden decrease of thiat plateaus withouk, dispersion. These states correspond

D. Electronic cluster-derived structures

075417-7



E. OGANDO, T. TORSTI, N. ZABALA, AND M.J. PUSKA PHYSICAL REVIEW B57, 075417 (2003

(a) ‘ ‘ ‘ ‘ ‘ ‘ (b)

60[ - 1 r 1 60[ 1 F 1
k=4.5 k=5.5
z z
’ E=-1.66 eV E=—041 eV
401 1 > 1 401 1
201 1t 1 201
g 0 \ g ol
N N
20 f 1 ¢ 1 20
-40 | . 1 F 1 -40 |
-60 ’ 1k ] -60
20 0 20 0 o2 o_.‘4 06 ] 08 1 20 0 20 0 o2 9.‘4 o.‘s_ 08 1
Radius (a,) (arbitrary units) Radius (a,) (arbitrary units)
(¢) (d)
60r 1 60} 1 L
k=8 k=7
E=-0.71eV
401 401 ]
20+ @ 20+ - >
< o g o
N N
207 20
w0l w0l
60 | 60 |
20 0 20 0 0z 04 s 08 1 20 0 20 0 o0z 04 s 08 1
Radius (a,) (arbitrary units) Radius (a,) (arbitrary units)

FIG. 7. (a), (b), and(c): Selected single-electron states in the wire having eight UJ electrons and the elongation ©9.8, [Figs. 4b)
and g. Contour and profile plotélong the wire through the maximum vajugf the squared moduli of the wavefunctions are shown. Plot
(a) corresponds to en=0 resonance state at the low-energy peak in the ILDB&. 6). Plot (b) corresponds to en=1 resonance state at
high energy. Plofc) is an extended state of tle=0 subband at the energy of the=1 peak in the ILDOS. Plofd) is a localized state with
m=0 corresponding to the elongation &t = 25.83, [Fig. 4(c)]. The contour spacing is one-tenth of the maximum value.Gheector is
given in reciprocal-lattice vector units {@L ).

to the wave functions localized at the leads and they vanisfull width at half maximum of 0.4 eV and weighting them by
at the center of the constriction. Therefore {Be2) and(2,1) the local probability amplitudes of the states in question. The
subbands cannot carry current through the constriction anlLDOS has two clear peaks, and while decomposing it we
they are closed channels. On the other hand, the states of than see that the lower and the higher peak haverthed
upper part of th€0,1) and(1,1) branches are extended along andm=1 character, respectively. The contribution of the
the whole wire and they form a continuous bafdth the =2 states is negligible. The two ILDOS peaks can be fitted
exception of small band gapsThe conductance of the wire by two energy levels convoluted with the same Lorenzian as
is thus 35, due to the extended states of the (0,1) and (1,1}he eigenlevels in the LDOS calculation. The resulting reso-
open channels at Fermi energy. This conclusion is in accomance peaks are shown in Fig(bp by dotted lines. The
dance with the value obtained with the WKB approach.  positions and the heights of these peaks have been fitted
In Fig. &b), we plot the integrated local density of states manually. The coincidence between the fit and the true IL-
(ILDOS) in the constriction for the band structure of Fig. DOS is remarkable. In the inset of Fig(b§, we plot the
6(a). It is calculated by integrating the local density of statesLDOS integrated between the leads for the electron density
(LDOS) over the space between the two narrowest parts ishowed in Fig. 49 having no CDS. We observe that the
the electron density in Fig.(d). The LDOS itself is obtained ILDOS is much smoother and it is similar to the DOS of an
by substituting the discrete energy levels with Lorenzians ofnfinite wire with delocalized states. The differemtcontri-
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butions cannot be fitted by single resonance peaks as shoviocalized states would decay exponentially. The wavy back-
by the dotted peak for then=0 and m=1 contributions. ground corresponds to the wave function of the legdsne
Moreover, the inset shows that thedecomposed peaks are wave) at the energy that matches with that of the cluster
slightly asymmetric with a tail on the high-energy side. state. To check this assumption we realize that the wave-
These tails, which are not observable in the main figure idength of the plane-wave background corresponds tokihe
which the CDS appears, are due to thedependence of the quantum number in the extended zone scheme. There are
subband peaks in the DOS for infinite wires. indeed two maxima in the modulus of the wave function per

