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Role of interfacial energy during pattern formation of electropolishing
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This paper investigates the effect of interfacial energy on nanoscale pattern formation during electropolish-
ing of aluminum. We correct a small error in the existing theory of Yuzhakaad. that unfortunately no longer
predicts stable hexagonal patterns. Upon including the interfacial energy in the derivation, the stable hexagons
are recovered. We have derived the evolution equation of the aluminum interface during electropolishing and
performed a linear and weakly nonlinear stability analysis. The results give values that lead to stable striped or
hexagonal patterns. Results of a full nonlinear simulation of the evolution equation agree qualitatively with the
weakly nonlinear results. Experimental results also verify our model, which predicts the coexistence of striped
and hexagonal patterns in one sample.

DOI: 10.1103/PhysRevB.67.075411 PACS nuniber68.03.Cd, 81.16.Rf, 82.45.Qr

[. INTRODUCTION electric field at the hills increases the dissolution rate, while
a lower electric field at the valleys decreases the dissolution
Porous anodized films on aluminum that produce hexagorate. The net effect is that the dissolution reaction flattens the
nal ordering have attracted much attention recently due téterface. However, the perturbed electric field also increases
their high pore density and potential applications in the electhe adsorption of any surfactant that might be present. The
tronic and information storage industries, as well as theisurfactant adsorbs preferentially onto the hills due to the
genera| use in nanotechnomjg? Studies have been per- larger electric field. The adsorbed surfactant blocks the reac-
formed to interpret the corresponding mechanism of thidion sites, thus decreasing the dissolution rate. The adsorbed
structure>™® The primary mechanism related to these WorksSUffaCtant destabilizes the interface by making the hills
is field-enhanced dissolution where the electric field has afigher and the valleys deeper. For certain parameter regions,
important effect on the structure of both barrier-type filmthese two effects are balanced and stable patterns (eem
(BTF) and pore-type film{PTF) domains. BTF and PTF both Fig. 1).
start from a smooth surface that will develop into pits be- In our present work, we study the effect of interfacial
cause of electropolishing or lattice imperfectiGnBor both ~ €nergy on the pattern formation during the electropolishing
BTF and PTF, the A ion is released from the metal/oxide Of aluminum. We extend the model of Yuzhaketal*” by
interface and migrates through the oxide layer, while the waincluding the interfacial energy contribution to the total
ter splitting reaction occurs at the oxide/electrolyte interfaceGibbs free energy of the anodic reaction. The present work is
that yields the &~ ion for producing alumind.The electric essentially divided in three parts: a detailed explanation of
field enhances the dissolution and is stronger at the poréie modeling procedure, a mathematic analysis of our model,
bottom where the oxide film is thinner. Therefore, a deepefnd experimental results.
pit at the metal/oxide interface is formed, and a pore is [N Sec. ll, we derive a modified evolution equation using
shaped. a long-wavelength expansion of the interfacial kinematic
In contrast with the anodization of aluminum, another pat-equation and an equation for the surfactant coverage. In Sec.
tern techno|ogy is e|ectr0po|ishing, which has been extenl.”, the linearized evolution equation reveals that the interfa-
sively investigated using atomic force microscéplf By  cial energy changes the instability criteria and decreases the
electropolishing pur€99.99% Al foil at various voltages in maximum growth rate of unstable modes. Additionally, a
acidic electrolyte, one obtains different pattethexagons, Weakly nonlinear analysis is performed to predict regions of
stripes, or mixed patternsDepending on the electrolyte, if Stable striped and hexagonal patterns. Finally, a spectral
the applied voltage is low, one obtains the striped patterniethod is employed to numerically solve the evolution equa-
while the hexagonal pattern can be obtained at higher volttion, which yields qualitatively the same results that our
ages. Because the anodization of aluminum requires the réteakly nonlinear analysis predicts. In Sec. IV, we present the
arrangement of the oxide layer, the evolution of the pattern§Xperimental results, which further support our theoretical
is quite slow* Compared to the anodization process, elecPredictions that hexagonal and striped patterns can be ob-
tropolishing is more rapid and initial defects in the patternstained in the same sample.
can quickly evolve into more order patterns.
Recently, a theory of the pattern formation during elec- Il. EVOLUTION EQUATION
tropolishing of aluminum was proposed by Yuzhakov and
collaborators?8 They found that the aluminum anode can
exhibit both highly regular and randomly packed nanoscale The paper by Yuzhakoet al'? introduced the competi-
striped and hexagonal patterns in commercial electropolishtive mechanism between dissolution rate and surfactant ad-
ing electrolyte. The nonuniform interface creates higher elecsorption rate. However, it did not include interfacial energy,
tric fields at the “hills” relative to the “valleys.” A higher  which we will show has a significant effect on the results.

