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It has been reported that a multiwalled carbon nanotube in bending may exhibit an unusal elastic mode that
corresponds to the wavelike distortion or ripple along the inner arc of the bent nanotube, called the rippling
mode, which cannot be predicted by the linear theories. The present analysis shows that the rippling mode is
permissible by the theory for highly anisotropic elastic materials of finite deformation and that the dependence
of the bending moment upon the bending curvature can be well approximated by a bilinear relation, in which
the transition from one linear branch to the other corresponds to the emergence of the rippling mode. With this
bilinear relation, the authors show that the deflection response to a transverse force is consistent with the
unusual behavior reported by Wong, Sheehan, and Lidieience277, 1971 (1997]. Furthermore, their
analysis indicates that there exists a critical diameter, for given load and length, which corresponds to the
emergence of rippling mode, and that the effective Young’s modulus of multiwalled carbon nanotubes at the
vibration resonance drops sharply as the diameter increases to surpass this critical value, confirming a phe-
nomenon observed by Poncharal, Wang, Ugarte, and de[Se@nce283 1513(1999].
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INTRODUCTION cantilevered multiwalled carbon nanotube upon an external
force applied at different locations along the nanotube, using
Carbon nanotubes have been recognized as importaffte atomic force microscoppAFM), and they then obtained
nanoscopic systems since their discovery in 19and hold ~ the axial Young's modulug of 1.28+ or —0.59 TPa by
the promise of a variety of applications because of theifitting their data with a force-deflection relation resulting

unique molecular structure and their fascinating mechanic%lrorn the linear analysis of cantilevered beams. Using the
ransmission electron microscopy, SalvEtaneasured the

and electronic properties. For instance, carbon n"’mOtum?}sariation of deflection of a suspended multiwalled carbon

have been expected to be the ultimate fibers because of the i e spanning over a hole in response to a force acting

