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Effect of bending instabilities on the measurements of mechanical properties of multiwalled
carbon nanotubes
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It has been reported that a multiwalled carbon nanotube in bending may exhibit an unusal elastic mode that
corresponds to the wavelike distortion or ripple along the inner arc of the bent nanotube, called the rippling
mode, which cannot be predicted by the linear theories. The present analysis shows that the rippling mode is
permissible by the theory for highly anisotropic elastic materials of finite deformation and that the dependence
of the bending moment upon the bending curvature can be well approximated by a bilinear relation, in which
the transition from one linear branch to the other corresponds to the emergence of the rippling mode. With this
bilinear relation, the authors show that the deflection response to a transverse force is consistent with the
unusual behavior reported by Wong, Sheehan, and Liebert@Science277, 1971 ~1997!#. Furthermore, their
analysis indicates that there exists a critical diameter, for given load and length, which corresponds to the
emergence of rippling mode, and that the effective Young’s modulus of multiwalled carbon nanotubes at the
vibration resonance drops sharply as the diameter increases to surpass this critical value, confirming a phe-
nomenon observed by Poncharal, Wang, Ugarte, and de Heer@Science283, 1513~1999!#.

DOI: 10.1103/PhysRevB.67.075414 PACS number~s!: 62.25.1g, 62.30.1d
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INTRODUCTION

Carbon nanotubes have been recognized as impo
nanoscopic systems since their discovery in 1991,1 and hold
the promise of a variety of applications because of th
unique molecular structure and their fascinating mechan
and electronic properties. For instance, carbon nanotu
have been expected to be the ultimate fibers because o
theoretical predictions, such as Robertsonet al.,2 Calvert,3

Overneyet al.,4 Yakobsonet al.,5 and Krishnanet al.,6 that
their axial strength is extremely high and that their elas
modulus along the tube axis is as large as the Young’s mo
lus along the basal plane of highly oriented pyrolythic grap
ite, which is on the order of one terepascal~TPa!. Carbon
nanotubes have hence been under continuous investig
for applications as constituents in composite materials7 and
also as components of nanoscale instruments, such as p
of high-resolution scanning force microscopes,8 nanobear-
ings of super low friction,9 and molecular oscillators of fre
quency as high as several gigahertz.10,11 These have led to
many investigations on determination of the mechan
properties of carbon nanotubes, the axial Young’s modulu
particular. For example, Treacyet al.12 measured the ampli
tudes of intrinsic thermal vibration of cantilevered carb
multiwalled nanotubes~MWNT! using the transmission elec
tron microscopy, and this leads to the energy associated
each of the vibration modes by assuming equipartit
among all the vibration modes. By further postulating th
the probability of a sample nanotube taking a vibration mo
obeys the Gaussian distribution and by assuming that
Young’s modulus-frequency relation for each mode predic
by the linear vibration analysis of cantilevered beams
mains valid, they estimated that the axial Young’s moduluE
varied from 0.4 to 3.7 TPa, with a mean value at 1.8 T
Wong et al.13 measured the dependence of deflection o
0163-1829/2003/67~7!/075414~8!/$20.00 67 0754
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cantilevered multiwalled carbon nanotube upon an exte
force applied at different locations along the nanotube, us
the atomic force microscopy~AFM!, and they then obtained
the axial Young’s modulusE of 1.281 or 20.59 TPa by
fitting their data with a force-deflection relation resultin
from the linear analysis of cantilevered beams. Using
transmission electron microscopy, Salvetat14 measured the
variation of deflection of a suspended multiwalled carb
nanotube spanning over a hole in response to a force ac
at the middle point of the nanotube, and they obtained
axial Young’s modulusE in the range of 0.65;1.22 TPa,
using a force-deflection relation of the linear theory for si
ply supported beams. Poncharalet al.15 measured the funda
mental resonance frequency of multiwalled carbon na
tubes induced by an alternating electric field in
transmission electron microscope and they then calcula
the axial elastic modulus using the following modulu
frequency relation resulting from the classical analysis
linear elasticity for cantilevered beams:16

Vn5
vn

2

L2
AEI

rA
, ~1!

