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Irreversible nucleation in molecular beam epitaxy: From theory to experiments
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Recently, the nucleation rate on top of a terrace during the irreversible growth of a crystal surface by
molecular-beam epitaxy has been determined exactly. In this paper we go beyond the standard model usually
employed to study the nucleation process, and we analyze the qualitative and quantitative consequences of two
important additional physical ingredients: the nonuniformity of the Ehrlich-Schwoebel barrier at the step edge,
because of the existence of kinks, and the steering effects, due to the interaction between the atoms of the flux
and the substrate. We apply our results to typical experiments of second-layer nucleation.
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[. INTRODUCTION —1, which measures the difference between the intralayer
hopping ratev and the interlayer hopping rat€. The re-
Nucleation is a key process during the growth of a crystakulting formula is extremely accurate. In this wayis writ-
by molecular-beam epitaxy, when the substrate is orienteten in full generality in terms only ok, F, », and»’ and
along a high-symmetry direction. In that case, freshly depossome geometrical constants that are given explicitly for the
ited atoms diffuse on the surface until they meet other adamost relevant cases. We also provide the approximate formu-
toms (nucleation proce$sor the step of a growing terrace las which are correct in some limiting regimes.
(aggregation procegsLayers are completed through island  Later we discuss, both from a qualitative and a quantita-
coalescence and the filling of vacancies. tive point of view, two issues which are believed to be im-
Nucleation is irreversible if a dimefi.e., a nucleus portant experimentally and that are not included in the “stan-
formed by the meeting of two adatojris thermally stable. dard” models used for studying nucleation: the effects of
This condition depends on the two most important externahonuniform interlayer barriers and of steering phenomena in
parameters: the temperatufend the intensity of the flux.  the deposition flux. The “standard” model for nucleation as-
It holds if the dissociation time of a diméwhich grows with ~ sumes the presence of an interlayer barrier which is uniform
decreasingT) is larger than the timédecreasing withF) along the step surrounding the top terrace. However, even for
required to aggregate more adatoms to the dimer and to staempact terraces, kinks are unavoidably present along the
bilize it. As a matter of fact, nucleation appears to be irre-step and they are preferential sites for descentipecause
versible, in a range of temperatures experimentally acceshe ES barrier is expected to be reduced by the increased
sible, for several experimental systems as PUF),®  number of neighbors. The “effective” barrigkE is there-
Ag/Ag(100),%2 Fe/F&100),% and Ag/Ag111).* fore a combination of the barrigfE, at kinks and the higher
Except for the submonolayer regime, where adatoms difbarrier AE,, felt by an adatom along straight steps. Even
fuse on the substrate, nucleations occur on terraces, and masbre importantly, since the number of kinks is temperature
of them take place on “top terraces,hich are defined as and coverage dependeE.; depends ol and coverage,
those surrounded by a single closed descending step. In soreeen if AE, andAE, do not. This issue is treated in Sec. lII.
recent papefs we have studied the nucleation process on The “standard” model also assumes a uniform flesm-
top of a terrace: we have evaluated the numbeof nucle-  pinging on the terrace. However, it has been shdwrdthat
ation events per unit timéucleation rateand their spatial the attractive interaction between the incoming atom and the
distribution. The total nucleation rate is of great impor- atoms incorporated in the growing surface increases the
tance in several respects: it determines the typical distanaeumber of particles landing on a top terrace. This may
between nucleation centers in the submonolayer regime, theearly affect the nucleation rate. The relevance of this effect
so-called diffusion lengtlf; (see Ref. 7. it allows to extract ~ strongly depends on the kinetic energy of the incoming par-
the additional energy barrier for interlayer diffusidghrlich-  ticles, the strength of the interaction, and the angle of depo-
SchwoebelES) barrier] from an experiment of second-layer sition. A minimal model, where all these factors determine a
nucleation? and it is the main factor determining the stable single adimensional parameter is discussed in Sec. IV.
or unstable character of growth during its first stages. In Sec. V we apply our results to typical experiments of
In Sec. Il of this paper we report the formula giving the second-layer nucleation: an experiment on PY/EY at dif-
exact value of the nucleation rate that was derived ferent CO partial pressuréd,and an experiment on Ag/
previously>® Such a formula depends on the quantéythe  Ag(111) at different temperaturésin this way we are able to
probability that two adatoms deposited simultaneously actudiscuss the relevance of nonuniform barriers and steering
ally meet. Here we evalua® explicitly for all values of the effects in two real cases. Concluding remarks are presented
terrace sizeL and of the so-called ES lengtligzg=v/v’ in Sec. VL.
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Il. THE NUCLEATION RATE TABLE I. Numerical values of the parametersand 8 [appear-
. ing in 7.5, EQ.(2)], v (appearing ind), » (appearing inP), Az
In Refs. 5 and 6 we have evaluated exactly the ngcleaﬂoth%pearrﬁg injre(s ,)]qu. éﬁ?and l\?o,Lo),Nz (aringl [agpea)ring N
rgtea; for a terrace of linear size. This quantity is adimen- Eq. (5)]. They are given for different shapes of the terrace and
sional and represents the number of atoms along the edggy two types of lattice: the square and the triangular one. They are
for a polygon-shaped island, or along the radius, for a circutypical of the(100) and (111 faces of a cubic lattice, respectively.
lar island. The total number of atoms in the island.As  For triangular ¢\), square [J), and hexagonal®) islands,L is
= yL2. The most general expression for the nucleation rate ishe edge of the polygon. For a circulad] terrace L is the radius.
The values ofxr are computed using the formute= yz/( nAz) [see
Tres Eq. (3)] and agree with numerical results. The valueNgf L,
0= PR A (2) N;, andL, are determined by fitting numerical results fég<(L)
res’ Tdep andNSE(L) to their analytical expressions.