theoretical predictions, such as Robertssinal.? Calvert!  at the middle point of the nanotube, and they obtained the
Overneyet al.," Yakobsonet al.” and Krishnaret al.] that  axial Young's modulusE in the range of 0.651.22 TPa,
their axial strength is extremely high and that their elasticusing a force-deflection relation of the linear theory for sim-
modulus along the tube axis is as large as the Young’s modply supported beams. Ponchaetlal }®> measured the funda-
lus along the basal plane of highly oriented pyrolythic graph-mental resonance frequency of multiwalled carbon nano-
ite, which is on the order of one terepas¢aPa. Carbon tubes induced by an alternating electric field in a
nanotubes have hence been under continuous investigatidi@nsmission electron microscope and they then calculated
for applications as constituents in composite matériatel ~ the axial elastic modulus using the following modulus-
also as components of nanoscale instruments, such as prof§gJuency relation resulting from the classical analysis of
. . . . inear elasticity for cantilevered beartfs:
of high-resolution scanning force microscofesanobear-
ings of super low frictior?, and molecular oscillators of fre- w2 [EI
quency as high as several gigahéftZ! These have led to n=—2 X
many investigations on determination of the mechanical L P
properties of carbon nanotubes, the axial Young’'s modulus invhereL, A, I, andp are, respectively, the length, the cross
particular. For example, Trea®t all? measured the ampli- sectional area, the moment of inertia of the cross section, and
tudes of intrinsic thermal vibration of cantilevered carbonthe mass density per unit length of the beam. Harg n
multiwalled nanotube&MWNT) using the transmission elec- =0,1,2 ..., are theresonance frequencies aag, are the
tron microscopy, and this leads to the energy associated wittoots of the equation cas,coshw,+1=0, each of which
each of the vibration modes by assuming equipartitioncorresponds to a vibration mode of the cantilevered beam,
among all the vibration modes. By further postulating thatbeing viewed as a normalized resonance frequency. For in-
the probability of a sample nanotube taking a vibration modestance,wy~1.875, corresponds to the fundamental mode of
obeys the Gaussian distribution and by assuming that theibration. Poncharast al° reported that their so-determined
Young’s modulus-frequency relation for each mode predicted decreases sharply from about 1 to 0.1 TPa with the tube
by the linear vibration analysis of cantilevered beams rediameter increasing from 8 to 40 nm. To their credit, Pon-
mains valid, they estimated that the axial Young’s modius charal et al. have cautioned the readers by calliggthe
varied from 0.4 to 3.7 TPa, with a mean value at 1.8 TPaelastic bending modulus, instead of the Young’s modulus. Yu
Wong et al'® measured the dependence of deflection of aet all” performed a tensile test by attaching two ends of an
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individual multiwalled nanotube onto the opposing tips of mit him to set the thickness of the equivalent shell be the
two AFM probes, which are operated inside a scanning elecepresentative thickness of the graphite interplanar spacing
tron microscopéSEM) and which act as both the force sen- (0.34 nnm and to model a multiwalled carbon nanotubes as a
sor and the displacement sensor. In order to determine the&et of concentric equivalent shells with no interior gaps be-
Young’s modulus, they need to calculate the strain and théween adjacent shells. In the present study, we treat a multi-
stress, commonly defined as the elongation per unit lengtivalled carbon nanotube as a homogeneous continuum beam
and the force per unit loading area, respectively, but theyhose representative thickness is taken to be the difference
could not determine the effective loading area because hoim the outer and inner radius.
the load was shared by the individual walls of this multi- We should point out that all of these experimental mea-
walled nanotube is not entirely clear. They estimated the upsurements are indirect primarily because the difficulties as-
per limit of the Young’s modulus varying from 270 to 950 sociated with handling such samples of extremely small di-
GPa by assuming that only the outermost wall was subjectedmeters have prevented the researchers from obtaining
to the load, and the lower limit varying from 18 to 68 GPa by reliable values through direct measurements, and we further
assuming that the load is uniformly distributed over thenote that all the estimates of the elastic modulus cited above
cross-sectional area of each of the walls. &ual!® later  rely on the results of the linear theories for bending defor-
applied the same technique to load the ropes of single-wallethation and/or bending vibrations of elastic beams, except the
carbon nanotubes, but they again could not determine theorks of Yu et al.}”*® which have led to their estimated
actual loading area because the nanotubes in the loaded roppper and lower limits of the Young’s modulus, instead of
did not share the tensile load equally. the modulus itself. There, however, are evidences that the
We note that Yu and co-workerst®treated a nanotube as behavior of the carbon nanotubes in some of these experi-
a homogenous continuum tube whose thickness is the repreaents is not entirely linear, though elastic essentially. For