whereL, A, I, andr are, respectively, the length, the cro
sectional area, the moment of inertia of the cross section,
the mass density per unit length of the beam. HereVn , n
50,1,2, . . . , are theresonance frequencies andvn are the
roots of the equation cosvn coshvn1150, each of which
corresponds to a vibration mode of the cantilevered be
being viewed as a normalized resonance frequency. Fo
stance,v0'1.875, corresponds to the fundamental mode
vibration. Poncharalet al.15 reported that their so-determine
E decreases sharply from about 1 to 0.1 TPa with the t
diameter increasing from 8 to 40 nm. To their credit, Po
charal et al. have cautioned the readers by callingE the
elastic bending modulus, instead of the Young’s modulus.
et al.17 performed a tensile test by attaching two ends of
©2003 The American Physical Society14-1
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individual multiwalled nanotube onto the opposing tips
two AFM probes, which are operated inside a scanning e
tron microscope~SEM! and which act as both the force se
sor and the displacement sensor. In order to determine
Young’s modulus, they need to calculate the strain and
stress, commonly defined as the elongation per unit len
and the force per unit loading area, respectively, but t
could not determine the effective loading area because
the load was shared by the individual walls of this mu
walled nanotube is not entirely clear. They estimated the
per limit of the Young’s modulus varying from 270 to 95
GPa by assuming that only the outermost wall was subje
to the load, and the lower limit varying from 18 to 68 GPa
assuming that the load is uniformly distributed over t
cross-sectional area of each of the walls. Yuet al.18 later
applied the same technique to load the ropes of single-wa
carbon nanotubes, but they again could not determine
actual loading area because the nanotubes in the loaded
did not share the tensile load equally.

We note that Yu and co-workers17,18 treated a nanotube a
a homogenous continuum tube whose thickness is the re
sentative thickness of the graphite interplanar spacing~0.34
nm!, for a single-walled, and is the difference in the ou
and inner radius, for a multiwalled, as many other investi
tors did. Yakobsonet al.19 have shown that the linear an
isotropic elastic shell model of continuum theory, with a fe
properly chosen parameters, can predict deformations of
bon nanotubes remarkably well, and they have compared
continuum shell model with the detailedab initio and semi-
empirical studies of single-walled carbon nanotubes. Th
comparison19 shows that the flexural rigidity given by th
continuum shell model is substantially larger than that p
dicted by the atomistic studies, if the wall thickness and
Young’s modulus of the shell are, respectively, taken to
the representative thickness of the graphite interplanar s
ing ~0.34 nm! and the in-plane elastic modulus of graph
~1.06 TPa!. To make the continuum shell model equivalent
the atomistic model for calculating deformations, they19 have
suggested that the representative thickness of the contin
shell be taken as 0.066 nm, and correspondingly, this lead
the Young’s modulus of the continuum shell as large as
TPa. They have further shown that the classic results of
continuum shell model can readily predict the mechan
behavior of single-walled carbon nanotubes, including ax
compression, bending, and torsion, with the so-chosen
merical values for the wall thickness and the Young’s mo
lus. Ru20 has later raised his concerns that a set of concen
Yakobson’s equivalent shells, each modeling a wall of a m
tiwalled carbon nanotubes, would have interior gaps betw
adjacent shells of interwall spacing of 0.34 nm, leading
some inconvenience in application of the results from
classic continuum shell model to multiwalled carbon nan
tubes. He20 has hence proposed that the flexural rigidity
the equivalent continuum shell, modeling a single-wal
carbon nanotube, should be regarded as an independen
terial parameter, instead of a parameter derivable from
representative wall thickness, Young’s modulus and the P
son ratio, as given in a classic result from the linear a
isotropic elastic continuum shell model, and this would p
07541
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mit him to set the thickness of the equivalent shell be
representative thickness of the graphite interplanar spa
~0.34 nm! and to model a multiwalled carbon nanotubes a
set of concentric equivalent shells with no interior gaps
tween adjacent shells. In the present study, we treat a m
walled carbon nanotube as a homogeneous continuum b
whose representative thickness is taken to be the differe
in the outer and inner radius.