where F is the number of atoms arriving on the terrace per
unit time, 74¢, and 7,5 are the deposition and residence « B Y
times, respectively, anWV is the probability that two ada- (100 0 1 0.14 1 1 02 10 18 05

n AZ NO LO Nl Ll
. . . 4
toms, deposited simultaneously, meet before leaving the ter- O @2 05 7 4y2 J2 07 05 31 03

race. _ o _ (11) A 1/2 0.05 1/2 3 2 008 23 09 16
For a uniform flux,/=F A, and its inverse is the average o 32 04 3 6 2 07 05 30 04
time between deposition events, the deposition timg, O w2 05 27/y3 4y3 2 07 10 38 02

=1/F. The residence time, is the average time spent by a
single particle on the terrace before descending from it. It
depends on the sideof the terrace and on the strength of the A 1
additional ES barrier, which can be quantified via tiaei- o= R G
mensional ES length, €gs=v/v' —1. The ratesw,v’ for S P Azy pAzy
intra- and interlayer hopping—whose precise definition is
given in Appendix A—are generally written as a prefactor
times an Arrhenius factor, v=rvoexp(—Ey4/kgT), v’

= viexg —(E4+AE)/kgT]. In the simple case wherg, and

vy, are supposed the same, the ES length* i§gg
=exp@AE/kgT)—1. In terms ofL and €gs, the residence
time is given by®

(Ces>L) ()

so thata= yz/(nAz). The quantitiesy andAz are reported
in Table | (see also Appendix B

The quantityW in Eq. (1), the probability that two atoms
both on the terrace actually meet, depends on the initial spa-
tial distributions for the two atoms, but this dependence is
very weak and can in practice be neglecté@he probability
W does not change much even if one atom is taken as

immobile® In such a case\V can easily be written in terms

Tres= (alest BL)L/ v, (2) of properties of a single random walk,
which allows to distinguish in an easy way the “weak bar- Ngi«(L,€g9)
rier” regime (€es<L, 70s=pBL%/v) from the “strong bar- W=——"—. (4)

rier"one (gL, 75— alles/v=all/v"). The numerical

factorsa and B8, as well asy, depend on the shape of the whereNg4(L,{g9 is the number oflistinctsites visited by a
terrace and on the symmetry of the underlying lattice. Theisingle particle before leaving the terrace and clearly depends
values for some relevant cases have been determined numesh €5 andL. For extremely strong barriers, the atom is able
cally or analytically and are reported in Table I. In Appendix to visit all sites,Ngs—.A, so thatW—1. In the opposite

B we determine analytically the geometrical parameters relimit of very weak barriers, it is knowr that Ngg(L,0)
evant for a circular terrace. =NoL?/In(L/Ly) (so thatW=1/InL). An approximate for-

It is worth noting that the parametercan easily be writ-  mula interpolating between the two limits is given in Ref. 5.
ten in terms ofy and other geometrical factors. As a matter Here we improve on that estimate by providing an analytic
of fact, in the limit of large ES barriers, the residence timeexpression that reproduces with very good accuracy the
has two equivalent expressions. The first comes from(#&g. value of W obtained by numerical simulatiorisr all values
Tres= a@L/v'. The second is found by considering that theof £c5. The formula is
escape rate from the terraoe‘e?s, is given by the probability

of finding an adatom on an edge site, times the fraction of NoL In(L/L,)
_ . . Ni€est ——
hops leading from an edge site to the lower terrace, times the IN(L/Lg)
interlayer hopping rate. The fraction of jumps leading to the W= NyCeat yLIN(LILy) 6)

lower terrace is equal tdz/z, wherez is the coordination

number of the lattice, andz is the number of missing The values oNg,Lq,N;, andL; depend on the shape of the
neighbors for an edge site. In the strong barrier regime théerrace and on the symmetry of the underlying latticepas
probability distribution of adatoms on the terrace is uniformB, and y do. Their values are given for relevant terrace
and hence the probability of finding an adatom on an edgshapes and lattice types in Table I. The derivation of (By.
site isP/ A, whereP= yL is the perimeter of the terrace in is given in Appendix C and its accuracy is demonstrated in
units of lattice sites. Summing up, we can write Fig. 1. Notice that no parameter is fitted.
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present around the same terrace. In this case their barriers are
different even if both types of steps are straight. Therefore, if
the standard model is adopted, the interlayer hopping rate
should be understood as an effective one, valid at well-
defined temperature and growth conditions. Any factor able
to affect the step morphology may affeet as well. The
“effective” character ofv’ makes its separation in a prefac-
tor and an exponential factor arbitrary. For this reason we are
going to assume = vg.