sentative thickness of the graphite interplanar spad@4  instance, Poncharait all® have observed the another bend-
nm), for a single-walled, and is the difference in the outering mode for thick multiwalled carbon nanotubes that corre-
and inner radius, for a multiwalled, as many other investigasponds to the wavelike distortion or ripple on the inner arc of
tors did. Yakobsoret al!® have shown that the linear and the bent nanotube, and they have suggested that the sharp
isotropic elastic shell model of continuum theory, with a few decrease in their reported bending modulus may be attribut-
properly chosen parameters, can predict deformations of caable to the emergence of the rippling mode in bending. A
bon nanotubes remarkably well, and they have compared the@milar explanation was offere@vithout detail$ by Yakob-
continuum shell model with the detailed initio and semi-  son and Avouris? Liu et al?! have recently presented a per-
empirical studies of single-walled carbon nanotubes. Theiturbation analysis based on the nonlinear vibration theory,
comparisof® shows that the flexural rigidity given by the which shows that the effective bending modulus, not the ac-
continuum shell model is substantially larger than that pretual axial Young’s modulus, drops substantially with the in-
dicted by the atomistic studies, if the wall thickness and thecreasing tube diameter due to the emergence of the rippling
Young’s modulus of the shell are, respectively, taken to béending mode. We note that the rippling bending mode was
the representative thickness of the graphite interplanar spapreviously observed by Ruoff and LoreRtsKuzumaki et
ing (0.34 nm and the in-plane elastic modulus of graphite al.,>®> and Wonget al!® for multiwalled carbon nanotubes.
(1.06 TPa. To make the continuum shell model equivalent toWong et al1® have noted the abrupt decrease of the initial
the atomistic model for calculating deformations, thdyave  constant slope in the force-deflection bending curve at a rela-
suggested that the representative thickness of the continuutively large deflection of their multiwalled carbon nanotubes,
shell be taken as 0.066 nm, and correspondingly, this leads #nd they have also noted the subsequent increase of the
the Young’s modulus of the continuum shell as large as 5.5tored strain energy with the further deflection at a signifi-
TPa. They have further shown that the classic results of theantly slower rate. Prior to this point, the strain energy in-
continuum shell model can readily predict the mechanicatreases quadratically with the strain as expected for a har-
behavior of single-walled carbon nanotubes, including axiamonic system, indicating that the deflection response to the
compression, bending, and torsion, with the so-chosen niexternal force is linear prior to this point. Woreg al'® sus-
merical values for the wall thickness and the Young’s modu-pected that this was due to the elastic buckling, a phenom-
lus. Rif° has later raised his concerns that a set of concentrienon previously observed by lijimet al?* for multiwalled
Yakobson's equivalent shells, each modeling a wall of a mul-carbon nanotubes using a high resolution transmission elec-
tiwalled carbon nanotubes, would have interior gaps betweetron microscope. Here we note the excellent agreement be-
adjacent shells of interwall spacing of 0.34 nm, leading totween the measured bending strength by Wengl® and
some inconvenience in application of the results from thehe predicted values by Smalley and YakotSamsing the
classic continuum shell model to multiwalled carbon nano-equivalent continuum shell model. Smalley and Yakobson
tubes. H&° has hence proposed that the flexural rigidity of explained that the bending strength measured by Wong and
the equivalent continuum shell, modeling a single-walledhis colleagues was determined by the layer delamination of
carbon nanotube, should be regarded as an independent ntee multiwalled nanotube on the compression side, and they
terial parameter, instead of a parameter derivable from thenodeled the delamination event as buckling of an elastically
representative wall thickness, Young’s modulus and the Poissupported plate. There have also been many computer simu-
son ratio, as given in a classic result from the linear andations of buckling of carbon nanotubes using different em-
isotropic elastic continuum shell model, and this would per-pirical atomic interaction potentials, such as Refs. 5,26, and
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27, but most of these simulations are limited to single-wallecheed to be particular cautious in using the classical results
carbon nanotubes with few exemptions, such as the work dfom the linear elasticity to derive the mechanical properties
lijima et al?* and the work of Garg and Sinndft.This is  of carbon nanotubes from measurements, because their re-
primarily due to the fact that computer simulations of multi- sponses to probing are not always linear, and that the rippling
walled carbon nanotubes remain prohibitively expensivebending mode appears to be responsible for the unusual me-
With a detailed comparison of their observations with thechanical behaviors in bending deflection reported by Wong
simulations, Wonget al'® have noticed the characteristic dif- et al’®> and in resonant vibration reported by Poncharal
ference between the observed bending behavior and thet all®

