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Irreversible nucleation in molecular beam epitaxy: From theory to experiments
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Recently, the nucleation rate on top of a terrace during the irreversible growth of a crystal surface by
molecular-beam epitaxy has been determined exactly. In this paper we go beyond the standard model usually
employed to study the nucleation process, and we analyze the qualitative and quantitative consequences of two
important additional physical ingredients: the nonuniformity of the Ehrlich-Schwoebel barrier at the step edge,
because of the existence of kinks, and the steering effects, due to the interaction between the atoms of the flux
and the substrate. We apply our results to typical experiments of second-layer nucleation.
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I. INTRODUCTION

Nucleation is a key process during the growth of a crys
by molecular-beam epitaxy, when the substrate is orien
along a high-symmetry direction. In that case, freshly dep
ited atoms diffuse on the surface until they meet other a
toms ~nucleation process! or the step of a growing terrac
~aggregation process!. Layers are completed through islan
coalescence and the filling of vacancies.

Nucleation is irreversible if a dimer~i.e., a nucleus
formed by the meeting of two adatoms! is thermally stable.
This condition depends on the two most important exter
parameters: the temperatureT and the intensityF of the flux.
It holds if the dissociation time of a dimer~which grows with
decreasingT) is larger than the time~decreasing withF)
required to aggregate more adatoms to the dimer and to
bilize it. As a matter of fact, nucleation appears to be ir
versible, in a range of temperatures experimentally acc
sible, for several experimental systems as Pt/Pt~111!,1

Ag/Ag~100!,2 Fe/Fe~100!,3 and Ag/Ag~111!.4

Except for the submonolayer regime, where adatoms
fuse on the substrate, nucleations occur on terraces, and
of them take place on ‘‘top terraces,’’5 which are defined as
those surrounded by a single closed descending step. In s
recent papers6,5 we have studied the nucleation process
top of a terrace: we have evaluated the numberv of nucle-
ation events per unit time~nucleation rate! and their spatial
distribution. The total nucleation ratev is of great impor-
tance in several respects: it determines the typical dista
between nucleation centers in the submonolayer regime
so-called diffusion length,D ~see Ref. 7!; it allows to extract
the additional energy barrier for interlayer diffusion@Ehrlich-
Schwoebel~ES! barrier# from an experiment of second-laye
nucleation;4 and it is the main factor determining the stab
or unstable character of growth during its first stages.8

In Sec. II of this paper we report the formula giving th
exact value of the nucleation ratev that was derived
previously.5,6 Such a formula depends on the quantityW, the
probability that two adatoms deposited simultaneously a
ally meet. Here we evaluateW explicitly for all values of the
terrace sizeL and of the so-called ES length,,ES5n/n8
0163-1829/2003/67~7!/075408~10!/$20.00 67 0754
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21, which measures the difference between the intrala
hopping raten and the interlayer hopping raten8. The re-
sulting formula is extremely accurate. In this wayv is writ-
ten in full generality in terms only ofL, F, n, and n8 and
some geometrical constants that are given explicitly for
most relevant cases. We also provide the approximate for
las which are correct in some limiting regimes.

Later we discuss, both from a qualitative and a quant
tive point of view, two issues which are believed to be im
portant experimentally and that are not included in the ‘‘sta
dard’’ models used for studying nucleation: the effects
nonuniform interlayer barriers and of steering phenomena
the deposition flux. The ‘‘standard’’ model for nucleation a
sumes the presence of an interlayer barrier which is unifo
along the step surrounding the top terrace. However, even
compact terraces, kinks are unavoidably present along
step and they are preferential sites for descending,9 because
the ES barrier is expected to be reduced by the increa
number of neighbors. The ‘‘effective’’ barrierDEeff is there-
fore a combination of the barrierDEk at kinks and the higher
barrier DE0, felt by an adatom along straight steps. Ev
more importantly, since the number of kinks is temperat
and coverage dependent,DEeff depends onT and coverage,
even ifDEk andDE0 do not. This issue is treated in Sec. II

The ‘‘standard’’ model also assumes a uniform fluxF im-
pinging on the terrace. However, it has been shown10–12 that
the attractive interaction between the incoming atom and
atoms incorporated in the growing surface increases
number of particles landing on a top terrace. This m
clearly affect the nucleation rate. The relevance of this eff
strongly depends on the kinetic energy of the incoming p
ticles, the strength of the interaction, and the angle of de
sition. A minimal model, where all these factors determine
single adimensional parametere, is discussed in Sec. IV.

In Sec. V we apply our results to typical experiments
second-layer nucleation: an experiment on Pt/Pt~111! at dif-
ferent CO partial pressures,13 and an experiment on Ag
Ag~111! at different temperatures.4 In this way we are able to
discuss the relevance of nonuniform barriers and stee
effects in two real cases. Concluding remarks are prese
in Sec. VI.
©2003 The American Physical Society08-1
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II. THE NUCLEATION RATE

In Refs. 5 and 6 we have evaluated exactly the nuclea
ratev for a terrace of linear sizeL. This quantity is adimen-
sional and represents the number of atoms along the e
for a polygon-shaped island, or along the radius, for a cir
lar island. The total number of atoms in the island isA
5gL2. The most general expression for the nucleation rat

v5F t res

t res1tdep
W, ~1!

whereF is the number of atoms arriving on the terrace p
unit time, tdep and t res are the deposition and residen
times, respectively, andW is the probability that two ada
toms, deposited simultaneously, meet before leaving the
race.

