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Role of interfacial energy during pattern formation of electropolishing

Weidong Guo and Duane Johnson*
Department of Chemical Engineering, University of Alabama, Tuscaloosa, Alabama 35487

~Received 16 September 2002; published 18 February 2003!

This paper investigates the effect of interfacial energy on nanoscale pattern formation during electropolish-
ing of aluminum. We correct a small error in the existing theory of Yuzhakovet al. that unfortunately no longer
predicts stable hexagonal patterns. Upon including the interfacial energy in the derivation, the stable hexagons
are recovered. We have derived the evolution equation of the aluminum interface during electropolishing and
performed a linear and weakly nonlinear stability analysis. The results give values that lead to stable striped or
hexagonal patterns. Results of a full nonlinear simulation of the evolution equation agree qualitatively with the
weakly nonlinear results. Experimental results also verify our model, which predicts the coexistence of striped
and hexagonal patterns in one sample.

DOI: 10.1103/PhysRevB.67.075411 PACS number~s!: 68.03.Cd, 81.16.Rf, 82.45.Qr
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I. INTRODUCTION

Porous anodized films on aluminum that produce hexa
nal ordering have attracted much attention recently due
their high pore density and potential applications in the el
tronic and information storage industries, as well as th
general use in nanotechnology.1,2 Studies have been pe
formed to interpret the corresponding mechanism of t
structure.3–5 The primary mechanism related to these wo
is field-enhanced dissolution where the electric field has
important effect on the structure of both barrier-type fi
~BTF! and pore-type film~PTF! domains. BTF and PTF both
start from a smooth surface that will develop into pits b
cause of electropolishing or lattice imperfections.5 For both
BTF and PTF, the Al31 ion is released from the metal/oxid
interface and migrates through the oxide layer, while the w
ter splitting reaction occurs at the oxide/electrolyte interfa
that yields the O22 ion for producing alumina.5 The electric
field enhances the dissolution and is stronger at the p
bottom where the oxide film is thinner. Therefore, a dee
pit at the metal/oxide interface is formed, and a pore
shaped.6

In contrast with the anodization of aluminum, another p
tern technology is electropolishing, which has been ext
sively investigated using atomic force microscopy.7–10 By
electropolishing pure~99.99%! Al foil at various voltages in
acidic electrolyte, one obtains different patterns~hexagons,
stripes, or mixed patterns!. Depending on the electrolyte,
the applied voltage is low, one obtains the striped patte
while the hexagonal pattern can be obtained at higher v
ages. Because the anodization of aluminum requires the
arrangement of the oxide layer, the evolution of the patte
is quite slow.11 Compared to the anodization process, el
tropolishing is more rapid and initial defects in the patte
can quickly evolve into more order patterns.

Recently, a theory of the pattern formation during ele
tropolishing of aluminum was proposed by Yuzhakov a
collaborators.12,18 They found that the aluminum anode ca
exhibit both highly regular and randomly packed nanosc
striped and hexagonal patterns in commercial electropol
ing electrolyte. The nonuniform interface creates higher e
tric fields at the ‘‘hills’’ relative to the ‘‘valleys.’’ A higher
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electric field at the hills increases the dissolution rate, wh
a lower electric field at the valleys decreases the dissolu
rate. The net effect is that the dissolution reaction flattens
interface. However, the perturbed electric field also increa
the adsorption of any surfactant that might be present.
surfactant adsorbs preferentially onto the hills due to
larger electric field. The adsorbed surfactant blocks the re
tion sites, thus decreasing the dissolution rate. The adso
surfactant destabilizes the interface by making the h
higher and the valleys deeper. For certain parameter regi
these two effects are balanced and stable patterns form~see
Fig. 1!.

In our present work, we study the effect of interfaci
energy on the pattern formation during the electropolish
of aluminum. We extend the model of Yuzhakovet al.12 by
including the interfacial energy contribution to the tot
Gibbs free energy of the anodic reaction. The present wor
essentially divided in three parts: a detailed explanation
the modeling procedure, a mathematic analysis of our mo
and experimental results.

