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Analytical results for coupled collective modes in a periodic superlattice
of quantum wires embedded in a local bulk medium
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We have analyzed the coupled-collective mode spectrum of a periodic superi&ttjoaf one-dimensional
(1D) quantum wires in interaction with the background local plasma. Based on reasonable approximations we
have given analytical results for the modes by showing explicitly how, in the extreme strong coupling limit, the
1D SL tends to change character to become a single 2D electron layer, and how, in the extreme weak coupling
limit, the SL wire system reduces to an isolated single wire. We have also analyzed the mode coupling of the
bulk (3D) plasmon and the lower-dimension@D/1D) plasmons in the appropriate limits.
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[. INTRODUCTION explicitly, unless otherwise stated’he determination of the
inverse dielectric functioK(y4,2;;Y»,2,) follows from the
There has been a great deal of interest in the collectivénversion relation

electrostatic modes of the one-dimensional quantum wire
(1DQW) systems. The mode spectra of such systems are
described by either numerical or experimental techniques. In
this manner, plasmons and magnetoplasmons in multiwire
systems have been studied theoreticafly and =0(y17Y2) (21~ 22), @)
experimentally ™ Our considerations here are focused onwheree(y;,z,:ys,2s) is the corresponding direct dielectric
obtaining analytical results for the coupled-mode spectrununction of the joint system. In terms of the polarizability
of a periodic superlatticéSL) of 1DQWs in interaction with  of the composite system, the inversion relation may be re-
the plasmalike local host medium in which the SL is lodged.written in the form of the RPA integral equation as
To carry out our calculation, we perform a closed form de-

J dysf dzze(yy1,21:Y3.23)K(Y3.23,Y2.22)

termination of the inverse dielectric functidf(r,,t;;r,,t,) K(Y1,21:Y2,22) = 8(Y1=Y2) 8(21— 25)

of the combined systertthe SL and host mediunin posi-

tion representation within the framework of the random _f dy3f dzsa(yy,21:Y3,23)
phase approximation(RPA). The frequency poles of

K(rq,t1;r,,t5) define the coupled-collective modes resulting XK 72V 7 2
from the coupling of the SL plasmon with the bulk plasmon (Va.25:¥2.22)- @

of the host medium. Also, the residues at the pole positions The structure of the free-electron polarizability of a single
provide the spectral weightoscillator strengthsof the  quantum wire may be expressedas

coupled-collective modes.
a1p(Y1:213Y3.23) = a1p8(Y3) 8(23) Ko(| 0l VY17 +217),
1. JOINT POLARIZABILITY AND INVERSE DIELECTRIC €)

FUNCTION where aip=ap(Qy,w) describes the wave vector and

In our analysis, we assume that the wires constituting thérequency-dependent 1D polarizability function of a single
SL are identical, and are equally spadsgpacinga) along  Wire andKy(X) represents the zeroth order modified Bessel
the z direction atz=na, (n=—c, ...,0,...), and that function which stems from the Fourier transform of the 1D
the electrons in each wire are free to move alongxts- ~ Coulomb potential. In writing Eq(3), we assumed that the
rection, but are confined in deep potential wells with only thewire is very thin and has its lowest subband functigfy)
lowest populated subband states in yhand z directions so ~ and ¢(z) wholly confined in narrow potential wells, so we
that we neglect both overlap and intersubband transitions. took |x(y)|*—&(y) and |£(2)|*— 8(2). In the local limit,

Considering translational invariance along thexis par-  a1p IS given by
allel to the quantum wires and time translational invariance,
we Fourier transform into the single one-dimensio(idD) o[ Nip qi
wave vectorg, and frequencyw representation, writing a;p=—2€ Mo/ | w2/
K(ry,rpti—t)—K(y1,21,Y2,2,,05,0) hw>h20,q, IMyp h2022M, @

—KOL213Y2.2). whereqgg= mn;p/2 is the 1D Fermi wave number, amdp
(Henceforth we suppress thg, » dependence in our dis- andm; represent 1D electron density and electron effective
cussion, exhibiting only the transverse positional dependena@ass, respectively. Since the electrons and the wave func-
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tions in the wires are wholly confined in their own wirg®
tunneling, the 1D SL polarizabilityag, (y1,21;Y3,23) van-
ishes everywhere except at the wire sitesjna. Therefore,
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which is a matrix equation of infinite order for
K(0,na;y,,z,). Recalling the periodicity of the Slperiod
a),’® we solve Eq(9) by means of a Fourier series:

it may be expressed by the sum of the polarizabilities

a1p(Y1,21;Y3,23) of the individual wires as

©

:aan;w o(y3)8(z3—
XKo(lax[Vy1°+(zi—na)?). (5)