For a uniform flux,F5FA, and its inverse is the averag
time between deposition events, the deposition time,tdep
51/F. The residence timet res is the average time spent by
single particle on the terrace before descending from it
depends on the sizeL of the terrace and on the strength of t
additional ES barrier, which can be quantified via the~adi-
mensional! ES length,,ES5n/n821. The ratesn,n8 for
intra- and interlayer hopping—whose precise definition
given in Appendix A—are generally written as a prefac
times an Arrhenius factor, n5n0exp(2Ed /kBT), n8
5n08exp@2(Ed1DE)/kBT#. In the simple case wheren0 and
n08 are supposed the same, the ES length is14 ,ES

5exp(DE/kBT)21. In terms ofL and ,ES, the residence
time is given by15

t res5~a,ES1bL !L/n, ~2!

which allows to distinguish in an easy way the ‘‘weak ba
rier’’ regime (,ES!L, t res5bL2/n) from the ‘‘strong bar-
rier’’ one (,ES@L, t res5aL,ES/n5aL/n8). The numerical
factorsa and b, as well asg, depend on the shape of th
terrace and on the symmetry of the underlying lattice. Th
values for some relevant cases have been determined nu
cally or analytically and are reported in Table I. In Append
B we determine analytically the geometrical parameters
evant for a circular terrace.

It is worth noting that the parametera can easily be writ-
ten in terms ofg and other geometrical factors. As a matt
of fact, in the limit of large ES barriers, the residence tim
has two equivalent expressions. The first comes from Eq.~2!,
t res5aL/n8. The second is found by considering that t
escape rate from the terrace,t res

21 , is given by the probability
of finding an adatom on an edge site, times the fraction
hops leading from an edge site to the lower terrace, times
interlayer hopping rate. The fraction of jumps leading to t
lower terrace is equal toDz/z, wherez is the coordination
number of the lattice, andDz is the number of missing
neighbors for an edge site. In the strong barrier regime
probability distribution of adatoms on the terrace is unifo
and hence the probability of finding an adatom on an e
site isP/A, whereP5hL is the perimeter of the terrace i
units of lattice sites. Summing up, we can write
07540
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n8
~,ES@L ! ~3!

so thata5gz/(hDz). The quantitiesh andDz are reported
in Table I ~see also Appendix B!.

The quantityW in Eq. ~1!, the probability that two atoms
both on the terrace actually meet, depends on the initial s
tial distributions for the two atoms, but this dependence
very weak and can in practice be neglected.16 The probability
W does not change much even if one atom is taken
immobile.5 In such a case,W can easily be written in terms
of properties of a single random walk,

W5
Ndis~L,,ES!

A , ~4!

whereNdis(L,,ES) is the number ofdistinctsites visited by a
single particle before leaving the terrace and clearly depe
on ,ES andL. For extremely strong barriers, the atom is ab
to visit all sites,Ndis→A, so thatW→1. In the opposite
limit of very weak barriers, it is known17 that Ndis(L,0)
5N0L2/ln(L/L0) ~so that W'1/lnL). An approximate for-
mula interpolating between the two limits is given in Ref.
Here we improve on that estimate by providing an analy
expression that reproduces with very good accuracy
value ofW obtained by numerical simulationsfor all values
of ,ES. The formula is

W5

N1,ES1
N0L ln~L/L1!

ln~L/L0!

N1,ES1gL ln~L/L1!
. ~5!

The values ofN0 ,L0 ,N1, andL1 depend on the shape of th
terrace and on the symmetry of the underlying lattice, asa,
b, and g do. Their values are given for relevant terra
shapes and lattice types in Table I. The derivation of Eq.~5!
is given in Appendix C and its accuracy is demonstrated
Fig. 1. Notice that no parameter is fitted.

TABLE I. Numerical values of the parametersa andb @appear-
ing in t res , Eq. ~2!#, g ~appearing inA), h ~appearing inP), Dz
@appearing int res , Eq. ~3!#, andN0 ,L0 ,N1, andL1 @appearing in
W, Eq. ~5!#. They are given for different shapes of the terrace a
for two types of lattice: the square and the triangular one. They
typical of the~100! and ~111! faces of a cubic lattice, respectively
For triangular (n), square (h), and hexagonal (̋ ) islands,L is
the edge of the polygon. For a circular (s) terrace,L is the radius.
The values ofa are computed using the formulaa5gz/(hDz) @see
Eq. ~3!# and agree with numerical results. The values ofN0 , L0 ,
N1, andL1 are determined by fitting numerical results forNdis(L)
andNdis

BB(L) to their analytical expressions.

a b g h Dz N0 L0 N1 L1

~100! h 1 0.14 1 4 1 0.2 1.0 1.8 0.5
s p/2 0.5 p 4A2 A2 0.7 0.5 3.1 0.3

~111! n 1/2 0.05 1/2 3 2 0.08 2.3 0.9 1.6
˝ 3/2 0.4 3 6 2 0.7 0.5 3.0 0.4
s p/2 0.5 2p/A3 4A3 2 0.7 1.0 3.8 0.2
8-2
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IRREVERSIBLE NUCLEATION IN MOLECULAR BEAM . . . PHYSICAL REVIEW B67, 075408 ~2003!
By inserting Eq.~2! and Eq.~5! into Eq.~1! we obtain the
general fully explicit formula for the nucleation rate. Equ
tion ~1! is based on the sole hypothesis that the deposi
time tdep is much larger than the so-called ‘‘traversal time
t tr5bL2/n, defined as the average time an atom need
reach the edge of the terrace~note thatt tr5t res , in the
regime,ES!L).5 The conditiontdep@t tr is equivalent5 to
the condition,D@1. A quantitative evaluation for the ex
perimental systems discussed in Sec. V gives in all ca
t tr /tdep,1025.