In Sec. II, we derive a modified evolution equation usi
a long-wavelength expansion of the interfacial kinema
equation and an equation for the surfactant coverage. In
III, the linearized evolution equation reveals that the inter
cial energy changes the instability criteria and decreases
maximum growth rate of unstable modes. Additionally,
weakly nonlinear analysis is performed to predict regions
stable striped and hexagonal patterns. Finally, a spec
method is employed to numerically solve the evolution eq
tion, which yields qualitatively the same results that o
weakly nonlinear analysis predicts. In Sec. IV, we present
experimental results, which further support our theoreti
predictions that hexagonal and striped patterns can be
tained in the same sample.

II. EVOLUTION EQUATION

A. Mechanism of pattern formation with interfacial energy

The paper by Yuzhakovet al.12 introduced the competi-
tive mechanism between dissolution rate and surfactant
sorption rate. However, it did not include interfacial energ
which we will show has a significant effect on the resul
©2003 The American Physical Society11-1
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The interfacial energy adds additional stability to the int
face by restraining areas of high surface curvature. This le
to stabilizing the short-wavelength disturbance and modi
the parameter region where stable patterns exist. Furt
more, we find that the interfacial energy is needed in
model in order to predict stable hexagonal patterns.

B. Effect of surface tension on dissolution rate

According to transition-state theory and electrode kin
ics, the dissolution rate can be written as follows:13

Kr5Kr8 expS 2DGa
#

RT
D , ~1!

where Kr8 represents the fieldless dissolution rate result
from concentration and bulk mass transport, whileDGa

# de-
notes the electrochemical free energy of activation and
be separated, as will be showed in Eq.~2!, into chemical and
electrical components.13 In the case of the deformation of
planar anode, the interfacial energy contributes to the t
free energy. Therefore, we obtainDGa

# as follows:

DGa
#5DGa

#2~12e!Z0FDca1
~12e!s~“•n!

CM
. ~2!

Here DGa
# is the chemical free energy of activation and

independent of the potential ande is the energy transfer co
efficient, which can range from zero to unity.13 For many
reactions it is found to be extremely close to 0.5.14 Z0 is the
charge on the ion, andDca is the anode potential differenc
across the double layer. The symbols denotes the interfacia
energy,n is the unit outward normal vector,“•n is the mean
interfacial curvature, andCM represents the anode met
density. Combining Eqs.~1! and ~2! gives

Kr5Kr* expS b rE

kBT
2

~12e!s~“•n!

CMRT D . ~3!

FIG. 1. Schematic of the mechanism of electropolishing in
presence of surfactants. Perturbations to the interface increase
electric field on the ‘‘hills’’ relative to the ‘‘valleys.’’ The higher
electric field at the hills increases the dissolution rate, but also
creases the adsorption rate of surfactants. The interfacial en
inhibits the formation of areas with high surface curvature.
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HereKr* 5Kr8 exp(2DGa
#/RT), b r is a proportionality coeffi-

cient that is of the order of 10231 J m V21 for most metal
anodes,12,15 E is the anode electric field, andkB is Boltz-
mann’s constant.

C. Derivation of the evolution equation

We assume that the momentum and diffusion bound
layers are much larger than the electric double layer. The
fore, the velocity of the electrolyte solution and the conce
tration of dissolved ions are not considered in the analy
We further assume that the electrolyte composition does
change such that the double-layer thickness and the an
chemistry are not affected by changes in composition.

We use the Debye-Huckel approximation of the Poiss
Boltzmann equation to describe the potential field in t
double layer:

¹2c5
2Z0FC0

«
sinhS Z0Fc

RT D>
c

dE
2 , ~4!

cuz→`50,

cz5h5cs ,

where cs is the potential at the anode relative to the bu
electrolyte andh is the deviation of the interface from a fla
electrode. We solve Eq.~4! assuming that the potential i
only dependent on thez direction. This gives the electric
potential across the double layer for a flat interface.

c5cs expS h2z

dE
D . ~5!

The electric field in the double layer for a flat interface
found by taking the negative gradient of the electric pote
tial:

E052
dc

dzU
z50

5
cs exp~h/dE!

dE
5

c0

dE
. ~6!

Herec0 is the electric potential of a flat interface. It is foun
experimentally that the amplitude of the interfacial patte
is much smaller than the wavelength. From this, a lon
wavelength expansion of Eq.~4! is used to derive the rela
tionship between the anode interfacial electric field and
interfacial shapeh:

E52
]c

]nU
z5h

'E01E1 , ~7!

where]/]n is the normal gradient and the deviation elect
field E1!E0 relative to the planar case is12

E152
E0

2
@~“h!21dE¹2h# ~8!