A. Mechanism of pattern formation with interfacial energy
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Polishing Solution (Acid) HereK} =K/ exp(—AGﬁ/RT), B, is a proportionality coeffi-
cient that is of the order of IG*IJmV ! for most metal
anodes?!® E is the anode electric field, arkk is Boltz-

“ Electric Double Layer .
mann’s constant.

E Surfactant
Molecules

C. Derivation of the evolution equation

We assume that the momentum and diffusion boundary
layers are much larger than the electric double layer. There-
fore, the velocity of the electrolyte solution and the concen-
tration of dissolved ions are not considered in the analysis.
We further assume that the electrolyte composition does not

FIG. 1. Schematic of the mechanlsm of glectropol!shlng in .theﬁhange such that the double-layer thickness and the anodic
presence of surfactants. Perturbations to the interface increase in t

electric field on the “hills” relative to the “valleys.” The higher C%?/:/nlstry aLe ns)t;\ffec;t'edkbyl/ Change_s in ComfpthItlgn._
electric field at the hills increases the dissolution rate, but also in- e use the Debye-Huckel approximation of the Poisson-

creases the adsorption rate of surfactants. The interfacial ener@onzmaﬂn equation to describe the potential field in the

inhibits the formation of areas with high surface curvature. ouble layer:

: : - . . 2ZoFCo . [ZoFip) o
The interfacial energy adds additional stability to the inter- V2y= smk( RT )z 7 (4)
face by restraining areas of high surface curvature. This leads e S8
to stabilizing the short-wavelength disturbance and modifies =0
the parameter region where stable patterns exist. Further- Pz-=0,
more, we find that the interfacial energy is needed in the R

z= Sy

model in order to predict stable hexagonal patterns.
where ¢ is the potential at the anode relative to the bulk
electrolyte anch is the deviation of the interface from a flat
electrode. We solve Eq4) assuming that the potential is
According to transition-state theory and electrode kinet-only dependent on the direction. This gives the electric

B. Effect of surface tension on dissolution rate

ics, the dissolution rate can be written as folloWs: potential across the double layer for a flat interface.
AG y=y r{h_z) (5)
_ =ysexp —|.
K, =K! exp( = ) @) Tl %

The electric field in the double layer for a flat interface is

' . : . foun taking the negative gradient of the electri ten-
where K, represents the fieldless dissolution rate resultlng[ic;lf_ d by taking the negative gradient of the electric pote

from concentration and bulk mass transport, while? de-

notes the electrochemical free energy of activation and can dy
be separated, as will be showed in E2), into chemical and Eo= T dz
electrical components’ In the case of the deformation of a

planar anode, the interfacial energy contributes to the totaHere y is the electric potential of a flat interface. It is found
free energy. Therefore, we obtakG’; as follows: experimentally that the amplitude of the interfacial patterns
is much smaller than the wavelength. From this, a long-
wavelength expansion of E¢4) is used to derive the rela-