We should point out that all of these experimental me
surements are indirect primarily because the difficulties
sociated with handling such samples of extremely small
ameters have prevented the researchers from obtai
reliable values through direct measurements, and we fur
note that all the estimates of the elastic modulus cited ab
rely on the results of the linear theories for bending def
mation and/or bending vibrations of elastic beams, except
works of Yu et al.,17,18 which have led to their estimate
upper and lower limits of the Young’s modulus, instead
the modulus itself. There, however, are evidences that
behavior of the carbon nanotubes in some of these exp
ments is not entirely linear, though elastic essentially. F
instance, Poncharalet al.15 have observed the another ben
ing mode for thick multiwalled carbon nanotubes that cor
sponds to the wavelike distortion or ripple on the inner arc
the bent nanotube, and they have suggested that the s
decrease in their reported bending modulus may be attri
able to the emergence of the rippling mode in bending
similar explanation was offered~without details! by Yakob-
son and Avouris.19 Liu et al.21 have recently presented a pe
turbation analysis based on the nonlinear vibration theo
which shows that the effective bending modulus, not the
tual axial Young’s modulus, drops substantially with the i
creasing tube diameter due to the emergence of the ripp
bending mode. We note that the rippling bending mode w
previously observed by Ruoff and Lorents,22 Kuzumaki et
al.,23 and Wonget al.13 for multiwalled carbon nanotubes
Wong et al.13 have noted the abrupt decrease of the init
constant slope in the force-deflection bending curve at a r
tively large deflection of their multiwalled carbon nanotube
and they have also noted the subsequent increase of
stored strain energy with the further deflection at a sign
cantly slower rate. Prior to this point, the strain energy
creases quadratically with the strain as expected for a
monic system, indicating that the deflection response to
external force is linear prior to this point. Wonget al.13 sus-
pected that this was due to the elastic buckling, a phen
enon previously observed by Iijimaet al.24 for multiwalled
carbon nanotubes using a high resolution transmission e
tron microscope. Here we note the excellent agreement
tween the measured bending strength by Wonget al.13 and
the predicted values by Smalley and Yakobson25 using the
equivalent continuum shell model. Smalley and Yakobs
explained that the bending strength measured by Wong
his colleagues was determined by the layer delamination
the multiwalled nanotube on the compression side, and t
modeled the delamination event as buckling of an elastic
supported plate. There have also been many computer s
lations of buckling of carbon nanotubes using different e
pirical atomic interaction potentials, such as Refs. 5,26,
4-2
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EFFECT OF BENDING INSTABILITIES ON THE . . . PHYSICAL REVIEW B 67, 075414 ~2003!
27, but most of these simulations are limited to single-wal
carbon nanotubes with few exemptions, such as the wor
Iijima et al.24 and the work of Garg and Sinnott.28 This is
primarily due to the fact that computer simulations of mu
walled carbon nanotubes remain prohibitively expensi
With a detailed comparison of their observations with t
simulations, Wonget al.13 have noticed the characteristic di
ference between the observed bending behavior and
simulation results. The simulations predict that the exter
force drops about 30% at buckling and it remains nea
constant during further deflection. However, the measu
ments of Wonget al. show an insignificant decrease in forc
at the perceived buckling point and the continuing incre
of the force, though at a slower rate, during further defl
tion. Also, the stored strain energy increased nonlinearly w
further deflection beyond the perceived buckling point,
stead of linearly as the computer simulations predicted. T
has brought the question whether the multiwalled carb
nanotubes had buckled in the experiment, or had switche
this point from one bending mode to another.

According to the elastic~not necessarily linear! beam
theory, the bending momentM (x,t) and the beam deflectio
w(x,t) at each time instantt are related by the following
equation:16

M 91rAẅ5F, ~2!

where F(x,t) denotes the applied load measured per u
length, andw8 andẇ the partial derivatives]w(x,t)/]x and
]w(x,t)/]t, respectively.M is constitutively related to the
bending curvaturek, which is associated with the deflectio
w in the formk5w9/@11(w8)2#3/2 and is approximated by
w9 for cantilevered beams that involve no conspicuous ro
tions. For small bending deformations, a linear constitut
relation provides a fairly good approximation, and the line
theory of elasticity leads toM5EIw9. With this linear con-
stitutive relation, Eq.~2! leads to the resonance frequenc
given by Eq.~1! for cantilevered beams. Considering that t
linear theory cannot lead to the emergence of the ripp
mode, we are interested in the nonlinear effect of the con
tutive relation on the bending behavior. Our numerical ana
sis based on the theory of finite elasticity suggests that
rippling bending mode is permissible by the nonlinear the
and that the dependence of the bending moment upon
bending curvature can be well approximated by a bilin
relation, in which the transition from one linear branch to t
other corresponds to the emergence of the rippling bend
mode. With this bilinear constitutive relation, we study t
mechanical properties of our model nanotubes, respectiv
under static deflection as that in the experiment of Wo
et al.13 and at the vibration resonance as that in the exp
ment of Poncharalet al.15 Our analysis shows that the me
chanical response both in the external load and in the st
strain energy versus the deflection, of our cantilevered mo
nanotube in the rippling bending mode is consistent with
observation of Wonget al.13 Also, the analysis on the reso
nance vibration indicates that the effective bending modu
instead of the actual Young’s modulus, suffers a sharp d
as the rippling bending mode emerges. This suggests tha
07541
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need to be particular cautious in using the classical res
from the linear elasticity to derive the mechanical propert
of carbon nanotubes from measurements, because the
sponses to probing are not always linear, and that the ripp
bending mode appears to be responsible for the unusual
chanical behaviors in bending deflection reported by Wo
et al.13 and in resonant vibration reported by Poncha
et al.15