In order to demonstrate how the interfacial energy,
deviation fieldE1 , and the interfacial shape affect the diss
lution rate, a long-wavelength expansion of the dissolut
rateKr'Kr

01Kr
1 is needed:

e
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-
gy
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Kr
1

Kr
0 5

b r

kBT
E12

~12e!sdE

CMdERT
¹2h1

1

2 S b r

RTD 2

E1
2

1
1

2 S ~12e!s

CMdEkBTD 2

~¹2h!2dE
2. ~9!

Substituting Eq.~8! into Eq. ~9! yields

Kr
1

Kr
0 52B1~“h!22~B11B2!dE¹2h

1S B1B11B2B2

2 D dE
2~¹2h!2, ~10!

whereB15b rE0/2kBT andB25(12e)s/CMdERT.
The parameterB1 demonstrates the sensitivity of un

shielded dissolution to field changes,12 while B2 represents
the sensitivity of unshielded dissolution to interfacial ener
changes.B1 is a small dimensionless value for most disso
tion reactions. For aluminum electropolishing,B1 is in the
range from 0.05 to 0.15~Refs. 12 and 15! andB2 is approxi-
mately in the range between 0.004 and 0.026 for reason
values ofs ~e.g., 30 mJ/m2!. Therefore, any terms that in
cludeB1

2 andB2
2 are ignored.

Yuzhakov et al.12 introduced a short-wavelength cuto
mechanism to couple with the long-wavelength instability
using a quasisteady equation for the surfactant coverage

Ds¹
2u1ka2kdu50. ~11!

Upon expanding the surfactant coverageu, the adsorption
rateka , and the desorption ratekd , we have

Ds
0¹2u11ka

12kd
0u150. ~12!

The adsorption rate depends on the electric field and
duced dipole moments of the surfactant.16 Assuming the ad-
sorption rate of the shielding molecule is dependent only
the difference of its polarizability relative to the others a
the relative polarizability, we have

ka5ka* expS aE2

2kBTD . ~13!

Herea is the difference in effective polarizability and can b
obtained from the Debye-Langevin equationa5a0

1P0
2/3kBT, in which a0 is the difference in polarizabilities

and P0 is the difference in permanent dipole moments12

Equation~13! is expanded aboutE0 to obtainka
1 to O(E1

2):

ka
15

aE0

kBT
ka

0E11
1

2

a

kBT S aE0
2

kBT
11D ka

0E1
2. ~14!

Substituting Eqs.~8! and ~14! into Eq. ~12! gives

S Ds
0

kd
0 D¹2u12u15B3F ~“h!21dE¹2h2

dE
2

4 S aE0
2

kBT
11D

3~¹2h!2G , ~15!
07541
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where the dimensionless numberB3 is a normalized activa-
tion energy that gives the sensitivity of the adsorption rate
field changes:

B35
1

2

ka
0

kd
0

aE0
2

kBT
.

The kinematic condition at the interface is found by perfor
ing a mass balance:12

]h

]t
5Kr

0u12Kr
1. ~16!

Combining the above equations yields the following evo
tion equation:

]h

]t
2S Ds

0

kd
0 D¹2S ]h

]t D5kr
0B3F2~12n!dE¹2h2~12n!~“h!2

2dES Ds
0

kd
0 D n¹4h2S Ds

0

kd
0 D n¹2~“h!2

1
dE

2

4 S aE0
2

kBT
11D ~¹2h!21n8dE¹2h

2S Ds
0

kd
0 D n8dE¹4hG , ~17!

wheren5B1 /B3 denotes the ratio of the activation energi
for the dissolution and adsorption, whilen85B2 /B3 repre-
sents the ratio of interfacial energy and activation energy
the adsorption. In order to make the governing equation
mensionless, we use the following scalings:

t5
n~Ds

0/kd
0!

kr
0B3~12n!2dE

t,

~x,y!5S n

12n D 1/2S Ds
0

kd
0 D 1/2

~X,Y!,

h5dEH.

After simplifying, we finally obtain the dimensionless evolu
tion equation

Ht2s¹2Ht52~“H !22S 12
p

sD¹2H2~11p!¹4H

2¹2~“H !212j~¹2H !2, ~18!

where

s5
12n

n
, p5

n8

n
.