simulation results. The simulations predict that the external

force drops about 30% at buckling and it remains nearly

constant during further deflection. However, the measure- |- APPROXIMATED BILINEAR CONSTITUTIVE

ments of Wonget al. show an insignificant decrease in force RELATION

at the perceived buckling point and the continuing increase |, principle, to obtain the nonlinear bending moment/

of the force, though at a slower rate, during further deflec,atyre relation, we should conduct a full-scale nonlinear

tion. Also, the §tored strain energyinpreased nqnlinea_rly "‘_’i”bnalysis for a model nanotube subjected to pure bending
further deflection beyond the perceived buckling point, in- o “the bending moment is the sole resultant load through-

nanotubes had buckled in the experiment, or had switched & phecause of the locally large deformation, uncertainty of

this point from one bending mode to another. rippling period, and the strong material anisotropy of multi-
According to the elastidnot necessarily linearbeam \yajied carbon nanotubes. For simplicity, we consider a

theory, the bending momeM (x,t) and the beam deflection ganhite nanobeam of a rectangular cross-section bent in a
w(x,t) a}6each time instant are related by the following piane and we assume that the graphite base plane of this
equation. nanobeam is parallel to the beam axis and perpendicular to
. bending plane. We note that the linear constitutive relation
M”+pAw=F, (2)  for graphite is well documented.It is, however, unfortunate
) _that the elastic moduli of the second-order and higher for
where F(x,t) denotes the applied load measured per unifyraphitic carbon are unavailable in the literatétd@ecause
length, andv’ andw the partial derivativegw(x,t)/dx and  of our interest in the nonlinear effect, we constructed an
aw(x,t)/at, respectively.M is constitutively related to the approximated constitutive relation, with the available linear
bending curvature:, which is associated with the deflection elastic modul?®*°by replacing the infinitesimal strain tensor
w in the formxk=w"/[1+ (w’)?]%? and is approximated by commonly used in the linear theory with the Green strain
w” for cantilevered beams that involve no conspicuous rotatensor of the finite deformation theoty.
tions. For small bending deformations, a linear constitutive As reported in our previous work,we conducted a nu-
relation provides a fairly good approximation, and the linearmerical analysis for such a model nanobeam subjected to
theory of elasticity leads t¥ = EIlw”. With this linear con- pure bending, using a commercial finite element code
stitutive relation, Eq(2) leads to the resonance frequenciesABAQUS and with considerable efforts directed to search a
given by Eq.(2) for cantilevered beams. Considering that therippling configuration. We note that the extremely small rip-
linear theory cannot lead to the emergence of the ripplingling period, a fraction of the model beam heigtite nano-
mode, we are interested in the nonlinear effect of the constitube diameter makes our iterative procedure for searching
tutive relation on the bending behavior. Our numerical analythe rippling configuration impractically expensive for a
sis based on the theory of finite elasticity suggests that thmodel beam of a length/height ratio as large as those of the
rippling bending mode is permissible by the nonlinear theorysample nanotubes used in the experinféortunately, it is
and that the dependence of the bending moment upon thleoretically known that the bending moment is independent
bending curvature can be well approximated by a bilineawof the length/height ratio for beams of the linear constitutive
relation, in which the transition from one linear branch to therelation and subjected to pure bending, provided that the
other corresponds to the emergence of the rippling bendintgngth is an integer multiple of the rippling period. In this
mode. With this bilinear constitutive relation, we study the analysis, we assume that our model nanobeam is subjected to
mechanical properties of our model nanotubes, respectivelyhe so-called plane stress condition, i.e., all the nonzero com-
under static deflection as that in the experiment of Wongponents of the stress tensor are within the bending plane.
et al®® and at the vibration resonance as that in the experiConsidering that the rippling period is not a predeterminable
ment of Poncharaét al® Our analysis shows that the me- parameter and the rippling configuration may exhibit certain
chanical response both in the external load and in the storediegree of sensitivity to the choice of finite element meshes,
strain energy versus the deflection, of our cantilevered modele have carried out finite element analyses for beams with a
nanotube in the rippling bending mode is consistent with thenumber of different combinations of the length/height ratio
observation of Wonget al® Also, the analysis on the reso- and the mesh number along the beam height, as shown in
nance vibration indicates that the effective bending modulusTable 1.
instead of the actual Young’s modulus, suffers a sharp drop The four node quad mesh was used and the calculation
as the rippling bending mode emerges. This suggests that oséeps are automatically controlled bgAQus. This analysis
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TABLE I. Combinations of the length/height ratio and the mesh 14
number along the beam height used in #®aqQus simulations of a0
rippling configurations in the work of Ref. 21. g .
"8 o\c 075 T
[0} S’
. . 3
Length/height ratio . 15 20 10 12 15 18 20 _c% 051 < L/d=10
Mesh number along the beam height 8 8 12 12 12 12 12 8% o L/id=15
g g 025 ] ® 1/d=20
g .
confirms that the model nanobeam does experience a transi- 4 b

tion from the classical bending mode predicted by the linear 0 0 05 ] s 3 2's
theory to a rippling bending mode under severe bending. ’ ' ’
Figure 1 shows a typical rippling configuration for such a
beam with the Iength/helght_ratlb/d_z 10 and the mgsh. FIG. 2. The normalized bending moment-curvature relation re-
number 8 along the beam height. It is seen that th? rIppIInQ.ulting from the numerical analysidiscrete pointsand the bilinear
period is about one fourth of the beam heightconsistent approximation(solid lines.

with the experimental observation of Ponchaealal.!® al-

though the rippling configurations are slightly dependent on |, ErrFecT OF THE RIPPLING MODE ON STATIC

the length/height ratio as well as the finite element meshes. DEELECTION

With the numerical results, we have calculated the bending

curvature and the corresponding bending moment, and we We now consider a multiwalled carbon nanotube cantile-
have plotted in Fig. 2 the normalized bending momyht Vered at one end and subjected to a lateral fd?cat the

_ . . — other end, and we are interested in the deflection at the load-
=Md/(2El) versus the normalized bending curvatuke

— «d/2 at each loading step for our model beams of Iength)ng point, called the displacement, both before and after the

. . . emergence of the rippling bending mode. With thexis
height ratios 10,15,20. Here, denotes the beam height or pointing from the cantilevered end £ 0) to the loaded end

the tube diameter in the later discussion, anid actually the (x=L), the bending moment caused by the Idais given
maximum strain over the cross-section area. asM(x)=P(L—x), as yielded from the static version of Eq.
. We note from Fig. 2 that th_e numerical data for the bgnd-z)' The corresponding curvature(x) must monotonically
ing moment versus the bending curvature can be well fittediocrease with the axial coordinatebecause of the monoto-