I. APPROXIMATED BILINEAR CONSTITUTIVE
RELATION

In principle, to obtain the nonlinear bending momen
curvature relation, we should conduct a full-scale nonlin
analysis for a model nanotube subjected to pure bend
~i.e., the bending moment is the sole resultant load throu
out the beam!, using the three-dimensional theory of fini
elasticity. This task proves to be overwhelmingly complex
us because of the locally large deformation, uncertainty
rippling period, and the strong material anisotropy of mu
walled carbon nanotubes. For simplicity, we consider
graphite nanobeam of a rectangular cross-section bent
plane, and we assume that the graphite base plane of
nanobeam is parallel to the beam axis and perpendicula
bending plane. We note that the linear constitutive relat
for graphite is well documented.29 It is, however, unfortunate
that the elastic moduli of the second-order and higher
graphitic carbon are unavailable in the literature.29 Because
of our interest in the nonlinear effect, we constructed
approximated constitutive relation, with the available line
elastic moduli,29,30by replacing the infinitesimal strain tenso
commonly used in the linear theory with the Green str
tensor of the finite deformation theory.31

As reported in our previous work,21 we conducted a nu-
merical analysis for such a model nanobeam subjected
pure bending, using a commercial finite element co
ABAQUS and with considerable efforts directed to search
rippling configuration. We note that the extremely small ri
pling period, a fraction of the model beam height~the nano-
tube diameter!, makes our iterative procedure for searchi
the rippling configuration impractically expensive for
model beam of a length/height ratio as large as those of
sample nanotubes used in the experiment.15 Fortunately, it is
theoretically known that the bending moment is independ
of the length/height ratio for beams of the linear constitut
relation and subjected to pure bending, provided that
length is an integer multiple of the rippling period. In th
analysis, we assume that our model nanobeam is subject
the so-called plane stress condition, i.e., all the nonzero c
ponents of the stress tensor are within the bending pla
Considering that the rippling period is not a predetermina
parameter and the rippling configuration may exhibit cert
degree of sensitivity to the choice of finite element mesh
we have carried out finite element analyses for beams wi
number of different combinations of the length/height ra
and the mesh number along the beam height, as show
Table I.

The four node quad mesh was used and the calcula
steps are automatically controlled byABAQUS. This analysis
4-3



an
ea
in

a

lin

o
e
in
w

th
r

d
tte

in
es
s

ec

r
e

-
on
fle
in

ile-

ad-
the

.

-
di-

-

r
red

ng

re-

sh

0
1

te

re

JEFFERSON Z. LIU, QUANSHUI ZHENG, AND QING JIANG PHYSICAL REVIEW B67, 075414 ~2003!
confirms that the model nanobeam does experience a tr
tion from the classical bending mode predicted by the lin
theory to a rippling bending mode under severe bend
Figure 1 shows a typical rippling configuration for such
beam with the length/height ratioL/d510 and the mesh
number 8 along the beam height. It is seen that the ripp
period is about one fourth of the beam heightd, consistent
with the experimental observation of Poncharalet al.,15 al-
though the rippling configurations are slightly dependent
the length/height ratio as well as the finite element mesh
With the numerical results, we have calculated the bend
curvature and the corresponding bending moment, and
have plotted in Fig. 2 the normalized bending momentM̄

[Md/(2EI) versus the normalized bending curvaturek̄
[kd/2 at each loading step for our model beams of leng
height ratios 10,15,20. Here,d denotes the beam height o
the tube diameter in the later discussion, andk̄ is actually the
maximum strain over the cross-section area.

We note from Fig. 2 that the numerical data for the ben
ing moment versus the bending curvature can be well fi
with the following bilinear relation:

M̄ ~ k̄ !5H k̄ if 0<k̄,k̄cr ,

k̄cr1a~k̄2k̄cr! if k̄>k̄cr ,
~3!

where the dimensionless transition curvaturek̄cr is about
0.006, at which the beam switches from the classical bend
mode to the rippling bending mode, and the dimensionl
parametera is about 0.19, which characterizes the increa
of the dimensionless bending moment with further defl
tion. We note that the normalized bending momentM̄ (k̄) is
an odd function of the normalized bending curvaturek̄. For
multiwalled carbon nanotubes of very small inner diamete
our numerical analysis32 shows that the bilinear constitutiv
relation~3! severs as a good approximation, with a largerk̄cr
and a slightly largera. We turn now to examine the impli
cations of this approximated bilinear constitutive relation
the characteristics of our model nanotube under static de
tion and at vibration resonance, respectively, in the follow
two sections.