_geexqhlse) g

5 o ®)

z=0

AG_§=AG§—(1—e)ZOFA Yot w_ ) f[ionship between the anode interfacial electric field and the
Cwm interfacial shapé:
Here AGY is the chemical free energy of activation and is E— 9y ~E+E )
independent of the potential ards the energy transfer co- anj,_. or b

efficient, which can range from zero to untt/For many . ) o )
reactions it is found to be extremely close to &%, is the =~ Whered/dn is the normal gradient and the deviation electric
charge on the ion, andl ¢, is the anode potential difference field E;<Ej relative to the planar case'fs

across the double layer. The symlaotienotes the interfacial E

energy,n is the unit outward normal vectoY,-n is the mean E,=— —O[(Vh)2+ 5eV2h] ®)
interfacial curvature, andC,, represents the anode metal 2

density. Combining Eqg1) and(2) gives
Y 9 Easd) (29 In order to demonstrate how the interfacial energy, the

deviation fieldE,;, and the interfacial shape affect the disso-
BE (1—-e)a(V-n) lution rate, a long-wavelength expansion of the dissolution

_ * —
K, =K} ex KeT CuRT ®) rateKr~K?+ Kr1 is needed:
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K> B, (1—-e)ode B, where the dimensionless numkt®s is a normalized activa-
KO kaTE' CosRT ’h+ ( RT) E2 tion energy that gives the sensitivity of the adsorption rate to
Kr ks MTE field changes:
1/ (1—e)o |2
2 Cyaueer] (TR g U
MTETS 2K keT
Substituting Eq(®) into Eq. (9) yields The kinematic condition at the interface is found by perform-
1 ing a mass balancg:
.
F:_Bl(Vh)z_(Bl+Bz)5EV2h 0')h
:
= 99, — K1 (16)
+ w 52(V2h)2 (10)
2 (V)% Combining the above equations yields the following evolu-

tion equation:
whereB;= B,Ey/2kgT andB,=(1—e)o/Cy 6cRT.

The parameteB; demonstrates the sensitivity of un- ¢h D0
shielded dissolution to field changjéswhile B, represents 5t | O
the sensitivity of unshielded dissolution to interfacial energy d
changesB; is a small dimensionless value for most dissolu- Dg Dg
i i i ishi is i Sel =5 | vV*h—| —5 | vV3(Vh)?2
tion reactions. For aluminum electropolishirigy, is in the E ko K0
range from 0.05 to 0.18Refs. 12 and 1pandB, is approxi- d

V(ah) koeg[ (1-v)8V?h—(1—v)(Vh)?

mately in the range between 0.004 and 0.026 for reasonably 2 2
values ofo (e.g., 30 mJ/M). Therefore, any terms that in- Z(_T 1](V?h)?+ ' 8gV2h
cludeB? andB3 are ignored.
Yuzhakov et al!? introduced a short-wavelength cutoff D?
mechanism to couple with the long-wavelength instability by ( ko) v' 6V h} 17

using a quasisteady equation for the surfactant coverage:
wherev=B,/B; denotes the ratio of the activation energies
DV260+k,—kq0=0. (11)  for the dissolution and adsorption, whit€ =B, /B3 repre-
sents the ratio of interfacial energy and activation energy for
the adsorption. In order to make the governing equation di-
mensionless, we use the following scalings:

Upon expanding the surfactant coveragethe adsorption
ratek,, and the desorption rate;, we have

DoV29;+ki—kJ6,=0. (12 (DYKS)
= —0— T,
The adsorption rate depends on the electric field and in- krBa(1—v)?5¢
duced dipole moments of the surfactdhAssuming the ad-
sorption rate of the shielding molecule is dependent only on (x y)=(
the difference of its polarizability relative to the others and
the relative polarizability, we have

/ 0\ 1/2
S

2 h: 5EH
E
ka=Kk3 ex;{ a—) ) (13)  After simplifying, we finally obtain the dimensionless evolu-
2kgT tion equation
Here« is the difference in effective polarizability and can be D
obtained from the Debye-Langevin equation=«y H,—sV?H, = —(VH)Z—(l— —)VZH—(1+ p)V4H
+ P§/3kBT, in which « is the difference in polarizabilities S
and P, is the difference in permanent dipole momeHts. —VZ(VH)2+2&(V2H)?, (18)
Equation(13) is expanded abou, to obtaink? to O(Ef):
where
aBy o, 1 a [aEj s )
1-v v
ka= kg Tk 2kBT<kBT 1]kaE1- (14 S=—  P=7
Substituting Eqs(8) and (14) into Eq. (12) gives Here & represents the operating parameter that includes the
0 coupling between electric field, adsorption, and interfacial
Ds) o2 2h 5_ E energy:
o V26, 0,=B3| (Vh)2+ 6V?h +1
K KT 0 2 21,0
B8 ok, v
X(Vzh)zy (15) 8v Dg kBT 4VD2
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IIl. MATHEMATICAL ANALYSIS OF THE MODEL