In most cases, also the residence time is much sma
than the deposition time. For example, for the experime
systems studied in Sec. V we havet res /tdepuPt,531023

andt res /tdepuAg,1022. If the conditiont res!tdep is satis-
fied, the nucleation rate is just given by the expression

v5
t res

tdep
2

•W ~t res!tdep!

5g2
F2

n
L5~a,ES1bL !•W, ~6!

whereW is given in Eq.~5!. In the limit of strong barriers, if
we approximateW by one, we have the simpler expression18

v5ag2
F2L5

n8
S t res!tdep and

n

n8
@L D . ~7!

III. THE EFFECT OF NONUNIFORM BARRIERS

An adatom leaves the terrace because it reaches an
site and it jumps down with a hopping raten8: in the usual
model for nucleation,n8 is supposed to be the same alo
the step edge. However, its value may actually be non
form: a growing step always has some degree of roughn
which makes the descent preferable from certain edge s
and toward certain directions. For an fcc~111! surface, the
picture is even more complicated,8 because steps can be
two different types~A step and B step! and they can both be

FIG. 1. Comparison of the exact numerical values ofW ~points,
see Ref. 5!, with the approximate analytic formula~line! given in
Eq. ~5!, for a square lattice and a square terrace of sizeL520.
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present around the same terrace. In this case their barrier
different even if both types of steps are straight. Therefore
the standard model is adopted, the interlayer hopping
should be understood as an effective one, valid at w
defined temperature and growth conditions. Any factor a
to affect the step morphology may affectn8 as well. The
‘‘effective’’ character ofn8 makes its separation in a prefa
tor and an exponential factor arbitrary. For this reason we
going to assumen085n0.

The case of a generic distribution of ES barriers canno
treated analytically, because it is not possible to find the g
eral expressions fort res and W. In the following we are
assuming to be in the ‘‘strong barrier’’ regime, whereW
51 and an analytical derivation oft res is indeed possible. In
this regime, the adatom density is uniform and Eq.~3! is
easily generalized to nonuniform barriers:

t res5
A
P

z

^Dz&

1

^n8&
. ~8!

Here ^Dz& is the number of directions leading to a ho
downwards~averaged over edge sites!, and^n8& is the aver-
age hopping rate.

Let us consider a simplified ‘‘kink model.’’ the ES barrie
is everywhere equal to the high valueDE0, except for spe-
cial sites~and paths!, where the additional barrier takes th
smaller valueDEk . In other words, the distribution is
bimodal,

DE5H DEk with probability ck ,

DE0 with probability ~12ck!.
~9!

Equation~8! is valid as long as even the smallest of t
barriers is sufficiently large to ensure a uniform probabil
of finding the adatom on the terrace. Hence the criterion
its validity is that the smallest ES length is much larger th
the linear size of the terrace,

~,ES!k[e2DEk /kBT21@L. ~10!

Provided this is true, the effective barrier is determined
the relation

e2DEeff /kBT5cke
2DEk /kBT1~12ck!e

2DE0 /kBT, ~11!

whose general solution is

DEeff5DEk1kBT lnS 1

ck
D

2kBT lnH 11S 1

ck
21Dexp@2~DE02DEk!/kBT#J .

~12!

In the case when the two barriers are practically the sa
Eq. ~12! obviously givesDEeff'DEk'DE0. In the more
interesting opposite limit, whenDE02DEk is larger than
kBT ln(1/ck21), the last term on the right-hand side is ne
ligible, and the effective barrier has the simplified express

DEeff5DEk1kBT lnS 1

ck
D . ~13!
8-3
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PAOLO POLITI AND CLAUDIO CASTELLANO PHYSICAL REVIEW B 67, 075408 ~2003!
Equation~13! has a transparent physical meaning: adato
leave the terrace at kink sites only, but they feel an effec
barrier larger thanDEk , because of the finite concentratio
of kinks. If T5300 K andck50.1, the barrier increase du
to this effect is 0.06 eV.

What happens when the condition~10! does not hold be-
causeDEk is not large enough? In that case the probability
find the adatom at a kink site is suppressed and the us
Eqs.~8! and~13! underestimatest res . This is clearly shown
in Fig. 2 where we compare, for a square terrace on a sq
lattice, numerical results~symbols! for t res ~in units 1/n
51) with the analytical approximation~lines! derived from
Eqs.~8! and~13!. In the caseDE05` andDEk50 the ana-
lytical formula gives a residence time~Fig. 2, dashed line!
that is well below the numerical results~Fig. 2, diamonds!.
In the opposite case ofDE05` and (,ES)k5exp(DEk /kBT)
21599, the condition~10! is fulfilled: numerical~Fig. 2,
circles! and analytical results~Fig. 2, solid line! agree.

Equation~13! clearly applies not only to the case of kink
but holds whenever there are two energy barriers for in
layer transport, one of which being significantly larger: F
example, for a hexagonal terrace on a~111! surface, sur-
rounded by three A steps and three B steps. IfDEA,B are the
ES barriers at the two different steps, the effective barrie
equal to the smaller one plus a small correction term,19

DEeff5min$DEA ,DEB%1kBT ln 2. ~14!