TABLE I. Combinations of the length/height ratio and the me
number along the beam height used in theABAQUS simulations of
rippling configurations in the work of Ref. 21.

Length/height ratio 15 20 10 12 15 18 2
Mesh number along the beam height 8 8 12 12 12 12

FIG. 1. Rippling of a nanobeam under pure bending simula
with ABAQUS using the four-node quad mesh~after Ref. 21!. The
length/height ratio is 10 and the mesh number in the height di
tion is 8.
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II. EFFECT OF THE RIPPLING MODE ON STATIC
DEFLECTION

We now consider a multiwalled carbon nanotube cant
vered at one end and subjected to a lateral forceP at the
other end, and we are interested in the deflection at the lo
ing point, called the displacement, both before and after
emergence of the rippling bending mode. With thex axis
pointing from the cantilevered end (x50) to the loaded end
(x5L), the bending moment caused by the loadP is given
asM (x)5P(L2x), as yielded from the static version of Eq
~2!. The corresponding curvaturek(x) must monotonically
decrease with the axial coordinatex, because of the monoto
nicity of the bending moment. We denote the point that
vides the nanotube into two portions byx5Lcr : one portion
in the rippling bending mode (0,x,Lcr) and the other por-
tion in the classical bending mode (Lcr,x,L), and corre-
spondingly, we havek̄(Lcr)5k̄cr . Thus, the constitutive re
lation ~3! leads to

L2Lcr5
2EIk̄cr

Pd
5

EIkcr

P
, ~4!

where kcr52k̄cr /d is the critical curvature. RequiringLcr
.0 leads to

P.Pcr[
2EIk̄cr

Ld
5

EIkcr

L
, ~5!

where the critical loadPcr is the minimum force required fo
the rippling bending mode to emerge from the cantileve
end where the bending is most severe. Combining Eq.~4!
with Eq. ~5! yields

12
Lcr

L
5

Pcr

P
. ~6!

If P,Pcr , the entire nanotube is in the classical bendi
mode and thus we have from the constitutive relation~3!:

P~L2x!

EI
5k~x! for 0,x,L. ~7!

FIG. 2. The normalized bending moment-curvature relation
sulting from the numerical analysis~discrete points! and the bilinear
approximation~solid lines!.
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Approximating the curvature by the second spatial deriva
of the deflection functionw(x) and integrating the resulting
differential equation lead to the classical solution for the d
placement~i.e., the deflection at the loading point!:

D5D0[
PL3

3EI
, for P,Pcr . ~8!

In the case thatP.Pcr , the constitutive relation~3! leads to

H P~L2x!

EI
5~12a!kcr1aw9~x! for 0,x,Lcr ,

P~L2x!

EI
5w9~x! for Lcr,x,L.

~9!

We then solve Eq.~9! with the cantilevered boundary cond
tions w(0)5w8(0)50. We require that the deflection func
tion w(x) and its first derivativew8(x) be both continuous a
the transition pointLcr , and we note that this is in contrary t
buckling where the derivative of the deflection function s
fers a finite jump. This requirement leads to the followi
expression for the displacement:

D5D0F113bS 12a21
1

3
a2Da

23b
Pcr

P S 12
1

2
aDaG for P.Pcr , ~10!

wherea5Lcr /L and b5(12a)/a. We now introduce the
normalized displacement and the normalized load

d5
D

Dcr
, p5

P

Pcr
,

whereDcr5PcrL
3/(3EI) is the displacement correspondin

to the critical loadPcr . Substituting Eq.~6! into Eq. ~10!
yields

d5p1bS 7

2
1pD S 12

1

pD 2

for P.Pcr . ~11!

We turn now to calculate the stored strain energy, wh
should be equal to the work done by the external force
cause the deformation appears to be elastic, as reported13 and
thus the stored strain energy is given below:

U5E
0

D

P̂~D!dD5PD2E
0

PcrPL3

3EI
dP2E

Pcr

P

D̂~P!dP,

~12!

where the loading-deflection relationP5 P̂(D) or equiva-
lently D5D̂(P) is defined implicitly by Eq.~10!. Substitut-
ing Eq. ~10! into Eq. ~12! and using Eq.~8! yields

U5H U0 for P<Pcr ,

U0F11bS 123
Pcr

2

P2
12

Pcr
3

P3G for P.Pcr ,
~13!
07541
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where U05P2L3/(6EI) is the stored strain energy in th
classical bending mode.