Here j represents the operating parameter that includes
coupling between electric field, adsorption, and interfac
energy:

j5
dE

2

8n S kd
0

Ds
0D S aE0

2

kBT
11D 2

n8B2dE
2kd

0

4nDs
0 .
1-3
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III. MATHEMATICAL ANALYSIS OF THE MODEL

A. Linear instability analysis

The value forn remains close to 0.5 in the voltage ran
from 20 to 80 V.12,18We use the value ofn5 16

25 50.64 for the
nonlinear analysis. Our linear stability analysis starts w
linearizing Eq.~18!:

]~H2s¹2H !

]t
52S 12

p

sD¹2H2~11p!¹4H. ~19!

Substituting a normal modeH;exp@lt1i(kx1ly)# into Eq.
~19! yields the growth rate

l5

S 12
p

sDq22~11p!q4

11sq2 , ~20!

whereq25k21 l 2. The values of the wave number that giv
positive growth rates are

q2<

S 12
p

sD
11p

. ~21!

The maximum growth rateqm is given by

qm
2 5

211A11s

11p

s
. ~22!

The case when the interfacial energy is not considered ca
recovered easily by settingp50. Notice that the addition o
the interfacial energy decreases the value of the maxim
growth rate and the region of unstable wave vectors.

B. Weakly nonlinear analysis

A weakly nonlinear analysis is performed on the evoluti
equation by expanding the height in terms of the unsta
modes of the maximum growth rate, the first harmo
modes of the unstable modes, and the resonant mo
Higher-order modes are neglected. Figure 2 gives all
modes that contribute to the evolution of the heightH.
The expansion of the height in terms of the various mode
given in Eq.~23! ~Ref. 12!:

H5(
j 51

6

@Wj exp~ ik j•r !1Vj exp~2ik j•r !1U j exp~ ikr j •r !#.

~23!

HereWj represents unstable modes,Vj represents the stabl
harmonic modes, andU j represents the stable resona
modes. We follow the standard procedure19 by substituting
Eq. ~23! into the evolution equation~18! and take the inner
product to get an ordinary differential equation for each u
stable mode. An adiabatic reduction is performed where
dynamics and quadratic interactions of the stable modes
assumed negligible:
07541
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dW1

dt
5g0W11g1W2* W3* 2g2uW1u2W1

2g3~ uW2u21uW3u2!W1 ,

dW2

dt
5g0W21g1W3* W1* 2g2uW2u2W2

2g3~ uW3u21uW1u2!W2 ,

dW3

dt
5g0W31g1W1* W2* 2g2uW3u2W3

2g3~ uW1u21uW2u2!W3 . ~24!

If the interfacial energy is ignored, the coefficients of t
amplitude equation are

g05
16

81
,

g15
16

405
~16j25!,

g252
16

2835
~16j25!~8j27!,

g352
16

1215
~16j23!~16j25!.

Similarly, we obtain the amplitude equations for the ca
when the interfacial energy is not ignored. For convenien
we selectp50.212 such thatqm51/2 and obtain the follow-
ing values for the amplitude equation coefficients:

g05
400

5329
,

g15
4

73
~4j23!,

FIG. 2. Diagram of the unstable, stable, and resonant mo
used in the weakly nonlinear analysis.
1-4
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g252
146

2975
~4j23!j,

g352
73

1375
~4j11!~4j23!.

The results reveal that the interfacial energy does sign
cantly affect the amplitude equation coefficients.

In Eq. ~24!, W1 , W2 , andW3 are all complex modes tha
can be written as a product of the real and complex part

Wj5Rj exp~ iw j !. ~25!

Here Rj is the real amplitude andw j represents the phas
amplitude of the unstable modes. After substituting Eq.~25!
into Eq.~24! and assuming that only the amplitude dynam
is important at long times,12 we obtain

dR1

dt
5g0R11ug1uR2R32g2uR1u2R12g3~ uR2u21uR3u2!R1 ,

dR2

dt
5g0R21ug1uR1R32g2uR2u2R22g3~ uR1u21uR3u2!R2 ,

dR3

dt
5g0R31ug1uR1R22g2uR3u2R32g3~ uR1u21uR2u2!R3 .

~26!