Normalized curvature K (%)

with the following bilinear relation: nicity of the bending moment. We denote the point that di-
_ - vides the nanotube into two portions Ry L, : one portion
— |k if Osk<k, in the rippling bending mode (@x<L,,) and the other por-
M(x)=1— 3 tion in the classical bending modé {<x<L), and corre-

ket a(k—ke) If k=K, —
spondingly, we havex(L,) = . Thus, the constitutive re-
where the dimensionless transition curvaturg is about lation (3) leads to

0.006, at which the beam switches from the classical bending .

mode to the rippling bending mode, and the dimensionless 2Elke  Elkg

parameter is about 0.19, which characterizes the increase L- LCT:P—d: p @
of the dimensionless bending moment with further deflec-

tion. We note that the normalized bending momktt<) is  where ku=2ke/d is the critical curvature. Requiring

an odd function of the normalized bending curvatureFor >0 leads to
multiwalled carbon nanotubes of very small inner diameters,
our numerical analysté shows that the bilinear constitutive 2E|ICr Elkg

relation(3) severs as a good approximation, with a larggr P>Pe= T Ld L
and a slightly largerr. We turn now to examine the impli-

cations of this approximated bilinear constitutive relation onwhere the critical loadP,, is the minimum force required for
the characteristics of our model nanotube under static deflethe rippling bending mode to emerge from the cantilevered
tion and at vibration resonance, respectively, in the followingend where the bending is most severe. Combining (Ex.

®)

two sections. with Eq. (5) yields
T LCT PCT
YL
X If P<P,, the entire nanotube is in the classical bending

o _ _ ode and thus we have from the constitutive relati®r
FIG. 1. Rippling of a nanobeam under pure bending smulateofn @
with ABAQuUS using the four-node quad megafter Ref. 2). The
length/height ratio is 10 and the mesh number in the height direc- P(L—x) = k(x) for 0<x<L 7
tion is 8. El '
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Approximating the curvature by the second spatial derivative

[0
2 1.25 4
of the deflection functionv(x) and integrating the resulting L 14 A rerrTICIIL L
differential equation lead to the classical solution for the dis- 3 ] N
. . . . N 0.75
placementi.e., the deflection at the loading point = 0.5 1
3 g 0.25
A=Ao=7g;, for P<Pq. ®) I
0 025 05075 1 125 15 1.75
In the case thalP> P, the constitutive relatiof3) leads to Normalized displacement
P(L—X) FIG. 3. The normalized lateral force versus the normalized dis-
Tz(l— a) kgt aw’(x) for 0<x<Lg, placement. The dotted line accounts for the kinking effect at the
9) transition point.
P(L—-x)
—=w"(x) for L,<x<L. o 3 . ) )
El where U,=P2L3%/(6EI) is the stored strain energy in the

classical bending mode.

We then solve Eq(9) with the cantilevered boundary condi- .
a9 y We recall the experiment of Wongt al.”” where they

tionsw(0)=w’'(0)=0. We require that the deflection func- . :
tion w(x) and its first derivativev’ (x) be both continuous at Pushed a multiwalled carbon nanotube by the tip of an AFM

the transition point..,, and we note that this is in contrary to Probe, and they recorded the pushing force versus the con-
buckling where the derivative of the deflection function suf-trolled displacement of the AFM probe. For a qualitative

fers a finite jump. This requirement leads to the following c0mparison, we have plotted in Fig. 3, with=0.19, the
expression for the disp|acement: normalized |an.): P/Pcr versus the normalized deflection

6=A/A. (the solid curvgé We note in Fig. 3 the abrupt

|13

B , 1, decrease of the initial constant slope in the force-
A=A 1+3B|1-a’+ za%|a displacement plot ap=1 (i.e., P=P,,) where the rippling
b . mode emerges. We note from HG.3) that the stored strain