We recall the experiment of Wonget al.13 where they
pushed a multiwalled carbon nanotube by the tip of an AF
probe, and they recorded the pushing force versus the
trolled displacement of the AFM probe. For a qualitati
comparison, we have plotted in Fig. 3, witha50.19, the
normalized loadp5P/Pcr versus the normalized deflectio
d5D/Dcr ~the solid curve!. We note in Fig. 3 the abrup
decrease of the initial constant slope in the forc
displacement plot atp51 ~i.e., P5Pcr) where the rippling
mode emerges. We note from Eq.~13! that the stored strain
energy increases with the further deflection nonlinearly a
the emergence of the rippling, being contrary to the line
increase of the stored strain energy in post-buckling as
dicted by the computer simulations.5,24,26,27It is seen from
Eq. ~13! that the stored strain energy increases quadratic
prior to this point, and departs, at this point, from the r
sponse expected for a harmonic system, resulting in the
sequent increase of the stored strain energy with the fur
deflection at a significantly slower rate. All the above fe
tures are consistent with what Wonget al.13 reported except
the absence of a small drop in the loading force at the tr
sition point, which was indicated by the measurements
Wonget al.13 This may be qualitatively explained by consid
ering the elastic effect of the cantilevered AFM probe.34 We
also note that the classic bending mode and the ripp
bending mode are, probably, both locally metastable w
the bending curvature is approximately equal to the criti
curvature and correspondingly, there is a small energy ba
to be overcome for the transition from the classic bend
mode to the rippling bending mode to take place. The phy
cal mechanism of this transition is beyond the scope of
discussion, although one may model the macroscopic be
ior corresponding to the transition using a phenomenolog
approach by introducing an empirical or semi-empirical
netic relation. In summary, the above analysis indicates
the abrupt change in the deflection response of the car
nanotubes to the AFM probing reported by Wonget al.13

appears to correspond to the emergence of the rippling b
ing mode, instead of buckling as perceived by those inve
gators who, nevertheless, should be credited for their cau
that the characteristics of the measured response are s
what different from those of post buckling as predicted
the computer simulations.

FIG. 3. The normalized lateral force versus the normalized d
placement. The dotted line accounts for the kinking effect at
transition point.
4-5



e
n
ag
r-

tw
ta

tr

ly
a
t
s

ng
i

t

a-
th

nd
e-
th

lly

a
gn
ri
h
e

an
th
ing

re
e

ent
di-

ck-
the

he

fre-
fre-
trix

to

lus

JEFFERSON Z. LIU, QUANSHUI ZHENG, AND QING JIANG PHYSICAL REVIEW B67, 075414 ~2003!
III. EFFECT OF THE RIPPLING MODE ON RESONANCE

To study the resonance behavior, we recall the experim
of Poncharalet al.,15 in which the sample multiwalled carbo
nanotubes were precharged statically with a biasing volt
Vs520 V before they were driven to vibrating by a ha
monic oscillating voltage of magnitudeVd'0.1 V, superim-
posed upon the static voltage. These correspond to
forces acting at the free end of the carbon nanotube, a s
force Ps and a time-harmonic forcePd cos(Vt), and each
induced force equals the product of the induced elec
charge ~proportional to the voltage! and the electric field
~also proportional to the voltage!, as Poncharalet al.15

pointed out. Therefore, the force magnitude ratioPd /Ps is
proportional to the square of the voltage ratio (Vd /Vs)

2

'2.531027. Considering that this force ratio is extreme
small, we assume that if the rippling bending mode h
emerged in a sample nanotube, it had occurred during
static loading prior to the dynamic loading. Thus, in the ca
that Ps,Pcr , there is no rippling and hence the bendi
moment is proportional to the bending curvature as given
the first portion of the constitutive equation~3!. Correspond-
ingly, the governing equation~2! yields the classical resul
for the resonance frequency given by Eq.~1!.

In the following, we are primarily interested in the fund
mental resonance frequency of the model nanotube in
case that a portion of the nanotube (0,x,Lcr) had taken the
rippling bending mode prior to the dynamic loading, a
thus we assumePs.Pcr . We now study the resonance b
havior of the preloaded model nanotube in response to
small harmonic loadingPd cos(Vt). Substituting the consti-
tutive equation~3! into the governing equation~2! yields the
following:

Pd cos~Vt !d~L2x!2rAẅ~x,t !