A. Linear instability analysis

The value forv remains close to 0.5 in the voltage range
from 20 to 80 \VA218We use the value of= 3¢ =0.64 for the 04r
nonlinear analysis. Our linear stability analysis starts with
linearizing Eq.(198):

Wave number |
o

v
I(H—sV?H
¥=—(1—B>V2H—(l+p)V4H. (19 o2
aT S
0.4
Substituting a normal mode ~exgd\7+i(kx+ly)] into Eq. D6l
(19) yields the growth rate v
08t . ‘ I_Vi . . Ug . s . . ]
p 1 08 06 04 D2 1 02 04 06 08 1
(1_g q2_(1+p)q4 Wave number k
A= 1r q2 , (20 FIG. 2. Diagram of the unstable, stable, and resonant modes
S used in the weakly nonlinear analysis.
whereg?=k?+12. The values of the wave number that give .
ositive growth rates are W,
P g a7 YoWit Y1 W5 W3 — 75| Wy °W,
p
, (1_5) = v3(|Wo| >+ W3 )Wy,
g°< . (21
L I Wt W W W, | 2W.
The maximum growth ratg,, is given by dr Yoz yatis T valtal T2
. 17s — v3(|Wa[*+ W))Wy,
j 1+p dw.
2 _ 3
Om= S : (22) s - YoWs YIWT W3 — 7, Wa|*W;
The case when the interfacial energy is not considered can be — ya(|Wy |2+ W, 2) W3, (24

recovered easily by setting=0. Notice that the addition of ) . o -
the interfacial energy decreases the value of the maximurlf the interfacial energy is ignored, the coefficients of the

growth rate and the region of unstable wave vectors. amplitude equation are
16
B. Weakly nonlinear analysis y0=a,
A weakly nonlinear analysis is performed on the evolution
equation by expanding the height in terms of the unstable 16
modes of the maximum growth rate, the first harmonic 71=ﬁ(16§—5),

modes of the unstable modes, and the resonant modes.
Higher-order modes are neglected. Figure 2 gives all the 16
modes that contribute to the evolution of the heigfht Vo= — %(165_5)(85_7)’
The expansion of the height in terms of the various modes is
given in Eq.(23) (Ref. 12: 16
6 ¥a= ~ Toq5( 166 3)(166-5).

H:E [Wj equk]r)-l—V] eXF(2|kJr)+U] eXF(lk” r)]

=1 Similarly, we obtain the amplitude equations for the case
(23 when the interfacial energy is not ignored. For convenience,

HereW; represents unstable modag, represents the stable W€ selecp=0.212 such thafj,=1/2 and obtain the. follow-
harmonic modes, andJ; represents the stable resonant'9 values for the amplitude equation coefficients:
modes. We follow the standard proceddrby substituting 400

Eqg. (23) into the evolution equatiofil8) and take the inner Yo=mmn,
product to get an ordinary differential equation for each un- 5329
stable mode. An adiabatic reduction is performed where the

dynamics and quadratic interactions of the stable modes are _i 46—3
assumed negligible: n1=7304673),
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(b)
(b)

FIG. 3. Results from nonlinear simulation with interfacial en-
ergy included.p=1071/5329 ands=9/16. (a) Stable hexagonal
patternsé= 0.2 and(b) stable striped patterns=0.6.

B 146
Yo=— ﬁ(‘lg— 3)&,

73

V3= — ﬁ(4§+ 1)(4¢-3).

The results reveal that the interfacial energy does signifi-
cantly affect the amplitude equation coefficients.