The case of a generic distribution of ES barriers cannot be
treated analytically, because it is not possible to find the gen-
eral expressions fotr,.s and W. In the following we are
assuming to be in the “strong barrier” regime, whevé
10 10° 10 10° 10° 10" =1 and an analytical derivation ef. is indeed possible. In
I this regime, the adatom density is uniform and Eg). is

easily generalized to nonuniform barriers:

FIG. 1. Comparison of the exact numerical values\bfpoints,
see Ref. § with the approximate analytic formuldine) given in - :ﬂ z 1 ®)
Eqg. (5), for a square lattice and a square terrace of kize20. ¢S P (Az) (v') )

By inserting Eq.(2) and Eq.(5) into Eq.(1) we obtain the Here (AZz) is the number of directions leading to a hop
general fully explicit formula for the nucleation rate. Equa- downwards(averaged over edge sijeand(v') is the aver-
tion (1) is based on the sole hypothesis that the depositio@ge hopping rate.
time 74¢, iS Mmuch larger than the so-called “traversal time” Let us consider a simplified “kink model.” the ES barrier
= BL?Iv, defined as the average time an atom needs t&§ everywhere equal to the high valdee,, except for spe-
reach the edge of the terra¢mote thatr,= s, in the Cial sites(and pathy where the additional barrier takes the
regimeEES<|_)_5 The ConditioanePTtr is equiva|erﬁ to Sma”er ValueAEk. In other WordS, the distribution is
the conditionfp>1. A quantitative evaluation for the ex- bimodal,

per/imenialos_%stems discussed in Sec. V gives in all cases e AE, with probability c,, o
Ttr/ Tdep . = . -
In most cases, also the residence time is much smaller AEy  with probability (1—cy).

than the deposition time. For example, for the experimental
systems studied in Sec. V we havg/7gefpr<5x103
and 7es/ Tgef ag< 10" 2. If the condition,es< 74¢, is satis-
fied, the nucleation rate is just given by the expression

Equation(8) is valid as long as even the smallest of the
barriers is sufficiently large to ensure a uniform probability
of finding the adatom on the terrace. Hence the criterion for
its validity is that the smallest ES length is much larger than

, the linear size of the terrace,
res

w= T2 W (Tres<7'dep) (€E§k5e7AEk/kBT_1>L. (10)
dep
F2 Provided this is true, the effective barrier is determined by
_ szLs(a(gESJFBL).W, 6) the relation

whereW s given in Eq.(5). In the limit of strong barriers, if o
whose general solution is

we approximataV by one, we have the simpler expressfon

1
, F2L° v AEeﬁ=AEk+kBTIn(—>
w=ay - Tres<Tdep and —>L |. (7) Ck
v v

1
—KgT In 1+(C——l)exr[—(AEo—AEk)/kBT] .
k

Ill. THE EFFECT OF NONUNIFORM BARRIERS

An adatom leaves the terrace because it reaches an edge (12)
site and it jumps down with a hopping raté: in the usual In the case when the two barriers are practically the same,
model for nucleationy’ is supposed to be the same alongEq. (12) obviously givesAEg~AE,~AEy. In the more
the step edge. However, its value may actually be nonuniinteresting opposite limit, wheAEq—AEy is larger than
form: a growing step always has some degree of roughneskgT In(1l/c,—1), the last term on the right-hand side is neg-
which makes the descent preferable from certain edge sitebgible, and the effective barrier has the simplified expression
and toward certain directions. For an (ttl) surface, the 1
picture is even more complicat8checause steps can be of AE4=AE +kgT In(—). (13)
two different typeqA step and B stepand they can both be Ck
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FIG. 3. Steering effects for normal deposition. Dotted and
dashed lines represent the trajectories without and with steering,
respectively. The adatoms following the trajectotiegandt, reach
the terrace only because of the adatom-terrace interactigncor-
responds to the area inside the dashed double-dotted line.

FIG. 2. The residence tim@n units 1/~=1) for an adatom on a
square terrace of side=40, as a function of the inverse of the kink
concentratior(log-log scal¢. AEy=< in all cases, whileAE, cor-
responds to {gg) =0 for diamonds and tof(gg) =99 for circles.
Symbols refer to the exact numerical calculationrQf, and lines to

the analytical approximation, Eqe8) and (13). the terrace, the deposited atom may deviate from its rectilin-

ear trajectoryt; and land on the terrace. The incoming flux
%f, equal toF A=FyL? in the absence of steering, is there-
ore increased to the larger valié=F A, since the effec-
tive capture area of the terrace is larger. The additional area
for large L is simply dP, where the quantitg denotes the

What happens when the conditiét0) does not hold be- in-plane displacement of a particle landing on the terrace

causeAE, is not large enough? In that case the probability tosd?ﬁét;?fiziggtﬁt)?ndp Is the island perimeter. This leads
find the adatom at a kink site is suppressed and the use o?

Egs.(8) and(13) underestimates,.s. This is clearly shown F=F(A+dP)=F(yL%+ L) (15)
in Fig. 2 where we compare, for a square terrace on a square Y '

lattice, numerical result¢gsymbolg for 75 (in units 1 wheree= 5d is an adimensional quantity. The actual value
=1) with the analytical approximatioflines) derived from  of d depends on the thermal energy of the incoming particles
Egs.(8) and(13). In the case\Ey=< andAE,=0 the ana-  and on the interaction energy between the atom and the sub-
lytical formula gives a residence tim&ig. 2, dashed line  strate. For oblique incidence, it also depends on the angle of
that is well below the numerical resultBig. 2, diamonds incidence and it should be meant as an average over the
In the opposite case Ey=> and ((eg)x=expAEc/kgT)  island perimeter. The effect of the parametewill be illus-
—1=99, the condition(10) is fulfilled: numerical(Fig. 2,  trated in the next section, in the analysis of experiments on
circles and analytical result§~ig. 2, solid ling agree. second-layer nucleation.