5H EIak9~x,t ! for 0,x,Lcr~ t !,

EIk9~x,t ! for Lcr~ t !,x,L,
~14!

whered(x) denotes the Dirac delta function. It is genera
possible that the dynamic loading causes the lengthLcr of the
rippling portion to vary slightly with time, and this would
make the analysis substantially more complicated. We
sume that this variation is insignificant because the ma
tude of the dynamic loading is extremely small in compa
son with the static loading, and hence we neglect t
variation for the benefit of the dramatic simplification of th
present analysis. To determine the fundamental reson
frequency, we then turn to study the characteristics of
free vibration of such a partially rippled nanotube by sett
w(x,t)5LW(u)cos(Vt), with u5x/L, and by noting that the
deflection and its derivative both vanish at the cantileve
end and by requiring that there be neither a bending mom
nor a shear force at the far end~free vibration!, we have

W-8~u!2Ã4W~u!50 for 0,u,a andW~0!5W8~0!50,

V-8~v !2v4V~v !50 for 0,v,b andV9~0!5V-~0!50,
~15!

where
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v5LA4 V2rA

EI
, Ã5

v

A4 a
, ~16!

and the rescalingv512u and the deflection functionV(v)
5W(12u) for a,u,1 or 0,v,12a5b. The general
solution of Eq.~15! is given by the following linear combi-
nations of the harmonic and hyperbolic functions:

W~u!5C1~cosÃu2coshÃu!

1C2~sinÃu2sinhÃu! for 0,u,a,

V~v !5C3~cosvv1coshvv !

1C4~sinvv1sinhvv ! for 0,v,b. ~17!

Furthermore, the deflection function, the bending mom
and the shear force should all be continuous across the
viding point. In the case of our present interest where bu
ling does not occur, the deflection must be smooth at
dividing point. This leads to

W~a!5V~b!, W8~a!52V8~b!,

~12a!kcrL1aW9~a!5V9~b!, aW-~a!52V-~b!.
~18!

Substituting Eq.~17! into Eq.~18! yields a system of four
linear algebraic equations for the unknown constantsC1 ,
C2 , C3, andC4, whose coefficient matrix depends upon t
dimensionless excitation frequencyv. This coefficient ma-
trix becomes singular as the dimensionless excitation
quencyv approaches one of the dimensionless resonant
quencies. Requiring the determinant of the coefficient ma
vanish leads to the following frequency equation:

05a1/2~11cosÃa coshÃa!~11cosvb coshvb!

1a21/2~12cosÃa coshÃa!~12cosvb coshvb!

2a1/4~coshÃa sinÃa2sinhÃa cosÃa!

3~sinhvb cosvb1coshvb sinvb!

2a21/4~coshÃa sinÃa1sinhÃa cosÃa!

3~coshvb sinvb2sinhvb cosvb!

22 sinÃa sinhÃa sinvb sinhvb. ~19!

The lowest rootvR of the frequency equation corresponds
the fundamental resonance frequency VR

5(vR
2/L2)AEI/rA, noting the definition~16! of the dimen-

sionless excitation frequency. The effective Young’s modu
Eeff is defined through the following equation:

VR5
v0

2

L2
AEeffI

rA
~20!

and this leads to

Eeff

E
5S vR

v0
D 4

. ~21!
4-6
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We note, with significant interest, that the modulu
frequency relation~20! is formally identical to the classica
relation ~1!, except that the effective Young’s modulusEeff
has replaced the actual material Young’s modulusE.

With Eq. ~19! and the relations~16! and b512a, we
note the dependence of the dimensionless fundamental
nance frequencyvR upon the normalized rippling lengtha
5Lcr /L as well as the parametera, and we thus denote it a
vR(a,a). As expected, our calculation shows thatvR has the
constant valuevR(0,a)5v0'1.875 in the absence of rip
pling, as obtained from the linear theory, andvR(a,a) and
henceEeff decrease with the increasing normalized rippli
length a and the decreasing parametera. Noting that k̄

5k̄cr at x5Lcr , we obtain from Eqs.~10! and ~4!

a[
Lcr

L
5H 0 for P,Pcr ,

12
2k̄crL

2

3D0d
for P.Pcr .

~22!

Therefore, we conclude that the normalized rippling lengta
increases, and hence the effective Young’s modulusEeff de-
creases, with the increasingD0, the increasing diameterd,
and the decreasing lengthL, all monotonically forP>Pcr ,
i.e., in the presence of the rippling bending mode.

