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Analytical results for coupled collective modes in a periodic superlattice
of quantum wires embedded in a local bulk medium

Yüksel Ayaz*
Fizik Bölümü, Zonguldak Karaelmas U¨ niversitesi, Zonguldak 67100, Turkey

~Received 19 September 2002; published 14 February 2003!

We have analyzed the coupled-collective mode spectrum of a periodic superlattice~SL! of one-dimensional
~1D! quantum wires in interaction with the background local plasma. Based on reasonable approximations we
have given analytical results for the modes by showing explicitly how, in the extreme strong coupling limit, the
1D SL tends to change character to become a single 2D electron layer, and how, in the extreme weak coupling
limit, the SL wire system reduces to an isolated single wire. We have also analyzed the mode coupling of the
bulk ~3D! plasmon and the lower-dimensional~2D/1D! plasmons in the appropriate limits.
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I. INTRODUCTION

There has been a great deal of interest in the collec
electrostatic modes of the one-dimensional quantum w
~1DQW! systems. The mode spectra of such systems
described by either numerical or experimental techniques
this manner, plasmons and magnetoplasmons in multiw
systems have been studied theoretically1–8 and
experimentally.9–11 Our considerations here are focused
obtaining analytical results for the coupled-mode spectr
of a periodic superlattice~SL! of 1DQWs in interaction with
the plasmalike local host medium in which the SL is lodge
To carry out our calculation, we perform a closed form d
termination of the inverse dielectric functionK(r1 ,t1 ;r2 ,t2)
of the combined system~the SL and host medium! in posi-
tion representation within the framework of the rando
phase approximation~RPA!. The frequency poles o
K(r1 ,t1 ;r2 ,t2) define the coupled-collective modes resulti
from the coupling of the SL plasmon with the bulk plasm
of the host medium. Also, the residues at the pole positi
provide the spectral weights~oscillator strengths! of the
coupled-collective modes.

II. JOINT POLARIZABILITY AND INVERSE DIELECTRIC
FUNCTION

In our analysis, we assume that the wires constituting
SL are identical, and are equally spaced~spacinga) along
the z direction atz5na, (n52`, . . . ,0, . . . ,̀ ), and that
the electrons in each wire are free to move along thex di-
rection, but are confined in deep potential wells with only t
lowest populated subband states in they andz directions so
that we neglect both overlap and intersubband transition

Considering translational invariance along thex axis par-
allel to the quantum wires and time translational invarian
we Fourier transform into the single one-dimensional~1D!
wave vectorqx and frequencyv representation, writing

K~r1 ,r2 ;t12t2!→K~y1 ,z1 ,y2 ,z2 ;qx ,v!

→K~y1 ,z1 ;y2 ,z2!.

~Henceforth we suppress theqx , v dependence in our dis
cussion, exhibiting only the transverse positional depende
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explicitly, unless otherwise stated.! The determination of the
inverse dielectric functionK(y1 ,z1 ;y2 ,z2) follows from the
inversion relation

E dy3E dz3«~y1 ,z1 ;y3 ,z3!K~y3 ,z3 ;y2 ,z2!

5d~y12y2!d~z12z2!, ~1!

where«(y1 ,z1 ;y3 ,z3) is the corresponding direct dielectri
function of the joint system. In terms of the polarizabilitya
of the composite system, the inversion relation may be
written in the form of the RPA integral equation as

K~y1 ,z1 ;y2 ,z2!5d~y12y2!d~z12z2!

2E dy3E dz3a~y1 ,z1 ;y3 ,z3!

3K~y3 ,z3 ;y2 ,z2!. ~2!