Within the framework of the RPA, the joint polarizability
a(Y1,21;Y3,23) of the compound system is determined by
summing the polarizability of the 1D SL with the polarizabil-
ity asp(Y1.21;Y3,23) of the local host medium,

as(Y1,21:Y3:23) na)

a3p(Y1,21:Y3,23) = a3pd(Y1—Y3) 8(21— 23), (6)
from which
(Y1,21:Y3,23) = aan;x o(y3)d(zz—na)
X Ko(layl vy, *+(z,—na)?)
+ a3pd(y1—Y3) 8(21— 23). (7)

Employing the joint polarizability in Eq(2), the RPA
integral equation foK(y;,z;;Y»,2,) takes the form

2y)

1
K(Y1,21;Y2,20) = . o(y1—Y2) 0(z1—

S Kollad I @ona?)
(8)

where esp=1+ a3p is the dielectric function of the local
host medium. To determin€(0,na;y,,z,) in Eq. (8), we set
y;=0 andz;=n’a, (n'=-,...,0,...¢), and regard
y, andz, as fixed parameters writing

XK(0,na;y,,2z,),

1
K(0n'a;y,,z;)= %5()’2)5(22_”,3-)

alD

E Ko(|axl[n"—nla)

a (a I
G(na)zﬂf dk e 'knaG k),
—Tla

G(k)= 2, G(na)e'kn?,

n=—o

(10

In this view, we denote the Fourier series representation of
K(0.na;y,,z,) by K(0k;y,,z,) and that of Kq(|gyl|n’

—nla) by Ko(|ay|,k). Then application of,_ __¢ glkn'a 1o
Eq. (9) yields
1
K(0kiyz,2)= —8(y2) E 8(z,—n'a)en®
n'=—ow
alD a fﬂ/a ~ Lo ,
Il d el(k p)n’a
e3p \ 27/ J - 7a p( nf:E_m )
XR0(|qX|1p)R(01p1y2122) (11)

Further, using the Poisson sum formula, we write the sums
overn’ in Eq. (11) in terms of the delta function, i.e.,

o0

>

n'=-—w

e‘("*p)”'a— E S(k—p—2mn/a)

n=-—o

_2775k
=3 (k—=p),

where, in the last step, we have used the factktatdp are
restricted to the first Brillouin zone,~w/a,m/a), son
=0. Carrying out the integration, we have

[

> 8(z,—n’a)e'kn’a

n'=—ow

K(0K;y2,25) = 8(Ys) (12

[e3p+ a1pKo(|ax] k)]

Finally, inverting the Fourier seriel(0k;y,,z,) back into
Fourier series coefficier(0,na;y,,z,) and substituting it
into Eq. (8), we obtain the inverse dielectric function of a

XK(0,na;y,,z,), 9 periodic SL of 1DQWs embedded in a local bulk medium as
|
1
K(Yllzl;b:zz):55()/1—)/2)5(21 Zz)—— 2 Ko(lax Vy1°+ (z.—na)?) 8(y>)
la eik(n’—n)a
X E 8(z,—n’a) )f - - (13
n'=-—co —wla \egptaipZny__.Ko(|mageal)e"m?
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lll. COUPLED-COLLECTIVE MODES tion (|g,/a) <. Referring to Ref. 14p. 978, no. 8.526: set

The coupled-mode dispersion relation for the plasmons of: |qx_|a, xt=Kka), we rewrite the sum of the series in Eq.
15b) in the form

the periodic SL of 1DQW:s in interaction with the bulk plas-
mons of the host medium is determined by the frequency

poles of the inverse dielectric function, namely, S(qy k)= 1 C+|n|qX|a + 7
T2 am | 2\(a,@)7+ (ka)?
l+(j£) Zm Ko(|maal)e’me=0. (14) LT § 1 1
3D/ m= 2 7=1 | J(g@)?+(2mn—ka)? 27N

For the local limit the polarizability of a quantum wif&qg. - 1 1
(@] is ayp=—2€*(n;p/Myp)(92/w?). Also, in the local +— ( : - )
limit e3p=¢0— wj/w?, Wherez is the background dielec- 2171\ J(ax@)?+(2mn+ka)? 27N
tric constant, ana,= (47e’nzp /mgp) 2 is the 3D classical (16)
plasma frequency of the host plasma. i

Because of the continuous variatdexplicit in Eq.(14), ~ Since (2m= ka)>(|g,a) for any value ofka [recall that
we note that the dispersion relation introduces an uncoun&@ IS restricted to the interval{ m,m)], we expand the
able set of collective modes into the spectrum. We also notéquare root functions under tilesums in power series up to
that the series in the dispersion relation is dominated by thihe second order ingy|a), and further utilize the identity
m=0 term due to the singular behavior Kf, function at

M s

n

zero argument. This occurs for the wire at the origifihe T 2 ( r 1 =— 1 C+y 1i_a”
remaining terms in the series due to the wires labelednby 2 =1 \2mnnzka 2wn 4 27 |’
#0 give a correction to the mode spectrirdowever, the (17)

singular nature of the Bessel functions at zero argument ing.o - \which we obtain
troduces a lack of definition in the summation of the series.