The ILDOS analysis suggests that in the energy subbandavery Brillouin-zone unit ok, (see the labels of each wave
or branches, at the transition points from states localized ifunction).
the leads to states extended across the whole [w&e Fig. The existence of resonance states is related to the shape of
6(a)], rather localized resonance states appear in the constrithe self-consistent potential having a small potential well in
tion. To clarify this point, we plot selected states at the IL-the nanoconstriction. To point out how this potential can ad-
DOS peak energies in Fig. 7. Figurega)7and 1b) show mit a resonance state, we show in Fig. 8 the effective poten-
clearly the localized character of the wave functions in thetial for states with differentrfi,n) quantum numbers, calcu-
constriction at these energies. The state in Fi@) ¢an be lated within the adiabatic approximation for the wire with
identified as the & orbital of an eight-electron cluster. The eight UJ electrons and the elongation ®E=19.8, [Fig.
second well-localized staféig. 7(b)], hasm=1. Therefore 4(b)]. We see that electrons at the constriction feel the exis-
it is doubly degenerate and it is identified as fiig orbital. ~ tence of a potential well. We plot the energies corresponding
At about the energy of thip,, orbital, ap, orbital (directed  to the ILDOS peaks with dashed lines and note that they lie
along the wire axisshould appear in then=0 branch in  exactly in the potential wells, where the resonances situate. It
order to complete the eight-electron cluster. However, we dis also evident that an occupied resonpptstate does not
not find such a state with a strong localization in the con-occur because its energy eigenvalue should be well above the
striction. As shown in Fig. (), the p,-type states are much effective potential of the (0,1) branch and because the po-
more delocalized than the,, resonance states. The differ- tential well of the (0,2) branch is above the Fermi level. In
ence reflects the fact that due to the orientation the interacddition, by the help of Fig. 8 we can explain the different
tion of the clusterp, orbital with the lead states is much parts of the electron energy bands in Figa)6 The states
stronger than that of thpy, orbital. The absence of a well- with energies above the effective potential maxima are ex-
localized p, orbital explains the clearly nonspherical shapetended along the whole wire. These are the current-carrying
of the embedded cluster in the electron density plot of Figstates of each branch. The states below the potential mini-
4(b), and also the finding that there are only 7.1 electrons ifmum of the constriction are trapped in the leads, correspond-
the constriction between the two narrowest cross sections. ing to flat plateaus in the lower part of the energy branches

Figure 1d) shows a well-localized state for the wire with [Fig. 6@]. Finally, between the potential maxima and the
eight UJ electrons at the elongation Al =25.8a, [Fig.  local minimum in the center we find resonant states that are
4(d)]. The state can be identified as the drbital of a two-  €nhanced at the constriction although they continue as plane
electron cluster glued to the leads. There are 1.8 electron¥aves in the leads.
between the two narrowest cross sections of the constriction
supporting the assumption that this state is related to a two- IV. CONCLUSIONS
electron cluster.

The states in Fig. 7 have always a wavy, nondecaying We studied the stability of nanowires and the nanowire
background. This is a characteristic of resonance states; trulyreaking process performing self-consistent calculations
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within the ultimate jellium model. In the model, electrons simultaneously. The importance of the charge relaxation, in
and positive background charge acquire the optimal densitgrder to obtain results in agreement with the experiments,
minimizing the total energy. The model enables thus studiesvas shown, e.g., in the case of the elongation force. The
of shape-dependent properties of nanoscopic systems suchgsility of the ultimate jellium(electron densityto acquire
quantum dots or, as in the present work, quantum wires. Thghe optimal shape allows the formation of CDS’s showing
model advocates the idea that the electronic structure deteghe importance of electron states in the formation of these
mines, via the shell structure, the geometry and ionic strucstryctures. The related resonance states and their origin was
ture also in a partially confined system. also shown. We found CDS'’s that can be linked with the

First, we analyzed the Stab|l|ty of infinite periOdiC quan- e|ght_ and two-electron free_standing clusters.
tum wires pointing out the ability of the electronic band

structure to stabilize the nanowires at magic radii, i.e., any
small deformation of the nanowire along theaxis always
increases the energy. At the unstable radii corresponding to
maximum values of the energy oscillations, the wire is uni- One of the authoréE.O) acknowledges the Spanish Min-
form up to a critical value of the unit-cell length. The critical isterio de Ciencia y Tecnologifor financial support under
values found are close to the classical valuel@f,/R  the Project No. PB98-0870-C02, and the Laboratory of Phys-
=4.5. Above this limit the local energy minimum disappearsics of the HUT for the kind hospitality. T.T. acknowledges
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