IV. STEERING EFFECTS

The flux of incoming atoms is usually supposed to
uniform. This hypothesis is correct down to a distance o
few nanometers from the surface, but it breaks down
smaller distances because of the adatom-subs
interaction.10 This interaction is attractive, so that it increas
the effective flux landing on a top terrace.11,12

The effect is illustrated in Fig. 3 for normal deposition o
a circular terrace. Because of the attractive interaction w

FIG. 2. The residence time~in units 1/n51) for an adatom on a
square terrace of sizeL540, as a function of the inverse of the kin
concentration~log-log scale!. DE05` in all cases, whileDEk cor-
responds to (,ES)k50 for diamonds and to (,ES)k599 for circles.
Symbols refer to the exact numerical calculation oft res and lines to
the analytical approximation, Eqs.~8! and ~13!.
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the terrace, the deposited atom may deviate from its rect
ear trajectoryt1 and land on the terrace. The incoming flu
F, equal toFA5FgL2 in the absence of steering, is ther
fore increased to the larger valueF5FAeff , since the effec-
tive capture area of the terrace is larger. The additional a
for large L is simply dP, where the quantityd denotes the
in-plane displacement of a particle landing on the terra
edge~trajectoryt2) andP is the island perimeter. This lead
to the effective flux

F5F~A1dP!5F~gL21eL !, ~15!

wheree5hd is an adimensional quantity. The actual val
of d depends on the thermal energy of the incoming partic
and on the interaction energy between the atom and the
strate. For oblique incidence, it also depends on the angl
incidence and it should be meant as an average over
island perimeter. The effect of the parametere will be illus-
trated in the next section, in the analysis of experiments
second-layer nucleation.

Equation~15! assumes that atoms landing on the terra
because they are steered behave as unsteered ones. T
not exact, because the extra fluxFdP is not deposited uni-
formly, but closely to the border of the terrace. Consequen
the probabilityW is smaller than the value given by Eq.~5!
and its use leads to an overestimate of steering effects. H
ever, this is a second-order effect that should be taken
account only if a more rigorous theory for deriving the i
coming fluxF were employed.

V. SECOND-LAYER NUCLEATION EXPERIMENTS

The nucleation ratev, as we have discussed in Sec. II,
the rate of dimer formation on top of a terrace offixedsizeL.
Its direct experimental determination is very hard becaus
would require large statistics in single-island measureme
with a fixed sizeL.

Let us instead describe how ‘‘second-layer nucleatio
experiments take place. A first possibility~see Sec. V A! is to
deposit a fraction of a monolayer on the substrate and

FIG. 3. Steering effects for normal deposition. Dotted a
dashed lines represent the trajectories without and with stee
respectively. The adatoms following the trajectoriest1 andt2 reach
the terrace only because of the adatom-terrace interaction.Aeff cor-
responds to the area inside the dashed double-dotted line.
8-4
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analyze the statistics of islands with a second nucleus on
A second possibility~see Sec. V B! consists of preparing an
ensemble of one-monolayer-high islands, as uniform as p
sible, that is, with the smallest dispersions in size and isla
island distance. Afterwards, a new fraction of a monolaye
deposited and the statistics of islands with a second nuc
on top of them is studied.

The relevant quantity is clearly the probabilityp(t) that a
nucleation event has occurred on top of an island durin
time t. For an ensemble of equivalent islands, this proba
ity corresponds to the fractionf (t) of islands with a second
nucleus:20

p~t!5 f ~t!512expH 2E
0

t

dt v@L~ t !#J . ~16!

This expression clearly shows that comparison with
second-layer nucleation experiment requires two sepa
pieces of information: the nucleation ratev(L) and the
growth lawL(t) of the islands. The former has very gene
validity, because it does not depend on the details of
experiment. It does not even change if nucleation occurs
top of a mound:v(L) is a ‘single-island’ problem and it is
not affected by the growth dynamics of the overall surfa
The latter piece of information, the growth lawL(t), is sys-
tem dependent and an exact calculation of it is gener
impossible: its determination involves, in principle, all of th
surface, in much the same way as the problem of submo
layer nucleation.

Let us now determine in an approximate wayf (t), for a
uniform array of islands of densityNis (Nis being the number
of islands per lattice site!. The growth lawL(t) is found
according to a simple deterministic model:18,20 each island
collects the atoms falling in the capture area 1/Nis . If Ai

5gLi
2 is the initial area of the terrace, after a timet,

A~ t !5Ai1
Ft

Nis
, L~ t !5ALi

21
Ft

gNis
. ~17!

Hence, if islands grow from the initial sizeLi to the final size
L f , the fraction of them with a second nucleus on top is

f 512expF2
2gNis

F E
Li

L f
dLLv~L !G . ~18!

The integral*dLL v(L), appearing in Eq.~18!, cannot
be evaluated analytically for generic ES barriers: the rea
is the complexL dependence ofW @see Eq.~5!#. It is easily
evaluated numerically.

It is useful to define a critical sizeLc : it is the ~final! size

of the islands, corresponding to a valuef 5
1
2

. In other

words, an island grown up to sizeLc has equal chance o
having or not having a second nucleus on top.Lc is deter-
mined by the implicit equation

E
Li

Lc
dLLv~L !5

ln 2

2

F

gNis
. ~19!
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We now reanalyze in detail two second-layer nucleation
periments.

A. PtÕPt„111…

This experiment is described in Ref. 13 and it has alrea
been discussed, according to Eq.~7!, in Ref. 18. Using that
expression forv, valid for strong barriers, the integra
*dL L v(L) can be easily evaluated analytically. Here w
do not assume that barriers are strong, and we use the ge
expression~1!, which will be later shown to be equivalent t
Eq. ~6!, because of the validity of the relationt res!tdep.