To have a physically well-defined problem, we invoke a 1 [lgJa\ = 5 S
small finite thicknes$ (b<a) for the wires in thez direc- S(ax k)= 5'“( 2. | T Zl@@)+ (ka)7]
tion, and replace theKq(maga|) term for m=0 by
Ko(]gy/b) in the series above, rewriting the dispersion rela- 1 ka| 1 ka )
tion as —de( o —Zt,/f 1+Z +0([g,a]?),
<
1+(@)Ko<|qx|b>+z @)smx,k):o, (153 (= 9
€3p €3D whereC~0.577 2 is Euler’s constant. The functigr(x) is
] ] called the psi function and is defined as the logarithmic de-

whereS(ay,K) is defined by rivative of the gamma functionT'(x), i.e., #(X)

=(d/dx) InT'(x).}* Higher order corrections to the sum are

” possible in terms of the Riemann’s zeta functig(m,ka),
S(a.k)= 2 Ko(mlaJajcosmka). (15D wheren=35, .. ..

Considering first the case where the 1D SL is embedded

An equation of this type has also been discussed by Dad @ constant dielectric backgroundsp=sc), Eq. (15
Sarma and Lat; however they examined it using numerical 10intly with Eq. (18) yield the SL plasmon mode in the local

i 2
techniques. In contrast to their analysis, our considerationdMit accurate to the order ofgta)“ as

here are concerned about obtaining analytical results for the 2 250 .K)
mode spectrum. Since there seems to be no closed form ex- wzz_lD[ L} (19)
pression for the sum in Eq15b), we examine the dispersion €0 Ko(|axlb)

relation analytically in two limiting cases: wherew;p represents the 1D intrasubband plasma frequency,

A. Strong coupling case(|q,|a<w) wip=(2e%n;5 /M) aZKo(|aylb), (20

This is the case in which the wires are closely spaced. Fawhich, for small wave vectors, is of logarithmic character,
very small values of|¢},/a), many terms in the series of Eq. w1p%|qy/[ —In(lgb/2)]¥2,  since Kq(x)— —[C+In(x/2)]
(15b) are necessary to give an accurate approximation. Theor x<1. Note that the first term in Eq19) represents the
number of terms required to obtain an accurate value for th&D plasmon corresponding to the wire at the origin and the
series is of the order oh=E(1//q,|a), whereE signifies the second term accounts for the SL contributitfrom other
integral part. For larger values of, the corresponding terms wires) to the spectrum. Fok— + (mr/a), we ignore (q,|a)?
become less significant sind€, function decreases expo- compared toKa)? under the square root function 8fa,,k)
nentially for increasing argument. Our examination of the[see Eq.(18)] since (q,|a) <, thus rewriting Eq.(19) to
series in the strong coupling case is restricted by the condihe second order in|@,|a) in the form
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wzmw_&[ [c+ln<|qx|a/w>]] L2 %, 9> 2s<qx,k>]’ 4
21 Ko(|ax/b) g9  &o Ko(|ax/b)
wiD( K0(2|qx|a/77)] which, fork==*(x/a), becomes
=11l ——, (21)
2o Ko(|a/b) Z_w_g+ oo [ Ko(2|a,a/m) 25
where, in the last step, we have used the representation of the @ g0 &g Ko(lay/b) |’

Bessel function for small argument sinde(a)/7<1.

On the other hand, fok=0, Eq.(19) reduces to and describes the hybridization of the 1D SL plasmon with

the 3D bulk plasmon. On the other hand, by the same dis-

2 cussion resulting in Eq23), the plasmon mode of Eq24)
C+lIn aldm)+ wl a
wéw[ (aalam)+ m/(|aa) ] in the extreme strong coupling limit fde=0 reduces to
g0 Ko(|axlb)
2 2
+0([gxal?). (22 W2=2p 220 (26)
€0 €0

Further, in the limita— 0 [or |g,|a— 0] (the extreme strong _ _

coupling limit), we neglecf C+ In(jgJa/4r) ], which is rela- and representss the coupling of the 2D plasmon with the 3D
tively small, compared tdw/(|g,a)] in the second term bPulk plasmori.

which is much larger in comparison with the first term

(unity), and rewrite Eq(22) as B. Weak coupling case(|q,|a>m)