FIG. 3. Results from nonlinear simulation with interfacial e
ergy included.p51071/5329 ands59/16. ~a! Stable hexagona
patternsj50.2 and~b! stable striped patternsj50.6.
07541
-

s
Consequently, four types of steady-state solutions are
tained: ~1! striped patterns ifR15Ag0 /g2 and R25R3
50; ~2! hexagonal patterns ifR15R25R3 , where

R15
ug1u1Aug1u214g0~g212g3!

2~g212g3!
; ~27!

~3! mixed patterns if two or three amplitudes are not ze
and ~4! a flat interface if all of the amplitudes are zero. T
determine the stability of the patterns, we calculate the
genvalues of the Jacobian matrix of the amplitude equat

FIG. 4. AFM images showing different patterns that form on t
same sample electropolished at 56 V for 30 s.~a! Striped pattern,
~b! Random pattern, and~c! hexagonal pattern.
1-5
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TABLE I. Comparison of the values ofj that give stable patterns and real amplitudesRj ~the interval of
existence!. The values for Yuzhakovet al. were found by using the coefficient equations given in Ref. 1

Reference 12 This work~s50! This work (s560 mJ/m2)

Hexagon existence ~0.53, 0.93! ~0.25, 0.31! ~20.22, 0.75!
Stable hexagon ~0.53, 0.88! Never stable ~20.15, 0.30!
Stripe existence ~0.31, 0.88! ~0.31, 0.88! ~0.00, 0.75!
Stable stripe ~0.84, 0.88! Never Stable ~0.00, 0.75!
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C. Numerical simulation

To help verify our calculations, we perform a full nonlin
ear numerical simulation of the evolution equation~18!. The
height H was expanded in terms of Fourier modes in thex
andy directions:17

H5 (
n52N1/2

N1/221

(
m52N2/2

N2/221

Wnm~ t !exp@ i ~nx1my!#. ~28!

Here n and m represent the wave number of thex and y
modes, respectively. Upon substituting Eq.~28! into Eq.
~18!, multiplying by exp@2i(nx1my)#, and integrating, we
get N13N2 ordinary differential equations for the ampl
tudes of each Fourier mode. The set of differential equati
was integrated using a split fourth- and fifth-order Rung
Kutta method until a steady state is reached. A plot of
steady-state solutions for different values ofp andj is given
in Fig. 3.

IV. EXPERIMENTS

Alfa AESAR, Puratronic 99.998%, polycrystalline Al foi
0.5 mm thick, was used as the anode. A 304 stainless-s
cathode was placed parallel to the anode 3 mm away.
used a Kenwood PDS 120-6 programmable power suppl
electropolish the Al samples without agitating the electroly
To avoid excessive increases in the anode temperature
electropolished the samples using six pulses of 5 s in dura-
tion. The voltage was turned off after 5 s until the anode
temperature steadied at 15 °C.

The 0.8-cm2 Al samples are first immersed in 5% sodiu
hydroxide solution for 30 s at 60 °C, rinsed in de-ioniz
water, washed in 35% nitric acid solution at room tempe
ture for 5–10 s, rinsed in de-ionized water again, and t
electropolished for 30 s~six pulses! in the electrolyte. The
electrolyte consisted of 70 vol. % ethanol, 10 vol.
2-butoxyethanol, 13.8 vol. % de-ionized water, and 6
vol. % perchloric acid. After the electropolishing procedu
the Al surfaces were imaged with an atomic force mic
scope~AFM!.

Our model predicts that higher values ofj give striped
patterns, while lower values ofj produce hexagonal pattern
which was demonstrated experimentally by Yuzhak
et al.12,18 We find experimentally that the hexagonal a
striped patterns can coexist on the same sample~Fig. 4!,
which is in agreement with our model predictions. Similar
Konovalovet al.10 found that there are different topographi
on different crystalline grains of the same polycrystalline
surface, in which stripes were observed for only 10%–2
07541
s
-
e
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e
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.
we

-
n

2
,
-

v

,

l

of the grains of a sample. Using Al single crystals in th
experiment eliminated this uncertainty related to the gr
distribution.