In the experiment,Li50, andLc has been evaluated a
follows: after deposition of a dose of platinum, the sizeL2

of the smallest islandwith a second nucleus on top, and th
sizeL1 of the largest islandwithouta second nucleus on top
have been determined experimentally for several scann
tunneling microscopy~STM! topographs. The critical size
has been approximated by the mean of their average va
Lc5(1/2) (^L2&1^L1&).21

Experiments have been performed13 at different CO par-
tial pressures,pCO. In Table II we reportNis andPc for the
different values ofpCO. Pc is the critical perimeter and it is
three~six! times the critical sizeLc , for triangular~hexago-
nal! islands. The values of the other physical parameters
tering in Eqs.~5!, ~18!, and~19! areF5531023 ML/s, and
n5n0exp(2Ed /kBT), with n05531012 s21, Ed50.26 eV,
and T5400 K50.0345 eV/kB . It is worth remarking13,18

that island coalescence has already started for the sma
value of pCO. So, in that case the ES barrierDE is overes-
timated.

We now have all the ingredients in order to apply Eq.~19!
and recover the value of the interlayer hopping rate,n8, the
only unknown quantity. In the hypothesis of a uniform ba
rier along the step,n85n08exp@2(Ed1DE)/kBT#. Two differ-
ent values will be considered for the prefactor,n085n055
31012 s21 andn0852.231012 s21. The latter value has bee
obtained by field-ion microscopy studies.22 As a general rule,
if DE is the ES barrier obtained for a prefactorn085n0, for a
generic valuen08 the ES barrier changes to a value

~DE!85DE1kBT ln~n08/n0!. ~20!

For T5400 K, changingn08 by a factor of 2 modifies the ES
barrier by 24 meV; changingn08 by a factor of 10 changes
DE by 80 meV.

In Fig. 4 we report the results for the Ehrlich-Schwoeb
barrier obtained using the exact nucleation rate given in
~1!, n08 being equal to the two values mentioned above.
inspection of the original STM images~Fig. 1 of Ref. 1!
shows that for the smallest and the two largest values

TABLE II. The critical perimeterPc and the densityNis of is-
lands, for the five different concentrations of CO.

pCO (10211 mbar) 0.5 10 47 95 190

Pc 816 623 449 341 324
Nis3105 2.75 2.1 1.83 1.76 1.65
8-5



th
e
w
c

in
nd

us

i-
ie
e

tim

m,
-

of
r by

f

eck
f

e-
re-

tion
e

es

ly

se

the

i-

he

he
the

PAOLO POLITI AND CLAUDIO CASTELLANO PHYSICAL REVIEW B 67, 075408 ~2003!
pCO, islands are triangular, while in the other two cases
shape is less precisely defined. Therefore we have consid
both hexagonal and triangular terraces: the upper and lo
values of the error bars correspond to such cases. As one
see from the figure, at this temperature the effect of the
determination of the terrace shape is comparable to an i
termination ofn08 of a factor of 2.

In Fig. 5 we compare our results with those obtained
ing the strong barrier approximation, Eq.~7!: the latter is
applicable forDE>0.2 eV; for smaller values it overest
mates v and therefore it underestimates the ES barr
Mean-field theory, also shown in the same figure, is gen
ally incorrect.

We can now evaluate the ratio between the residence
and the deposition time. In the strong barrier limit, such
ratio is

t res

tdep
5ag

F

n
exp~DE/T!L3. ~21!

FIG. 4. Values ofDE, the ES barrier, for differentpCO values.
Circles and diamonds refer, respectively, ton085n05531012 s21

and ton0852.231012 s21. The error bars are due to the indeterm
nation in the island shape.

FIG. 5. Results with the exact nucleation rate~for n085n0 and
triangular islands! are compared to mean-field theory and to t
values obtained from the ‘‘strong barrier’’ approximation forv, see
Eq. ~7!.
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For the largest barrier (DE50.31 eV), t res /tdep,0.005.
We conclude that for analyzing the experiment on platinu
the use of formula~6! would be legitimate. Notice that, be
cause of the exponential dependence oft res on DE, larger
values of the ES barrier quickly invalidate Eq.~6!: t res
.tdep for DE50.4 eV.

Let us now consider the effect of steering on the value
the ES barrier. We repeat the evaluation of the ES barrie
considering an effective fluxF5F(A1eL) for several val-
ues of the parametere, which measures the ‘‘strength’’ o
steering. Results are reported in Fig. 6~note the log-linear
scale!. For triangular terraces on an fcc~111! surface,h53,
ande is three times the~maximal! in-plane displacement of a
particle landing close to the terrace edge. It is easy to ch
that, for the critical size of the terrace, the largest value oe
(e532) corresponds to an incoming fluxF increased by
60% for diamonds (pCO51.931029 mbar) and by 24% for
circles (pCO55310212 mbar). The ES barrier is seen to d
crease for strong steering, because a larger effective flux
quires a smaller barrier for producing the same nuclea
rate. The fact thatDE is less affected by steering when th
barrier is smaller is intuitively clear: a smaller barrier impli
a larger critical sizeLc and the larger theL, the smaller the
effect of steering, which is an edge effect.