) 2 In this case, the wires are sufficiently far apart and the
w2~ 1(2me (N1p/a)[gy| ) (23) Coulomb interaction between the wires becomes small. The
) Mip gg evaluation of the series forld,|a)> 7 by Eqg. (16) is not
suitable, as|@,/a) may become comparable in magnitude to
Equations(21) and (23) are of great importance for they (27n+ka). Therefore, for large values ofr{q,|a), we re-

tell a great deal of information about the nature of the Slpjace the Bessel functions by their asymptotic ftm
system in the strong coupling ca$kn fact, it is S(q, ,k), the

sum of series in Eq(15b), which determines the nature of T 1
the SL plasmon in appropriate limit©On the one hand, close Ko(X)~ /5,8 7| 1+0[ ||, x>1, (27)
to the boundaries of the first Brillouin zonk-G + 7r/a), we
see from Eq/(21) that the SL plasmon is clearly 1D in na- in the series in Eq(15b), from which
ture. On the other hand, our discussion resulting in (28) i a
e X

explicitly shows how, in the extreme strong coupling limit k)~ [ 2

for k=0, the 1D SL tends to change character to become S(axk) 2|gylam= Jm
a single 2D electron layer; consequently, at the center of
the first Brillouin zone, the SL plasmon is strictly 2D in

nature. This is understandable on an intuitive basis as well
because, in the limia—0, the wires gather gradually to = ) ) . )
form a 2D electron layer with plasma frequeneysg It is evident that the series rapidly approaches its asymptotic
= (27€?n,p|q,l/Myp) if (Nyp/a) in Eq. (23) is interpreted form given by the first term as the higher terms in the series
as a 2D sheet-electron density, andmyp, is replaced by decrease exponentially and become less significant. There-

myp . Thus, our analytically obtained results explicitly con- 0r€: t0 @ very good approximation, we have

firm the conclusions which were drawn by means of numeri-

cal techniques in the literatufeee, for example, Refs. 1 and S(qy, k)= \/ T e~ |%acogka), (|oya)> .

6). In passing, we remark that we could have obtained the 2|ay/a

same result in Eq23) more easily had we written the sum (29
of the series in Eq(15b) in the limit k=0, a—0 and then

replaced the sum by the corresponding integral by setting thﬁo
lower limit to zero with negligible error,

. , ol 27 e 1%acogka)
(9.0= > Ko(mla,la)— | Ko(x|a,Ja)dx= =———, €0 laxla  Ko(|a./b)
m=1 0 2('Qx|a)

X|1+0 cogmka). (28

mlg,{a

For a constant 3D bulk background, the dispersion rela-
n in the local limit yields the SL plasmon mode as

Note that the first term is the 1D plasmon of the wire at the
which, when employed in Eq153, would immediately re-  origin, while the second term, whose sole purpose is to ex-
sult in the mode given by Ed23). hibit the k dependence, is a very small contribution from

Next, considering the case in which the 1D SL is embed-other wires to the mode spectrum. Thus, in the weak cou-
ded in a background host plasma, the dispersion relfign  pling case, the mode spectrum is determined dominantly by a
(15)] gives the general form of the SL plasmon mode in thesingle wire plasmon, an experimentally well-known f&tt!
local limit correct to the order of|@,/a)? as Also, note that the modes at the zone boundaries (
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+x/a) are smaller than the mode at the zone center (t0r£3D=80—w§/w2 in the structure of the inverse dielectric
=0). For k== (m/2a), the contribution from other wires function[Eqg.(13)], the bulk plasmonl()zzwglso) is always
vanishes, hence present in the spectrum.

w
w?=—2, (3D
€0 IV. SUMMARY

which is the plasmon of the wire at the origin. Considering |, this paper, we have presented analytical results for the
further the extreme weak coupling case in whih- [or  ¢oupled-collective modes of a periodic SL of 1DQWs in in-
(lax|a)—ce] for all values ofk, the system reduces to an teraction with the plasmalike bulk host medium. We have
isolated single wire whose plasma frequency is given by Eqeonsidered first the case in which the SL is embedded in a
(31). On the other hand, if a background bulk plasma isconstant background, and discussed the nature of the SL
considered, in the local limit, the dispersion relation takes thﬁblasmon in the strong and weak coupling limits. Our results,
form based on an analytical calculation, show clearly how in the
2 2 g a strong coupllr_lg case the 1D S_L becomes a 2D electron sys-
L wp o5 [ 14+ 27 € cos(ka)} (32  temand how in the weak coupling case the 1D SL reduces to
layla  Ko(laxb) ]’ an isolated single wire, thus confirming the conclusions
which, in the limita—o, reduces to which were d.rawn (_earlier py means of numerical and e>§peri—
mental techniques in the literature. We then have considered

wg w2y the case in which the SL is embedded in a background bulk
w2=8— + o (33 plasma and discussed the nature of the mode coupling of the
0 0

bulk (3D) plasmon and the lower-dimension@D/1D) plas-
and describes the coupling of an isolated single wire plasmomons in the appropriate limits depending on the type of the
to the bulk host plasmotf. Moreover, by a denominator fac- interaction between the wires constituting the SL.
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