Equation(13) clearly applies not only to the case of kinks,  Equation(15) assumes that atoms landing on the terrace
but holds whenever there are two energy barriers for interhecause they are steered behave as unsteered ones. This is
layer transport, one of which being significantly larger: Fornot exact, because the extra flExP is not deposited uni-
example, for a hexagonal terrace on(ld1) surface, sur-  formly, but closely to the border of the terrace. Consequently,
rounded by three A steps and three B stepaHf, g are the  the probabilityW is smaller than the value given by EG)

ES barriers at the two different steps, the effective barrier isind its use leads to an overestimate of steering effects. How-

Equation(13) has a transparent physical meaning: adatom
leave the terrace at kink sites only, but they feel an effectiv
barrier larger tham\E,, because of the finite concentration
of kinks. If T=300 K andc,=0.1, the barrier increase due
to this effect is 0.06 eV.

equal to the smaller one plus a small correction t&m, ever, this is a second-order effect that should be taken into
' account only if a more rigorous theory for deriving the in-
AEgr=min{AEA,AEg} +kgT In2. (14 coming flux F were employed.
IV. STEERING EFFECTS V. SECOND-LAYER NUCLEATION EXPERIMENTS

The flux of incoming atoms is usually supposed to be The nucleation rate, as we have discussed in Sec. Il, is
uniform. This hypothesis is correct down to a distance of ahe rate of dimer formation on top of a terracefi@edsizel.
few nanometers from the surface, but it breaks down atts direct experimental determination is very hard because it
smaller distances because of the adatom-substratgould require large statistics in single-island measurements
interaction®® This interaction is attractive, so that it increaseswith a fixed sizeL.
the effective flux landing on a top terrate'? Let us instead describe how “second-layer nucleation”
The effect is illustrated in Fig. 3 for normal deposition on experiments take place. A first possibiligee Sec. V Ais to
a circular terrace. Because of the attractive interaction witldeposit a fraction of a monolayer on the substrate and to
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analyze the statistics of islands with a second nucleus on top. TABLE II. The critical perimeterP; and the density;s of is-
A second possibilitfsee Sec. V Bconsists of preparing an lands, for the five different concentrations of CO.

ensemble of one-monolayer-high islands, as uniform as pos
sible, that is, with the smallest dispersions in size and island- Pco (10 **mbar) 0.5 10 47 95 190
island _distance. Afterw_arqls, anew fractiqn of a monolayer is P, 816 623 449 341 324
deposited and t_he statistics of islands with a second nucleus N X 16° 275 21 183 176 165
on top of them is studied.

The relevant quantity is clearly the probabiljty7) that a
nucleation event has occurred on top of an island during gve now reanalyze in detail two second-layer nucleation ex-
time 7. For an ensemble of equivalent islands, this probabilperiments.
ity corresponds to the fractiof{ r) of islands with a second
nucleus®

A. PY/Pt(111)

T This experiment is described in Ref. 13 and it has already
p(7)=f(7)=1—exw' - J;dt w[l-(t)]]- (16)  peen discussed, according to @), in Ref. 18. Using that
expression forw, valid for strong barriers, the integral
This expression clearly shows that comparison with afdL L (L) can be easily evaluated analytically. Here we
second-layer nucleation experiment requires two separa®@o not assume that barriers are strong, and we use the general
pieces of information: the nucleation rate(L) and the expressior(1), which will be later shown to be equivalent to
growth lawL (t) of the islands. The former has very general EQ. (6), because of the validity of the relatianes< gep-
validity, because it does not depend on the details of the In the experimentL;=0, andL. has been evaluated as
experiment. It does not even change if nucleation occurs ofpllows: after deposition of a dose of platinum, the size
top of a mound:w(L) is a ‘single-island’ problem and it is of the smallest islanavith a second nucleus on top, and the
not affected by the growth dynamics of the overall surfacesizel . of the largest islanavithouta second nucleus on top,
The latter piece of information, the growth ldw(t), is sys- have been determined experimentally for several scanning-
tem dependent and an exact calculation of it is generallyunneling microscopy(STM) topographs. The critical size
impossible: its determination involves, in principle, all of the has been approximated by the mean of their average values:
surface, in much the same way as the problem of submondsc=(1/2) ((L_)+(L)).%
layer nucleation. Experiments have been performi@at different CO par-
Let us now determine in an approximate wiyr), for a  tial pressurespco. In Table Il we reportN;s and P, for the
uniform array of islands of density;s (N;; being the number different values ofpco. P is the critical perimeter and it is
of islands per lattice site The growth lawL(t) is found three(six) times the critical sizé ., for triangular(hexago-
according to a simple deterministic modéf° each island nal islands. The values of the other physical parameters en-
collects the atoms falling in the capture are&l,d/ If 4,  tering in Eqs(5), (18), and(19) areF=5x10"% ML/s, and

=yL? is the initial area of the terrace, after a tirpe v=1exXp(—Eq/kgT), with v,=5x10"2s"!, E4=0.26 eV,
and T=400 K=0.0345 eVkg. It is worth remarking®*8
Ft , Ft that island coalescence has already started for the smallest
A=A+ —, L()=\/Li+ : (17 value ofpco. So, in that case the ES barri&E is overes-
Nis YNis :
timated.
Hence, if islands grow from the initial sizg to the final size We now have all the ingredients in order to apply Ecf)