B. AgÕAg„111…

The experiment on silver reported in Ref. 4 is slight
different from the one on platinum. First, a quantityu0
50.1 ML is deposited. Afterwards an equal second do
Du50.1 ML is deposited at two different temperatures23

(T5120 and 130 K! and the fractionf of covered islands is
determined as a function of the island radiusr ~see Table III!.
The density of islands is determined by the relationNis

5u0 /Ai5u0/(gLi
2), and Du5u0 implies L f5A2Li . Fur-

thermore, F51.131023 ML/s, n05231011 s21, and Ed
50.097 eV.

Experimental data at different temperatures give
possibility—in principle—to determine both the barrierDE

FIG. 6. The effect of steering on the interpretation of t
second-layer nucleation experiment on platinum, Ref. 13. Note
log-linear scale. Circles and diamonds refer, respectively, topCO

55310212 mbar andpCO51.931029 mbar. Dotted lines mark the
values ofDE in the absence of steering.
8-6
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and the prefactorn08 of the interlayer hopping rate. A larg
debate is present in the literature regarding the interpreta
of the experimental data4,18,24 and the possibility thatn08/n0

@1 ~see below!. Our contribution is to analyze the data wi
the correct theory and to ascertain the possible effect of n
uniform barriers and steering.

Inserting each pair of experimental values (r , f ) in Eq.
~18! yields a value for the ES length, reported in Table I
and consequently for the interlayer hopping rate,n8, through
the relationn85n/,ES. For each temperature, we have us
the value of,ES obtained from the pair (r , f ) with f as close
as possible tof 5 1

2 , i.e., with r as close as possible to th
critical sizeLc , because it is the statistically most significa
point: f (L f527.5 Å)50.55 at T5T1, and f (L f547 Å)
50.47 atT5T2. Using the relations

DE

kB
5

T1T2

DT
lnS ,1

,2
D ,

n08

n0
5

1

,1
S ,1

,2
D T2 /DT

, ~22!

where DT5T22T1, we finally obtain DE50.30 eV and
n08/n051.93107. The value found for the prefactorn0854
31018 s21, is huge and it is comparable to a previo
analysis18 of the same data using the approximate form
~7! for the nucleation rate.

A possible alternative way to interpret the data is to ar
trarily setn085n0, and allow the ES barrier to depend onT.
In this way we findDE.0.12 eV at T5120 K and DE
.0.11 eV atT5130 K. Hence we find a significant differ
ence for the barrier strength despite two rather close t
peratures. This difference persists even if we suppose than08
is somewhat larger thann0 ~e.g.,n08/n05102). The values of
DE change according to Eq.~20!, but their difference

d~DE!85d~DE!2kBDT ln~n08/n0! ~23!

is almost unchanged, becausekBDT'1023 eV is smaller
thand(DE)[DE(120 K)2DE(130 K)'1022 eV.

We can wonder whether experimental indeterminatio
can explain the large value ofd(DE), or equivalently of
n08/n0. As remarked in Ref. 4, island radii have been det
mined experimentally with a precision of about 5 Å. Takin
into account the indetermination inr, the average values o
,1,2 are

TABLE III. Experimental data for the fractionf of covered is-
lands as a function of the island radiusr, and theoretical results fo
the corresponding ES lengths,, i5,ES (Ti).

T15120 K T25130 K
r (Å) f ,1 r (Å) f ,2

7.0 0.0 33.5 0.0345 5 150
11.5 0.02 300 000 39.0 0.14 10 200
16.5 0.11 285 000 47.0 0.47 17 000
21.5 0.24 180 000 55.0 0.7 14 800
27.5 0.55 155 000 63.0 0.85 11 800
32.0 0.88 200 000 68.0 0.93 11 400
38.0 1.0 77.0 1.0
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,1'180 000680 000, ,2'14 00064 000. ~24!

However, even if we consider the smallest,1 and the largest
,2 @in order to minimize DE(120 K) and to maximize
DE(130 K)], we still have thatd(DE) is of order 0.01 eV
@more precisely,d(DE)58 meV].

Let us now discuss whether the unexpected experime
results can be the effect of nonuniform barriers. Assum
that the prefactorn08 is equal to or even a bit larger thann0,
we have shown thatd(DE)'10 meV. If a scenario with two
types of barriers applies, Eq.~13! gives the relation

d~DE!'kBT̄ lnS c2

c1
D ~25!

between the difference in the ES barriers and the kink c
centrations,c1 and c2. In the previous equation,T̄5 1

2 (T1
1T2) is the average temperature. A valued(DE)'0.01 eV
would therefore require that the concentrationc2 of kinks at
T5130 K is two or three times larger than the concentrat
c1 of kinks atT5120 K, which seems to be unlikely.25

We finally consider the effect of steering. Increasing t
value of the parametere reduces slightly the spreading of th
ES lengths~third columns in Table III!, but the value of
d(DE) remains practically unaffected. Alternatively, if w
considern08 as a free parameter, the ration08/n0 is smaller
than that without steering, but is still too large: fore530 we
find DE50.23 eV andn08/n051.53105. We conclude that
neither steering effects nor the presence of nonuniform b
riers are enough to allow a reasonable interpretation of
experimental results of Ref. 4.

VI. DISCUSSION AND CONCLUSIONS

The present paper has three main goals.~i! Provide a
complete list of the correct formulas to be used for the int
pretation of data from second layer-nucleation experime
~ii ! extend the ‘‘standard’’ model of irreversible nucleatio
and take into account the effect of steering and nonunifo
ES barriers and,~iii ! apply the theoretical framework to re
consider some experimental results. Let us discuss thes
sues in detail.