P energy increases with the further deflection nonlinearly after

38 P (1 2a a| for P>Pq, (10 the emergence of the rippling, being contrary to the linear

) increase of the stored strain energy in post-buckling as pre-
wherea=L/L and f=(1—a)/a. We now introduce the gicted by the computer simulatior€*25%’|t is seen from
normalized displacement and the normalized load Eq. (13) that the stored strain energy increases quadratically

prior to this point, and departs, at this point, from the re-
5= A p= i sponse expected for a harmonic system, resulting in the sub-
Ay’ Pe' sequent increase of the stored strain energy with the further
deflection at a significantly slower rate. All the above fea-
tures are consistent with what Woeg al*® reported except
the absence of a small drop in the loading force at the tran-
sition point, which was indicated by the measurements of
2 Wonget al® This may be qualitatively explained by consid-
for P>P,,. (11)  ering the elastic effect of the cantilevered AFM probave
also note that the classic bending mode and the rippling
_ . bending mode are, probably, both locally metastable when
We turn now to calculate the stored strain energy, whichne pending curvature is approximately equal to the critical
should be equal to the work done by the external force begryature and correspondingly, there is a small energy barrier
cause the deformation appears to be elastic, as repdaed 14 he overcome for the transition from the classic bending

where A= P.L%/(3EI) is the displacement corresponding
to the critical loadP,. Substituting Eq.(6) into Eq. (10
yields

o=p+p

7 1 1
2Pl

thus the stored strain energy is given below: mode to the rippling bending mode to take place. The physi-
N b pL3 o cal mechanism of this transition is beyond the scope of this
U= f P(A)dA=PA— f “ _4p— f A(P)dP, discussion, although one may model the macroscopic behav-

0 o 3El Per ior corresponding to the transition using a phenomenological

(12 approach by introducing an empirical or semi-empirical ki-
. . . R ) netic relation. In summary, the above analysis indicates that
where the loading-deflection relatidd=P(A) or equiva-  the abrupt change in the deflection response of the carbon
lently A=A(P) is defined implicitly by Eq.(10). Substitut- nanotubes to the AFM probing reported by Woegal!?

ing Eq. (10) into Eg.(12) and using Eq(8) yields appears to correspond to the emergence of the rippling bend-
ing mode, instead of buckling as perceived by those investi-
Uy for P<Pg, gators who, nevertheless, should be credited for their caution
_ p2 p3 (19 that the characteristics of the measureq response are some-
Uol 1+ 8| 1-3—2+2—-5| for P>P,, what different from those of post buckling as predicted by
pz p3 the computer simulations.
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Ill. EFFECT OF THE RIPPLING MODE ON RESONANCE 4 /QZPA ®
To study the resonance behavior, we recall the experiment = ElI °’ m:‘{/_;’ (16

of Poncharakt al. *® in which the sample multiwalled carbon
nanotubes were precharged statically with a biasing voltagand the rescaling =1—u and the deflection functiok(v)
V=20V before they were driven to vibrating by a har- =W(1—-u) for a<u<1l or 0O<v<1l-a=b. The general
monic oscillating voltage of magnitudé,;~0.1 V, superim-  solution of Eq.(15) is given by the following linear combi-
posed upon the static voltage. These correspond to twBations of the harmonic and hyperbolic functions:

forces acting at the free end of the carbon nanotube, a static

force P and a time-harmonic forc®, cost), and each W(u)=Cy(coswu—coshwu)

induced force equals the product of the induced electric +C,(sinwu—sinhwu) for 0<u<a,
charge (proportional to the voltageand the electric field
(also proportional to the voltage as Poncharalet all®
pointed out. Therefore, the force magnitude ra®igp/Py is
proportional to the square of the voltage ratigy(Vs)? + Cy(sinwv +sinhwv) for 0<v<b. (17)
~2.5x 10 ’. Considering that this force ratio is extremely

small, we assume that if the rippling bending mode haog

V(v)=Cj3(coswv + coshwv)

urthermore, the deflection function, the bending moment
nd the shear force should all be continuous across the di-
h\‘?lding point. In the case of our present interest where buck-

. o ! SEfing does not occur, the deflection must be smooth at the
that Ps<P,, there is no rippling and hence the bend'ngdividing point. This leads to

moment is proportional to the bending curvature as given in

the first portion of the constitutive equatigd). Correspond- W(a)=V(b), W’'(a)=-V'(b),
ingly, the governing equatiofR) yields the classical result
for the resonance frequency given by Eg). (1— a)kgl + aW'(a)=V"(b), aW"(a)=—V"(b).
In the following, we are primarily interested in the funda- (18)

mental resonance frequency of the model nanotube in the

case that a portion of the nanotube{R<L,) had taken the Substituting Eq(17) into Eq.(18) yields a system of four
rippling bending mode prior to the dynamic loading, andlinear algebraic equations for the unknown constadts
thus we assum@,>P,. We now study the resonance be- C2, C3, andC,, whose coefficient matrix depends upon the
havior of the preloaded model nanotube in response to theéimensionless excitation frequeney. This coefficient ma-
small harmonic loadind®4 cos@t). Substituting the consti- trix becomes singular as the dimensionless excitation fre-

tutive equation3) into the governing equatiof?) yields the  quencyw approaches one of the dimensionless resonant fre-

following: quencies. Requiring the determinant of the coefficient matrix
vanish leads to the following frequency equation:

Py cog Q1) §(L—x)— pAw(x,t

a COS 1) & )~ PAWEKY) 0= a1+ coswa coshwa)(1+ coswb coshwb)

Elak”(x,t) for 0<x<L(t),

=1 Ele(x0) for Lu() <x<L (14) + a~Y%(1-coswa coshwa)(1— coswb coshwb)
K (X, or L X s

1/4 : ;
. . . - coshwa sinwa—sinhwa coswa
where 6(x) denotes the Dirac delta function. It is generally @™ @ @ @3)

possible that the dynamic loading causes the lehgtbf the X(sinhwb coswb + coshwb sinwb)
rippling portion to vary slightly with time, and this would 71/4 ) )
make the analysis substantially more complicated. We as- —a “(coshwasinwa+sinhwacoswa)

sume that this variation is insignificant because the magni-
tude of the dynamic loading is extremely small in compari-
son with the static loading, and hence we neglect this — 2 sinwa sinhwa sinwb sinhwb. (19
variation for the benefit of the dramatic simplification of the .

present analysis. To determine the fundamental resonam-:réne lowest rooty, of the frequency equation corresponds to
frequency, we then turn to study the characteristics of thé"€ ) ;‘undamental ~ resonance frequency Qg
free vibration of such a partially rippled nanotube by setting= (@&/L") VEI/pA, noting the definition(16) of the dimen-
w(x,t) = LW(u)cos@Qt), with u=x/L, and by noting that the SIOI’]!GSS gXC|tat|0n frequency. Th_e effectlvg Young’s modulus
deflection and its derivative both vanish at the cantileveredFer IS defined through the following equation:

end and by requiring that there be neither a bending moment

X(coshwb sinwb—sinhwb coswb)

nor a shear force at the far efidee vibration, we have _w_g Eefrl 20
R™ o A
W’ (u)—w*W(u)=0 for 0<u<a andW(0)=W’(0)=0, L P
and this leads to

V"' (v)—w*V(v)=0 for 0<v<b andV”(0)=V"(0)=0,

15 E 4

19 —e”:(ﬁ) . (21)
where E o
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We note, with significant interest, that the modulus-

. : rest, \ 1.4
frequency relatior(20) is formally identical to the classical 1o ° e Poncharal et al. (1999)
relation (1), except that the effective Young’'s modulfsg 1'04 — Present analysis

has replaced the actual material Young’s moditus

With Eg. (19) and the relationg16) and b=1—a, we
note the dependence of the dimensionless fundamental reso-
nance frequencyg upon the normalized rippling length
=L/L as well as the parametes, and we thus denote it as
wgr(a,a). As expected, our calculation shows that has the
constant valuewg(0,a) = wg=1.875 in the absence of rip-
pling, as obtained from the linear theory, and(a,«) and
henceE.; decrease with the increasing normalized rippling  FIG. 4. The effective Young’s modulus versus the diameter
length a and the decreasing parameter Noting that x  The dots are reproduced from the experimental records by Pon-

= . . charalet al. (Ref. 15 (see their Fig. 4A The solid line is the model
= Kor 81X=Ler, We obtain from Eqgs(10) and(4) prediction, with the fixed length=1 um and displacement/length

0.0-—

Effective modulus E,;(TPa)

5 10 15 20 25 30 35 40 45
Diameter d (nm)

0 for P<P ratio Ao/L=0.3 chosen to fit the measured data for the purpose of
L - e illustration.
a=—= 2k L2 or P=p (22
- or P> . . L . . .
3A.d “ the implications of this analysis that the effective modulus

E can drop sharply as the rippling bending mode emerges,
we plot in Fig. 4 the effective Young’s modulus versus the
diameterd, using the graphite base Young's modulks

; ; =1.02 TPa, for fixed lengti=1 um and displacement/
and the decreasing length all monotonically forP=P,,, . X )
N P . length ratioA,/L=0.3. We see that the effective Young's
e, In the presence of the rippling bending mode. modulusE¢4 has the same value as the actual Young’s modu-