The structure of the free-electron polarizability of a sing
quantum wire may be expressed as12

a1D~y1 ,z1 ;y3 ,z3!5a1Dd~y3!d~z3!K0~ uqxuAy1
21z1

2!,
~3!

where a1D[a1D(qx ,v) describes the wave vector an
frequency-dependent 1D polarizability function of a sing
wire andK0(x) represents the zeroth order modified Bes
function which stems from the Fourier transform of the 1
Coulomb potential. In writing Eq.~3!, we assumed that the
wire is very thin and has its lowest subband functionsx(y)
and j(z) wholly confined in narrow potential wells, so w
took ux(y)u2→d(y) and uj(z)u2→d(z). In the local limit,
a1D is given by

a1D522e2S n1D

m1D
D S qx

2

v2D ,

\v.\2qxqF /m1D ,\2qx
2/2m1D , ~4!

whereqF5pn1D/2 is the 1D Fermi wave number, andn1D
andm1D represent 1D electron density and electron effect
mass, respectively. Since the electrons and the wave f
©2003 The American Physical Society10-1
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tions in the wires are wholly confined in their own wires~no
tunneling!, the 1D SL polarizabilityaSL(y1 ,z1 ;y3 ,z3) van-
ishes everywhere except at the wire sites,z5na. Therefore,
it may be expressed by the sum of the polarizabilit
a1D(y1 ,z1 ;y3 ,z3) of the individual wires as

aSL~y1 ,z1 ;y3 ,z3!5a1D (
n52`

`

d~y3!d~z32na!

3K0„uqxuAy1
21~z12na!2

…. ~5!

Within the framework of the RPA, the joint polarizabilit
a(y1 ,z1 ;y3 ,z3) of the compound system is determined
summing the polarizability of the 1D SL with the polarizab
ity a3D(y1 ,z1 ;y3 ,z3) of the local host medium,

a3D~y1 ,z1 ;y3 ,z3!5a3Dd~y12y3!d~z12z3!, ~6!

from which

a~y1 ,z1 ;y3 ,z3!5a1D (
n52`

`

d~y3!d~z32na!

3K0~ uqxuAy1
21~z12na!2!

1a3Dd~y12y3!d~z12z3!. ~7!

Employing the joint polarizability in Eq.~2!, the RPA
integral equation forK(y1 ,z1 ;y2 ,z2) takes the form

K~y1 ,z1 ;y2 ,z2!5
1

«3D
d~y12y2!d~z12z2!

2
a1D

«3D
(

n52`

`

K0~ uqxuAy1
21~z12na! 2!

3K~0,na;y2 ,z2!, ~8!

where «3D511a3D is the dielectric function of the loca
host medium. To determineK(0,na;y2 ,z2) in Eq. ~8!, we set
y150 and z15n8a, (n852`, . . . ,0, . . . ,̀ ), and regard
y2 andz2 as fixed parameters, writing

K~0,n8a;y2 ,z2!5
1

«3D
d~y2!d~z22n8a!

2
a1D

«3D
(

n52`

`

K0~ uqxuun82nua!

3K~0,na;y2 ,z2!, ~9!
07541
s

which is a matrix equation of infinite order fo
K(0,na;y2 ,z2). Recalling the periodicity of the SL~period
a),13 we solve Eq.~9! by means of a Fourier series:

G~na!5
a

2pE2p/a

p/a

dk e2 iknaG̃~k!,

G̃~k!5 (
n52`

`

G~na!eikna. ~10!

In this view, we denote the Fourier series representation
K(0,na;y2 ,z2) by K̃(0,k;y2 ,z2) and that of K0(uqxuun8

2nua) by K̃0(uqxu,k). Then application of(n852`
` eikn8a to

Eq. ~9! yields

K̃~0,k;y2 ,z2!5
1

«3D
d~y2! (

n852`

`

d~z22n8a!eikn8a

2
a1D

«3D
S a

2p D E
2p/a

p/a

dpS (
n852`

`

ei (k2p)n8aD
3K̃0~ uqxu,p!K̃~0,p;y2 ,z2!. ~11!

Further, using the Poisson sum formula, we write the su
over n8 in Eq. ~11! in terms of the delta function, i.e.,

(
n852`

`

ei (k2p)n8a5
2p

a (
n52`

`

d~k2p22pn/a!