L, the fraction of them with a second nucleus on top is and recover the value of the interlayer hopping rate,the
only unknown quantity. In the hypothesis of a uniform bar-
rier along the stepy’ = voexd —(Eq+AE)/ksT]. Two differ-
ent values will be considered for the prefactof=ry=>5
X 10% s™! andv(=2.2x10'? s™1. The latter value has been
The integralfdLL w(L), appearing in Eq(18), cannot ©obtained by field-ion microscopy studi#sAs a general rule,
be evaluated analytically for generic ES barriers: the reasoft AE is the ES barrier obtained for a prefacigy= v, for a
is the complex. dependence diV [see Eq.(5)]. It is easily  generic valuev| the ES barrier changes to a value
evaluated numerically.
It is useful to define a critical size, : it is the (final) size (AE)'=AE+KgT In(vg/vo). (20)

. (19

2 N: L
f=1—exp[— yst "dLLw(L)

1 ., .
of the islands, corresponding to a valde =. In other ~ForT=400 K, changing, by a factor of 2 modifies the ES

2 ; .
. . barrier by 24 meV; changing, by a factor of 10 changes
words, an island grown up to side, has equal chance of AE by 80 meV.

ha_\vmg or not_hav!n_g a sec_ond nucleus on thp.s deter- In Fig. 4 we report the results for the Ehrlich-Schwoebel
mined by the implicit equation barrier obtained using the exact nucleation rate given in Eq.
L n2 E (1), vg being equal to the two values mentioned above. An

f dLLw(L)= — . (19 inspection of the original STM imagedig. 1 of Ref. 1
L 2 yNis shows that for the smallest and the two largest values of
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FIG. 4. Values ofAE, the ES barrier, for differenpcg values. FIG. 6. The effect of steering on the interpretation of the

Circles and diamonds refer, respectively, p=vo=5x 10*2 571 second-layer nucleation experiment on platinum, Ref. 13. Note the

and tovy=2.2x 10" s™1. The error bars are due to the indetermi- log-linear scale. Circles and diamonds refer, respectivelypde

nation in the island shape. =5x10"1? mbar andpco=1.9X 10~ ° mbar. Dotted lines mark the
values ofAE in the absence of steering.

Pco, islands are triangular, while in the other two cases the ,
shape is less precisely defined. Therefore we have considerg@" the largest barrier AE=0.31 V), 75/ 74e<0.005.
both hexagonal and triangular terraces: the upper and Iowﬁ; conclude that for analyzing the experiment on platinum,
values of the error bars correspond to such cases. As one c4If Use of formuld6) would be legitimate. Notice that, be-
see from the figure, at this temperature the effect of the inc@use of the exponential dependencergt on AE, larger
determination of the terrace shape is comparable to an ind¥@lués of the ES barrier quickly invalidate Ef): 7es
termination ofv, of a factor of 2. =TgepfOr AE=0.4 €V. .

In Fig. 5 we compare our results with those obtained us- Let us now consider the effect of steering on the val_ue of
ing the strong barrier approximation, E€f): the latter is the E_S b_arner. We repeat the evaluation of the ES barrier by
applicable forAE=0.2 eV; for smaller values it overesti- considering an effective flug=F(A+ eL) for several val-

mates w and therefore it underestimates the ES barrierY®S (_Jf the parametes, which measures the “streng_th” of
teering. Results are reported in Fig(rébte the log-linear

Mean-field theory, also shown in the same figure, is eners :
ally incorrect Y g g scalg. For triangular terraces on an fdd1) surface,n=3,

We can now evaluate the ratio between the residence tim@"d€ is three times thémaxima) in-plane displacement of a

and the deposition time. In the strong barrier limit, such aparticle landing close to the terrace edge. It is easy to check
ratio is that, for the critical size of the terrace, the largest value of

(e=32) corresponds to an incoming fluk increased by
= 60% for diamonds ffco=1.9X10"° mbar) and by 24% for
=ay—expAE/T)LS, (21)  circles (pco=5%10 2 mbar). The ES barrier is seen to de-
v crease for strong steering, because a larger effective flux re-
quires a smaller barrier for producing the same nucleation
04— 04 rate. The fact thal\E is less affected by steering when the
] barrier is smaller is intuitively clear: a smaller barrier implies
©—@ Exact results a larger critical sizeL, and the larger th&, the smaller the

| |--x Strong barri imati ] \ - an
03 +...:M23ﬁgfie$§r£¥mxma on 03 effect of steering, which is an edge effect.

Tres

Tdep

,.»+""+ B. Ag/Ag(112)

The experiment on silver reported in Ref. 4 is slightly
different from the one on platinum. First, a quantity

0.2

-

ok FlleeT 40.1 =0.1 ML is deposited. Afterwards an equal second dose

ES barrier (eV)

-
-
-
-
-

A6=0.1 ML is deposited at two different temperatifres
(T=120 and 130 Kand the fractiorf of covered islands is
0 determined as a function of the island radiusee Table IIJ.
The density of islands is determined by the relatidp
=00/ A= 0o/ (yL?), and A 6= 6, implies L= 2L;. Fur-
FIG. 5. Results with the exact nucleation réter v,=v, and  thermore, F=1.1x10"% ML/s, v,=2x10"s*, and Eq
triangular islands are compared to mean-field theory and to the =0.097 eV.
values obtained from the “strong barrier” approximation oy see Experimental data at different temperatures give the
Eq. (7). possibility—in principle—to determine both the barri&E

J T T P T S T
CO partial pressure (mbar)