In Eq. (24), W, W,, andWy; are all complex modes that
can be written as a product of the real and complex parts: ©)

Wi = Ri expi 901)' (29 FIG. 4. AFM images showing different patterns that form on the
same sample electropolished at 56 V for 3(&a.Striped pattern,

Here R; is the real amplitude ang; represents the phase (b) Random pattern, angt) hexagonal pattern.

amplitude of the unstable modes. After substituting &%)
into Eq.(24) and assuming that only the amplitude dynamics

is important at long time¥ we obtain Consequently, four types of steady-state solutions are ob-

tained: (1) striped patterns ifR;=+yo/y, and R,=Rj3
dR, ) 5 ) =0; (2) hexagonal patterns R;=R,=R3, where
g, YoRit | 71IR2R3— 72| Ra|“R1— v3(|Ra|*+[Rs| )Ry,

PARRY ’)’1|2+470(?’2+2’)’3)_

dR, ) 24 (R.J2 Ra= 2(7,+273) @
F:70R2+|71|R1R3_72|R2| Ro— v3(|Ry|*+|Rs*) Rz, 2 3

(3) mixed patterns if two or three amplitudes are not zero;
dRs and (4) a flat interface if all of the amplitudes are zero. To

— 2= _ 2p 2 2
dr YoRaH[71/RiR2 = 72l Re| "Ra= 73(|Ra[*+ |Ro)Rs. determine the stability of the patterns, we calculate the ei-
(26) genvalues of the Jacobian matrix of the amplitude equation.
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TABLE |. Comparison of the values dfthat give stable patterns and real amplituegthe interval of
existencg The values for Yuzhakoet al. were found by using the coefficient equations given in Ref. 12.

Reference 12 This worko=0) This work (o-=60 mJ/n?)
Hexagon existence (0.53, 0.93 (0.25, 0.31 (=0.22, 0.7%
Stable hexagon (0.53, 0.88 Never stable (—=0.15, 0.30
Stripe existence (0.31, 0.88 (0.31, 0.88 (0.00, 0.73
Stable stripe (0.84, 0.88 Never Stable (0.00, 0.73
C. Numerical simulation of the grains of a sample. Using Al single crystals in their
To help verify our calculations, we perform a full nonlin- experiment eliminated this uncertainty related to the grain
ear numerical simulation of the evolution equatid®). The  distribution.
heightH was expanded in terms of Fourier modes in the
andy directions®’ V. DISCUSSION
Ni/2=1  Np/2-1 Table | compares the pattern stability and the interval of
H= > > Wyn(hexdi(nx+my)]. (28) existence of three different sets of amplitude coeffi-
n=-Ny/2 m=—Ny/2 cients: (1) the coefficients of Ref. 122) our coefficients
Here n and m represent the wave number of theandy ~ With o=0mJ/nf, and (3) our coefficients with o

(18), multiplying by exp—i(nx+my)], and integrating, we R is real, and the.\_/alues qfv.vhich.give all negat.iv.e eigen-
get N; XN, ordinary differential equations for the ampli- Values. Our stlgblllty analysis using the coefficients from
tudes of each Fourier mode. The set of differential equationguzhakovet al.~ shows that hexagonal solutions can exist
was integrated using a split fourth- and fifth-order Rungafor £(0.53,0.93, which is in agreement with their results.
Kutta method until a steady state is reached. A plot of thelhis analysis also shows that stripes can exist for