[
2p

a
d~k2p!,

where, in the last step, we have used the fact thatk andp are
restricted to the first Brillouin zone, (2p/a,p/a), so n
50. Carrying out the integration, we have

K̃~0,k;y2 ,z2!5d~y2!
(n852`

` d~z22n8a!eikn8a

@«3D1a1DK̃0~ uqxu,k!#
. ~12!

Finally, inverting the Fourier seriesK̃(0,k;y2 ,z2) back into
Fourier series coefficientK(0,na;y2 ,z2) and substituting it
into Eq. ~8!, we obtain the inverse dielectric function of
periodic SL of 1DQWs embedded in a local bulk medium
K~y1 ,z1 ;y2 ,z2!5
1

«3D
d~y12y2!d~z12z2!2

a1D

«3D
(

n52`

`

K0~ uqxuAy1
21~z12na!2!d~y2!

3 (
n852`

`

d~z22n8a!S a

2p D E
2p/a

p/a

dkS eik(n82n)a

«3D1a1D(m52`
` K0~ umqxau!eikmaD . ~13!
0-2
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III. COUPLED-COLLECTIVE MODES

The coupled-mode dispersion relation for the plasmon
the periodic SL of 1DQWs in interaction with the bulk pla
mons of the host medium is determined by the freque
poles of the inverse dielectric function, namely,

11S a1D

«3D
D (

m52`

`

K0~ umqxau!eikma50. ~14!

For the local limit the polarizability of a quantum wire@Eq.
~4!# is a1D522e2(n1D /m1D)(qx

2/v2). Also, in the local
limit «3D5«02vp

2/v2 , where«0 is the background dielec
tric constant, andvp5(4pe2n3D /m3D)1/2 is the 3D classical
plasma frequency of the host plasma.

Because of the continuous variablek explicit in Eq. ~14!,
we note that the dispersion relation introduces an unco
able set of collective modes into the spectrum. We also n
that the series in the dispersion relation is dominated by
m50 term due to the singular behavior ofK0 function at
zero argument. This occurs for the wire at the origin.~The
remaining terms in the series due to the wires labeled bm
Þ0 give a correction to the mode spectrum.! However, the
singular nature of the Bessel functions at zero argumen
troduces a lack of definition in the summation of the seri
To have a physically well-defined problem, we invoke
small finite thicknessb (b!a) for the wires in thez direc-
tion, and replace theK0(umqxau) term for m50 by
K0(uqxub) in the series above, rewriting the dispersion re
tion as

11S a1D

«3D
DK0~ uqxub!12S a1D

«3D
DS~qx ,k!50, ~15a!

whereS(qx ,k) is defined by

S~qx ,k![ (
m51

`

K0~muqxua!cos~mka!. ~15b!

An equation of this type has also been discussed by
Sarma and Lai;1 however they examined it using numeric
techniques. In contrast to their analysis, our considerat
here are concerned about obtaining analytical results for
mode spectrum. Since there seems to be no closed form
pression for the sum in Eq.~15b!, we examine the dispersio
relation analytically in two limiting cases:

A. Strong coupling case„zqxza™p…

This is the case in which the wires are closely spaced.
very small values of (uqxua), many terms in the series of Eq
~15b! are necessary to give an accurate approximation.
number of terms required to obtain an accurate value for
series is of the order ofm*E(1/uqxua), whereE signifies the
integral part. For larger values ofm, the corresponding term
become less significant sinceK0 function decreases expo
nentially for increasing argument. Our examination of t
series in the strong coupling case is restricted by the co
07541
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tion (uqxua)!p. Referring to Ref. 14~p. 978, no. 8.526: se
x5uqxua, xt5ka), we rewrite the sum of the series in E
~15b! in the form

S~qx ,k!5
1

2 S C1 ln
uqxua
4p D1

p

2A~qxa!21~ka!2

1
p

2 (
n51

` S 1

A~qxa!21~2pn2ka!2
2

1

2pnD
1

p

2 (
n51

` S 1

A~qxa!21~2pn1ka!2
2

1

2pnD .

~16!