075408-6



IRREVERSIBLE NUCLEATION IN MOLECULAR BEAM . .. PHYSICAL REVIEW B67, 075408 (2003

TABLE lIl. Experimental data for the fractiohof covered is- €,~180000-80000, ¢,~14000+4000. (24
lands as a function of the island radiysand theoretical results for
the corresponding ES length&,= € gg (T;). However, even if we consider the smalléstand the largest
€, [in order to minimize AE(120 K) and to maximize
T;=120K T,=130K AE(130 K)], we still have thatS(AE) is of order 0.01 eV
r(A) f I r(A) f 0, [more preciselyS(AE)=8 meV].
o o0 Bs 0035 5150 e ofect of nonuniform barmers, Assuming.
11.5 0.02 300000 39.0 0.14 10200 ;- . ) 9
that the prefactop is equal to or even a bit larger thag,
16.5 0.11 285000 47.0 0.47 17000 - .
215 0.24 180000  55.0 0.7 14800 we have shown tha¥(AE)~ 10 meV. If a scenario with two
' ' : ) types of barriers applies, EqL3) gives the relation
27.5 0.55 155000 63.0 0.85 11 800
32.0 0.88 200000 68.0 0.93 11400 — (e,
38.0 1.0 77.0 1.0 S(AE)~kgT In(c— (25)
1

between the difference in the ES barriers and the kink con-

centrations,c; and c,. In the previous equatiorfz%(Tl
QTZ) is the average temperature. A vald@AE)~0.01 eV

and the prefactow of the interlayer hopping rate. A large
debate is present in the literature regarding the interpretatio

of the experimental da{és_ﬂand _the possibility thato/ v . would therefore require that the concentrat@mnof kinks at
>1 (see below Our contribution is to analyze the data with T=130 K is two or three times larger than the concentration

the correct theory and to ascertain the possible effect of nons ; _ ; ;
uniform barriers and steering, rbl of k|r_1ks atT= 120 K, which seems to 'be unllke?gr?._
We finally consider the effect of steering. Increasing the

Insgrting each pair of experimental valuesz in Eq. value of the parameterreduces slightly the spreading of the
(18) yields a value for the ES length, reported in Table IlI, ES lengths(third columns in Table I), but the value of

a;]nd C(I)n_seqL{e_r1tl>/€for ”I]:e interlﬁyer hopping ra»t’e,tErough 4O(AE) remains practically unaffected. Altematively, if we
:he re Iatlon;/g - Vth.S' dofr eacthtempera;ture_h:/vfe avle use considerv| as a free parameter, the rati¢/v, is smaller
€ value off 5 obtained from the pairr(f) with f as close than that without steering, but is still too large: for 30 we

as possible tdf =3, i.e., withr as close as possible to the find AE=0.23 eV andv’/re—1 5% 1. We conclude that
critical sizel ., because it is the statistically most significant _ . - oo - ’ .
neither steering effects nor the presence of nonuniform bar-

Eomt: f(Lf_: 215 ’B‘.): 0.55 at =Ty, and f(Li=47 A) riers are enough to allow a reasonable interpretation of the
=0.47 atT=T,. Using the relations :
experimental results of Ref. 4.

AE TT, [ vy 1 (€, T2/AT
= n , = i , (22) VI. DISCUSSION AND CONCLUSIONS
2

kB N AT €2 Vo _€l
i ) The present paper has three main go&ls.Provide a
w,here AT=T27—T1, we finally obtain AE=0.30 ev and  complete list of the correct formulas to be used for the inter-
vo/vo=1.9<10". The value found for the prefactoly=4  pretation of data from second layer-nucleation experiments,
X 10'® §;1, is huge and it is comparable to a previous (ji) extend the “standard” model of irreversible nucleation
analysis® of the same data using the approximate formulaang take into account the effect of steering and nonuniform
(7) for the nucleation rate. _ _ _ES barriers and(iii) apply the theoretical framework to re-

A possible alternative way to interpret the data is to arbi-consider some experimental results. Let us discuss these is-
trarily setvy= vy, and allow the ES barrier to depend ®n  syes in detail.
In this way we findAE=~0.12 eV atT=120 K and AE It is now well establishet*®?°that mean-field Theoff is
=0.11 eV atT=130 K. Hence we find a significant differ- not appropriate for studying the problem of nucleation on top
ence for the barrier strength despite two rather close temof a terrace and the reason for its failure has been clearly
peratures. This difference persists even if we supposesthat understood.In Sec. Il we give the most general formula for

is somewhat larger tham, (e.g., v/ vo="107). The values of the nucleation rate, Eq1), and several approximate formu-

AE change according to EqR0), but their difference las which can be used in the relevant limits. With respect to
our recent papetn the same problem, we are now able to
S(AE) = S(AE)—kgAT In(vg/ vg) (23)  provide a very good simple analytical expression for the

probability W that two atoms medtEq. (5)], valid for any

is almost unchanged, becaukgAT~10 2 eV is smaller barrier strength. We also provide the numerical values for all
than S(AE)=AE(120 K)—AE(130 K)~10 2 eV. parameters appearing W and in 7.5, which depend on the

We can wonder whether experimental indeterminationsshape of the terrace and on the symmetry of the underlying
can explain the large value of(AE), or equivalently of Ilattice, see Table | and Appendix B.
vl vo. As remarked in Ref. 4, island radii have been deter- Mainly because of the complicated expression\érit is
mined experimentally with a precision of about 5 A. Taking not possible to integrate analytically the nucleation rate, Egs.
into account the indetermination im the average values of (18) and(19), and write explicitly, e.g., the critical side; as
€, are a function of all the physical parameters,T,v,v’,....
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This is not a real limitation, indeed, because performing suclAE(T,). Steering effects are not able to make the difference
one-dimensional numerical integration is straightforward. Inconsistent either. In principle, we expect two different effec-
the limit of strong barriers® w~L®% and the analytical inte- tive barriers, at the two temperatures. Application of the for-
gration is possible. However, that approximation may be in‘mula(13) suggests that the value 6({AE) can be explained
accurate, as we have shown in the case of platinum beloWy a larger kink concentration at the highest temperature,
AE=0.2 eV. c(To) /e (T1)=~2, but it is difficult to find a physical moti-