It is now well established6,18,26that mean-field Theory20 is
not appropriate for studying the problem of nucleation on
of a terrace and the reason for its failure has been cle
understood.5 In Sec. II we give the most general formula fo
the nucleation rate, Eq.~1!, and several approximate formu
las which can be used in the relevant limits. With respec
our recent papers5 on the same problem, we are now able
provide a very good simple analytical expression for t
probability W that two atoms meet@Eq. ~5!#, valid for any
barrier strength. We also provide the numerical values for
parameters appearing inW and int res , which depend on the
shape of the terrace and on the symmetry of the underly
lattice, see Table I and Appendix B.

Mainly because of the complicated expression forW, it is
not possible to integrate analytically the nucleation rate, E
~18! and~19!, and write explicitly, e.g., the critical sizeLc as
a function of all the physical parameters,F,T,n,n8, . . . .
8-7
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This is not a real limitation, indeed, because performing s
one-dimensional numerical integration is straightforward.
the limit of strong barriers,18 v;L5 and the analytical inte-
gration is possible. However, that approximation may be
accurate, as we have shown in the case of platinum be
DE50.2 eV.

In Sec. III we have considered the possibility that t
additional ES barrier at steps is not homogeneous. The
of a generic distribution of barriers cannot be tackled a
lytically, but if barriers are everywhere large enough to ke
the adatom density uniform, the problem is solvable. Fo
simple bimodal distribution~the barrier is equal toDEk in
special kink sites and equal to the larger valueDE0 else-
where! Eq. ~13! indicates that the system behaves as if it h
a singleeffectivebarrierDEeff equal to the kink barrier plus
a correction depending on the kink concentration and te
perature. This result shows that the same experimental
tem displays different effective barriers at different tempe
tures, or at different growth conditions.

In Sec. IV we have studied the effects of the ‘‘incomin
atom’’-substrate interaction~steering! on the total flux land-
ing on a top terrace. A detailed treatment would require c
sidering a realistic interatomic potential and specifying
energy and the inclination of the incoming particles. We ha
introduced a minimal model where the ‘‘strength’’ of steeri
and all the above variables are included in a single adim
sional parameter,e5hd. h is a geometric factor andd rep-
resents the~maximal! in-plane deviation of an incoming
atom.

Finally, in Sec. V we reconsidered the data concern
two experiments of second-layer nucleation, which had
ready been analyzed in Ref. 18, using the strong barrier
proximation, Eq.~7!. In the case of Pt/Pt~111!, the additional
barrier varies from a small value (DE&0.1 eV) for the clean
sample, to a value of order 0.3 eV when terrace steps
fully decorated with CO. We stress that these values sho
be meant as effective ones. If steering plays a prominent r
the effective barrier decreases, because more adatom
expected to land on the terrace. If the landing point of
adatom is displaced up to five interatomic distances,d55,
the largest barrierDE50.31 eV decreases by 20 meV; ifd
510, the reduction is twice as large.

The case of Ag/Ag~111! is very debated18,24and the ques-
tion of the actual values ofDE andn8 is still open, requiring
additional experiments using different temperatures. The
terpretation of the data by Bormannet al.4 can be easily
summed up. If the prefactorn08 is assumed equal ton0, the
barrier is of order 0.12 eV and it differs by about 10 meV
the two temperatures,T15120 K andT25130 K. This dif-
ference,d(DE), between the two barriers can be reduced
n08 is allowed to increase. However, only an exponentia
large value ofn08/n0 @see Eq.~23!# would imply a noticeable
reduction ofd(DE). If n08/n0.23107, the two barriers are
both equal to 0.30 eV. Data on the fraction of covered isla
at different sizes give different barriers. The spreading ofDE
at a given temperature can be accounted for by the error
on the determination of the radiusr; however, this is not
enough to explain the difference betweenDE(T1) and
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DE(T2). Steering effects are not able to make the differen
consistent either. In principle, we expect two different effe
tive barriers, at the two temperatures. Application of the f
mula ~13! suggests that the value ofd(DE) can be explained
by a larger kink concentration at the highest temperatu
ck(T2)/ck(T1)'2, but it is difficult to find a physical moti-
vation for such a large ratio. We conclude by remarking t
a completely different measurement27 of the interlayer rate in
the same system, but at a higher temperature,T5300 K,
gives a barrierDE50.13 eV and a prefactorn08 of the same
order ofn0 ~see also the discussion in Ref. 24!.

We believe that possible further developments in
problem of nucleation should include the following points:
direct quantitative determination of the parametere, an im-
provement of Eq.~13! to include the case of weak barriers,
better assessment of the growth lawL(t) for the terrace, and
additional quantitative and controlled second-layer nuc
ation experiments at different temperatures and for other
tems as well.
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APPENDIX A: INTRA- AND INTERLAYER HOPPING
RATES

The quantityn is the total hopping rate on a flat surfac
The jump rate in a given direction isnd5n/z, wherez is the
coordination number (z54 or 6 for a square or triangula
lattice, respectively!.

If an atom is on an edge site, its coordination numbe
reduced byDz, the number of missing neighbors. The d
rected hopping rate towards a missing site~i.e., towards the
lower terrace! is equal tond8 and it may differ from the hop-
ping rate,nd , towards a site of the same terrace. If we defi
n85znd8 , the absence of additional step-edge barriers
equivalent ton85n.

Within this formalism, the escape rate from the terrace
an atom on an edge site is equal toDz nd85(Dz/z)n8. Other
authors, see, e.g., Ref. 8, prefer definingn8 as the escape rat
(n85Dz nd8), but in that case the absence of additional
barriers does not match the conditionn85n.