Since (2pn6ka)@(uqxua) for any value ofka @recall that
ka is restricted to the interval (2p,p)], we expand the
square root functions under then sums in power series up t
the second order in (uqxua), and further utilize the identity

p

2 (
n51

` S 1

2pn6ka
2

1

2pnD52
1

4 FC1cS 16
ka

2p D G ,
~17!

from which we obtain

S~qx ,k!>F1

2
lnS uqxua

4p D1
p

2
@~qxa!21~ka!2#21/2

2
1

4
cS 12

ka

2p D2
1

4
cS 11

ka

2p D G1O~@qxa#2!,

~ uqxua!!p, ~18!

whereC'0.577 2 is Euler’s constant. The functionc(x) is
called the psi function and is defined as the logarithmic
rivative of the gamma function G(x), i.e., c(x)
5(d/dx) ln G(x).14 Higher order corrections to the sum a
possible in terms of the Riemann’s zeta functionz(n,ka),
wheren53,5, . . . .

Considering first the case where the 1D SL is embed
in a constant dielectric background («3D5«0), Eq. ~15!
jointly with Eq. ~18! yield the SL plasmon mode in the loca
limit accurate to the order of (qxa)2 as

v25
v1D

2

«0
H 11

2S~qx ,k!

K0~ uqxub!J , ~19!

wherev1D represents the 1D intrasubband plasma frequen

v1D
2 5~2e2n1D /m1D!qx

2K0~ uqxub!, ~20!

which, for small wave vectors, is of logarithmic charact
v1D}uqxu@2 ln(uqxub/2)#1/2, since K0(x)→2@C1 ln(x/2)#
for x!1. Note that the first term in Eq.~19! represents the
1D plasmon corresponding to the wire at the origin and
second term accounts for the SL contribution~from other
wires! to the spectrum. Fork→6(p/a), we ignore (uqxua)2

compared to (ka)2 under the square root function ofS(qx ,k)
@see Eq.~18!# since (uqxua)!p, thus rewriting Eq.~19! to
the second order in (uqxua) in the form
0-3
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v2'
v1D

2

«0
H 11

@C1 ln~ uqxua/p!#

K0~ uqxub! J
>

v1D
2

«0
H 12

K0~2uqxua/p!

K0~ uqxub! J , ~21!

where, in the last step, we have used the representation o
Bessel function for small argument since (uqxua)/p!1.

On the other hand, fork50, Eq. ~19! reduces to

v25
v1D

2

«0
H 11FC1 ln~ uqxua/4p!1p/~ uqxua!

K0~ uqxub! G J
1O~@qxa#2!. ~22!

Further, in the limita→0 @or uqxua→0] ~the extreme strong
coupling limit!, we neglect@C1 ln(uqxua/4p)#, which is rela-
tively small, compared to@p/(uqxua)# in the second term
which is much larger in comparison with the first ter
~unity!, and rewrite Eq.~22! as

v2'
1

«0
S 2pe2~n1D /a!uqxu

m1D
D→ v2D

2

«0
. ~23!

Equations~21! and ~23! are of great importance for the
tell a great deal of information about the nature of the
system in the strong coupling case.@In fact, it isS(qx ,k), the
sum of series in Eq.~15b!, which determines the nature o
the SL plasmon in appropriate limits.# On the one hand, clos
to the boundaries of the first Brillouin zone (k→6p/a), we
see from Eq.~21! that the SL plasmon is clearly 1D in na
ture. On the other hand, our discussion resulting in Eq.~23!
explicitly shows how, in the extreme strong coupling lim
for k50, the 1D SL tends to change character to beco
a single 2D electron layer; consequently, at the cente
the first Brillouin zone, the SL plasmon is strictly 2D i
nature. This is understandable on an intuitive basis as
because, in the limita→0, the wires gather gradually t
form a 2D electron layer with plasma frequencyv2D