In Sec. Ill we have considered the possibility that thevation for such_a large ratio. We c7onclud§ by remarking. that
additional ES barrier at steps is not homogeneous. The cagecompletely different measurem&f the interlayer rate in
of a generic distribution of barriers cannot be tackled analh® same system, but at a higher temperatiire 300 K,
lytically, but if barriers are everywhere large enough to keeiVes a barried E=0.13 eV and a prefactar, of the same
the adatom density uniform, the problem is solvable. For @der of vo (see also the discussion in Ref.)24 ,
simple bimodal distributior(the barrier is equal tAE, in We believe that possible further developments in the
special kink sites and equal to the larger valliE, else- problem of nucleation should include the following points: a

where Eg. (13) indicates that the system behaves as if it haud'rrc()avcérﬂg2{‘3}62\/?1%(9:5rir:]]é?uadt:)?hgfggsep;r\?vgieg;r:g]r's a
a singleeffectivebarrier AE.4 equal to the kink barrier plus P d '

a correction depending on the kink concentration and teml—)etter assessment of the growth It) for the terrace, and
aep 9 . additional quantitative and controlled second-layer nucle-
perature. This result shows that the same experimental SYS;

. . . . ) tion experiments at different temperatures and for other sys-
tem displays different effective barriers at different temperaiams as well.
tures, or at different growth conditions.

In Sec. IV we have studied the effects of the “incoming

atom”-substrate interactiotsteering on the total flux land-

ing on a top terrace. A detailed treatment would require con- we gratefully thank Thomas Michely and Harald Brune
sidering a realistic interatomic potential and specifying thefor providing the original data from the two experiments
energy and the inclination of the incoming particles. We havejiscussed in Sec. V A and Sec. V B. Thomas Michely and
introduced a minimal model where the “strength” of steering joachim Krug are acknowledged for their critical reading of
and all the above variables are included in a single adimenthe manuscript. Special thanks go to Ruggero Vaia for having
sional parametek= 7d. 7 is a geometric factor andrep-  syggested how to determingand Az for a circular terrace.
resents the(maxima) in-plane deviation of an incoming part of this work was done during the International Seminar
atom. “Models of Epitaxial Crystal Growth” held at the Max

Finally, in Sec. V we reconsidered the data concerningplanck Institute for the Physics of Complex Systems, Dres-
two experiments of second-layer nucleation, which had algen, in March 2002.

ready been analyzed in Ref. 18, using the strong barrier ap-
proximation, Eq(7). In the case of Pt/Pt11), the additional
barrier varies from a small valu\E=<0.1 eV) for the clean
sample, to a value of order 0.3 eV when terrace steps are
fully decorated with CO. We stress that these values should The quantityr is the total hopping rate on a flat surface.
be meant as effective ones. If steering plays a prominent roléfhe jump rate in a given direction ig;= v/z, wherez is the
the effective barrier decreases, because more adatoms agordination numberz=4 or 6 for a square or triangular
expected to land on the terrace. If the landing point of anattice, respectively

ACKNOWLEDGMENTS

APPENDIX A: INTRA- AND INTERLAYER HOPPING
RATES

adatom is displaced up to five interatomic distaneks5, If an atom is on an edge site, its coordination number is
the largest barrieAE=0.31 eV decreases by 20 meV;df  reduced byAz, the number of missing neighbors. The di-
=10, the reduction is twice as large. rected hopping rate towards a missing site., towards the

The case of Ag/AL11) is very debatelf-**and the ques- lower terracgis equal tov); and it may differ from the hop-

tion of the actual values afE and v’ is still open, requiring  ping rate,v4, towards a site of the same terrace. If we define
additional experiments using different temperatures. The inp/zz,,é' the absence of additional step-edge barriers is

terpretation of the data by Bormaret al? can be easily equivalent tov’ = v.

summed up. If the prefactor, is assumed equal tey, the Within this formalism, the escape rate from the terrace for
barrier iS Of Order 0.12 eV and it dif‘fel’S by abOUt 10 meV atan atom on an edge site is equawZ V&: (Azlz) V, . Other

the two temperatured; =120 K andT,=130 K. This dif-  aythors, see, e.g., Ref. 8, prefer definirigas the escape rate
ference,6(AE), between the two barriers can be reduced if(v’zAz v}), but in that case the absence of additional ES
v, is allowed to increase. However, only an exponentiallyparriers does not match the conditioh= ».

large value ofv)/vy [see Eq(23)] would imply a noticeable

reduction of S(AE). If vy/vy=2x10’, the two barriers are APPENDIX B: CALCULATION OF SOME PARAMETERS

both equal to 0.30 eV. Data on the fraction of covered islands FOR A CIRCULAR TERRACE

at different sizes give different barriers. The spreading Bf

at a given temperature can be accounted for by the error bar The derivation ofy for a circular terrace is straightfor-
on the determination of the radius however, this is not ward, because the numbgr of atoms contained in a circle
enough to explain the difference betweérE(T,) and of radiusL is equal to the arearL? divided by the area per