We now recall the report of Poncharalet al.15 that the
modulus they calculated from the classical modul
frequency relation~1! using the measured resonance f
quency was found to decrease sharply from 1 to 0.1 T
with the diameter increasing from 8 to 40 nm and tha
rippling bending mode was observed for nanotubes of lar
diameters. According to the above analysis, the modu
Poncharalet al.15 calculated is the effective Young’s modulu
in the presence of rippling and their work indicates that
effective Young’s modulus, instead of the actual Youn
modulus, decreased sharply at the emergence of the ripp
bending mode and with its subsequent progressive deve
ment, and we should credit Poncharal and his colleagues
later referring to their so-calculated modulus as the bend
modulus, a point of caution to the readers well exercized.
are much encouraged by this qualitative consistence, b
quantitative comparison of this analysis with their measu
ments is, however, not possible at this point due to a lack
information required. In their experiment,15 the harmonic os-
cillating voltage was adjusted in each test to maximize
vibration for each individual nanotube, and this voltage a
plitude was not recorded.33,34 Furthermore, the lengths o
these sample nanotubes were reported only for a very
groups of samples, and we note that measuring the length
these nanotubes accurately is not an easy task because
used a fiber composed of carbon nanotubes recovered
the nanotube arc deposit. Nevertheless, to illustrate on
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the implications of this analysis that the effective modu
Eeff can drop sharply as the rippling bending mode emerg
we plot in Fig. 4 the effective Young’s modulus versus t
diameter d, using the graphite base Young’s modulusE
51.02 TPa, for fixed lengthL51 mm and displacement
length ratioD0 /L50.3. We see that the effective Young
modulusEeff has the same value as the actual Young’s mo
lus E for small diameter and it decreases sharply as the
ameterd becomes slightly larger than a critical valuedcr
'12 nm, corresponding to the emergence of the rippl
mode. We note, with caution, that the numerical values
the length and the displacement/length ratio were chosen
trial and error, to fit the data obtained from the measureme
of Poncharalet al.15 for the sole purpose of illustration.

To conclude our discussion, we would like to remark th
one needs to be particular cautious in using the class
results from the linear elasticity to derive the mechani
properties of carbon nanotubes from measurements, bec
their responses to probing are not always linear. The ripp
bending mode, observed by several investigators, Ruoff
Lorents,22 Kuzumakiet al.,23 and Poncharalet al.,15 appears
to be responsible for the unusual mechanical behavior
bending deflection reported by Wonget al.13 and in resonant
vibration reported by Poncharalet al.15
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bending. Our analysis and simulations suggest that rippling
pears to be associated with the multiplicity of walls of MWNT
and the ultralow interwall sliding resistance strength~ISRS!
~Refs. 9–11,17,18!. The bilinear relation~3! captures, approxi-
mately, the constitutive behavior of multiwalled carbon nan

tubes near rippling although the dimensionless parametersk̄cr

anda vary with configurations of individual tubes. For instanc
we find that the predicted responses of the lateral force and
strain energy versus the deflection fit the measurements of W

et al. ~Ref. 13! remarkably well, if we setk̄cr'0.012 anda
'0.31, for a six-walled nanotube of 40-nm in length and 5-n
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the AFM probe, whose tip is located at the free end of t
AFM’s cantilevered beam. The relative displacementD tip of the
probe tip to the controlled displacementDA is recorded and it is
proportional toP in the formD tip5P/kA with the known AFM
elastic stiffness parameterkA . This leads to the deflectionD
5DA2D tip . WhenP,Pcr , or equivalently,D,Dcr , the classi-
cal predictionD5P/k with k53EI/L3 is valid. As DA is in-
creasingly crossing the critical valueDA

cr with respect toPcr and
Dcr , the bending mode is transiting from the classical mode
the rippling one. Prior to the emergence of the first rippli
period ~which is about one fourth of the nanobeam height!, the
nanobeam becomes kinked at the cantilevered end (x50), with
a certain kinked angle denoted byuk . Denoting by (Pcr

2 ,Dcr
2)

and (Pcr
1 ,Dcr

1), respectively, the loading/displacement pairs im
mediately before and after the kinking and neglecting the
namic effect, we have

Pcr
2

k
1

Pcr
2

kA
5DA

cr ,
Pcr

1

k
1ukL1

Pcr
1

kA
5DA

cr .

It thus yields

Pcr
15~DA

cr2ukL !/~1/k11/kA!,Pcr
25DA

cr/~1/k11/kA!,

Dcr
15DA

cr2Pcr
1/kA.Dcr

25DA
cr2Pcr

2/kA .

In other words, as the AFM probe displacementDA increases to
exceedDA

cr , a kink develops at the fixed end, causing the load
to drop (Pcr

12Pcr
2,0) and correspondingly, the displacement

rise (Dcr
12Dcr

2.0). The normalized slope is

P̄cr
12Pcr

2

D̄cr
12D̄cr

2
5

Pcr
12Pcr

2

Dcr
12Dcr

2

Dcr

Pcr
52

kA

k
,0.

The above result is consistent with the force-displacement m
surment of Wonget al. ~Ref. 13! in their Fig. 4A. For a quali-
tative comparison, the dotted line in Fig. 2 is plotted havi
taken into account of the above kinking effect.
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