in Fig. 3. However, the stable regio&e (0.84,0.88 for stripes is in-

consistent with their published valu€s (0.68,0.88, while
the result for stable hexagons is consistent with the published
values. The analysis from our coefficierftgthout the inter-
Alfa AESAR, Puratronic 99.998%, polycrystalline Al foil, facial energy shows that neither hexagons nor stripes are
0.5 mm thick, was used as the anode. A 304 stainless-stesetable within the interval of existence. When a nonzero in-
cathode was placed parallel to the anode 3 mm away. Weerfacial energy is included, the analysis gives the interval of
used a Kenwood PDS 120-6 programmable power supply texistence for the hexagoge (—0.22,0.75, while stripes ex-
electropolish the Al samples without agitating the electrolyteist in the range o< (0,0.75. Stability analysis predicts that
To avoid excessive increases in the anode temperature, veripes are always stable fge(0,0.79, while hexagons are
electropolished the samples using six pulsé§ e indura-  always stable fo€e(—0.15,0.30. It is emphasized here that
tion. The voltage was turned off aft& s until the anode stable hexagons and stripes can coexist in the range of
temperature steadied at 15 °C. £€(0,0.30, which was shown in our experiments. We there-
The 0.8-cr3 Al samples are first immersed in 5% sodium fore conclude that the interfacial energy is needed in this
hydroxide solution for 30 s at 60 °C, rinsed in de-ionizedcase to predict stable patterns.
water, washed in 35% nitric acid solution at room tempera- A nonlinear simulation of the evolution equati@t8) was
ture for 5-10 s, rinsed in de-ionized water again, and themerformed to help verify the weakly nonlinear analysis. The
electropolished for 30 $six pulse$ in the electrolyte. The simulation showed that when values mfs, and ¢ are used
electrolyte consisted of 70 vol.% ethanol, 10 vol. % such that the weakly nonlinear analysis predicts stable
2-butoxyethanol, 13.8 vol.% de-ionized water, and 6.2stripes, the numerical solution also gives stable stripes. The
vol. % perchloric acid. After the electropolishing procedure,same is also true for hexagonal patterns. The simulation was
the Al surfaces were imaged with an atomic force micro-also run using different initial conditions for values éf
scope(AFM). where both stable stripes and hexagons are predicted. Here
Our model predicts that higher values éfgive striped we find that the final stable pattern is determined by the
patterns, while lower values @fproduce hexagonal patterns, initial conditions of the simulation. Initial conditions that
which was demonstrated experimentally by Yuzhakowwere close to stripes gave striped patterns, and initial condi-
et al'>'® We find experimentally that the hexagonal andtions that were closer to hexagons gave stable hexagonal
striped patterns can coexist on the same sanfiplg. 4, patterns.
which is in agreement with our model predictions. Similarly, Plots of the numerical simulation for values qf
Konovalovet al1®found that there are different topographies = 1071/5329s=9/16, andé=0.2 and 0.6 are given in Fig. 3.
on different crystalline grains of the same polycrystalline Al For £=0.2 stable hexagons were found, while striped pat-
surface, in which stripes were observed for only 10%—-20%erns are formed whe&=0.6. We conclude that the numeri-

IV. EXPERIMENTS
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cal simulation yields the same results as the weakly nonlin- VI. CONCLUSION
ear analysis.
We theoretically and experimentally showed that hexa- ff

gons and stripes could be observed on the same sample. dified model is able to predict stable striped and hexago-

existing experimental results have revealed, we found thgl,| hatterns that are seen in the experiments. A linear insta-
striped patterns appear at lower voltages, while hexagongjjity analysis was performed and shows that interfacial en-
patterns can only be observed at higher voltages. Static S@rgy changes the linear stability criteria by making the region
lutions of hexagons and stripes and stability analysis showf unstable wave vectors smaller and reducing the maximum
that hexagons are always stable in the rangéedf-0.15,0  growth rate. The weakly nonlinear analysis showed that the
and then comes the existence of stripes wier0,0.79.  interfacial energy significantly alters the parameter regions
When¢e(0,0.30, both hexagons and stripes are stable untiwhere stable striped and hexagonal patterns can exist. In par-
¢ exceeds 0.30, which leads to unstable hexagons and stahileular, we find that the interfacial energy needs to be in-
stripes. Csahok and MisbZhave shown that the separation cluded in the model in order to predict stable patterns. A
of hexagonal and striped fronts can only occur when thewumerical simulation of the evolution equation also predicts
control parameter is increased to a certain value. We reminthe stability and existence of stable striped and hexagonal
the reader that the parametgiis inversely proportional to patterns. Our experimental results are also in agreement with
the control parameter, the voltage. our model predictions.