2

5(2pe2n2Duqxu/m2D) if ( n1D /a) in Eq. ~23! is interpreted
as a 2D sheet-electron densityn2D and m1D is replaced by
m2D . Thus, our analytically obtained results explicitly co
firm the conclusions which were drawn by means of num
cal techniques in the literature~see, for example, Refs. 1 an
6!. In passing, we remark that we could have obtained
same result in Eq.~23! more easily had we written the sum
of the series in Eq.~15b! in the limit k50, a→0 and then
replaced the sum by the corresponding integral by setting
lower limit to zero with negligible error,

S~qx,0!5 (
m51

`

K0~muqxua!→E
0

`

K0~xuqxua!dx5
p

2~ uqxua!
,

which, when employed in Eq.~15a!, would immediately re-
sult in the mode given by Eq.~23!.

Next, considering the case in which the 1D SL is emb
ded in a background host plasma, the dispersion relation@Eq.
~15!# gives the general form of the SL plasmon mode in
local limit correct to the order of (uqxua)2 as
07541
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v25
vp

2

«0
1

v1D
2

«0
H 11

2S~qx ,k!

K0~ uqxub!J , ~24!

which, for k56(p/a), becomes

v25
vp

2

«0
1

v1D
2

«0
H 12

K0~2uqxua/p!

K0~ uqxub! J , ~25!

and describes the hybridization of the 1D SL plasmon w
the 3D bulk plasmon. On the other hand, by the same
cussion resulting in Eq.~23!, the plasmon mode of Eq.~24!
in the extreme strong coupling limit fork50 reduces to

v25
vp

2

«0
1

v2D
2

«0
, ~26!

and represents the coupling of the 2D plasmon with the
bulk plasmon.15

B. Weak coupling case„zqxzašp…

In this case, the wires are sufficiently far apart and
Coulomb interaction between the wires becomes small.
evaluation of the series for (uqxua)@p by Eq. ~16! is not
suitable, as (uqxua) may become comparable in magnitude
(2pn6ka). Therefore, for large values of (muqxua), we re-
place the Bessel functions by their asymptotic form14

K0~x!;Ap

2x
e2xF11OS 1

xD G , x@1, ~27!

in the series in Eq.~15b!, from which

S~qx ,k!;A p

2uqxua
(

m51

`
e2muqxua

Am

3F11OS 1

muqxua
D Gcos~mka!. ~28!

It is evident that the series rapidly approaches its asympt
form given by the first term as the higher terms in the ser
decrease exponentially and become less significant. Th
fore, to a very good approximation, we have

S~qx ,k!>A p

2uqxua
e2uqxuacos~ka!, ~ uqxua!@p.

~29!

For a constant 3D bulk background, the dispersion re
tion in the local limit yields the SL plasmon mode as

v25
v1D

2

«0
H 11A 2p

uqxua
e2uqxuacos~ka!

K0~ uqxub! J . ~30!

Note that the first term is the 1D plasmon of the wire at t
origin, while the second term, whose sole purpose is to
hibit the k dependence, is a very small contribution fro
other wires to the mode spectrum. Thus, in the weak c
pling case, the mode spectrum is determined dominantly b
single wire plasmon, an experimentally well-known fact.10,11

Also, note that the modes at the zone boundaries (k5
0-4
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6p/a) are smaller than the mode at the zone centerk
50). For k56(p/2a), the contribution from other wires
vanishes, hence

v25
v1D

2

«0
, ~31!

which is the plasmon of the wire at the origin. Consideri
further the extreme weak coupling case in whicha→` @or
(uqxua)→`] for all values of k, the system reduces to a
isolated single wire whose plasma frequency is given by
~31!. On the other hand, if a background bulk plasma
considered, in the local limit, the dispersion relation takes
form

v25
vp

2

«0
1

v1D
2

«0
H 11A 2p

uqxua
e2uqxuacos~ka!

K0~ uqxub! J , ~32!

which, in the limita→`, reduces to

v25
vp

2

«0
1

v1D
2

«0
, ~33!

and describes the coupling of an isolated single wire plasm
to the bulk host plasmon.12 Moreover, by a denominator fac
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