075408-8



IRREVERSIBLE NUCLEATION IN MOLECULAR BEAM.. .. PHYSICAL REVIEW B67, 075408 (2003

atom,A, . SinceA,=1 for a square lattice antl,= \/3/2 for 1 =
a triangular one, we have= = in the former case, ang n(s)= lim N 2 NF,(n(r,s))e, (C2
=2x/+/3 in the latter case. Ny’ Trun F=

_ The derivation of, that is, of the numbe of edge  \yhereNF, is the total number of runs made up®travers-
sites, is less trivial. If we chandeby a quantityd, , the total als, and(- - - ) is the average value on those runs only.

number of atoms changes biyd=2y d,L. If we setd, so The quantityn(r,s) is different from zero if and only if

that only edge sites are comprised in the circular ring, Wy q sjtes has not been visited in any traversal. We can write
haven=2y d, . Let ¢ be the angle between the vector join- explicitly

ing an edge site with the center of the circle, and a nearest-

neighbor(nn) bond. If $=0, d, =1, while for a generiap, F

d, =cos¢. The value ofd, entering in the relation between n(r,s)= H N (re,s), (C3
7 and vy is just the average ovep of cos¢. Because of the k=1

different lattice symmetries, the average is evaluated be&yneren, is the variablen referred to thekth traversal of the
tween zero andr/4, for a square lattice, and between zeroy labeledrr . Inserting Eq(C3) in Eq. (C2) we obtain
and /6, for a triangular lattice. We therefore obtaih

=22/ in the former case, and, = 3/ in the latter case. * F
In conclusion, we obtainy=4+/2 for the (100) lattice and n(s)= >, M(F)< [T ne(re ,S)>, (C4H
n=443 for the (111 lattice. Pt k=t

The derivation ofAz, the (average number of missing whereu(F)=NF,/N,,, is the probability that a single run is
neighbors per edge site, is easily found fréinLet us first  made up ofF traversals.
determine the numbeX,,, of nn bonds which are cut by a If a run goes on fofF traversals, it means that the atom
circle of radiusL. It is elementary to write thail,,=8L for  has doné attempts to descend, failing the fir§t€ 1) times
a square lattice anN,,=8+/3L for a triangular lattice. The and succeeding with the last. Therefore,
guantity Az is nothing but the ratio betwedd,,, and P, so
that Az= 2 for the (100 lattice andAz=2 for the (111) w(F)=a""(1-a). (CH

lattice.
We now make the approximation that distinct traversals

are independent:
APPENDIX C: CALCULATION OF N

F F
We want to evaluate analytically the average number of <k1;[1 (T '5)> =(ny(re 'S)>k1:[2 (n(re.8)).  (CH
distinct sitesNy;s Vvisited by an adatom during its random
walk on the terrace. Let us imagine that we perfoy, Using Egs.(C5) and (C6) in Eq. (C4), we obtain
times the following procedure. We let a random walker start
from a site on the terrace and follow its trajectory until it * F
leaves the terrace. For each nuand each terrace sitewe n(s)= E (1—a)a" Yny(rg ,s))H (n(rg,s)).
define the quantityn(r,s) to be 1 if sites has not been F=l k=2
visited during runr, and O otherwise. The average probabil- (€7

ity that sites is not visited is Let us recall the meaning gh(rg,s)). It is the prob-

ability that sites is not visited during thekth traversal of a
Neun run composed ofF traversa!s. T_his quaqtity does not depend
E n(r.s) (C1) on F We_ make the qpproxmatlon tha_lt it doe_s not depend on
Nunisr k either, ifk=2. In simple words, we just defin@(s)) for
the first traversal an¢thgg(s)) for all the subsequent travers-
als. The superscript/subscript BB means that the traversal
starts from and arrives at the boundary of the terrace.
Within this approximation,

n(s)= lim

Nrun—

All runs can be grouped according to the number1 of
“traversals” across the terrace, defined as follows. Once the
atom has arrived on an edge site, it has the probalplity o
=Az/z to attempt to move outside angl,=1—Az/z to - _ F-1 F-1
move to anotherpsite of the terrace: inrﬁne former case, the n(s)={n(s))(1 a)zl " (Nes(s))
atom has the probabilitya=¢s/(1+€gg) to stay and the
probability 1—a=1/(1+ £9 to leave the terrace. The first ~(ny(s)) (1-a) (ny(s))
traversal starts when the atom is deposited on the terrace and 1—a(ngg(s)) 1+€gd1—(ngg(s))]’
terminates when the atom reaches an edgeasitktries to (C8)
leave the terrace. At this point the atom may leave the ter-
race, in which case it has performed one traversal only, or iThe last approximation is to neglect tlsedependence in
may stay on the terrace and start a new traversal. Accordinqngg(s)) and (ni(s)). Using the simple relationNg;s
to this definition, we can write =241-—n(s)], we obtain
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Ngo(L,€es)  €eNBB+Nyo(L,0) Inserting the expression fad53(L) =N,L/In(L/L,) we ob-
W= = e , (C9 tain the explicit form ofw:
A €ESNdis+A | /

where  Ngg(L,0)=[1—(n,(s))]/A and N§(L)=[1 Ni€est Noll'n—(""l)
—(ngg(s))]/ A is the number of distinct sites visited by a W= n(L/Lo) _ (C10
particle starting from the boundary and reaching it again. Ni€est yL In(L/Ly)
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