APPENDIX B: CALCULATION OF SOME PARAMETERS
FOR A CIRCULAR TERRACE

The derivation ofg for a circular terrace is straightfor
ward, because the numberA of atoms contained in a circle
of radiusL is equal to the areapL2 divided by the area pe
8-8
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atom,Aa . SinceAa51 for a square lattice andAa5A3/2 for
a triangular one, we haveg5p in the former case, andg
52p/A3 in the latter case.

The derivation ofh, that is, of the numberP of edge
sites, is less trivial. If we changeL by a quantitydL , the total
number of atoms changes bydA52g dLL. If we setdL so
that only edge sites are comprised in the circular ring,
haveh52g dL . Let f be the angle between the vector joi
ing an edge site with the center of the circle, and a near
neighbor~nn! bond. If f50, dL51, while for a genericf,
dL5cosf. The value ofdL entering in the relation betwee
h andg is just the average overf of cosf. Because of the
different lattice symmetries, the average is evaluated
tween zero andp/4, for a square lattice, and between ze
and p/6, for a triangular lattice. We therefore obtaindL

52A2/p in the former case, anddL53/p in the latter case.
In conclusion, we obtainh54A2 for the ~100! lattice and
h54A3 for the ~111! lattice.

The derivation ofDz, the ~average! number of missing
neighbors per edge site, is easily found fromP. Let us first
determine the numberNnn of nn bonds which are cut by
circle of radiusL. It is elementary to write thatNnn58L for
a square lattice andNnn58A3L for a triangular lattice. The
quantityDz is nothing but the ratio betweenNnn andP, so
that Dz5A2 for the ~100! lattice andDz52 for the ~111!
lattice.

APPENDIX C: CALCULATION OF Ndis

We want to evaluate analytically the average number
distinct sitesNdis visited by an adatom during its rando
walk on the terrace. Let us imagine that we performNrun
times the following procedure. We let a random walker st
from a site on the terrace and follow its trajectory until
leaves the terrace. For each runr and each terrace sites we
define the quantityn(r ,s) to be 1 if site s has not been
visited during runr, and 0 otherwise. The average probab
ity that sites is not visited is

n~s!5 lim
Nrun→`

1

Nrun
(
r 51

Nrun

n~r ,s!. ~C1!

All runs can be grouped according to the numberF>1 of
‘‘traversals’’ across the terrace, defined as follows. Once
atom has arrived on an edge site, it has the probabilitypout
5Dz/z to attempt to move outside andpin512Dz/z to
move to another site of the terrace: in the former case,
atom has the probability5 a5,ES/(11,ES) to stay and the
probability 12a51/(11,ES) to leave the terrace. The firs
traversal starts when the atom is deposited on the terrace
terminates when the atom reaches an edge siteand tries to
leave the terrace. At this point the atom may leave the
race, in which case it has performed one traversal only, o
may stay on the terrace and start a new traversal. Accor
to this definition, we can write
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n~s!5 lim
Nrun→`

1

Nrun
(
F51

`

Nrun
F ^n~r ,s!&F , ~C2!

whereNrun
F is the total number of runs made up ofF travers-

als, and̂ •••&F is the average value on those runs only.
The quantityn(r ,s) is different from zero if and only if

the sites has not been visited in any traversal. We can wr
explicitly

n~r ,s!5)
k51

F

nk~r F ,s!, ~C3!

wherenk is the variablen referred to thekth traversal of the
run labeledr F . Inserting Eq.~C3! in Eq. ~C2! we obtain

n~s!5 (
F51

`

m~F !K )
k51

F

nk~r F ,s!L , ~C4!

wherem(F)5Nrun
F /Nrun is the probability that a single run i

made up ofF traversals.
If a run goes on forF traversals, it means that the ato

has doneF attempts to descend, failing the first (F21) times
and succeeding with the last. Therefore,

m~F !5aF21~12a!. ~C5!

We now make the approximation that distinct travers
are independent:

K )
k51

F

nk~r F ,s!L .^n1~r F ,s!&)
k52

F

^nk~r F ,s!&. ~C6!

Using Eqs.~C5! and ~C6! in Eq. ~C4!, we obtain

n~s!. (
F51

`

~12a!aF21^n1~r F ,s!&)
k52

F

^nk~r F ,s!&.

~C7!

Let us recall the meaning of̂nk(r F ,s)&. It is the prob-
ability that sites is not visited during thekth traversal of a
run composed ofF traversals. This quantity does not depe
on F. We make the approximation that it does not depend
k either, if k>2. In simple words, we just definên1(s)& for
the first traversal and̂nBB(s)& for all the subsequent travers
als. The superscript/subscript BB means that the trave
starts from and arrives at the boundary of the terrace.

Within this approximation,

n~s!.^n1~s!&~12a! (
F51

`

aF21^nBB~s!&F21

.^n1~s!&
~12a!

12a^nBB~s!&
.

^n1~s!&
11,ES@12^nBB~s!&#

.

~C8!

The last approximation is to neglect thes dependence in
^nBB(s)& and ^n1(s)&. Using the simple relation,Ndis
5(s@12n(s)#, we obtain
8-9
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W5
Ndis~L,,ES!

A 5
,ESNdis

BB1Ndis~L,0!

,ESNdis
BB1A , ~C9!

where Ndis(L,0)5@12^n1(s)&#/A and Ndis
BB(L)5@1

2^nBB(s)&#/A is the number of distinct sites visited by
particle starting from the boundary and reaching it aga
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