V. DISCUSSION

Table I compares the pattern stability and the interval
existence of three different sets of amplitude coe
cients: ~1! the coefficients of Ref. 12,~2! our coefficients
with s50 mJ/m2, and ~3! our coefficients with s
560 mJ/m2. We find both the interval of existence, such th
Rj is real, and the values ofj, which give all negative eigen
values. Our stability analysis using the coefficients fro
Yuzhakovet al.12 shows that hexagonal solutions can ex
for jP~0.53,0.93!, which is in agreement with their results
This analysis also shows that stripes can exist
jP~0.31,0.88!, which is consistent with the published value
However, the stable regionjP~0.84,0.88! for stripes is in-
consistent with their published valuesjP~0.68,0.88!, while
the result for stable hexagons is consistent with the publis
values. The analysis from our coefficients~without the inter-
facial energy! shows that neither hexagons nor stripes
stable within the interval of existence. When a nonzero
terfacial energy is included, the analysis gives the interva
existence for the hexagonsjP~20.22,0.75!, while stripes ex-
ist in the range ofjP~0,0.75!. Stability analysis predicts tha
stripes are always stable forjP~0,0.75!, while hexagons are
always stable forjP~20.15,0.30!. It is emphasized here tha
stable hexagons and stripes can coexist in the range
jP~0,0.30!, which was shown in our experiments. We ther
fore conclude that the interfacial energy is needed in t
case to predict stable patterns.

A nonlinear simulation of the evolution equation~18! was
performed to help verify the weakly nonlinear analysis. T
simulation showed that when values ofp, s, andj are used
such that the weakly nonlinear analysis predicts sta
stripes, the numerical solution also gives stable stripes.
same is also true for hexagonal patterns. The simulation
also run using different initial conditions for values ofj
where both stable stripes and hexagons are predicted.
we find that the final stable pattern is determined by
initial conditions of the simulation. Initial conditions tha
were close to stripes gave striped patterns, and initial co
tions that were closer to hexagons gave stable hexag
patterns.

Plots of the numerical simulation for values ofp
51071/5329,s59/16, andj50.2 and 0.6 are given in Fig. 3
For j50.2 stable hexagons were found, while striped p
terns are formed whenj50.6. We conclude that the numer
1-6
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cal simulation yields the same results as the weakly non
ear analysis.

We theoretically and experimentally showed that he
gons and stripes could be observed on the same sampl
existing experimental results have revealed, we found
striped patterns appear at lower voltages, while hexago
patterns can only be observed at higher voltages. Static
lutions of hexagons and stripes and stability analysis sh
that hexagons are always stable in the range ofjP~20.15,0!
and then comes the existence of stripes whenjP~0,0.75!.
WhenjP~0,0.30!, both hexagons and stripes are stable u
j exceeds 0.30, which leads to unstable hexagons and s
stripes. Csahok and Misbah20 have shown that the separatio
of hexagonal and striped fronts can only occur when
control parameter is increased to a certain value. We rem
the reader that the parameterj is inversely proportional to
the control parameter, the voltage.

It has been found21 that hexagons appear through a su
critical bifurcation, while stripes are created via a supercr
cal bifurcation when the amplitude coefficients are real a
reflection symmetry exists in the amplitude equations. In
weakly nonlinear analysis, the amplitude equations~26! have
reflection symmetry. This may be the reason why we alw
see hexagonal patterns first and stripes later when the co
parameter is increased. However, the coefficientsg1 , g2 ,
andg3 are simultaneously dependent on the control para
eter, the voltage. We should emphasize that because th
efficients are simultaneously dependent on the control
rameter, our plot of amplitude against control paramete
different from the traditional bifurcation diagram~e.g., pitch-
fork bifurcation!.22
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VI. CONCLUSION

We have modified the existing theory by including th
effect of interfacial energy. The analysis shows that
modified model is able to predict stable striped and hexa
nal patterns that are seen in the experiments. A linear in
bility analysis was performed and shows that interfacial
ergy changes the linear stability criteria by making the reg
of unstable wave vectors smaller and reducing the maxim
growth rate. The weakly nonlinear analysis showed that
interfacial energy significantly alters the parameter regio
where stable striped and hexagonal patterns can exist. In
ticular, we find that the interfacial energy needs to be
cluded in the model in order to predict stable patterns
numerical simulation of the evolution equation also predi
the stability and existence of stable striped and hexago
patterns. Our experimental results are also in agreement
our model predictions.

We note here that the interfacial properties in our mo
are assumed isotropic. However, all experiments to date h
used polycrystalline or crystalline aluminum.

The crystalline structure would give rise to anisotrop
properties and would significantly change the evoluti
equation and resulting patterns. Our future work will foc
on introducing anisotropy into the model through interfac
energy and surface diffusion.
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