We now recall the report of Poncharat al.® that the lus E for small diameter and it decreases sharply as the di-
modulus they calculated from the classical modulus- Py

frequency relation(1) using the measured resonance fre_ameterd becomes slightly larger than a critical valak,

quency was found to decrease sharply from 1 to 0.1 TPa_ 12 nm, corresponding to the emergence of the rippling

with the diameter increasing from 8 to 40 nm and that mode. We note, with caution, that the numerical values for

rippling bending mode was observed for nanotubes of large e length and the displacement/length ratio were chosen, by
diameters. According to the above analysis, the modulugial and error, to fit the data obtained from the measurements

Poncharakt al1° calculated is the effective Young’s modulus of Poncharakt al.'® fo_r the s_ole purpose Of. illustration.

in the presence of rippling and their work indicates that the To canclude our d|s<_:u53|0n, we Wou_ld I'k? to remark th_at
effective Young’s modulus, instead of the actual Young’sone needs 1o be.partlcular cautious in using the classlcal
modulus, decreased sharply at the emergence of the ripplinr sults .from the linear elasticity to derive the mechanical
bending mode and with its subsequent progressive develo roperties of carbon nqnotubes from measurements, pecguse
ment, and we should credit Poncharal and his colleagues f Pe'r responses to probing are not a'V_VaVS Il_near. The rippling
later referring to their so-calculated modulus as the bendin endmgzzmode, obs_ervedzgy several mvestlgat{)srs, Ruoff and
modulus, a point of caution to the readers well exercized. W orbents, Kuzqg]lak]!et arl]., and Polncharsét _al.,l tz)iprﬁ)ee_lrs .
are much encouraged by this qualitative consistence, butb ;. resép?ln3|_ e fort edugusua melclganlccj:e} enhaviors n
guantitative comparison of this analysis with their measure- ending deflection reported by W"%’a- and in resonant
ments is, however, not possible at this point due to a lack Oylbratlon reported by Poncharat al.
information required. In their experimettthe harmonic os-
cillating voltage was adjusted in each test to maximize the
vibration for each individual nanotube, and this voltage am-
plitude was not recordetf:** Furthermore, the lengths of We gratefully acknowledge the support of the Chinese
these sample nanotubes were reported only for a very feWational Science Foundation through the Grants No.
groups of samples, and we note that measuring the lengths @0172051 and No. 10252001, the U.S. National Science
these nanotubes accurately is not an easy task because theyundation through Grant No. CMS-0140568, the Ministry
used a fiber composed of carbon nanotubes recovered froof Education of China, Tsinghua University, and the Univer-
the nanotube arc deposit. Nevertheless, to illustrate one ity of California at Riverside.

Therefore, we conclude that the normalized rippling lerayth
increases, and hence the effective Young’s mod&lsde-
creases, with the increasinky, the increasing diametet,
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AFM’s cantilevered beam. The relative displacemagj of the
probe tip to the controlled displacemeky is recorded and it is
proportional toP in the formA,=P/k, with the known AFM
elastic stiffness parametés, . This leads to the deflection
=Ap—Agp. WhenP <P, or equivalentlyA <A, the classi-
cal predictionA =P/k with k=3EI/L? is valid. As A, is in-
creasingly crossing the critical valuey with respect toP., and
A, the bending mode is transiting from the classical mode to
the rippling one. Prior to the emergence of the first rippling
period (which is about one fourth of the nanobeam hejgtite
nanobeam becomes kinked at the cantilevered grd(), with

a certain kinked angle denoted I8. Denoting by €., ,A.)

and (P2 ,AL), respectively, the loading/displacement pairs im-
mediately before and after the kinking and neglecting the dy-
namic effect, we have

Po  Por o Pé Pe or
K ka A Kk oL ko A
It thus yields

Pl =(AS— 6,L)/(1/k+1/kp) <P =AST(1/K+1/Kp),
AF=AY— P ka>As =AY~ P /Ky

In other words, as the AFM probe displacemAntincreases to
exceedAy, a kink develops at the fixed end, causing the loading
to drop (P4 —P_<0) and correspondingly, the displacement to
rise (A4 —A5>0). The normalized slope is

PP _ Pa—Par A Ka_
K;—K;r A;—A;r Per k .

The above result is consistent with the force-displacement mea-
surment of Wonget al. (Ref. 13 in their Fig. 4A. For a quali-
tative comparison, the dotted line in Fig. 2 is plotted having
taken into account of the above kinking effect.