It has been fourfd that hexagons appear through a sub- We note here thaj[ the interfacial prope_rties in our model
critical bifurcation, while stripes are created via a supercriti-2r€ assumed isotropic. However, all experiments to date have
cal bifurcation when the amplitude coefficients are real and!S€d polycrystalline or crystalline aluminum. _ _
reflection symmetry exists in the amplitude equations. In our ' N€ crystalline structure would give rise to anisotropic
weakly nonlinear analysis, the amplitude equatit2@ have ~ProPerties and would significantly change the evolution
reflection symmetry. This may be the reason why we alwaygqu_atlon ar_ld resgltmg pa'Fterns. Our future work .W'” fOCPS
see hexagonal patterns first and stripes later when the contrf’ introducing anisotropy into the model through interfacial
parameter is increased. However, the coefficiepts v,, energy and surface diffusion.
and y; are simultaneously dependent on the control param-
eter, the voltage. We should emphasize that because the co-
efficients are simultaneously dependent on the control pa- This work was supported by a grant from the National
rameter, our plot of amplitude against control parameter iScience FoundatiofNo. CTS-008442p We thank Professor
different from the traditional bifurcation diagra¢a.g., pitch-  Hsueh-Chia Chang and Dr. Vadim V. Yuzhakov for helpful
fork bifurcation.?? discussions.

We have modified the existing theory by including the
ect of interfacial energy. The analysis shows that the

ACKNOWLEDGMENTS

* Author to whom correspondence should be addressed. ElectronféD. Crouse, Y. H. Lo, and A. E. Miller, Appl. Phys. Leff6, 49

address: djohnson@coe.eng.ua.edu (2000.

1Research Group for Functionalizing of Aluminum and its Surface!®V. V. Yuzhakov, H. C. Chang, and A. E. Miller, Phys. Rev5B,
Films, Light Metal Educatiofunpublishegl 12 608(1997).

2D. Al-Mawlawi, N. Coombs, and M. Moskovits, J. Appl. Phys. *3A. J. Bard and L. R. FaulkneElectrochemical MethodéWiley,
70, 4421(1991). New York, 1980.

3D. Crouse, Y. H. Lo, and A. E. Miller, Appl. Phys. Leff6, 49 14y, G. Levich, Physicochemical Hydrodynamig®rentice-Hall,
(2000. Englewood Cliffs, NJ, 1962

4H. Masuda, H. Yamada, and M. Satoh, Appl. Phys. L&tR770 5p. A Jones,Principles and Prevention of CorrosiofPrentice-
(1997. Hall, Upper Saddle River, NJ, 1986

5F. Li, L. Zhang, and R. M. Metzger, Chem. Mateé0, 2470  16J. N. Israelachvilijntermolecular and Surface Forcéacademic,
(1998. London, 1985.

5G. E. Thompson and G. C. Wood, Anodic Films on Aluminum 17C. canuto, M. Y. Hussaini, A. Quarteroni, and T. Zagpectral
edited by J. C. ScullyAcademic, New York, 1983 Methods in Fluid Dynamic$Springer-Verlag, Berlin, 1988

"R. E. Ricker, A. E. Miller, and D. F. Yue, J. Electron. Mat8s,  8V. V. Yuzhakov, P. V. Takhistov, A. E. Miller, and H. C. Chang,
1585(1996. Chaos9, 62(1999.

8s. Bandyopadhyay, A. E. Miller, H. C. Chang, G. Banerjee, V. V. 1°P. Manneville Dissipative Structures and Weak Turbuleriéea-
Yuzhakov, D. F. Yue, R. E. Ricker, S. Jones, J. A. Eastman, E. demic, Boston, 1990
Baugher, and M. Chandrasekhar, Nanotechnoldgy 360  2°Z. Csahok and C. Misbah, Europhys. Let?, 331(1999.

(1996. 21G. H. Gunaratne, Q. Ouyang, and H. L. Swinney, Phys. Rev. E
°D. Landolt, Electrochem. Acta, 32 (1987). 50, 2802(1994.
10y, v. Konovalov, G. Zangari, and R. M. Metzger, Chem. Ma&r.  2°M. Golubitsky and D. G. Schaeffegingularities and Groups in
1949(1999. Bifurcation Theory(Springer-Verlag, New York, 1985Vol. .

075411-7



